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Abstract: This article focuses on the numerical approximate solution of singularly perturbed systems of second-
order reaction-diffusion two-point boundary-value problems for ordinary differential equations. To handle these types
of problems, a numerical-asymptotic hybrid method has been used. In this hybrid approach, an efficient asymptotic
method, the so-called successive complementary expansion method (SCEM) is employed first, and then a numerical
method based on finite differences is applied to approximate the solution of corresponding singularly perturbed reaction-
diffusion systems. Two illustrative examples are provided to demonstrate the efficiency, robustness, and easy applicability
of the present method with convergence properties.
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1. Introduction
Systems of differential equations arise in many branches of science and engineering, such as modeling of elec-
trical networks, mechanical systems, marketing problems, earthquake/tsunami problems, chemotaxis processes,
and semiconductor physics. Because of their physical importance, many studies have been devoted to this
area. In [11], systems of differential equations are studied in detail, and in [1, 3] some numerical treatments
are examined. On the other hand, singularly perturbed differential equations that involve positive small per-
turbation parameter(s) 0 < ε ≪ 1 multiplied with the highest order derivative term(s) are also important
concepts of applied sciences and it is a well-known fact that the standard numerical techniques are very often
insufficient to handle them. Control theory, fluid mechanics, quantum mechanics, combustion theory, signal
and image processing, and pharmacokinetics are some areas where singularly perturbed problems arise. One
can find theoretical considerations regarding singular perturbation problems in [6, 9, 14, 23, 26, 29] and various
approximation methods in [4, 5, 7, 12, 13, 16, 17, 30].

The present paper deals with obtaining accurate approximations to the solution of singularly perturbed
systems of reaction-diffusion boundary-value problems (BVPs) that frequently arise in electroanalytical chem-
istry and population dynamics problems. In recent years, various methods were employed to obtain approxima-
tions to the solution of this kind of problem. In [2, 20], finite difference methods (FDMs) were used to obtain
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the approximate numerical solution of singularly perturbed convection-diffusion systems, while in [18, 19] finite
element methods (FEMs) are used. In [10, 21, 25, 27] FDMs are examined for singularly perturbed reaction-
diffusion systems. For singularly perturbed systems of reaction-diffusion BVPs, the authors provided a robust
computational technique in [24] and obtained optimal order error estimates on equidistributed grids in [8].

In this paper, we apply an asymptotic-numerical hybrid method for approximating the solution of
singularly perturbed systems of two-point boundary-value problems of reaction-diffusion type. At the first
step, an efficient asymptotic method, known as the successive complementary expansion method (SCEM) and
introduced in [22], is applied, and later the FDM given in [15] is applied to solve the system of ODEs obtained
through the SCEM.

In order to examine the convergence properties of approximations to the solution of singularly perturbed
systems of differential equations, we need to define the norm that we will use in the remaining parts of this
study. In [9], one can find that the appropriate norm for this purpose is the maximum norm, which is given by:

∥r ∥= max
Ω

|r (x)| , ∥−→r ∥= max
Ω

{∥ri ∥} ,

where −→r = (r1, r2, · · · , rn) .
The rest of the article is organized in the following manner: In Section 2, the continuous problem and

its general properties are explained. In Section 3, the numerical-asymptotic hybrid method that we apply to
solve the system of singularly perturbed two-point reaction-diffusion equations is described. In Section 4, two
illustrative examples are provided to show the efficiency of the method. The paper ends with some conclusions
in the last section.

2. The continuous problem
In general, a coupled system of singularly perturbed reaction-diffusion ODEs is given by{

−εy′′1 (x) + a11 (x) y1 (x) + a12 (x) y2 (x) = f1 (x) ,

−ηy′′2 (x) + a21 (x) y1 (x) + a22 (x) y2 (x) = f2 (x) ,
(2.1)

with certain suitable boundary conditions. The presence of the positive small parameters 0 < ε ≪ 1 and
0 < η ≪ 1 causes rapid and sharp changes (boundary layers) near the end-points of the domain Ω. The layer
behaviors can be examined in three different cases:
Case A: 0 < ε < η ≪ 1 ⇒ In this case, both components of the solution have boundary layers of width
O (η ln η) and y1 (x) has an additional sublayer of width O (ε ln ε) .
Case B: 0 < ε ≪ 1 and η = 1 ⇒ In this case, only the first component of the solution has a boundary layer
of width O (ε ln ε) .
Case C: 0 < ε = η ≪ 1 ⇒ In this case, both components of the solution have boundary layers of width O (ε ln ε)

(or equivalently O (η ln η)) .
We are interested only in the Case C and in finding an approximation to the solution −→y (x) ∈ C2

(
Ω
)

such that for all x ∈ Ω = (0, 1) for the problem
−εy′′1 (x) + a11 (x) y1 (x) + a12 (x) y2 (x) = f1 (x) ,

−εy′′2 (x) + a21 (x) y1 (x) + a22 (x) y2 (x) = f2 (x) ,

y1 (0) = y1 (1) = 0, y2 (0) = y2 (1) = 0.

(2.2)
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The system of BVPs given by (2.2) can be rewritten in matrix form as

 Lε
−→y (x) =

[
−ε d2

dx2 0

0 −ε d2

dx2

]
−→y (x) +A (x)−→y (x) =

−→
f (x) ,

−→y (0) = [y1 (0) , y2 (0)]
T
, −→y (1) = [y1 (1) , y2 (1)]

T
,

(2.3)

where A (x) =

[
a11 (x) a12 (x)
a21 (x) a22 (x)

]
and −→

f (x) =

[
f1 (x)
f2 (x)

]
. The functions aij (x) , fi (x) ∈ C2 (Ω) for i, j = 1, 2.

Now we should impose two assumptions on problem (2.3). The first one is for strictly the diagonally dominance
of matrix A and the second one is required in order to establish the maximum principle theorem:

Assumption 1. a11 (x) > |a12 (x)| and a22 (x) > |a21 (x)| , for all x ∈ Ω,

Assumption 2. a12 (x) ≤ 0 and a21 (x) ≤ 0, for all x ∈ Ω.

The proof of the following lemma and the corollary can be seen in [21].

Lemma 2.1 (Maximum Principle) Consider the system of singularly perturbed BVPs (2.3). If −→y (0) ⩾ −→
0 ,

−→y (1) ⩾ −→
0 , and Lε

−→y (x) ⩾ −→
0 for all x ∈ Ω, then −→y (x) ⩾ −→

0 , ∀x ∈ Ω.

Corollary 2.2 (Stability) If −→y (x) is the solution of (2.3), then the stability bound inequality

∥−→y (x) ∥ ≤ 1

δ
∥
−→
f ∥+ ∥−→y (0) ∥+ ∥−→y (1) ∥

holds, where δ = min
Ω

{a11 (x) + a12 (x) , a21 (x) + a22 (x)} .

Under the above-mentioned assumptions and conditions, the hybrid method is explained in the following
section.

3. The hybrid method

In this section, we give a brief overview of asymptotic expansions and approximations first, then explain the
hybrid method by which we obtain highly accurate approximations to the solution of systems of singularly
perturbed reaction-diffusion equations.

Let E be the set of all real-valued and strictly positive functions that are continuous in an interval
(0, ε0] and depend on ε . Moreover, let the limit lim

ε→0
δ(ε) exist, and for each δ1 (ε) ,δ2 (ε) ∈ E , let the relation

δ1 (ε) δ2 (ε) ∈ E hold. A function δi(ε) that satisfies these conditions is called an order function. Given that
two functions ϕ(x, ε) and ϕa(x, ε) defined in a domain Ω are asymptotically identical to order δ (ε) if their
difference is asymptotically smaller than δ (ε) , where δ (ε) is an order function, in mathematical terms, this
fact is expressed by

ϕ(x, ε)− ϕa(x, ε) = o(δ(ε)), (3.1)

where ε is a small parameter arising from the physical problem under consideration. The function ϕa(x, ε) is
referred to as an asymptotic approximation of the function ϕ(x, ε).
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Asymptotic approximations, in their general form, are defined by

ϕa(x, ε) =

n∑
i=1

δi(ε)φi(x, ε), (3.2)

where the asymptotic sequences of order functions δi(ε) satisfy the condition δi+1(ε) = o(δi(ε)) , as ε → 0 .
Under these conditions, approximation (3.2) is called a generalized asymptotic expansion. If expansion (3.2) is
given in the form of

ϕa(x, ε) = E0ϕ =

n∑
i=1

δ
(0)
i (ε)φ

(0)
i (x), (3.3)

then it is called a regular asymptotic expansion where the special operator E0 is an outer expansion operator
at a given order δ(ε), with ϕ − E0ϕ = o(δ(ε)) . Interesting cases occur when the function ϕ is not sufficiently
regular in Ω . Therefore, (3.2) or/and (3.3) is/are valid only in a restricted region Ω0 ∈ Ω , called the outer
region. This is a singular perturbation problem and we shall introduce boundary layer domains. We introduce
an inner domain, which can be formally denoted by Ω1 = Ω \ Ω0 , and a corresponding inner layer variable
located near the point x = x0 , as x = x−x0

ξ(ε) , where ξ(ε) is the order of thickness of this boundary layer. If a

regular expansion can be constructed in Ω1 , it can be written as

ϕa(x, ε) = E1ϕ =

n∑
i=1

δ
(1)
i (ε)φ

(1)
i (x), (3.4)

where the inner expansion operator E1 is defined in Ω1 at the same order of δ(ε) as the outer expansion
operator E0. Therefore, ϕ− E1ϕ = o(δ(ε)) holds and it is clear that

ϕa = E0ϕ+ E1ϕ− E1E0ϕ

is a uniformly valid approximation (UVA) [4–6]. For only one singularly perturbed differential equation, the
uniformly valid SCEM approximation is in the regular form given by

yscemn (x, x, ε) =

n∑
i=1

δi(ε) [yi(x) + Ψi(x)] , (3.5)

where {δi (ε)} is an asymptotic sequence and functions Ψi(x) are the complementary functions that depend
on x . If the functions yi(x) and Ψi(x) depend also on ε , the uniformly valid SCEM approximation is called
generalized SCEM approximation and given by

yscemng (x, x, ε) =

n∑
i=1

δi(ε) [yi(x, ε) + Ψi(x, ε)] . (3.6)

Since the solution of problem (2.3) exhibits boundary layers at both end points of the interval Ω = (0, 1) , the
generalized SCEM approximation is adopted as follows:

For the outer region, i.e. far from the end points, the outer approximation will be in the following form:

−→y out (x, δ) =

[
yout1 (x, δ (ε))

yout2 (x, δ (ε))

]
=

[
y
out(1)
1 (x) + δ (ε) y

out(2)
1 (x) + δ2 (ε) y

out(3)
1 (x) + · · ·

y
out(2)
2 (x) + δ (ε) y

out(2)
2 (x) + δ2 (ε) y

out(3)
2 (x) + · · ·

]
. (3.7)
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If equation (3.7) is substituted into (2.3) and the powers of ε are balanced, one gets the asymptotic approxi-
mation for the outer region. In order to cope with the approximation difficulties at the end points, stretching
variables will be introduced as xL = x√

ε
for the left end and xR = x−1√

ε
for the right end. Using these transforma-

tions with the help of the chain rule and substituting them into equation (2.3), one obtains the complementary
functions as the solution to following subproblems:

−
(
ΨLcomp

1

)′′
(xL, ε) + a11 (xL)Ψ

Lcomp
1 (xL, ε) + a12 (xL)Ψ

Lcomp
2 (xL, ε) = f1 (xL) ,

−
(
ΨLcomp

2

)′′
(xL, ε) + a21 (xL)Ψ

Lcomp
1 (xL, ε) + a22 (xL)Ψ

Lcomp
2 (xL, ε) = f2 (xL) ,

ΨLcomp
1 (0, ε) = −y

out(
1 (0) , ΨLcomp

1

(
1√
ε
, ε
)
= −yout1 (1) ,

ΨLcomp
2 (0, ε) = −y

out(
2 (0) , ΨLcomp

2

(
1√
ε
, ε
)
= −yout2 (1) ,

(3.8)

and 

−
(
ΨRcomp

1

)′′
(xR, ε) + a11 (xR)Ψ

Rcomp
1 (xR, ε) + a12 (xR)Ψ

Rcomp
2 (xR, ε) = f1 (xR) ,

−
(
ΨRcomp

2

)′′
(xR, ε) + a21 (xR)Ψ

Rcomp
1 (xR, ε) + a22 (xR)Ψ

Rcomp
2 (xR, ε) = f2 (xR) ,

ΨRcomp
1

(
−1√
ε
, ε
)
= −yout1 (0) , ΨRcomp

1 (0, ε) = −yout1 (1) ,

ΨRcomp
2

(
−1√
ε
, ε
)
= −yout2 (0) , ΨRcomp

2 (0, ε) = −yout2 (1) ,

(3.9)

where the subscripts 1, 2 denote the first and second components of the approximations. If an asymptotic
approximation for the left complementary function (3.8) and the right complementary function (3.9) is adopted
in the following form,

Ψ(x, ε) =

[
Ψ1 (x, δ (ε))
Ψ2 (x, δ (ε))

]
=

[
Ψ

(1)
1 (x, δ (ε)) + δ (ε)Ψ

(2)
1 (x, δ (ε)) + δ2 (ε)Ψ

(3)
1 (x, δ (ε)) + · · ·

Ψ
(1)
2 (x, δ (ε)) + δ (ε)Ψ

(2)
2 (x, δ (ε)) + δ2 (ε)Ψ

(3)
2 (x, δ (ε)) + · · ·

]
,

where the superscript (i) denotes the ith complementary approximation, then substituting this approximation
into problem (2.3), one gets the asymptotic approximations for complementary functions, again balancing them
with respect to the powers of parameter ε . To this end, the first iteration of the hybrid method is of the
following form:

−→y (1) (x, xL, xR, ε) =
−→y out(1) (x, ε) +

[−→
ΨLcomp(1) (xL, ε) +

−→
ΨRcomp(1) (xR, ε)

2

]
, (3.10)

where the superscripts Lcomp(1) and Rcomp(1) are the first approximation terms of complementary functions
(3.8) and (3.9), respectively, that are numerically solved by the numerical method given in [15] based on finite
differences and that uses the three-stage Lobatto IIIa formula.

4. Illustrative examples
In this section, two numerical examples are studied. In the first one, all the processes are explained in detail,
and for the second one, only results are presented. All the computations are performed in the Matlab2015b
environment using double precision.
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Example 4.1 [28] Consider the singularly perturbed system of coupled reaction-diffusion two-point BVPs:
−εy′′1 (x) + 4y1 (x)− 2y2 (x) = 1, x ∈ Ω = (0, 1)

−εy′′2 (x)− y1 (x) + 3y2 (x) = 2,

y1 (0) = y1 (1) = 0, y2 (0) = y2 (1) = 0.

(4.1)

As shown in Figure 1, the solution of Example 4.1 exhibits boundary layer behavior at both end points of the
interval when ε → 0+. Therefore, for both end points, the stretching variables should be introduced as xL = x√

ε

for the left-end and xR = x−1√
ε

for the right-end, respectively. First, however, the reduced problem should be

obtained by taking ε = 0 :  4y
out(1)
1 (x)− 2y

out(1)
2 (x) = 1,

−y
out(1)
1 (x) + 3y

out(1)
2 (x) = 2,

(4.2)

and it is obvious that the solution of the reduced system (4.2) is y
out(1)
1 (x) = 0.7 and y

out(1)
2 (x) = 0.9, where

the superscript out(i) denotes the ith approximation to the outer layer problem. For the left and right inner
layer problems, adopting the stretching variables xL and xR respectively, one gets the systems

−
(
Ψ

Lcomp(1)
1

)′′
(xL, ε) + 4Ψ

Lcomp(1)
1 (xL, ε)− 2Ψ

Lcomp(1)
2 (xL, ε) = 1,

−
(
Ψ

Lcomp(1)
2

)′′
(xL, ε)−Ψ

Lcomp(1)
1 (xL, ε) + 3Ψ

Lcomp(1)
2 (xL, ε) = 2,

Ψ
Lcomp(1)
1 (0, ε) = −0.7, Ψ

Lcomp(1)
1

(
1√
ε
, ε
)
= −0.7,

Ψ
Lcomp(1)
2 (0, ε) = −0.9, Ψ

Lcomp(1)
2

(
1√
ε
, ε
)
= −0.9,

(4.3)

and 

−
(
Ψ

Rcomp(1)
1

)′′
(xR, ε) + 4Ψ

Rcomp(1)
1 (xR, ε)− 2Ψ

Rcomp(1)
2 (xR, ε) = 1,

−
(
Ψ

Rcomp(1)
2

)′′
(xR, ε)−Ψ

Rcomp(1)
1 (xR, ε) + 3Ψ

Rcomp(1)
2 (xR, ε) = 2,

Ψ
Rcomp(1)
1

(
−1√
ε
, ε
)
= −0.7, Ψ

Rcomp(1)
1 (0, ε) = −0.7,

Ψ
Rcomp(1)
2

(
−1√
ε
, ε
)
= −0.9, Ψ

Rcomp(1)
2 (0, ε) = −0.9.

(4.4)

In order to apply the numerical method [15] and code the problem in Matlab, we should transform these
new systems into first-order systems. Transformed systems (4.3)–(4.4) corresponding to problem (4.1) can be
coded using Matlab bvp4c as given by Listing 1-3:

The system of equations 4.4 is transformed into systems of first-order equations and these corresponding
systems are stored in a twoode function as shown in Listing 1. Later, the boundary conditions are imposed
by the function twobc as given in Listing 2. In the final step, numerical approximations and corresponding
plots are obtained running the code that is given in Listing 3.

The double mesh principle is used for estimating the maximum point-wise errors and for computing the
rate of convergence in the computed approximations:

DN
ε,i = max

xj∈Ω
N
ε

| Y 2N
i (xj)− Y N

i (xj) |
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1 f unc t i on dydx = twoode (x , y )
2 dydx = [ y (2 )
3 − 1+4*y (1)− 2*y (3 )
4 y (4)
5 − 2− y (1)+3* y (3) ] ;

Listing 1. twoode component of Matlab bvp4c

1 f unc t i on r e s = twobc ( ya , yb )
2 r e s = [ ya (1 )+7/10
3 yb (1 )+7/10
4 ya (3 )+9/10
5 yb (3 ) +9/10] ;

Listing 2. twobc component of Matlab bvp4c

1 ep=1;
2 s o l i n i t 1 = bvp in i t ( l i n s p a c e (0 ,1 , 1024) , [ 1 0 1 0 ] ) ;
3 s o l 1 = bvp4c (@twoode1 , @twobc1 , s o l i n i t 1 ) ;
4 x1 =0 : 0 . 0 01 : 1 ;
5 double ( x1 ) ;
6 y1= deval ( so l1 , x1 ) ;
7 double ( y1 ) ;
8 yg=y1 ( 1 , : ) ;
9 p lo t ( x1 , yg ) ;

10 hold on
11 y13=y1 ( 3 , : ) ;
12 p lo t ( x1 , y13 )
13 g r id on
14 hold on

Listing 3. The solver that runs the components twobc and twoode of Matlab bvp4c

for i = 1, 2 and DN
i = max

ε
DN

ε,i , where Y N
i (xj) and Y 2N

i (xj) denote the computed approximations at the

point x = xj , on N and 2N mesh sizes, respectively. The order of convergence is calculated by the formula

pi = log2
(

DN
i

D2N
i

)
.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5
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0.7
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0.9

1

y

y1 eps=0.1

y1 eps=0.00001

y2 eps=0.1 y2 eps=0.00001

y2 eps=0.001

y1 eps=0.001

Figure 1. SCEM approximations to Example 4.1 for certain values of ε .
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Numerical approximations to y1 and y2 of Example 4.1 that are generated by the hybrid method are
presented for various ε values in Table 1 and Table 2, respectively. In Figure 2 and Table 3, the finer mesh
errors that are based the on double-mesh principle are illustrated.

Table 1. Approximations to y1 of Example 4.1 for various values of ε , and N = 1024 .

x yhybrid
1 for ε = 1 yhybrid

1 for ε = 0.01 yhybrid
1 for ε = 0.0001

0.000 0.000000000000000 0.000000000000000 0.000000000000000

0.001 0.000476481355558 0.008753818527279 0.083181084554497

0.003 0.001426444995724 0.025964925472142 0.222962651683962

0.070 0.030951927479662 0.418207225230131 0.699958187708815

0.090 0.038906391001189 0.484445481559528 0.699997527634950

0.100 0.042736593719825 0.511650798815475 0.699999398893554

0.300 0.099085092371664 0.688146304878580 0.700000000000000

0.500 0.117696173594857 0.698588175505725 0.700000000000000

0.700 0.099085092371662 0.688146304878580 0.700000000000000

0.900 0.042736593719823 0.511650798815475 0.699999398893554

0.910 0.038906391001187 0.484445481559528 0.699997527634950

0.930 0.030951927479661 0.418207225230131 0.699958187708815

0.997 0.001426444995724 0.025964925472143 0.222962651683962

0.999 0.000476481355559 0.008753818527279 0.083181084554497

1.000 0.000000000000000 0.000000000000000 0.000000000000000

Table 2. Approximations to y2 of Example 4.1 for various values of ε and N = 1024 .

x yhybrid
2 for ε = 1 yhybrid

2 for ε = 0.01 yhybrid
2 for ε = 0.0001

0.000 0.000000000000000 0.000000000000000 0.000000000000000

0.001 0.000836831145262 0.013176322987849 0.123255082602135

0.003 0.002504501565593 0.038941217642193 0.320704685367825

0.070 0.053859654789803 0.576399973393426 0.899958155847379

0.090 0.067538818218910 0.657713587952894 0.899997527270993

0.100 0.074102135126685 0.690275199692044 0.899999398854655

0.300 0.168930685338889 0.887902110952330 0.900000000000000

0.500 0.199554186019598 0.898582598753880 0.900000000000000

0.700 0.168930685338888 0.887902110952330 0.900000000000000

0.900 0.074102135126684 0.690275199692044 0.899999398854655

0.910 0.067538818218910 0.657713587952894 0.899997527270993

0.930 0.053859654789803 0.576399973393426 0.899958155847379

0.997 0.002504501565593 0.038941217642193 0.320704685367825

0.999 0.000836831145262 0.013176322987849 0.123255082602135

1.000 0.000000000000000 0.000000000000000 0.000000000000000
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Table 3. DN
1 and pN1 for Example 4.1 for various values of ε and N .

ε N = 64 N = 128 N = 256 N = 512 N = 1024
2−1 6.12679e− 10 3.70626e− 11 2.27984e− 12 1.40748e− 13 6.27276e− 15
2−2 1.81544e− 09 1.09791e− 10 6.76309e− 12 4.16611e− 13 3.53050e− 14
2−3 6.22012e− 09 3.76598e− 10 2.31717e− 11 1.43662e− 12 8.91509e− 14
2−4 2.47671e− 08 1.50369e− 09 9.25755e− 11 5.73113e− 12 3.58879e− 13
2−5 1.01353e− 07 6.14983e− 09 3.78493e− 10 2.34682e− 11 1.45650e− 12
2−6 4.03660e− 07 2.46994e− 08 1.52268e− 09 9.43695e− 11 5.87935e− 12
2−7 1.61007e− 06 9.89155e− 08 6.09315e− 09 3.77304e− 10 2.34998e− 11
2−8 6.44894e− 06 3.92055e− 07 2.43357e− 08 1.51185e− 09 9.41339e− 11
2−9 2.43061e− 05 1.56232e− 06 9.74256e− 08 6.04717e− 09 3.76837e− 10
2−10 4.88247e− 07 6.24635e− 06 3.86149e− 07 2.41664e− 08 1.50718e− 09
2−11 1.42363e− 06 2.36149e− 05 1.53878e− 06 9.66679e− 08 6.02468e− 09
2−12 4.88247e− 07 2.39459e− 07 6.14740e− 06 3.83279e− 07 2.40598e− 08
2−13 2.20197e− 05 7.04572e− 07 2.32768e− 05 1.52714e− 06 9.62998e− 08
2−14 1.92995e− 05 2.39028e− 07 1.18093e− 07 6.09883e− 06 3.81771e− 07
2−15 4.12438e− 07 2.16196e− 05 3.43788e− 07 2.31095e− 05 1.52132e− 06
DN

1 2.43061e− 05 2.36149e− 05 2.32768e− 05 2.31095e− 05 1.52132e− 06
pN1 0.0416210001 0.0208046902 0.0312113804 3.9250904939 3.9889941035
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Figure 2. Errors in y1 approximations of Example 4.1 for various values of ε .

Example 4.2 [18] Consider the singularly perturbed system of coupled reaction-diffusion two-point BVPs:

−εy′′1 (x) + 3y1 (x)− y2 (x)− y3 (x) = 0,

−εy′′2 (x)− y1 (x) + 3y2 (x)− y3 (x) = 1,

−εy′′3 (x)− y2 (x) + 3y3 (x) = x,

y1 (0) = y1 (1) = 0, y2 (0) = y2 (1) = 0, y3 (0) = y3 (1) = 0.

(4.5)

The solution of this problem exhibits boundary layer behavior in all the components y1, y2 , and y3.
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Figure 3. SCEM approximations to Example 4.2 for certain values of ε .

x yhybrid
3 for ε = 1 yhybrid

3 for ε = 0.01 yhybrid
3 for ε = 0.0001

0.000 0.000000000000000 0.000000000000000 0.000000000000000
0.001 0.000296931914224 0.001555243868093 0.011907872130351
0.003 0.000445395437314 0.004664568760707 0.034807883220829
0.070 0.010337895722462 0.098994889589599 0.177946516870041
0.090 0.013246127387130 0.121783382519711 0.185994913258379
0.100 0.014688076281396 0.132245460929406 0.189998430525371
0.300 0.040416458359500 0.263967353662464 0.270000000000000
0.500 0.055600510502286 0.348297797967831 0.350000000000000
0.700 0.053365373735929 0.417475745785387 0.430000000000000
0.900 0.025982747779700 0.360670915745580 0.509996860535433
0.910 0.023793671058585 0.344253981906367 0.513989822709124
0.930 0.019152362750862 0.302349198379968 0.521892825852710
0.997 0.000917731428012 0.020288336492293 0.178812725352010
0.999 0.000306908478447 0.006860930176790 0.067932980344570
1.000 0.000000000000000 0.000000000000000 0.000000000000000

Table 4. Approximations to y3 of Example 4.2 for various values of ε , and N = 1024.
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Table 4. Approximations to y3 of Example 4.2 for various values of ε , and N = 1024 .

x yhybrid
3 for ε = 1 yhybrid

3 for ε = 0.01 yhybrid
3 for ε = 0.0001

0.000 0.000000000000000 0.000000000000000 0.000000000000000
0.001 0.000296931914224 0.001555243868093 0.011907872130351
0.003 0.000445395437314 0.004664568760707 0.034807883220829
0.070 0.010337895722462 0.098994889589599 0.177946516870041
0.090 0.013246127387130 0.121783382519711 0.185994913258379
0.100 0.014688076281396 0.132245460929406 0.189998430525371
0.300 0.040416458359500 0.263967353662464 0.270000000000000
0.500 0.055600510502286 0.348297797967831 0.350000000000000
0.700 0.053365373735929 0.417475745785387 0.430000000000000
0.900 0.025982747779700 0.360670915745580 0.509996860535433
0.910 0.023793671058585 0.344253981906367 0.513989822709124
0.930 0.019152362750862 0.302349198379968 0.521892825852710
0.997 0.000917731428012 0.020288336492293 0.178812725352010
0.999 0.000306908478447 0.006860930176790 0.067932980344570
1.000 0.000000000000000 0.000000000000000 0.000000000000000

Numerical approximations to y1 , y2 and y3 of Example 4.2 that are generated by the hybrid method
are presented for various ε values in Figure 3. In Table 4, approximations to component y3 are considered only
and in Table 5 and Figure 4 corresponding finer mesh errors for y3 are given.

5. Conclusions
In this paper, singularly perturbed systems of two-point boundary-value problems of reaction-diffusion type are
examined. In order to obtain better approximations to the solution of this kind of problem, an asymptotic-
numerical hybrid method that consists of an asymptotic method, known as SCEM, and a numerical method
based on finite differences given in [15] is applied. In Section 4, the implementation of the present method is
given in detail in the illustrative Example 4.1. In Table 1, Table 2, and Table 4, numerical results obtained
by the hybrid method and in Table 3 and Table 5 maximum point-wise errors and convergence based on finer
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Table 5. DN
3 and pN3 for Example 4.2, for various values of ε and N .

ε N = 64 N = 128 N = 256 N = 512 N = 1024

2−1 3.97376e− 08 2.40516e− 09 1.48046e− 10 9.04537e− 12 5.14129e− 13

2−2 1.60003e− 07 9.68587e− 09 5.95688e− 10 3.69476e− 11 2.45948e− 12

2−3 4.55184e− 07 2.75605e− 08 1.69540e− 09 1.05172e− 10 6.50464e− 12

2−4 1.86005e− 06 1.12657e− 07 6.93077e− 09 4.29730e− 10 2.67455e− 11

2−5 5.30766e− 06 3.21668e− 07 1.97922e− 08 1.22731e− 09 7.63886e− 11

2−6 7.19988e− 05 1.28455e− 06 7.90643e− 08 4.90311e− 09 3.05273e− 10

2−7 8.50572e− 05 3.62682e− 06 2.23376e− 07 1.38547e− 08 8.62547e− 10

2−8 1.48198e− 04 4.15936e− 05 8.93032e− 07 5.54076e− 08 3.44981e− 09

2−9 1.20331e− 04 4.88494e− 05 2.52367e− 06 1.56680e− 07 9.75681e− 09

2−10 1.12466e− 05 1.02047e− 04 2.89999e− 05 6.26449e− 07 3.90227e− 08

2−11 1.42610e− 05 8.24795e− 05 3.41249e− 05 1.77034e− 06 1.10348e− 07

2−12 1.25522e− 04 3.92817e− 06 7.24787e− 05 1.73510e− 05 4.41207e− 07

2−13 7.95760e− 05 4.97760e− 06 7.11641e− 05 3.54793e− 05 1.24685e− 06

2−14 5.17968e− 05 8.69193e− 05 1.41263e− 06 5.00248e− 05 1.43538e− 05

2−15 5.35070e− 06 5.53248e− 05 1.76076e− 06 5.00871e− 05 2.50118e− 05

DN
3 1.48198e− 04 1.02047e− 04 7.24787e− 05 5.00871e− 05 2.50118e− 05

pN3 0.5382881157 0.4936047862 0.5331179957 1.0018301969 4.7990910350
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Figure 4. Errors in y3 approximations of Example 4.2 for various values of ε .

mesh strategy are presented. In addition, approximations for certain values of ε are given in Figure 1 and
Figure 3 to illustrate the layer behavior. Maximum point-wise errors are given in Figure 2 and Figure 4 for
certain values of ε . From the numerical values given in the tables and the figures, one can easily conclude that
the proposed hybrid method gives highly accurate results and is well-suited for singularly perturbed systems of
reaction-diffusion equations.
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