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ABSTRACT
In this study, *-directional derivative and *-subgradient are defined using the multiplicative
derivative, making a new contribution to non-Newtonian calculus for use in non-smooth analy-
sis. As for directional derivative and subgradient, which are used in the non-smooth optimization
theory, basic definitions and preliminary facts related to optimization theory are stated and
proved, and the *-subgradient concept is illustrated by providing some examples, such as abso-
lute value and exponential functions. In addition, necessary and sufficient optimality conditions
are obtained for convex problems.
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1. Introduction

Subdifferential, which is a very useful concept in non-
smooth analysis and optimization theory, is a gener-
alization of the classical differential. Some of the sig-
nificant and widely used differentiability properties of
subdifferential can be found in [1–3]. Subdifferential is
widely used for solving non-smooth optimization prob-
lems, some of them can be listed as follows [3–15]. Of
course, in addition to subgradient, there are several con-
cepts, such as quasidifferential, discrete gradient and
codifferential, and strategies, namely smoothing and
scalarization techniques to develop optimizationmeth-
ods in the literature. In the literature, some well-known
methods developed by using these concept and/or
techniques are explained in [16–34].

Conversely, the non-Newtonian calculus concept is
based on the definition of multiplicative derivative. The
multiplicative derivative is used to find the factor by
which the value of a function changes as its variable
changes. It is different than for the conventional deriva-
tive,which finds the rate atwhich the value of a function
changes. For several real-life models such as popula-
tion growth, growth and decay, and economic models
wherein the dependent variables increase or decrease
exponentially, it is more important to know the factor
by which the variables change than the rate at which
they change. Some real word motivation can be found
in [35–37]. In addition, these types of models are often
encountered in non-smooth optimization problems.

To motivate the use of multiplicative derivative, we
now present the following three applications. Two of

them use discrete variables and the other use continu-
ous variables. The first example involves the process of
cell division, by which the number of cells in the body
increases exponentially. First, a cell splits into two cells,
which in turn split to form four cells, then eight and
so on. Since the division process causes the number
of cells to grow exponentially, multiplicative derivative
is more appropriate than the conventional one for the
continuous form of this model.

The second application is from the computational
theory. Some computer algorithms require an
exponentially increasing amount of resources (e.g.,
time, computer memory or number of function eval-
uations) although the problem size increases linearly.
For instance, an algorithm for a problem of size n =
1, 2, 3, . . . , n may take 20, 40, 80, . . . , 2n · 10 seconds,
respectively, for completion, thus making it difficult to
solve the problem for more than 20 variables.

To give another example for the continuous case,
assume that you deposit y0 $ in a bank account and
it grows to y1 $ after 1 year. The annual growth rate
is y1/y0, but what is the monthly growth rate? If the
monthly rate is c, then after 12months the total amount
will be y1 = y0c12. In other words, the monthly rate c
is (y1/y0)1/12. If we instead assume that the balance is
updated daily or hourly, we obtain c = (y1/y0)1/365 or
c = (y1/y0)1/8760, respectively. By expressing the bal-
ance over time as the function f, we obtain the formula
c = (f (x + h)/f (x))1/h for appropriate values of h. In
other words, if we are working in terms of months, then
c = (f (12)/f (0))1/12 = (y1/y0)1/12. Moreover, if we are
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working in terms of days, then c = (f (365)/f (0))1/365 =
(y1/y0)1/365. Finally, if the balance is updated continu-
ously, then the rate of change is c = (f (x + h)/f (x))1/h,
in the limit as 1/h tends to zero.

Due to aforementioned three applications and their
reasons,MichaelGrossmanandRobert Katz [38] defined
and used *-differential to construct a non-Newtonian
calculus in 1972. Later, anotherbrief paper [39]waspub-
lished in 1999. Since then, several applications of the
*-derivative have been presented [40–44].

Ourmain aim in this paper is to generalizemultiplica-
tive derivative to convex functions and state the prop-
erties of the derivative. This generalization contributes
to the development of non-Newtonian calculus and can
be used in the non-smooth optimization theory.

The paper is organized as follows. In Section 2, the
multiplicative derivative and *-gradient are recalled.
After that, *-directional derivative and *-subdifferential
are defined in Section 3. Then, their properties are
stated, proved and discussed. By using this new con-
cept, a optimality condition for convex optimization
problem is given in Section 4. Section 5 concludes the
paper.

2. Preliminaries

In this section, we provide some basic information
about the multiplicative derivative, i.e. non-Newtonian
calculus, which can be found in [38,39,41].

Definition 2.1: Assume that the function f : IR → IR is
positive valued. If the limit

lim
h→0

(
f (x + h)

f (x)

)1/h

exists, then f is said to be *-differentiable at the point
x. The value of this limit is known as the *-derivative (or
multiplicative derivative) of the function f at the point x
and is denoted by f∗(x) or d∗f (x)/dx.

Remark 2.1: Since f is a positive-valued function, it can
easily be seen from Definition 2.1 that f∗(x) ≥ 0.

By using Definition 2.1, *-derivative can be extended
to functions of several variables. Let us consider the
function f : IRn → IR of n variables. The partial *-
derivative of f with respect to xi for i ∈ {1, 2, . . . , n} can
then be defined by fixing all other variables xk , where
k ∈ {1, 2, . . . , i − 1, i + 1, . . . , n} and is denoted by f∗xi , f

∗
i

or ∂∗f/∂xi.

Definition 2.2: Assume that the function f : IRn → IR is
positive valued. If all the partial *-derivatives of f exist,
then the *-gradient of f is a vector-valued function and
is defined as (

f∗x1(x), f
∗
x2(x), . . . , f

∗
xn(x)

)
and is denoted by ∇∗f (x).

The relationship between the *-derivative and the
classical derivative was given in [39] as

d∗f (x)
dx

= ef
′(x)/f (x). (1)

In [41], the multiplicative chain rule for functions of two
variables is given without proof. This rule can be gen-
eralized to functions of n variables, as shown in the
following theorem.

Theorem 2.1: Let f : IRn → IR be a positive-valued func-
tion with continuous partial *-derivatives and xi : IR → IR
be differentiable functions for i ∈ {1, . . . , n}. Then,
d∗f (x1(t), . . . , xn(t))

dt

= f∗x1(x1(t), . . . , xn(t))
x′
1(t) . . . f∗xn(x1(t), . . . , xn(t))

x′
n(t).

Proof: From Equation (1), we obtain that

d∗f (x)
dt

:= d∗f (x1(t), . . . , xn(t))
dt

= e

df (x1(t),...,xn(t))
d(t)

f (x1(t),...,xn(t)) .

By using the classical chain rule, we then find

d∗f (x)
dt

= e

∂f (x1(t),...,xn(t))
∂x1

dx1(t)
dt +···+ ∂f (x1(t),...,xn(t))

∂xn
dxn(t)
dt

f (x1(t),...,xn(t))

= e

∂f (x1(t),...,xn(t))
∂x1

dx1(t)
dt

f (x1(t),...,xn(t)) . . . e

∂f (x1(t),...,xn(t))
∂xn

dxn(t)
dt

f (x1(t),...,xn(t))

= f∗x1(x1(t), . . . , xn(t))
x′
1(t) . . . f∗xn(x1(t),

. . . , xn(t))x
′
n(t). �

3. *-Directional derivative and
*-subdifferential

The partial *-derivative shows how many times the
value of a function changes along one of its coordinates
while all other coordinates are constant. Since in opti-
mization theory, this change needs to be directional in
any direction v, the following definition can be given.

Definition 3.1: Let f : IRn → IR be a positive valued
function, and v ∈ IRn be a non-zero vector. The function
f is said to be *-directionally differentiable at a point x in
the direction v, if there exists the finite limit

f∗(x; v) = lim
h↓0

(
f (x + hv)

f (x)

)1/h
,

which is called *-directional derivative of f at x in the
direction v.

Then, using the following theorem, we can find
the relation between *-directional derivative and direc-
tional derivative.
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Theorem3.1: Let f : IRn → IRbeapositive function. If f is
directionallydifferentiableatapoint x inadirectionv, then
f is *-directionally differentiable at x in the direction v, and

f∗(x; v) = e
f ′(x;v)
f (x) ,

where f ′(x; v) denotes the directional derivative of the
function f at the point x in the direction v.

Proof: By the definition of *-directional derivative,

f∗(x; v) = lim
h↓0

(
f (x + hv)

f (x)

) 1
h

= lim
h↓0

(
f (x + hv)− f (x)

f (x)

+ 1
) f (x)

f (x+hv)−f (x)
f (x+hv)−f (x)

h
1

f (x)

.

Saying t = f (x)/f (x + hv)− f (x), one can show that
easily t → ∞ as h ↓ 0. Since f is directionally differen-
tiable at the point x in the direction v, limh↓0 f (x + hv)
− f (x)/h exist and equals f ′(x; v). Thus

f∗(x; v) = lim
t→∞

(
1 + 1

t

)f ′(x; v)t/f (x)

= e
f ′(x;v)
f (x) , since lim

t→∞

(
1 + 1

t

)t

= e. �

Let us define

uv = uv11 uv22 . . . u
vn
n (2)

for u = (u1, . . . , un) ∈ IRn+ and v = (v1, . . . , vn) ∈ IRn,
where

IRn+ = {x = (x1, x2, . . . , xn) ∈ IRn|xi ≥ 0 ∀ i ∈ {1, 2, . . . , n}}.

By using this notation, we can give the connection
between *-directional derivative f∗(x; v) and *-gradient
∇∗f (x) in the following theorem.

Theorem 3.2: Let f : IRn → IR be a positive
*-differentiable function. Then

f∗(x; v) = (∇∗f (x)
)v .

Proof: Similarly, the proof of Theorem 2.1, the proof of
this theorem can be obtained from Theorem 3.1. �

For the convex functions, the *-directional derivative
has the following features.

Theorem3.3: If f : IRn → IR is apositive convex function,
then the *-directional derivative f∗(x; v) exists in every
direction v ∈ IRn and defined as

f∗(x; v) = inf
h>0

e
1
h

(
f (x+hv)
f (x) −1

)
.

Proof: Let us define the functionψ : IR → IR for an arbi-
trary vector v ∈ IRn, as

ψ(h) = 1
h

(
f (x + hv)− f (x)

f (x)

)
.

Let ε > 0, without loss of generality we can choose
h1, h2 ∈ (0, ε) such that h1 < h2. Then,

ψ(h2)− ψ(h1)

= 1
h1h2

(
h1f (x + h2v)− h1f (x)

f (x)

− h2f (x + h1v)− h2f (x)

f (x)

)

= 1
h1

⎛
⎝h1

h2
f (x + h2v)−

(
1 − h1

h2

)
f (x)− f (x + h1v)

f (x)

⎞
⎠.

Since h1 < h2, h1/h2 < 1. Then, by using convexity of
the function f (x), it can be easily seen that

h1
h2

f (x + h2v)+
(
1 − h1

h2

)
f (x)

≥ f

(
h1
h2
(x + h2v)+

(
1 − h1

h2

)
x

)
= f (x + h1v).

Thus

ψ(h2)− ψ(h1)

≥ 1
h1

(
f (x + h1v)− f (x + h1v)

f (x)

)
= 0.

This means that function ψ decreases as h ↓ 0.
On the other hand, since we study in the case h ↓ 0,

we can assume 0 < h < ε < 1. Let us show thatψ(h) is
bounded below for h ∈ (0, ε) ⊂ (0, 1). For this purpose,
for 0 < h < ε observe that

ψ(h)− ψ(−ε/2)

= 1/h
(
f (x + hv)− f (x)

f (x)

)

−
(

−2
ε

(
f (x − ε

2v)− f (x)

f (x)

))

= f (x + hv)− f (x)+ 2h
ε
f (x − ε

2v)− 2h
ε
f (x)

hf (x)

=

2
(
1
2 f (x + hv)+ 1

2 f (x)+ h
ε
f (x − ε

2v)

+ (1 − h
ε
)f (x)− 2f (x)

)
hf (x)

.
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Since f is convex,

ψ(h)− ψ(−ε/2)

≥
2
(
f (x + h

2v)+ f (x − h
2v)− 2f (x)

)
hf (x)

=
4
(
1
2 f (x + h

2v)+ 1
2 f (x − h

2v)− f (x)
)

hf (x)

≥ 4 (f (x)− f (x))

hf (x)

≥ 0.

Since the above inequality satisfied for all ε, the func-
tion ψ is bounded below. Therefore since ψ is decreas-
ing as h ↓ 0 and bounded below for h ∈ (0, ε) ⊂ (0, 1),
limh↓0 ψ(h) exists and

lim
h↓0

ψ(h) = inf
h>0

ψ(h). (3)

From the definition of *-derivative, one has

f∗(x; v) = lim
h↓0

(
f (x + hv)

f (x)

)1/h

= lim
h↓0

(
f (x + hv)− f (x)

f (x)
+ 1

) f (x)
f (x+hv)−f (x) ψ(h)

.

Since limh↓0 ψ(h) exists and limh↓0((f (x + hv)− f (x)/
f (x))+ 1)f (x)/f (x+hv)−f (x) = e, we can conclude that

f∗(x; v) = lim
h↓0

eψ(h).

From (3), we obtain f∗(x; v) = infh>0 eψ(h). Hence

f∗(x; v) = inf
h>0

e
1
h

(
f (x+hv)
f (x) −1

)
. �

Remark3.1: As it is seen fromtheproof of Theorem3.3,
for any ε > 0 one has

f∗(x; v) = inf
h∈(0,ε)

e
1
h

(
f (x+hv)
f (x) −1

)
.

In the following theorems, we will show that
*-directional derivative satisfies some good properties
which are necessary for calculation and most of them
obtained from Theorem 3.3. When using Theorem 3.3,
it is assumed that h ∈ (0, 1) according to Remark 3.1.

Theorem 3.4: Let f : IRn → IR be a positive function.
Then for the function v �→ f∗(x; v), the following equation

f∗(x; λv) = f∗(x; v)λ for 0 < λ ∈ IR

holds .

Proof: From Definition 3.1,

f∗(x; λv) = lim
h↓0

(
f (x + hλv)

f (x)

)1/h

= lim
h↓0

((
f (x + hλv)

f (x)

)1/λh)λ
.

Let k := λh. Since 0 < λ and h ↓ 0, then k ↓ 0. Thus

f∗(x; λv) = lim
k↓0

((
f (x + kv)

f (x)

)1/k)λ
= f∗(x; v)λ.

�

Theorem 3.5: Let f : IRn → IR be a positive convex func-
tion. Then the function v �→ f∗(x; v) satisfies the following
properties:

(a) f∗(x; v + w) ≤ f∗(x; v)f∗(x;w),
(b) f∗(x;−v) ≥ f∗(x; v)−1.

Proof: (a) By using Theorem 3.3, we obtain

f∗(x; v + w) = inf
h>0

e
1
h

(
f (x+h(v+w))

f (x) −1
)

= inf
h>0

e
1
h

(
f
(
1
2 (x+2hv)+ 1

2 (x+2hw)
)

f (x) −1

)
.

Since f is convex and h<1, we get

f∗(x; v + w) ≤ inf
h>0

e
1
h

( 1
2 f (x+2hv)+ 1

2 f (x+2hw)
f (x) −1

)

= inf
h>0

e
1
2h

((
f (x+2hv)

f (x) −1
)
+
(
f (x+2hw)

f (x) −1
))

= inf
h>0

e
1
2h

(
f (x+2hv)

f (x) −1
)
e

1
2h

(
f (x+2hw)

f (x) −1
)

≤ inf
h>0

e
1
2h

(
f (x+2hv)

f (x) −1
)
inf
h>0

e
1
2h

(
f (x+2hw)

f (x) −1
)

= f∗(x; v)f∗(x;w).

(b) From the part (a), we have f∗(x; v − v) ≤ f∗(x; v)
f∗(x;−v). As f∗(x; 0) = 1,wehave f∗(x;−v)≥ f∗(x; v)−1.

�

Since a convex function f : IRn → IR is locally Lips-
chitz continuous at any point x ∈ IRn (for proof see [1]),
the following properties of *-directional derivative can
be presented.

Theorem 3.6: Let f : IRn → IR be a positive valued con-
vex function with a Lipschitz constant K at x ∈ IRn. Then
the function v �→ f∗(x; v) satisfies the following inequal-
ity:

ln f∗(x; v) ≤ K‖v‖
f (x)

.
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Proof: From Theorem 3.3, one can see that

f∗(x; v) = inf
h>0

e
1
h

(
f (x+hv)
f (x) −1

)

= inf
h>0

e
1
h

(
f (x+hv)−f (x)

f (x)

)

≤ inf
h>0

e
1
h

(
K‖x+hv−x‖

f (x)

)

≤ inf
h>0

e
K‖v‖
f (x) = e

K‖v‖
f (x)

or

ln f∗(x; v) ≤ K‖v‖
f (x)

. �

In the literature, the subgradient and subdifferen-
tial of a convex function are defined from the fact that
f (y) ≥ f (x)+ ∇f (x)T (y − x) under the differentiability
assumption. Clarke [2] defined the subgradient and the
subdifferential by using this inequality. Now, we are
going to define the *-subgradient and *-subdifferential,
but before that we need to mention a similar inequality
which hold for the *-gradient.

Theorem 3.7: Let f : IRn → IR be a positive valued con-
vex function. If f has all its partial *-derivatives, then the
following inequality:

∀y ∈ IRn f (y) ≥ f (x)+ ln∇∗f (x)f (x)(y−x) (4)

is satisfied.

Proof: It is clear that if y= x, then inequality (4) holds.
Thus, assume that x �= y. By Theorem 3.3, we can write

∇∗f (x)y−x = f∗(x; y − x).

Then, using Theorem 3.3, it can be written as

∇∗f (x)y−x = inf
h>0

e
1
h

(
f (x+h(y−x))

f (x) −1
)

= inf
h>0

e
1
h

(
f ((1−h)x+hy)

f (x) −1
)
.

Since f is convex and h < 1, we have

∇∗f (x)y−x ≤ inf
h>0

e
1
h

(
(
(1−h)f (x)+hf (y)

f (x) )−1
)

= e

(−f (x)+f (y)
f (x)

)

or

f (y) ≥ f (x)+ ln∇∗f (x)f (x)(y−x). �

Remark 3.2: The term ln∇∗f (x)f (x)(y−x) in the right-
hand side of inequality (4) in Theorem 3.7 is not equal
to f (x)(y − x) ln∇∗f (x), however,

ln∇∗f (x)f (x)(y−x) = f (x) ln∇∗f (x)(y − x).

The reason of this difference is that (y − x) ∈ IRn while
f (x) ∈ IR and moreover ∇∗f (x)f (x)(y−x) is real number
which is defined as in (2).

Definition 3.2: The *-subdifferential of a convex func-
tion f : IRn → IR at the point x ∈ IRn is the set ∂∗f (x) of
vectors v ∈ IRn+ such that

∂∗f (x) =
{
v ∈ IRn+

∣∣∣f (y) ≥ f (x)+ ln vf (x)(y−x)

for all y ∈ IRn
}
, (5)

where the vector v ∈ ∂∗f (x) is called *-subgradient.

Now, some examples can be given to visualize the *-
subdifferential concept.

Example 3.1: Let us consider the function f (x) =
|x| + 1. Even if the function f is continuous, it is not
*-differentiable at x=0. Indeed,

lim
h→0

(
f (h)

f (0)

)1/h
= lim

h→0

( |h| + 1
1

)1/h

⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

lim
h→0−

( |h| + 1
1

)1/h
= lim

h→0− (
−h + 1)1/h = e−1,

lim
h→0+

( |h| + 1
1

)1/h
= lim

h→0+ (
h + 1)1/h = e.

Thus the function f is not *-differentiable at x=0.
On the other hand, since the function f is convex, *-
subdifferential of the function f at the point x=0 exists
and

∂∗f (0) = {
v ∈ IR+

∣∣ |y| + 1 ≥ 1 + ln vy for all y ∈ IR
}

= {v ∈ IR+ | |y| ≥ y ln v for all y ∈ IR }
= [

e−1, e
]
.

Now, let us find the *-subdifferential of the function f at
thepoint xwhere the function f is *-differentiable. Using
Theorem 3.2, we can write *-subdifferential of f at the
point x>0 as

f∗(x) = lim
h→0

(
f (x + h)

f (x)

)1/h
= lim

h→0

(
x + h + 1
x + 1

)1/h

= e1/x + 1.

Then, let us calculate the *-subdifferential ∂∗f (x) for
x>0, if v ∈ ∂∗f (x),

f (y) ≥ f (x)+ ln vf (x)(y−x) for all y ∈ IR

⇒ |y| + 1 ≥ x + 1 + ln v(x + 1) (y − x) for all y ∈ IR

⇒ |y| − x ≥ (x + 1) (y − x) ln v for all y ∈ IR

⇒
{
y − x ≥ (x + 1) (y − x) ln v for all y ≥ 0,

−y − x ≥ (x + 1) (y − x) ln v for all y < 0.

By solving the first inequality for two cases, namely,
y> x and y< x, we find v = e1/x+1. Then ifwe substitute
v = e1/x+1 in the second inequality, we obtain −y ≥ y
which is always true for y<0. Thus ∂∗f (x) = {e1/x+1}.
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Hence the result ∂∗f (x) = {∇∗f (x)} obtained from
Example 3.1 can be generalized for functions which are
*-differentiable at the point x. Consequently, the follow-
ing theorem can be given.

Theorem 3.8: If a positive convex function f is *-differen-
tiable at the point x, then the *-subdifferential ∂∗f (x) is a
singleton set consisting of f∗(x), i.e. ∂∗f (x) = {∇∗f (x)}.

Before the proof of this theorem,we need to give the
following lemma.

Lemma 3.1: Let f : IRn → IR be a positive convex func-
tion. Then for all x ∈ IRn, ∂∗f (x) = {v ∈ IRn|f∗(x; d) ≥
vdfor all d ∈ IRn}.

Proof: Let S := {v ∈ IRn+|f∗(x; d) ≥ vdfor all d ∈ IRn}
and v ∈ S. Then we have

vd ≤ f∗(x; d).

From Theorem 3.3, one can obtain that

vd = inf
h>0

e
1
h

(
f (x+hd)
f (x) −1

)

= inf
h>0

e
1
h

(
f ((1−h)x+h(x+d)

f (x) −1
)
.

Convexity of f yields that

vd ≤ inf
h>0

e
1
h

(
(1−h)f (x)+hf (x+d)

f (x) −1
)

= inf
h>0

e

(
f (x+d)−f (x)

f (x)

)
= e

(
f (x+d)−f (x)

f (x)

)
.

Therefore we get

f (x + d) ≥ f (x)+ f (x) ln vd = f (x)+ ln vf (x)d ,

whereh ≤ 1. Ifwe choosed:= y−x, it canbeclearly seen
that v ∈ ∂∗f (x).

Conversely, if v ∈ ∂∗f (x), then it follows from
Theorem 3.3 that

f∗(x; d) = inf
h>0

e
1
h

(
f (x+hd)
f (x) −1

)

≥ inf
h>0

e
1
h ln vhd , sincev ∈ ∂∗f (x)

= vd .

Thus v ∈ S. �

Now, we can give the proof of Theorem 3.8.

Proof: From Theorem 3.3, the *-directional derivative
f∗(x; d) of a convex function f exists in every direction
d ∈ IRn. By Theorem 3.2, since f∗(x; d) = (∇∗f (x))d for

all d ∈ IRn, from Lemma 3.1, ∇∗f (x) ∈ ∂∗f (x). Now, if
we assume that there exists v ∈ ∂∗f (x) such that v �=
∇∗f (x), then by using Lemma 3.1 we have

vd ≤ f∗(x; d) = (∇∗f (x)
)d .

If we choose d = (1, 0, . . . , 0) and d = (−1, 0, . . . , 0), we
obtain v1 ≤ f∗x1(x) and v1 ≥ f∗x1(x), respectively, which
means v1 = f∗x1(x). Similarly, for d = (0, 1, 0, . . . , 0) and
d = (0,−1, 0, . . . , 0), we obtain v2 = f∗x2(x). Con-
sequently, for all i ∈ {1, 2, . . . , n}, we get vi = f∗xi(x), that
is, v = ∇∗f (x). However, this contradicts the assump-
tion that v �= ∇∗f (x). Therefore ∂∗f (x) = {∇∗f (x)}. �

Example 3.2: In this example, we consider function
f (x) = e|x| and try to find the *-subdifferential of this
function. Since the function f is continuous except x=0,

by Theorem 3.8, ∂∗f (x) = {f∗(x)} =
{

{e}, x > 0,

{e−1}, x < 0.
Indeed,

f∗(x) = lim
h→0

(
f (x + h)

f (x)

)1/h
= lim

h→0

(
e|x + h|
e|x|

)1/h
.

This implies that if x>0, then f∗(x) = e and if x<0, then
f∗(x) = e−1. Now, we compute ∂∗f (0). If v ∈ ∂∗f (0),
then ∀y ∈ IR

f (y) ≥ f (0)+ ln vf (0)(y−0) ⇒ e|y| − 1 ≥ ln vy

⇒
⎧⎨
⎩e

ey−1
y ≥ v, if y > 0,

e
e−y−1

y ≤ v, if y < 0,

⇒ e−1 ≤ v ≤ e,

where we have used infy>0{e
ey−1
y } = e and supy<0

{ee−y−1
y } = e−1. Consequently,

∂∗f (x) =

⎧⎪⎪⎨
⎪⎪⎩

{e−1}, x < 0,[
e−1, e

]
, x = 0,

{e}, x > 0.

As it is seen in this example, it is not an easy
task to compute *-subgradient at a non-differential
point. This is an expected difficulty which is caused
by the nature of non-smoothness and the subgradi-
ent itself already has the same difficulty. Alternatively
*-subgradient can be used to determine whether a
given point is an extremum point or not, which is dis-
cussed in Section 4. Although subgradient can be used
to determine being an extremum point, *-subgradient
is also useful for exponential functions since the rate of
growth increases rapidly. On the other hand, the use of
*-subgradient in optimization algorithms for some class
of optimization problems may give us more efficient
results. At this point, it may be useful to give the follow-
ing theorem putting the relation between subgradient
and *-subgradient.
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Theorem 3.9: Let f : IRn → IR be a positive valued con-
vex function. Then

v = (v1, v2, . . . , vn) ∈ ∂f (x)
⇐⇒

(
ev1/f (x), ev2/f (x), . . . , evn/f (x)

)
∈ ∂∗f (x).

Proof: First of all, let’s recall the definition of the sub-
gradient ∂f (x) for a convex function f : IRn → IR which
is

∂f (x) = {
v ∈ IRn

∣∣f (y)≥ f (x)+vT (y − x) for all y ∈ IRn
}
.

Assume v ∈ ∂f (x). We should show that the vector
(ev1/f (x), ev2/f (x), . . . , evn/f (x)) satisfies the inequality in
Definition3.2. Sincev ∈ ∂f (x)where x = (x1, x2, . . . , xn),
for all y = (y1, y2, . . . , yn) ∈ IRn, we have

f (y) ≥ f (x)+ vT (y − x)

= f (x)+ (v1(y1 − x1)+ v2(y2 − x2)

+ · · · + vn(xn − yn))

= f (x)+ ln ev1(y1−x1)+v2(y2−x2)+···+vn(xn−yn)

= f (x)+ ln
(
ev1(y1−x1)ev2(y2−x2) . . . evn(xn−yn)

)

= f (x)+ ln
(
ev1/f (x), ev2/f (x), . . . , evn/f (x)

)f (x)(y−x)
.

Therefore, (ev1/f (x), ev2/f (x), . . . , evn/f (x)) ∈ ∂∗f (x.) Sim-
ilarly, other direction of Theorem 1 can be shown. �

As a result of this theorem, one can say that ∂∗f (x)
is a non-empty compact set, since the subdifferential
∂f (x) of a convex function f (x) is a non-empty compact
set [1]. Being a non-empty set is obvious. For compact-
ness of the set ∂∗f (x), recall that any continuous image
of a compact set is compact. This fact can be given as a
following corollary.

Corollary 3.1: The set ∂∗f (x) is a non-empty compact set
in IRn.

4. Optimality condition for convex problem

Let us give a optimality condition via *-subgradient for
the following non-smooth unconstrained optimization
problem

minimize f (x),
subject to x ∈ IRn,

(6)

where f : IRn → IR is a convex function. This problem is
also known as a convex problem.

Definition 4.1: A point x∗ ∈ IRn is a global optimum of
the problem (6) if ∀x ∈ IRn

f (x∗) ≤ f (x)

is satisfied.

In general, the following definition helps us to find
the point satisfying the necessary optimality condition.
For convex case, it gives us an idea whether the point is
global optimum or not.

Definition 4.2: A point x ∈ IRn satisfying 1n ∈ ∂∗f (x)
is called a *-stationary point of f. Here, 1n denotes
the point in IRn such that all entries are 1, i.e. 1n =
(1, 1, . . . , 1) ∈ IRn.

The following theorempresents the relationbetween
global optimum and *-stationary point for the uncon-
strained non-smooth convex problem (6).

Theorem 4.1: x∗ is a global solution of the non-smooth
optimization problem (6) if and only if x∗ is a *-stationary
point of f.

Proof: First, assume that x∗ is a *-stationary point of f.
Thus 1n ∈ ∂∗f (x∗). Then for all x ∈ IRn,

f (x) ≥ f (x∗)+ ln 1f (x
∗)(x−x∗)

n ,

which implies that for all x ∈ IRn, f (x) ≥ f (x∗) since
ln 1f (x

∗)(x−x∗)
n = 0. Consequently, x∗ is a global solution

of the non-smooth optimization problem (6).
Conversely, assume that x∗ is a global solution of

the non-smooth optimization problem (6). Then, f (x∗ +
hd) ≥ f (x∗) for all d ∈ IRn and h ∈ IR, which implies
(f (x∗ + hd)/f (x∗))− 1 ≥ 0. From Theorem 3.3,

f∗(x∗; d) = inf
h>0

e
1
h

(
f (x∗+hd)
f (x∗) −1

)
≥ inf

h>0
e0 = 1.

On the other hand, from Lemma 3.1, v ∈ ∂∗f (x∗) if
and only if f∗(x; d) ≥ vd for all d ∈ IRn. Since f∗(x; d) ≥
1, then vd = 1 for all d ∈ IRn. Consequently, v = 1n =
(1, 1, . . . , 1) ∈ ∂∗f (x∗). �

Theorem 4.1 tells us that the *-subgradient can be
used to develop new optimization algorithms.

5. Conclusion

In this study, a new concept known as *-subgradient
has been introduced with the help of the multiplicative
derivative for use in the non-smooth optimization the-
ory. To achieve this, *-directional derivative has been
defined for positive-valued functions, and its properties
have been proven. Since optimization theory deals with
finding minimum function values, the objective func-
tion should be bounded below; otherwise, the function
will not have a global optimum. In light of this fact,
one can make the function positive by adding a suf-
ficiently large number M so that f (x)+ M ≥ 0. Then,
an inequality involving the *-gradient was stated and
proved. Using this inequality, we were then able to
define *-subgradient similar to theway subgradient has
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been defined in the literature. In addition, the relation-
shipbetween *-directional derivative and *-subgradient
has been presented. Finally, an optimality condition for
non-smooth unconstrained convex optimization prob-
lems has been proven.

In summary, *-subgradient can be used to develop
new methods in optimization theory and can be gen-
eralized to local Lipschitz continuous functions in an
analogous way. It may have some advantage for some
type of optimization problems, for example, if you use
*-subgradient for any method, you study on large val-
ues instead of on small values. Thus it is good idea to
develop new methods for functions whose values are
small.
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