

Ü
m

it B
u

lu
t

VISUALIZATION OF INTERSECTING

SETS IN BIOLOGICAL NETWORKS AND

FILTERING BASED ON THEIR

TOPOLOGICAL PROPERTIES

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND

COMPUTER SCIENCE

AND THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE

OF ABDULLAH GUL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTERS IN SCIENCE

By

Ümit Bulut

May 2020

V
IS

U
A

L
IZ

A
T

IO
N

 O
F

 IN
T

E
R

S
E

C
T

IN
G

 S
E

T
S

 IN
 B

IO
L

O
G

IC
A

L
 N

E
T

W
O

R
K

S

A
N

D
 F

IL
T

E
R

IN
G

 B
A

S
E

D
 O

N
 T

H
E

IR
 T

O
P

O
L

O
G

IC
A

L
 P

R
O

P
E

R
T

IE
S

A
G

U

2
0
2
0

VISUALIZATION OF INTERSECTING SETS IN

BIOLOGICAL NETWORKS AND FILTERING

BASED ON THEIR TOPOLOGICAL

PROPERTIES

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND COMPUTER

SCIENCE

AND THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE OF

ABDULLAH GUL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTERS IN SCIENCE

By

Ümit Bulut

May 2020

SCIENTIFIC ETHICS COMPLIANCE

I hereby declare that all information in this document has been obtained in accordance

with academic rules and ethical conduct. I also declare that, as required by these rules and

conduct, I have fully cited and referenced all materials and results that are not original to

this work.

Name-Surname: Ümit Bulut

Signature :

REGULATORY COMPLIANCE

M.Sc. thesis titled “Visualization Of Intersecting Sets In Biological Networks And

Filtering Based On Their Topological Properties” has been prepared in accordance with

the Thesis Writing Guidelines of the Abdullah Gül University, Graduate School of

Engineering & Science.

Prepared By Advisor

Ümit Bulut Asst. Prof. Burcu Bakır Güngör

Signature Signature

Head of the Electrical and Computer Science Program

Prof. Dr. V. Çağrı Güngör

Signature

ACCEPTANCE AND APPROVAL

M.Sc. thesis titled “Visualization Of Intersecting Sets In Biological Networks And

Filtering Based On Their Topological Properties” and prepared by Ümit Bulut has been

accepted by the jury in the Electrical and Computer Science Graduate Program at

Abdullah Gül University, Graduate School of Engineering & Science.

16 / 06 / 2020

 (Thesis Defense Exam Date)

JURY:

 Advisor : Asst. Prof. Burcu Bakır Güngör ……………………signature

 Member : Asst. Prof. Özkan Ufuk Nalbantoğlu …………………… signature

 Member : Dr. Ahmet Soran …………………… signature

APPROVAL:

The acceptance of this M.Sc. thesis has been approved by the decision of the Abdullah

Gül University, Graduate School of Engineering & Science, Executive Board dated …..

/….. / ……….. and numbered .…………..……. .

……….. /……….. / ………..

(Date)

Graduate School Dean

Prof. Dr. İrfan Alan,

Signature

i

ABSTRACT

VISUALIZATION OF INTERSECTING SETS IN

BIOLOGICAL NETWORKS AND FILTERING BASED ON

THEIR TOPOLOGICAL PROPERTIES

Ümit Bulut

MSc in Electrical and Computer Science

Supervisor: Asst. Prof. Burcu Bakır Güngör

May 2020

With the rapid development of computer sciences and data processing technologies,

bioinformatics became one of the rising multidisciplinary fields in this century. In this

thesis, we aim to introduce a new perspective on bioinformatics data analysis via

developing a new visualization software called BioNetVis. Our tool has ability to

visualize intersecting sets in the biological networks, especially in the protein-protein

interaction networks; and to filter based on graph topological measures.

BioNetVis, is developed with the latest versions of state-of-the-art frameworks and

programming libraries for processing data as fast as possible with higher efficiency. The

main goal of BioNetVis is to facilitate the analysis of intersecting biological datasets on

biological networks. The proposed tool aims to serve to the researchers who are working

in the field of drug repurposing, personalized medicine, diagnosis and treatment of rare

diseases.

The project implementation is realized in the following three steps. Firstly, the biological

data is mapped to a biological network and back-end development is performed.

Secondly, a visualization is created based on the processed data in the back end with latest

framework services. Thirdly, the back-end and front-end developments are connected and

BioNetVis is made available to the researchers. We design BioNetVis in a modular

fashion such that it is applicable to other types of networks and datasets and hence, it

could be used in other domains to visualize intersecting sets in networks and filter based

on graph topological properties. Lastly, we present a use case scenario to explain the

features of BioNetVis.

Keywords: Bioinformatics, Data Visualization, Intersecting Data Sets, Drug

Repurposing, Personalized Medicine

ii

ÖZET

BİYOLOJİK AĞLARDA KESİŞEN KÜMELERİN

GÖRSELLEŞTİRİLMESİ VE TOPOLOJİK ÖZELLİKLERİNE

GÖRE FİLTRELENMESİ

Ümit Bulut

 Elektrik ve Bilgisayar Mühendisliği Bölümü, Yüksek Lisans

Tez Yöneticisi: Dr. Öğr. Üyesi Burcu Bakır Güngör

Mayıs 2020

Bilgisayar bilimleri ve veri işleme teknolojilerinin hızlı gelişimiyle beraber,

biyoenformatik alanı, bu yüzyılın popülerliği artan disiplinlerarası çalışma alanlarından

birisi haline gelmiştir. Bu tez çalışmasında, BioNetVis isimli yeni bir göreslleştirme aracı

geliştirerek, biyoenformatik very analizine yeni bir perspektif getirmeyi amaçladık.

Geliştirdiğimiz araç, keşisen kümeleri biyolojik ağlar, özellikle protein-protein etkileşim

ağları üzerinde görselleştirme ve ağ topolojik özelliklerine göre filtreleme yeteneğine

sahiptir.

BioNetVis, verileri olabildiğince hızlı ve verimli bir şekilde işlemek için son teknoloji

frameworkler ve programlama kütüphaneleri ile geliştirilmiştir. BioNetVis'in ana amacı

kesişen biyolojik verileri, biyolojik ağlar üzerinde analiz etmeyi kolaylaştırmaktır.

Sunulan araç, ilaçların yeniden konumlandırılması, kişiselleştirilmiş tıp, nadir

hastalıkların teşhis ve tedavisi konularında çalışan araştırmacılara hizmet etmeyi amaçlar.

Proje şu üç adımda gerçekleştirilmiştir. İlk olarak, biyolojik veri biyolojik ağa

haritalanmış, ve back-end kısmı geliştirilmiştir. İkinci olarak, back-end kısmında işlenmiş

veriler, kullanıcılar için kodlanan arayüz ile görselleştirilmiştir. Üçüncü olarak, front-end

ve back-end kısımları birleştirilmiş ve araştırmacılar için kullanılabilir hale getirilmiştir.

BioNetVis’i diğer ağlara ve diğer veri kümelerine kolayca uyarlanabilsin diye modüler

olarak tasarladık. Böylece, BioNetVis diğer alanlarda kesişen veri kümelerinin ağda

görsellenmesi, ve ağ topolojik özelliklerine göre filtrelenmesi amacıyla kullanılabilir. Son

olarak, BioNetVis'in sunduğu işlevleri açıklamak için, bir kullanım uygulaması ile

beraber sunduk.

Anahtar kelimeler: Biyoenformatik, Veri Görsellenmesi, Kesişen Veri Kümeleri, İlaçların

Yeniden Konumlandırılması, Kişiselleştirilmiş Tıp

iii

Preface

In this short, one page, preface you will find my other works unrelated to this thesis but

has been done during my master’s education. Before preparing such adventures and

enjoyable thesis, I have had opportunities to discover many interesting areas such as

computer vision, robotics and machine learning. After some debate and brainstorming I

have decided to work on an implementation project that will help people in the medical

research area mostly, since healthcare is very important as we can see during these

unfortunate times.

iv

Acknowledgements

All of these acknowledgments are sincere and comes from deepest place of my heart.

First of all, I want to thank my brilliant, dedicated and diligent advisor Asst. Prof. Burcu

Bakır Güngör, whom was the one believed in me and helped me get through this

adventure. I am humbled for working with her and always take her as a role model while

walking academic life. I have never seen a human who can prepares lectures with so many

information and knowledge, let all expense classes fully.

I want to thank my friends Adam Rizvi Thahir and Hasan A.A. Alsulaiman who guide

me while I was learning new coding languages, listened to me while I was stuck in

problems and listen my ideas.

Also I want to thank my dearest friend Adem Emre MD, for all the help and motivation

during my masters. He has been there for my good times and hard times. I am very lucky

to have a friend like him.

Additionally, I want to thank and congratulate myself by finishing this thesis. It was not

easy to complete this journey. I know there has been times it felt like this road won’t

finish at all. So good work to me.

Lastly, I want to give a huge thanks to my family especially my parents for their incredible

support in many ways that I can’t express with words at all. Thank you for your patience,

time and support. Without their love and fate in me, this thesis would not exist. So I can’t

thank enough for them. They are the unbreakable pillars of my life and success. I wish

my mother could see this work, but life works in mysterious ways. I know she knew I

would have completed it. So mom, here I am, completed my work. Thanks to all of my

family members.

v

Table of Contents

1. INTRODUCTION .. 1

2. THEORETICAL BACKGROUND .. 5

2.1 BIOINFORMATICS, IT'S SCOPE AND DATA ... 8

2.1.1 What is Bioinformatics and It's Scope? ... 8

2.1.2 Omics Data .. 9

2.1.3 Drug Repurposing ... 12

2.2 VARIOUS APPROACHES TO VISUALIZATION .. 14

2.3 WEB BASED VISUALIZATION TOOLS .. 15

2.3.1 Venny ... 16

2.3.2 VennDiagram .. 17

2.3.3 VennPainter ... 18

2.3.4 GeneVenn .. 19

2.3.5 BioVenn ... 21

2.3.6 VennMaster ... 21

2.3.7 Jvenn ... 22

2.3.8 Tom Sawyer Visualization Tool ... 23

2.4 PACKAGE BASED VISUALIZATION TOOLS... 24

2.4.1 VennPlex ... 25

2.4.2 Venture .. 25

2.4.3 Cytoscape .. 26

2.4.4 Gephi ... 27
2.4.5 Network X .. 28
2.4.6 Node XL ... 29
2.4.7 Graphviz .. 30

2.4.8 uptsetR ... 31

3. MATERIALS AND METHODS ... 33

3.1 ARCHITECTURE OF BIONETVIS .. 33

3.2 MATERIALS .. 37
3.2.1 Programming Languages .. 38

3.2.2 Integrated Development Environments (IDEs) ... 41

3.2.3 Frameworks ... 45

3.2.4 Libraries .. 51

3.2.5 Network Data .. 53

3.3 METHODS ... 54

3.3.1 Back-End Approach .. 55

3.3.2 Front-End, Visualization Approach, Events, Controls .. 62

3.4 PROPOSED METHOD .. 71

4. USE CASES AND RESULTS .. 77

4.1 DRUG REPURPOSING .. 78

5. DISCUSSIONS.. 81

vi

List of Figures

Figure 1 Central Dogma of Biology ... 12
Figure 2 Comparision of Drug Discovery Timeline ... 13
Figure 3 Venny 2.1 ... 15
Figure 4 VennDiagram Tool’s Result ... 18
Figure 5 IntractiVenn .. 19
Figure 6 GeneVenn ... 20
Figure 7 GeneVenn Differences ... 20
Figure 8 BioVenn .. 21
Figure 9 jVenn Application .. 23
Figure 10 Tom Sawyer AWS Neptune ... 24
Figure 11 Vennture Data Input ... 26
Figure 12 Cytoscape 3.5 Application Overview ... 27
Figure 13 Gephi Visualization Screen .. 28
Figure 14 A Graph created by using NetworkX ... 29
Figure 15 NodeXL graphs .. 29
Figure 16 Graphviz Visualization Example .. 31
Figure 17 UpsetR Visualization Example .. 32
Figure 18 Flowchart of Back-End Approach .. 34
Figure 19 Flowchart of Frond-End Approach .. 36
Figure 20 Pycharm Version and License .. 44
Figure 21 Pycharm Working Environment ... 44
Figure 22 Codepen Working Environment ... 45
Figure 23 Flask Framework .. 47
Figure 24 Jinja Framework ... 48
Figure 25 Bootstrap Framework ... 49
Figure 26 A Visualization Made by SigmaJs Framework 51
Figure 27 Protein Protein Interaction Network Data Elements 54
Figure 28 BioNetVis’ Landing Page .. 72
Figure 29 Input Areas and Color Selection Event of BioNetVis 72
Figure 30 Filtering Elements of BioNetVis .. 73
Figure 31 Visualization Example with BioNetVis ... 73
Figure 32 Highlighting Node and Neighbors Event ... 74
Figure 33 ForceAtlas Plug-in & Export Button ... 74
Figure 34 Toggle Event .. 75
Figure 35 Input and Coloring with BioNetVis ... 75
Figure 36 Multiple Color Mixing, Important Node Feature 76
Figure 37 Node Information Panel ... 76
Figure 38 Citation Panel for BioNetVis ... 76

Figure 39 Use Case Visualization ... 81

vii

List of Tables

Table 2.1 Comparision between current visuazaliton tools and BioNetVis 7

viii

To my beloved parents…
Ayfer Su and Ebumuhsin

1

Chapter 1

Introduction

In this modern world; with the increasing computing power and connection

around researchers causes a growth in human knowledge rapidly. On the other

hand, this knowledge needs to be validate, corrected then share with the world

especially in the medical related fields. Currently, in a post-truth era circulated

knowledge and news needed to be examine very carefully.

In this work, we aimed to help researchers, most importantly many of whom work

in the biological – chemical related fields and subfields where try to decode

human body. A visual interactive interface called Protein Interaction

Visualization Tool, from now referred as BioNetVis as short, is developed in

order to understand relations between proteins and their topological properties.

Moreover, BioNetVis has a powerful capability to show this proteins relationships

in Human Genome, Protein - Protein Interaction Network whether these proteins

used arbitrary to users wishes, discovered in experiments in the laboratories or

found in collected datasets.

As name suggests visualization in BioNetVis, enables cognitive abilities to gain

much more insights in these especially specialized areas which requires much

prior knowledge in order to understand how proteins interacts each other. With

that being said, parallel to previous aim, gaining insight, other properties of

BioNetVis is that filtering proteins based on their occurrences, neighborhood

properties and importance.

Filtering and visualization will open a new pathway to researchers, drug

developers to discover personalized medicine, drug repurposing and examination

of rare diseases.

2

Among many science field related to biology, it is necessary to analyze and

compare data sets contains various information such as genes, proteins, enzymes,

systems, organism and such. This analysis of datasets can be beneficial for many

other science fields as well. For this purposes, data sets and their intersections,

unions often displayed with Venn diagrams which they are accepted and used

widely. [1] One latest example for use of such diagrams can be seen in the article

for using machine learning approach to classify accurate detection of copy number

variants (CNVs) from exome sequencing where a Venn diagram shows the

accuracy of the concordance profiles of the CNVs before and after the

classification. [2] Venn diagrams are could be helpful as a way to give a basic

exploration and understanding of data but regularly this diagrams provides solely

static points of the data up to four sets. Even though Venn diagrams may have

built for more than four sets, the layout of the visualization difficulty increases

exponentially. In example, any user can create symmetric circles to use three set

of diagrams but for more than four sets highlighting and understanding

intersections, excluded areas are relatively challenging. Same challenge follows

with ellipses as well. After five sets of data, it becomes harder to visualize.

Interdisciplinary work is inevitable with the advancements in the research areas.

Scientists, researchers need to work together in multidisciplinary way in order to

enhance human knowledge. Despite the fact that working together is necessary,

finding a partner to work with or finding a participant that interested in that

specific area can be hard to tackle. But we believe these kind of limitations should

not hold back researchers especially in the study fields such as bioinformatics and

computer sciences. Many biology, medical related people have limited

information about computer science and coding for a specific task might be time

consuming for them. Not so surprisingly, similar problem occurs among in

computer scientist. Even though they have developing skills to code what it

necessary, understanding biology related problem can be complex. On the other

hand, other fields who does the knowledge discovery, investigate, from the big

data, finding repetitions, occurrences also, creating a network from scratch is

problematic. BioNetVis aims to make a bridge between these two problems and

3

make it an easy way. In addition to that, currently most of the graph tools are

either outdated in terms of look and performance or very inefficient, often requires

prior knowledge.

This problem can be solved in a very simple way. Problem is that

bioinformaticians needs a user interface (UI) to wrangle with their data that is not

too complicated to understand, not time consuming to learn prior knowledge and

tools functions. So interface should be simple yet can be done complex tasks in

behind. Creating such UI itself is a challenging task, we will mention this problem

in the materials and methods section. To understand how much similarity, the data

has and also data’s topological properties in a network can be solved with

proposed UI. We are proposing an implementation project that will allows users

to understand their data much more deliberately.

There are some old approaches in order to see similarities in the data with Venn

diagrams such as online web pages and other package programs but problem with

these approaches that they all lack either from the performance or usability

perspective. In chapter 2, there is some literature review related to the online tools

that have been using Venn diagrams with their features which often seems as basic

way to a high level publication.

We combine visualization considering artistic and academic looks with the

computer science and bioinformatics. In our proposed approach we are making it

much more compact with the algorithm that we have been developed so while we

have maximum usability in terms of user experience with easiness, on the other

hand we do not have to compromise from the performance as well. Our

visualization approach comes with filtering which is many web based tools lack

of. Also having the performance without all the installations and required

knowledge to learn how to use complicated package programs make the

BioNetVis obvious choice while trying to understand Protein-Protein Interactions

(PPI) or any other data that has similarities and needs to be visualized.

We believe in many aspects with the developments in the computer science should

have a reflection to the other fields as well. This includes creating tools that enable

researchers to improve their research much more efficiently with the state-of-the-

4

art tools and implementations. Currently, our proposed tool is runs on the cutting

edge technology in terms of used libraries, frameworks, languages and

visualization as well. It has an understandable, easy to use minimalistic user

interface so that instead of trying to comprehend complex bioinformatics desktop

apps or dealing with first-grade level visualization with outdated tools, users

actually can be focused on their work not the looks.

Since this thesis is an implementation project, there is no way to get an objective

result that will justify one program to another. Instead, we prepared a use case for

the thesis and demonstrated it on the current working system. Despite the

advantages, we need to highlight that BioNetVis has limitations in bioinformatics,

since it focuses mainly one job and that is visualization on Networks and clusters.

BioNetVis is not aiming replacing the current bioinformatics tools or make a

claim that it is better than other tools. Instead we are presenting our simplistic and

powerful approach for one part in the incredibly knowledge needs to be discover

in bioinformatics and other research fields as well.

Neither visualization of protein visualization and finding occurrences in different

clusters are new. There has been intensive study about proteins, visualization of

them, their specialization, why and how they work and relations have been made.

But we have not found any study that been made about protein-protein

interactions and visualization of this PPI in a human network as a tool. We can

say this is a new approach or alternative to the current studies that are most likely

needs to improved.

Of course once you have developed a project or thesis a question that comes to

mind is “What is the contribution of this work?” We contribute to the area of

bioinformatics tools in terms of adapting new technologies in computer sciences.

Also BioNetVis hopes to be achieve a tool that every bioinformaticians had used

for their works. Hence, BioNetVis’ audience is broad and not limited to one

specific subfield. It will continue to update itself in time.

5

Chapter 2

Theoretical Background

Having an extreme amount of information is a well-known fact of the information

age because of the achievements in computer science, in terms of increasing

computing power and the amount of data storage capacity and thus data is

produced in extreme amounts.

While we can collect and store the data faster and easily, our ability to analyze

that large amount of data comparatively becomes slower. Analyzing these kinds

of generally disorganized, hard to understand big data is decisive in many

domains. It is an important task for the people in charge such as business analysts,

decision-makers to extract and use the appropriate information regarding flowing

data that keeps coming regularly.

A number of software tools are now being used in order to help analysts to

organize their data, generate overviews and explore the area of knowledge to

gather useful information.

Many of the tools often developed based on the specific needs of the developers

may be perceived as to complex for daily users. On the other side algorithms and

connections between the programmer and the data planned as according to

purpose of programmer, while algorithms appear generalized too often for the

user. And because of that massive time and resource, resources are often lost due

to lack of proper interaction between databases and the users.

Visual computing seeks to bridge this gap through the use of increasingly

sophisticated analytical methods. The fundamental idea of representing data in the

visual domain is to allow humans to interact with the information directly.

Therefore, it will be much easier to gain insight and draw conclusions much more

efficiently. People may use visual analytics tools and techniques to synthesize

6

information and derive insight from massive, dynamic, and often conflicting data

by providing timely, defensible, and understandable assessments. [3]

Visual analysis research aims to transform the abundance of data into an

opportunity, hence knowledge. In order to make efficient decision-making in

absolute critical situations, decision-makers should be allowed to examine a

massive, multi-dimensional, time-differentiated information in order to see the

patterns in the big data. Visual analytics have a particular benefit in that decision-

makers may focus on the analysis method their perceptual and cognitive abilities

and visual capacity while enabling them to use advanced computer technologies

to improve the discovery process. In this thesis, our aim to suggest one alternative

to enable such opportunities with a tool that is developed specifically for one task

on the visualization of bioinformatics networks and based on their topological

specialties.

There are many visualization tools that are developed for general purposes. These

tools differ based on their primary purposes and also their working environment.

While some of them are only to visualize the data, some of them enable interactive

editing of the graph content. [4] All of these tools such as web-based tools,

desktop applications and command-line based use different algorithms specific to

their needs. Table 2.1 shows a comparison of some of the popular tools and their

purposes.

Tools Graph

Editing

Program

Assistance

Layout Customiza

bility

Availability

Gephi Yes Yes[1] Specified[2] High[3] Open Source[4]

NetworkX No No Editable[5] Low[6] Open Source

Cytoscape Yes Yes Specified Medium Open Source

Graphviz Yes No Specified Medium Open Source

upsetR No No Specified High Open Source

Venny No No Specified Low Available[7]

Venture No No Specified Low Private[8]

7

Vennplex No No Specified Low Private

BioNetVis Yes No Editable[5] Medium Open Source

1 Knowledge base, forums and online groups are indicated as support.
2 Supplementary layouts cannot adapt to program easily
3 Based on programs built-in customization preferences
4 Source code publicly available and it is free software
5 Layout can be changed via editing source code
6 Restricted to simple node and edge visual properties
7 Program is publicly available, source code can be reached via web browsers however, developer does not
shared source code available
8 Free software, source code is not publicly available

Table 2.1: Comparison between BioNetVis to other popular web-based visualization

software

Understanding complex data and make it out of meaningful often come as a

challenge. Hence, most of the time researchers, academics uses visualization in

order to activate cognitive parts of human brain. In a result of that there are many

ways to approach visualization topic. Since we cannot cover all of the topics about

visualization, we’re going to explain visualization related to bioinformatics,

especially network visualization and protein-protein interactions visualizations.

This includes data types that have been used in this thesis work, libraries, and

biological background of the diseases and data collection. Also, we will present

other tools to visualize their specific task in bioinformatics area for understanding

there are many complexities in the matter subject and show that one program

cannot do all of the task related to bioinformatics as well as a person could expect.

In below, we start with the importance of the data and its’ processing parts. Then

we will dive in bioinformatics, the areas related to bioinformatics and the data

itself.

8

2.1 Bioinformatics, It's Scope and Data

Among many natural sciences, biology is one of the main pillars in order to

understand life and world. Build-up of this information throughout to history take

a new turn with new inventions such as computers and world-wide-web. In this

age we can express biological information as molecular sequence of data,

experimented content of genome and gene product analysis. [5]

“Being an interdisciplinary branch of the life sciences, bioinformatics targets to

develop methodology and analysis tools to explore large volumes of biological

data, helping to store, organize, systematize, annotate, visualize, query, mine,

understand, and interpret complex data volumes. It uses conventional, modern

computer science and cloud computing, statistics, and mathematics, as well as

pattern recognition, reconstruction, machine learning, simulation and iterative

approaches, and molecular modeling/folding algorithms.” [5], [6].

“The emergence and advances of the bioinformatics field, however, are tightly

associated with the computerized programming and software developments

needed for the handling and structural and functional analysis of large volumes of

molecular sequences of DNA, RNA, proteins, and metabolites.” [7]

Following chapters, we will expand our description about bioinformatics and its

applications in order to understand this thesis. In chapter 2.1.1 we will discuss

about bioinformatics and its scope. Following chapter 2.1.2, explains

bioinformatics data, importance of verified data, sharing of it, it’s collection and

how the data is related to this project.

2.1.1 What is Bioinformatics and Its Scope

“Bioinformatics, a hybrid science that links biological data with techniques for

information storage, distribution, and analysis to support multiple areas of

scientific research, including biomedicine. Bioinformatics is fed by high-

throughput data-generating experiments, including genomic sequence

determinations and measurements of gene expression patterns. Database projects

9

curate and annotate the data and then distribute it via the World Wide Web.

Mining these data leads to scientific discoveries and to the identification of new

clinical applications. In the field of medicine in particular, a number of important

applications for bioinformatics have been discovered. For example, it is used to

identify correlations between gene sequences and diseases, to predict protein

structures from amino acid sequences, to aid in the design of novel drugs, and to

tailor treatments to individual patients based on their DNA sequences

(pharmacogenomics).” [8]

“Common uses of bioinformatics include the identification of candidates genes

and single nucleotide polymorphisms (SNPs). Often, such identification is made

with the aim of better understanding the genetic basis of disease, unique

adaptations, desirable properties (esp. in agricultural species), or differences

between populations.” [6]

2.1.2 Bioinformatics Data

"In order to understand this thesis work, there are some prior knowledge related

to bioinformatics needs to be learn. These are the subfields of the bioinformatics

and main subjects that researchers work on. We will briefly define this subjects

and will expand related parts such as proteomics for PPI and BioNetVis.

What is omic data?

“Omics informally refers to a field of study in biology ending in -omics, such as

genomics, proteomics or metabolomics. Omics aims at the collective

characterization and quantification of pools of biological molecules that translate

into the structure, function, and dynamics of an organism or organisms.” [9] There

are many fields that named with –omics additions. Some of them are: Genomics,

 Epigenomics, Proteomics, Glycomics, Transcriptomics, Metabolism. Even this

fields have specialized subfields like cognitive genomics, comparative genomics

etc. so that instead of searching needle in the haystack, researchers can reach

needed information in vast natural sciences about human body. In this thesis work,

developed visualization tool BioNetVis can be used many datasets and datatypes,

10

but especially for personalized medicine and drug discoveries, it uses -omics data,

to be exact proteomic data. For future references and details following section we

will explain some of the basics in bioinformatics and elaborate more on necessary

subjects.

Deoxyribonucleic acid (DNA), is a molecule composed of two chains that coil

around each other to form a double helix carrying genetic instructions for the

development, functioning, growth and reproduction of all known organisms and

many viruses. DNA and ribonucleic acid (RNA) are nucleic acids; alongside

proteins, lipids and complex carbohydrates (polysaccharides), nucleic acids are

one of the four major types of macromolecules that are essential for all known

forms of life. [10]

DNA consists organic polymer of four different monomers. Each monomer is

composed of a phosphate group, a single-ring sugar and one of four bases: A, T,

C and G. The bases are planar single- or double-ring aromatic compounds. The

monomers can form bonds between the sugar and the phosphate and form into a

long polymer or strand of DNA. Such a single strand is irregular and if it consists

of N monomers, there can be 4N different combinations of bases, so the molecule

carries 22N bits of information. [11] This basic formula itself reveals how complex

the bioinformatics data can be. Genomics is an interdisciplinary field of biology

focusing on the structure, function, evolution, mapping, and editing of genomes.

A genome is an organism's complete set of DNA, including all of its genes. In

contrast to genetics, which refers to the study of individual genes and their roles

in inheritance, genomics aims at the collective characterization and quantification

of all of an organism's genes, their interrelations and influence on the organism.

[12], [13].

“Ribonucleic acid (RNA) is a polymeric molecule essential in various biological

roles in coding, decoding, regulation and expression of genes. RNA and DNA are

nucleic acids, and, along with lipids, proteins and carbohydrates, constitute the

four major macromolecules essential for all known forms of life.” RNA typically

is a single-stranded biopolymer. However, the presence of self-complementary

sequences in the RNA strand leads to intrachain base-pairing and folding of the

11

ribonucleotide chain into complex structural forms consisting of bulges and

helices. [14], [15] The transcriptome is the set of all RNA molecules in one cell

or a population of cells. It is sometimes used to refer to all RNAs, or just mRNA,

depending on the particular experiment. [16] Transcriptomics is the field studies

RNAs and transcriptomes.

Proteins are vital parts of living organisms, with many functions hence to be able

to understand proteins is important pathway to progress on human knowledge in

medical applications and more. The study of proteins in large scale called

proteomics. [17], [18]. “The proteome is the entire set of proteins that is produced

or modified by an organism or system. Proteomics has enabled the identification

of ever increasing numbers of protein. This varies with time and distinct

requirements, or stresses, that a cell or organism undergoes.” [19] Proteomics is

an interdisciplinary domain that has benefitted greatly from the genetic

information of various genome projects, including the Human Genome Project

(HGP). “The Human Genome Project (HGP) was an international scientific

research project with the goal of determining the base pairs that make up human

DNA, and of identifying and mapping all of the genes of the human genome from

both a physical and a functional standpoint.” [20] It remains the world's largest

collaborative biological project while writing this thesis in spring of 2020, besides

an abnormal situation which is current pandemic crisis. [21] For mental issues of

thesis writer, we skip crisis for now.

“One major development to come from the study of human genes and proteins

has been the identification of potential new drugs for the treatment of disease.

This relies on genome and proteome information to identify proteins associated

with a disease, which computer software can then use as targets for new drugs.

For example, if a certain protein is implicated in a disease, its 3D structure

provides the information to design drugs to interfere with the action of the protein.

A molecule that fits the active site of an enzyme, but cannot be released by the

enzyme, inactivates the enzyme. This is the basis of new drug-discovery tools,

which aim to find new drugs to inactivate proteins involved in disease. As genetic

differences among individuals are found, researchers expect to use these

12

techniques to develop personalized drugs that are more effective for the

individual.” [22]

“A metabolite is the intermediate end product of metabolism. The term metabolite

is usually restricted to small molecules. Metabolites have various functions,

including fuel, structure, signaling, stimulatory and inhibitory effects on enzymes,

catalytic activity of their own (usually as a cofactor to an enzyme), defense, and

interactions with other organisms (e.g. pigments, odorants, and pheromones).

Metabolomics is the scientific study of chemical processes involving metabolites,

the small molecule substrates, intermediates and products of metabolism.

Specifically, metabolomics is the "systematic study of the unique chemical

fingerprints that specific cellular processes leave behind", the study of their small-

molecule metabolite profiles.” [23]–[25]

Figure 1: Central research areas of bioinformatics based on the organism and materials they

focus on. [6]

2.1.3 Drug Repurposing

Biopharmaceutical industries’ one of the constant problem is despite of extreme

amount of spending for research and development (R&D) output is always fallen

short. This disadvantage forced many of drug developers to find creative solutions

to improve productivity such as finding new uses or improve versions of existing

drugs. [26] According to a report prepared by the Eastern Research Group (ERG),

it takes between 10-15 years to develop a new drug. However, the success rate of

developing a new molecular entity is only 2.01% on average. Additionally, based

on Ashburn et. al. claims de novo approach (classical approach) takes 10-17 years

to develop a new drug. [26]–[29]

13

Drug repurposing as known as drug repositioning, drug reprofiling or re‑tasking

is a method for discovering new uses for approved or investigational drugs that

are outside of their initial usage means. [26], [30]

This pathway provides strong advantages in comparison to developing a new drug

completely from the start. First and maybe the most importantly, chances of

developing a failing project is lower since the repurposed drug has been already

found. It may be in use or it is safe for preclinical models, early stage human trials

hence it is unlikely to fail in terms of efficiency and resources perspective.

Secondly, perhaps important as much as the first point, from our recent

experiences during the world’s pandemic, the time frame for drug development is

reduced excessively because of drug’s preclinical testing, safety appraisal and

many cases formulation of the development is already have been completed.

Additionally, because of first and second points, investment for the R&D process

is decreased proportionally. That means, less investment will be needed although

for many drug discovering cases this investment is relative both for time and

money wise. [30], [31]

Figure 2: A comparison of traditional de novo drug discovery and development versus

drug repositioning (taken from article) [26]

Moreover, there are several drug repurposing techniques such as computational

drug repurposing. Like this thesis study’s contribution, computational drug

14

repurposing or known as computer assisted drug repurposing is one of highlighted

areas in the drug development processes. Especially with the increasing

computing power and applications of machine learning techniques, processing

extreme amount of data and speed factor makes computational drug repurposing

a required technology of the future. [32]

A recent study about a pathophenotype of the SARS-CoV2 virus, widely known

as COVID-19 (Coronavirus Disease 2019), which currently has not been found

any drug or vaccine, shows the importance of computational drug repurposing.

[33] Gysi et. al. shows that network based drug repurposing studies are much more

promising than trying to find a drug from scratch. These drug repurposing studies

are currently limited due to sparse domains of the area. BioNetVis aims to fill this

gap over the years with growing features and abilities. For that reason, this study

aims to be part of computational drug repurposing area.

To summarize the process of finding new uses outside the scope of the original

medical indication for existing drugs is also known as redirecting, repurposing,

repositioning and reprofiling. [26], [34] And this matter not only effects

pharmaceutical industries, social aspects of drug repurposing is important as

much as topic itself. Without a doubt societies approach to the pharmaceuticals

and the companies will affect the culture, how we focus and regulate the industry

itself. [35]. A simple use case for drug repurposing with BioNetVis will be shown

in the following chapters. For furthermore reading please refer cited resources.

[26]–[31], [34]–[41]

2.2 Various Approaches to Visualization Tools

There are many ways to approach data and its visualization tools. Many of them

offers different specialties and utilities on separate platforms. For instance, some

tools purpose only to work for one specific task, on the other hand some does

more complicated work and requires prior knowledge and background for it. And

the subject it not limited to only tools purposes but it’s design becomes one of the

important factor while we asses. In light of this statements we can say there are

many ways to develop a visualization tools. In this section we will take a look for

15

common tools that are already developed and offers different settings. You will

find out that some tools are approach to handling biological data for one specific

task only and because of it, these make them very simplistic and limited. On the

other hand, complex tools are often cost time and money. On top of that this

complex tools are most of the time not address required knowledge, it needs many

variables in order to work hence in a way there are limitations for this complex

tools as well and they do not answer user’s needs.

When we wanted to approach visualization tool we decided to divide topic into

the two parts. These are; web based visualization tools and package based

visualizations tools which refers it requires and installation package and works as

a desktop application. While we search at web based tools, instead diving into all

of separate tools that does bioinformatics task for different purposes we will show

tools that shows similar task which is; one: finding common strings and second

showing them on a network.

2.3 Web Based Visualization Tools

Achievements in computer science effects every science field in many aspects.

Especially in terms of data transfer, sharing and calculation. In result of that

currently there are many bioinformatics tools that can be accessed via web. All of

these web based tools has different purposes. Since this project is related to

visualization in biological networks, we will cover visualization tools related to

subject. Most of web-based bioinformatics visualization tools has one properties:

finding common set of strings and visualize them in Venn Diagrams.

As mentioned in introduction, Venn Diagrams are beneficial while comparing

sets. Diagrams are easy to use and interpret while number of sets are equal or less

than four. There are several suggestions for more than four sets; Edwards et. Al.

proposed using different shapes such as triangles, squares, ellipses and spheres.

Edwards-Venn diagrams. [1] Nevertheless, with the increasing number of sets it

becomes harder to interpret and visualize because of regions that needs to be

calculated and created. In short: taking into account esthetic constraints and

16

human visual capacity pressures, more than four-sets and maximum seven-set

Venn diagrams appear just too excessive. [42] BioNetVis offers the eliminate this

limitations with implemented methods, without a network, it is much easier to

interpret more than four sets. Although there are some desktop-based applications

with various preferences like open-source availability or commercial purposes

such as paid subscriptions or one-time-only license payments which we will cover

at chapter 2.4, on the other hand with the help of increasing computation power

and bandwidth speed, researchers can use some web-based tools as well.

Following subsections in this chapter 2.3 we will look at some of the Venn Tools

and their offerings.

Please note that, none of these web-based tools are capable of showing a cluster,

set of strings, in a network. While BioNetVis offers showing similarity between

sets, which elements in the strings are identical, also it shows clusters in the

human genome network. On the other hand, this vennn diagrams can show only

similarity, let alone visualize them in a network.

2.3.1 Venny

Venny is an interactive tool that built for comparing lists in venn diagram version.

It can work online or you can save its .html file in order to work offline as well.

Users can reach the website from Biognp’s website. [43] Currently Venny version

is 2.1 and users can reach version 1.0 as well. It is built in 2007 by Juan Carlos

Oliveros whom works in BioinfoGP Service Centro Nacional de Biotecnología,

(CNB-CSIC). Venny’s biggest downside is limitations. It can compare and draw

at most four-sets.

17

Figure 3: Venny 2.1 Webpage [43]

2.3.2 VennDiagram

VennDiagram, an R package that enables the automated generation of highly-

customizable, high-resolution Venn diagrams with up to four sets and Euler

diagrams with up to three sets. [44] Although it offers customization for diagrams

which many online tools has, mentioned in chapter 2.3’s, even though it works on

a complier, with all the computing power from IDE, VennDiagram lacks

performance since it offers four sets at the very utmost. Regrettably, the process

of their command-line is not user-friendly as well.

18

Figure 4: The four types of Venn diagrams drawn by the VennDiagram package[44]

2.3.3 VennPainter (InteractiVenn)

Set comparisons permeate a large number of data analysis workflows, in

particular, workflows in biological sciences. Venn diagrams are frequently

employed for such analysis but current tools are limited. [42] InteractiVenn is a

web-based tool that aims to solve this problem. One key distinctness is that when

established Venn tools are limited to four-sets, groups, InteractiVenn can

visualize up to six-sets. Nevertheless, similar limitations mentioned above such

as interpretation and limited group number is still valid for InteractiVenn as well.

19

Figure 5:Opening Page of InteractiVenn [42]

2.3.4 GeneVenn

GeneVenn is a web-based Venn Diagram creating tool. [45] Although there is not

any publication related to this tool, from the outdated website and interface we

can extract some information. This program extends its functionality with couple

of features which many online tools has not got. GeneVenn can list the elements

in each region but it can do only one region, it cannot show whole cluster at once.

Also, users can add gene lists to “a text area” as a set of strings and also upload

the system ASCII files with a guideline. Uploaded file needs to separate genes

with “any white space like space, tab, or line break, and comma”. If user upload

a file and uses text area for cluster, program counts both of them as a one single

cluster. In spite of that, this tool can compare only three clusters, gene group.

Program does not allow saving created diagram in any way, user needs to come

up with their own idea which is taking a screenshot of the window. Additionally,

since it is released in 2006, there hasn’t been any changes and because of that,

20

programs user interface (UI) is outdated. There hasn’t been any citation style

specified in the website.

Figure 6: GeneVenn Website Opening Page[45]

Figure 7: Main difference from other tools, listing elements in specific region[45]

21

2.3.5 BioVenn

BioVenn is a web application for the comparison and visualization of biological

lists using area-proportional Venn diagrams. [46] It has couple of customization

with basic drawing and styling. Although it has been published and developed in

2008, BioVenn differs with offerings such as font type and size selection,

exporting diagrams as embedded SVG, embedded PNG, SVG Only, PNG Only

options. In spite of that, BioVenn can compare and lists maxium three sets of lists.

Additionally, user interface seems to be outdated and it can show indivual

elements that are in the proportional areas.

Figure 8: BioVenn's user interface and built-in example drawing [47]

2.3.6 VennMaster

“VennMaster is a tool for drawing area proportional Venn/Euler-diagrams. It

supports several input formats from simple tab seperated data to gene lists from

GoMiner. VennMaster will generate area proportional Venn diagrams for

multiple sets. Since exact solutions seldomly exist for more than 3 sets, it will

approximate a correct solution. VennMaster is great for assessing overlapping

data at a glance, as well as for in depth analysis.” [48]–[50]

22

VennMaster is a Java Application which can run any operating system. The

software requires the Java runtime environment >=1.5.0 (JRE 5.0). One pros to

application is that it is integrated with GOMiner in the context of the Gene

Ontology database. Even though it is cross-platform application for the reason

that being developed as a Java Application; since it is built in 2005 and last

updated next year; whereas, with not supported libraries, all new dependencies,

required installation time and dealing with possible errors, out-of-date user

interface makes VennMaster is not a suitable candidate even for drawing Venn

Diagrams.

2.3.7 jVenn

jvenn is a basically JavaScript library. It processes lists and produces Venn

diagrams. It handles up to six input lists and presents results using classical or

Edwards-Venn layouts. User interactions can be controlled and customized.

Finally, jvenn can easily be embeded in a web page, allowing to have dynamic

Venn diagrams. [51] jVenn developed as a jquery plug-in. [52]

While we asses bioinformatics tools, in terms of efficiency and usability, jVenn

stood out from other tools that does the similar tasks. This conclusion draw from

following key features; handles up to 6 classes venn diagram, allows to provide

the data from 3 different ways (lists/intersection counts/count lists), control the

click callback function, provides statistic charts based on input data, search for

elements, exports the venn diagram to PNG and SVG, exports lists to CSV. In

spite of that jVenn does not perform network visualization related tasks and

therefore it lacks one of the crucial tasks, this thesis wants to achieve.

23

Figure 9: jVenn web application and built-in example with Edwards' Diagram [51]

2.3.8 Tom Sawyer Visualization Tool

Tom Sawyer Software is a tool for visualizing maps and statistics and for

analyzing social networks. In order to recognize development opportunities and

challenges, companies use these tools to consider relationships, patterns, and

behaviors to complex data sets. Tom Sawyer Software is used by banking,

accounting, resources, engineering design, security and technology, health and

24

life sciences, networking, industrial technology, and manufacturing

organizations. [53]

Figure 10: Tom Sawyer AWS Neptune[53]

Tom Sawyer Software is a commercial product that does the analysis. Users can

use the tool for 60-day evaluation but due to product complexity, it requires some

expertise while using it. There is no fixed price for the tool as well, in order to

access full software, you need to contact the product sales team as well.

2.4 Package Based Visualization Tools

Understanding interactions between proteins, genes and enzymes are the key for

understanding humans, our reactions to diseases and drugs. Because human body

is a system that all of it parts integrated with another. Therefore, we cannot simply

explain a mechanism with one aspect of it. Venn diagrams can help us only a

statistical way. In this chapter we will look at some of the bioinformatics tools

that have similar aims like BioNetVis. You will see some of the tools are really

complex in require interdisciplinary knowledge, some of them are basic tools. We

will continue explain tools like Venn Diagrams for continuity, later will take a

peak to more complicated ones. Because of that, Venn Diagrams itself are not

25

efficient way to understand protein-protein interactions, similarities between

diseases, and genes. This thesis aims to visualize similarity between diseases,

protein-protein interactions in order to illuminate path for both treatments of

diseases and personalized medicine, drug discoveries.

2.4.1 VennPlex

VennPlex, a program that illustrates the often diverse numerical interactions

among multiple, high-complexity datasets, using up to four data sets. VennPlex

includes versatile output features, where grouped data points in specific regions

can be easily exported into a spreadsheet. This program is able to facilitate the

analysis of two to four gene sets and their corresponding expression values in a

user-friendly manner. [54] Although VennPlex seems to be a convenient choice,

VennPlex has many limitations. These are; it is a package based program and

works only computers which has Windows operating system. Program requires

expression values of genes as an input in order to work, thus makes it impossible

to work for proteins, genes without their expression values. (CHECK THIS ONE)

As a result of this requirement, data that collected gets bigger and unintuitive to

read. Moreover, it can handle maximum four datasets and this is unefficient and

out-of-date as you have seen chapter 2.3, there are many state-of-the-art tools such

as jVenn, to work with. Since it does not support cross platforms, do not do any

visualization other than Venn diagrams, VennPlex becomes inadequate to work

with as well.

2.4.2 Vennture

VENNTURE, a program that facilitates visualization of up to six datasets and it

has ability to export diagrams as spreadsheets. It is capable of a highly complex

parallel paradigm, i.e. comparison of multiple G protein-coupled receptor drug

dose phosphoproteomic data, in multiple cellular physiological contexts. [55]

There are many downsides vennture in terms of usage. Program requires Excel

files with corresponding column for expression values and since it works only

operating systems on Windows. Therefore, even to get a simple Venn Diagram,

26

let alone network visualization, these limitations itself makes Vennture less

popular choice while drawing venn diagrams manually.

Figure 11: Multiple set VENNTURE data input. Figure taken directly from corresponded

article. [55]

2.4.3 Cytoscape

Cytoscape is an open-source software platform for visualizing molecular

interaction networks and biological pathways and integrating these networks with

annotations, gene expression profiles, and other state data. [56] Although it has

been originally intended for biology research, now Cytoscape is a global platform

for complex network analysis and visualization. In terms of the working

environment, there are a couple of versions of Cytoscape such as Cytoscape

27

Figure 12: Cytoscape 3.5 Desktop Application Overview [56]

Cytoscape Desktop 3.5 software, web-based version Cytoscape.js which is the

successor of Cytoscape Web has similar applications to Cytoscape Desktop

version, hence we won’t be mention for a web-based application.

Although Cytoscape started for biological research purposes, with the help of

being an open-source platform and giving access to the developers to add features

with plugins, they broaden its abilities. There are many advantages and

disadvantages to this which also will be discussed in section 3.

2.4.4 Gephi

Gephi is an network visualization and analysis tool developed on Java

programming language with an open source availability. [57] The tool started to

developed an university environment, like BioNetVis, by the students of the

University of Technology of Compiègne (UTC). Among its research purposes,

Gephi also can be used for other visualization applications such as journalism,

political research, history and such.

28

Figure 13: Gephi Package Program A Visualization Screen [57]

2.4.5 NetworkX

NetworkX is a Python package for the creation, manipulation, and study of the

structure, dynamics, and functions of complex networks. It is mainly focused on

the scaling specialty which can be used in real-world problems within graphs in

excess of 10 million nodes and 100 million edges. Therefore it is suitable for

handling large datasets. [58]

29

Figure 14: A Graph created by using NetworkX [58]

2.4.6 NodeXL

Node XL is a plug-in developed in .NET language for the analysis tool for various

Microsoft Excel versions from 2007 to 2016 that provides network visualization,

social network analysis, content analysis, task automation, and such tasks. In 2015

the company divided the tool for free and non-free versions for several reasons.

These two models are NodeXL Basic and NodeXL Pro. NodeXL Basic is

available freely and openly to all. It is positioned as a browser for files created

with NodeXL Pro which offers advanced features for professional social network

and content analysis. NodeXL is basically a set of previously built class libraries

using a custom Windows Presentation Foundation control. [59]

30

Figure 15: Different set of visualization graphs created by using NodeXL [59]

2.4.7 Graphviz

Graphviz is open source graph visualization software. Graph visualization is a

way of representing structural information as diagrams of abstract graphs and

networks. It has important applications in networking, bioinformatics, software

engineering, database and web design, machine learning, and in visual interfaces

for other technical domains. The Graphviz layout programs take descriptions of

graphs in a simple text language, and make diagrams in useful formats, such as

images and SVG for web pages; PDF or Postscript for inclusion in other

documents; or display in an interactive graph browser. Graphviz has many useful

features for concrete diagrams, such as options for colors, fonts, tabular node

layouts, line styles, hyperlinks, and custom shapes. [60]

31

Figure 16: A Family Tree graph visualization created with Graphviz [60]

2.4.8 upsetR

Visualizing the sets and their intersections is frequent challenge for academics

and researchers whom works on the biological and biomedical data. Even there

are some technics for visualization, often these technics fallen short in terms of

complexity and usability. [61] These approaches often has shortcomings such as

inability work with large number of sets, interpretation of the data from generated

visuals are often hard and open to discussion. UpsetR is a package based program

developed for R programming language and software. [62] It is inspired from

“Upset” graph technique created by Lex et al. [63], [64]. Upset technique’s layout

is focused on showing intersections with matrix-based approach. The package

based programs has supports three input formats; a table in which the rows

represent elements and columns include set assignments and additional attributes;

sets of elements names; and an expression describing the size of the set

intersections as introduced by the venneuler package. [62], [65]. Some may argue,

the disadvantage of upsetR is that loading and reading data is inconvenient and

understanding visualization is more complex while it points out Venn and Euler

diagram’s shortcomings in terms of interpretation. Figures below shows a

32

visualization made with upsetR on R program.

Figure 17: A visualization made with upsetR. Figure taken from article’s supplementary

GitHub page. [62], [66]

33

Chapter 3

Implementation and Methods

In this section you will find our approach to the projects actual development part,

which is basically coding. This requires simple introduction to the materials that

we have been used. Thus, firstly we will briefly give an explanation to the

architecture of BioNetVis. It has main two parts, for creating the network from

the data back-end section and for interaction with user and visualization front-end

part. Above all, later in this chapter you will find methods and objects that have

been created can be seen in the regarding sections, and you can find the written

codes in the GitHub repository of the project. [67]

3.1 Architecture of BioNetVis

BioNetVis has two main parts. Firstly, a network needed to be created in order to

visualize it. Secondly, in order to visualize there has to be an interaction between

user and proposed tool. For this reason, other part is creating an interactive user

interface so that user can give inputs to visualize. In below figure 16, you will see

simplified version of a flowchart back-end parts and at the figure 17 shows

flowchart for the front-end section.

34

Figure 18: Simplified version of back-end part of the thesis work

While we start coding, first task needed to be done is creating methods for

generalizing. After initial release, there can be following updates so making codes

open ended will enables performance for future developments. At figure 16,

created methods are not taken because of space issues in the figure and for thesis.

Firstly, we created a method for reading files, especially .csv files. While reading

these files, it is required to specify delimiter of the object that will feed to the

35

program. Additionally, the input file’s header also needed to be considered. Each

element in the data has to be unique or needed to indicate it is repeated data. For

this purposes evaluation of unique element method is created. If read data is

unique it will have iterated and append to the also created network dataframe with

its index. If read element is occurred second time it is specified in the another

occurrence dataframe. For the first version of the BioNetVis user has to input its

network file manually. In this case our input file is more than 62,000 lines and

each line has two elements with a “pp” delimiter which indicated both elements

are neighbors and have connections. To get this information a node object is

created and for visualization purposes in the front end, each object has to have

“id, label, size, color and x, y coordinates” information. Since color and

coordinates are related to visualization, to save up from the memory and

efficiency purposes these 3 elements of node object will be added in the front end

section, with JavaScript language and sigma.js framework, also will be mentioned

in the materials section. Creating this network requires computing power and

needed to be done carefully, so sparse matrix is used to create connections

between nodes and adding id, label and size information. After iterating and

creating each object all of the information “dumped” to a JSON file which front

– end section will be use.

36

Figure 19: Front-End part of the thesis work

37

For front end section a simple, understandable user interface needed to be created.

Several instructions for how to use BioNetVis is also added for making usability.

A predefined user interface is created and when user will visit the project’s

website, it will be loaded. Predefined User Interface is combine of a header and

text block, a filtering area, six text area for user’s input with modern color picker

boxes, a visualized protein-protein interaction network with randomly generated

coordinates, a toggle button to arrange coordinates of the nodes, exporting button,

information panel for nodes and an information block for to properly cite thesis

work. User can put inputs which is proteins and can select the color for

visualization. Additionally, user can select filtering option before or after

visualization. Based on user’s preferences the tool preprocess and visualize on the

network which we get the information from the back-end section. In result of that

user can export generated network or can refresh the page for a new query.

3.2 Material

There are many software development process methods for building a project.

Some of them are Agile, Waterfall, V-Shaped, Spiral, Evolutionary Prototyping,

Incremental, Random Modelling and such. These methods are invented in order

to fulfill development team’s needs while considering many aspects of

developing, such as, resources, design, architecture, feedbacks, time limit and

many more.

In this thesis work we relied on waterfall method since from the beginning of its

goal of the thesis were specified, there were information about what needs to be

done, time limits and feedbacks are having to be related to goal of the project.

In this chapter three, we are going to investigate development aspect of this study.

What language/s have been used, which editor chosen, what are the frameworks

and which libraries in use in this program. Also, in addition to that, we are going

to explain why these specific choses have been made.

38

All of the work that will be described below is executed in Windows 10 Pro

Environment with additional programs and installments, can be repeated with

same exact conditions.

3.2.1 Languages

Programming languages are formal languages that are includes a collection of

instructions that produces different output forms. Computer programs uses

programming languages in order to implement algorithms and execute tasks.

There are numerous programing languages such as Java, Python, Ruby, C, C++,

C#, Swift, Go and such. Complexity of the programming languages differs

interpretation of human readability and computer readability. Complexity is a

different issue which we will not be covering this work but keep in mind, while

we refer complexity in programming languages, it implies readability to human

and ability to perform complex task without many lines of code blocks.

3.2.1.1 Python

Python is an interpreted language with expressive syntax that some have

compared to executable pseudocode. [68], [69] Created by Guido van Rossum

and first released in 1991, Python's design philosophy emphasizes code

readability with its notable use of significant whitespace. The language structure

and object-oriented methodology are aimed at enabling programmers to write

simple, functional code for small and large scale projects. [70]

There are many specialties and features that Python language has. These are;

An open source license that allows use, sell or distribute Python based application

without extra efforts for permissions

It can work all sorts of environment, that means while writing an application user

does not have to worry about limited portability and vendor lock-in.

Language’s simple yet complex syntax allows you to build programs for different

needs whether fully object oriented based or local necessities.

39

Powerful interpreters can speed up the developing process with real time code

development and instant experimentations, therefore it rules out time consuming

step of test development process.

Python can be taught, means added, more tasks with user’s own complied codes

allows it can do anything as much as hardware reaches.

The language can be easily integrated with prevail programs thus easy to use with

older applications as well.

It can interact with wide range of different programs and languages on the

operating system which allows flexibility and advantage in terms of using

software skills that may have been acquired before.

Python has large number of library modules (that comes with installation of

language and also can be installed via additional downloads) allows developers to

built complex programs like from solving high level mathematical equations,

image processing tasks, building machine learning models, calculating satellites

orbits to genome sequencing.

Daily growing Python Community is helpful in many aspects, like learning the

language, quickly tackling code-problem solving issues and more.

All of the Python modules are can be found at pypi.org with easy to installment

packages. [69], [71].

Without getting into deep subjects like formatting, operations, syntax and more,

it is clear that Python is one of beneficial language for all kinds of projects from

different backgrounds. Besides the large abilities, in thesis work, Python is used

for back-end part of the project and that is the backbone of the project. This

language has been chosen numerous reasons but main ones are; long life of the

language for feature projects as well, understandable code for everyone and last

but not least, my familiarity with the language itself.

In this thesis work Language’s Python 3.7.0 version (v3.7.0:1bf9cc5093, Jun 27

2018, 04:06:47) [MSC v.1914 32 bit (Intel)] on win32 is used. Used complier and

libraries will be mentioned in respect of their subjects.

http://www.python.org/pypi

40

3.2.1.2 Javascript

JavaScript is a programming language with complex features such as compiling

instantly, multi-paradigm specialties and high-level complexity. The

programming language has syntax that mostly works with curly brackets, object

orientation, dynamic typing and first-class functions. JavaScript, can be referred

as JS from now on, follows a set of rules for standardization and these set of rules

are ECMAScript specifications. [72], [73]

In many aspects we can say JS is the Web’s programming language. The immense

amount of modern websites and also all modern web browsers on any devices

uses JavaScript. In result of that usage for all modern devices, desktops, tablets,

smartphones, game consoles make JS one of the pervasive programming language

of the software developments. The language often mentioned and related with

other World Wide Web (WWW) display languages. A web developer must have

information for three languages and these are; HTML for specifying constituents

of web pages, CSS for appearance of the web pages and JavaScript for specifying

behavior of the web pages. [74]

JavaScript language has been chosen for this thesis work for following reasons.

It’s interactive specialties makes it a must for visualization projects. Every web

page requires interactions with users and to keep user’s attentions animations. The

language is also compact and fast and thus JavaScript is a must.

3.2.1.3 HTML/CSS

HTML is an acronym for Hyper Text Markup Language. HTML documents, the

foundation of all content appearing on the World Wide Web (WWW), consist of

two essential parts: information content and a set of instructions that tells your

computer how to display that content. [75]

HTML documents from a web server or local storage unit is read by web browsers

and rendered and showed as multimedia web pages. This documents tells

browsers the appearance of a web page semantically and adds information cues

for the structure of the web page.

41

Building blocks of HTML pages are the HTML elements. In order to denote

elements by tags, the language uses angle brackets. HTML elements can be in

many forms such as images, texts, interactive forms, pointers, headings,

paragraphs, lists and more. For example, in order to indicate an heading to a

paragraph users has to use <h> Title of Heading 1 </h> and <p> Some paragraph

text </p> tags. With this tags, browsers can interpret the content inside the

brackets and display them on the webpage.

It can be assisted by technologies such as Cascading Style Sheets (CSS) and

scripting languages such as JavaScript. [76]

Cascading Style Sheets is a style sheet language used to characterize the text

written in a markup script, such as HTML. CSS is a cornerstone technology of the

World Wide Web, alongside HTML and JavaScript. [74]

CSS is designed to enable the highlighting different representation for content,

inclusive of layout, colors, and fonts as well. [77] This highlighting separates the

content and improves it via accessibility, gives more flexibility and management

in the specification of presentation characteristics. With combining all of the

relevant codes in a separate .css file allows multiple web pages the sharing same

formatting by specifying relevant parts in the file. Hence it also reduces

complexity as well as repetition in the code blocks. [78]

In order to upload thesis work that has been done for the interaction between

researchers and BioNetVis, for showing the content of the website HTML is a

requirement. For appearance and quick referencing all the elements in the HTML

and JS, CSS language is a requirement as well. In the source files of the thesis

work you will find respective files for the codes that have been written for the

project.

3.2.2 Integrated Development Environments (IDEs)

Source code editor is basically a program specifically designed to edit computer

languages codes. It can be a stand-alone desktop application or it may have built

on top of integrated development environment (IDE), even can be embedded into

42

a web browser. Source code editors are essential for programmers since it is the

actual workplace to do so.

These source code editors are especially designed for making faster the typing or

simplifying the code with features like brace matching, indentation, syntax

highlighting and autocomplete functionalities. In addition to that, source code

editors also maintain adequate practices to run a compiler, interpreter, debugger

or working with relevant 3rd party programs for software development process.

Even though there are many text editors such as Notepad to edit code, if they

cannot improve coding process with features like automating, easily editing

multiple line of codes, they cannot consider as source-code editors. Instead they

are simply text editors. [79]

There many code editors you can find along with many specialties in wide range

of usage such as free to use, pay to use or free using but required license while

selling, monetizing your code. In this chapter you will find the IDEs and source

code editors that has been used in thesis for different purposes. Editors will be

explained briefly and reasoning for choosing specific editor also will be given as

well.

3.2.2.1 PyCharm

PyCharm is an integrated development environment (IDE) used in computer

programming, specifically for the Python language. The program developed and

released by a Czech technology company called JetBrains. [80] “It provides code

analysis, a graphical debugger, an integrated unit tester, integration with version

control systems (VCSes), and supports web development with Django as well as

Data Science with Anaconda.” [81]

PyCharm works with macOS, Linux and Windows operating systems that makes

it a cross-platform IDE. “The Community Edition is released under the Apache

License and there is also Professional Edition with extra features – released under

a proprietary license.” [82], [83]

Some of the features of PyCharm are;

43

 Writing assistance and analyzing via code completion, suggestions,

highlighting syntaxes, errors and quick corrections

 Easy navigation between projects and codes, specially designed project

and file structure views, quick jump to methods, classes, objects

 Python refactoring; renaming, extracting methods, introducing variables,

constants

 Integrated web frameworks, such as Flask, Django and web2py (requires

professional edition)

 Integrated Debugger and line by line code coverage, Unit Testing

 Google App Engine Python development (requires professional editon)

 Version control, UI for Git, Mercurial, CVS with change lists and merge

 Scientific tool supports such as: matplotlib, numpy and scipy (requires

professional edition) [84], [85]

Some of the features mentioned above can be found at other IDE’s as well.

Nevertheless, ability to work with web frameworks and scientific tool support is

a must for thesis work. In order to integrate front-end and back-end codes, to be

able to make code work smoothly, finding and fixing errors quickly web

framework feature is important. Also while pushing codes online in time

perspective it will be helpful. Moreover, while working with Human PPI Data,

there are more than 62.000 lines of information. Creating a network with this

amount of data is overwhelming. Keep that in mind, there are also additional

clusters, data-sets which in this case user will provide, can go up to thousands of

proteins, genes. That extreme amount of data needs to be handled carefully, every

element in the data should be searchable in the PPI Network. This utmost data

processing it requires powerful IDE and decisive scientific tools. In light of these

factors mentioned above, PyCharm is selected for default source code editor in

the thesis work.

Used Pycharm version is Professional Edition, licensed with educational

purposes. License and used version is specified both written and showed below.

PyCharm 2019.3.2 (Professional Edition), Build #PY-193.6015.41, built on

44

January 21, 2020, Licensed to Umit Bulut, Subscription is active until February

3, 2021, For educational use only. Runtime version: 11.0.5+10-b520.30 amd64

VM: OpenJDK 64-Bit Server VM by JetBrains s.r.o, Windows 10 10.0, GC:

ParNew, ConcurrentMarkSweep, Memory: 978M, Cores: 4.

Figure 20: Pycharm IDE Version and License information [80]

Figure 21: Pycharm working environment while working on back-end development [80]

45

3.2.2.2 Codepen

Codepen is an online code editor for web development with several features that

allows users to code, test and showcase their work. [86] It allows to work with

HTML, CSS and JavaScript code snippets, and call these code blocks as “pens”.

The changes in the code snippets can be seen and test in real time. Indenting,

pointing opening and closing methods, brackets are helpful features as well. It

also has a social function where users can share their work and communicate each

other through comments. Codepen is developed by two front-end developers and

a front-end designer; Alex Vazquez and Tim Sabat and Chris Coyier in year of

2012. [87]

In web development part of the project, to be able to interact with the visualization

part via JavaScript, seeing changes in real time without losing time and lastly,

creating, giving a shape to a webpage on a webpage itself was helpful while

developing this thesis work, BioNetVis. For that reasons Codepen is also has been

used as an online code editor.

Figure 22: Codepen working environment while working interactions between nodes and

UI[86]

3.2.3 Frameworks

Frameworks are the services that allows developers to integrate their works, their

codes into a system. In this section we are going to look at frameworks that has

46

been used specially for this thesis. These frameworks are a necessity for the front

end aspect of the BioNetVis. Like other materials explained above, reasons behind

chosing exact frameworks will be given after introducing their features. Relevant

topics will be followed as, Flask, jinja, Bootstrap and Sigmajs.

3.2.3.1 Flask

Flask is a micro Web Server Gateway Interface (WSGI) web application

framework written in Python language. [88] The reasoning behind “micro

framework”, Flask does not require any additional tools or libraries in order to

work. It is designed to start web related projects quickly and easily with being

able to scale up to complex applications as well. In the initial release, Flask started

as basic wrapper tool around Wekzeug and Jinja, currently become of the most

popular Python web application framework. Platforms like Linkedin and Pinterest

are use Flask as well. [88], [89]

Flask has not have any database abstraction layer, form validation, or any other

components where pre-existing third-party libraries provide common functions.

On the other hand, Flask can have a feature to support third party extension. In

example this feature allows extension itself implemented while Flask is coded

since Flask is simple start and run, micro framework. There are extensions for

different purposes such as validating forms, open authentication technologies,

upload handling and object-relational mappers are can be used with Flask. Since

these extensions answers needs of developers, they are updated far more

frequently than the core of Flask framework. [88]–[91]

47

Figure 23: Flask framework installation and documentation page[89]

Flask has been chosen its’ simplicity and lightweight features. It works as a

pipeline for the Python codes to work with front end codes. In addition to that, it

is not complicated for stating point while comparing with frameworks like

Django.

3.2.3.2 jinja

Jinja is Python based templating language modelled Django like templates, with

modern look and designer friendly structure. Main specialties of Jinja is that, it is

fast, widely used and secure with the optional sandboxed template execution

environment. [92], [93]

Jinja has expessions similar to the Django framework but since it is based on

Python, it provides python-like expressions while covering that the templates are

evaluated in a sandbox. It is a text-based template language and thus can be used

to generate any markup as well as source code. [93], [94]

Jinja is Flask’s default template engine. This template engine also can allow

refactoring of globals, filters, tests and tags. In addition to that, unlike Django

template engine, it can enable templates to call functions for objects with proper

arguments. [92]

Even though jinja is a hybrid language template based on Python and HTML with

a pinch of JavaScipt, I decided to introduce jinja in frameworks sections since it

aims to satisfy web based projects like BioNetVis.

48

Figure 24: Jinja framework documentation and installation page [93]

3.2.3.3 Bootstrap

Bootstrap is a free and open-source CSS framework directed at responsive,

mobile-first front-end web development. [95] It contains CSS- and (optionally)

JavaScript-based design templates for typography, forms, buttons, navigation, and

other interface components. [96]

Main goal of Bootstrap is the unify design and give the consistent look of a web

based project with freedom in respect of design and development aspects.

Developers and designers can change layout, fonts, colors and size of each

bootstrap elements to based their preferences. Once an element included to a

project, Bootstrap gives the essentials interpretations for all HTML elements,

hence the elements and page has a uniform look itself even there are many screen

size for each device and browser rendering. On top of getting basic HTML, for

styling aspects, developers can work with CSS classes which is predefined in

Bootstrap as well.

Some of the JavaScript components comes in the form of jQuery elements. This

ability gives developers extra tools to work on user interface. Every Bootstrap

element consists basic HTML format, CSS expressions and occasionally

JavaScript codes within. [96]

49

Most important part of the Bootstrap is that there are some essential elements in

the framework, that affects entire web page without disrupting any other element

in the source code. This ability is almost revolutionary for the front end

development. One of the essential layout component is called “.container” and

this element can save every other element wherever it is placed. Based on

container type, it can adjust itself and the elements inside to the screen of the web-

page showed on. Bootstrap has predefined class for heights and width for four

types of screen sizes. There are follows as;

.xs : screen sizes less than 768px wide, mostly for phones

.sm : screens equal to or greater than 768px wide, for tables

.md : screens equal to or greater than 992px wide, for small laptops

.lg : screens equal to or greater than 1200px wide, for laptops and desktops [97]

Figure 25: Bootstrap framework download and documentation page[95]

Among many features of Bootstrap, it’s usability, responsive and uniform design,

well documentation, ability to work with other frameworks and adversity of

creating a web page with HTML, CSS and JavaScript from scratch, Bootstrap has

been used while developing BioNetVis.

50

3.2.3.4 Sigma js

Sigma, referred as sigmajs, is a JavaScript library assigned to only graph drawing

purposes. It makes easy to publish networks on Web pages, and allows developers

to integrate network exploration in rich Web applications. [98]

Some of the main features of sigmajs is;

Custom rendering: Users can use customized rendering on top of other options

such as Canvas or WebGL built-in renderers

Interactivity oriented: Events that will explained in the following chapters,

hovering around the graphs, clicking and getting information from a node, zoom

in, zoom out specialties.

Powerful graph model: Even though Sigma is just a rendering engine, events like

visualization of customized graph algorithms is possible with customizations

which in this work used.

Compatibility: Sigma can work on all of the modern browsers that can support

Canvas, and WebGL, Additionally, it is faster on WebGL. [98], [99]

In visualization aspect, since user’s need a tool that is interactive and informative

while maintaining basic design principles, Sigmajs was the tool this project

needed. Moreover, features like compatibility and ability to work with other

frameworks made Sigma without a doubt, go to material of BioNetVis.

51

Figure 26: A Graph generated with sigma.js locally and 1000 nodes from the PPI Network

data. Color and coordinates information generated randomly, size information is depended

to connections. [98]

3.2.4 Libraries

In programming languages, in order to give meaningful commands to computer’s

processors, programmers use functions. Often a command can be used againg and

again, recursively. To eliminate repatative and exhaustive coding, programmers

can generalize these functions with methods. Like functions, methods also can be

used repetitively. To deal with these problem programmers developed a solution

called “programming libraries”. These libraries can store many functions and

method in order to work much efficiently and faster. Some of the libraries become

essential even indispensable most of the cases. In this part we are going to present

52

libraries that have been used in order to develop BioNetVis. Later at section 3.3

we are take a look to the methods that has been used to generalize commands with

their explanations as well.

Pandas: is an open-source and easy to use data analysis and manipulation tool and

library that is integrated with python programming language. [100] With upda

tes and recent developments especially in the data science aspect of the programmi

ng, pandas becomes one of the essential and powerful library that needs to be le

arn and use all the time. In addition to that more than 3000 pages’ documentation

and active support community, problem solving matters is much easier. [101] S

ome of the key features ar

 Quick and powerful DataFrame object for handling data with efficient

indexing

 Ability to reading and writing data with several data structres and variable

formats such as text files, CSV files, Microsoft Excel and SQL databases

and so on…

 Dynamic data alignment, handling missing data and organization from

messy databases

 Reshaping and converting datasets

 Label-based dividing, subsetting and fancy indexing large datasets.

 Compiling and reconstructing data with group by feature, which can add

split-apply-combine operations on datasets

 Powerful performance on merging and joining of data sets;

 Time series-functionality: date range generation and frequency

conversion, moving window statistics, date shifting and lagging. Even

create domain-specific time offsets and join time series without losing

data;

 Optimized performance

 Python with pandas is in use in a wide variety of academic and

commercial domains, including Finance, Neuroscience, Economics,

Statistics, Advertising, Web Analytics, and more. [10

53

NumPy: is one of the essential library package in python for scientific computing

and related works to that. [102] Among many other features, NumPy can be used

as a reliable, multi-dimensional data container. Different data types can be defined

on NumPy as well. This specialty is important since this thesis work based on

organizing and visualization of the data itself. One of the main features are;

 Ability to contain N-dimensional array object

 It has connected and complex functions

 To be able to use linear algebra, fourier transform and many mathematical

functions

 Tools for integrating C/C++ and Fortran code

Json – JSON encoder and decoder: JavaScript Object Notation (JSON) is a

lightweight data interchange format inspired by JavaScript object literal syntax.

[103] Basic usage on python is specified below.

json.dump(obj, fp, *, skipkeys=False, ensure_ascii=True, c
heck_circular=True, allow_nan=True, cls=None, indent=None,
 separators=None, default=None, sort_keys=False, **kw)

In addition to libraries, while developing BioNetVis, I created some objects to

integrate with codes. These objects also will be explained in the programmed

methods section 3.3 as well. Reader can also find the codes at the supplementary

files at the end of the thesis work.

3.2.5 Network Data

Protein – Protein Interaction data have been taken from the supplementary files

in the study “The Human Disease Network”. [104] Goh et al. ‘s study investigates

gene relations between know diseases thoroughly and gives results of the high

quality laboratory experiments.

In order to create a network, we need some sort of information between elements.

Goh et. al.’s dataset is basically a .sif file that contains Protein-Protein Interactions

54

between two proteins in each line end to be precise there are 62263 lines in the

data file we have feed the implemented tool. Figure 25 shows the first and last ten

of total twenty elements in the data set. For delimiter to separate elements from

one another “pp” have been used. While creating a dataset without repetitive

elements, this needed to be considered since some of the elements in the network

has multiple neighbors. This logic explained the methods section.

Figure 27: First and last ten elements of the data, with a delimiter as "pp"

3.3 Methods

In this section we are going to explain the approach to development of the project

itself as well as the explanation of the written code with specified programming

languages, frameworks and libraries mentioned in the previous chapters.

To achieve maximum efficiency in this thesis work and development of

BioNetVis, waterfall development process used as cited in previously. With that

being said, coding work divided into two chapters. These are; back-end approach,

front-end approach. While we are going to explain reasoning and purpose of each

line of code in these section, methods of this study also will revealed to the

readers. We will conclude the chapter with a summary and gave use cases for the

55

project with finalized version of the BioNetVis. A discussion chapter will follow

the conclude thesis work later with a reference page for sharing source codes of

the project.

 3.3.1 Back-End Approach

Back-end section is the backbone of the project itself. Without flexible and

powerful back-end part the code of the part will be limited because of

unchangeable mechanics. To prevent this limitations, I developed generalized

methods which is compactable with any other datasets. In a result of that coding

back-end section took much more time and energy but on the other hand the

BioNetVis is become much more powerful visualization tool. In the below codes

and purpose of each method or function is specified.

ReadCsv method is basic and self-explanatory method. This method allows

program to read .csv files. Method requires a filename. A header is not necessary

while executing this method.

 def ReadCsv (filename, header=False):

 if not header:

 df=pd.read_csv(filename, header=None)

 else:

 df = pd.read_csv(filename)

 return df

ReadNetworkcsv method is reads network files whether these networks are small

or large. With only changing delimeter section, any network file can uploaded to

program to visualize. This generalization is the purpose of the back-end work. Not

only for visualizing PPI Network, but also with any other network files as well.

In this case “pp” is the delimiter that our network file uses. Like previous method,

this one also requires a filename but not a header.

def readNetworkCsv(filename, header=False):
 if not header:
 df=pd.read_csv(filename, header=None, delimiter="pp")

56

 else:
 df = pd.read_csv(filename, delimiter="pp")
 return df

getUniqueColumns method is specified for the getting unique elements, in this

case protein files. Otherwise repetitive data can distort the network. For this

method to work, there has to be dataframe which is can be found in the codes.

def getUniqueColumns(dataframe):
 uniqArr=[]
 for col in dataframe.columns:
 localunique=dataframe[col].unique()
 # if len(uniqArr)==0:
 # uniqArr = localunique[:]
 # continue
 for localcol in localunique:
 if localcol not in uniqArr:
 uniqArr.append(localcol)
 return uniqArr

createNetworkDF is one of the important methods for this thesis work. To create

a network and its’ connection these methods has been created.

def createNetworkDF(dataframe):
 uniqueValues= getUniqueColumns(dataframe)
 print(len(uniqueValues))
 # dummyRow= [0 for i in range (0,len(uniqueValues))]
 df = pd.DataFrame()
 for value in uniqueValues:
 data={col:0 for col in uniqueValues}
 df= df.append(data,ignore_index=True)
 df.index = uniqueValues[:]
 return df

addNetworkConnection method adds elements to connection network. In order to

this method to work, it requires a dataframe, a source and destination. Source and

destination are the elements of the network that connected to each other. Notice,

.format is python’s relatively new feature that eliminates confusing code parts as

well. This shows author’s/developer’s attention to lastest releases and dedicated

effort to thesis work as well.

def addNetworkConnection(dataframe, src, dst):
 src_dst = dataframe.at[src, dst]
 dst_src = dataframe.at[dst, src]

 if src_dst == 0:
 dataframe.at[src, dst] = 1
 else:
 print ("Attempting to re-add {}-{} connection".format(src,

57

dst))

 if dst_src == 0:
 dataframe.at[dst, src] = 1
 else:
 print ("Attempting to re-add {}-{} connection".format(dst,
src))

 return dataframe

addNetworkCons is the method for adding connections to network. It is connected

with .addnetworkConnection method. This method requires a dataframe and

connections in order to work. There are definitions of source and destination as

well dataframe. It reads connection values which is either 1 or 0 between

elements, and adds to the network with previous method.

def addNetworkCons(dataframe, connections):
 for source, destination in connections.values:
 dataframe = addNetworkConnection(dataframe, src=source,
dst=destination)

 return dataframe

addProteinDataFrame This method automatically adds proteins to the dataframe

and prevents proteins to be repetitive. If program reads an element, in this case

protein, for the first time; program give the protein occurrence value 1 and adds

it to the dataframe and updates the index which we will explain reasoning later.

def addProteinDataFrame(dataframe, protein, fromFile=None):
 data={"lines":protein, "occurences":1}

 if not fromFile == None:
 data['cluster'] = [fromFile]

 new_df = pd.DataFrame(data, index=[len(dataframe)])
 # print (new_df)
 dataframe =dataframe.append(new_df)
 dataframe = dataframe.reset_index()
 dataframe = dataframe.drop(columns=['index'])
 return dataframe

getProteinIndex is a self explanatory method as well. Program get’s the protein

index which is also protein name. This method is useful while finding connections

between proteins.

def getProteinIndex(dataframe, protein):
 values = dataframe.index[dataframe["lines"]==protein]
 if len(values) == 0:
 return None

58

 else:
 return values[0]

addOccurence method as name suggests adds occurrences to data frames. This

method is used with front-end section, while user adds multiple proteins to the

different clusters, if same element is in the different cluster this method allows to

specifying which clusters has the element.

def addOccurence(dataframe, index, fromFile=None):
 # print (dataframe.loc[index]["lines"])
 # dataframe.loc[index] = {"lines": dataframe.loc[index]["lines"],
"occurences":dataframe.loc[index]["occurences"]+1}
 dataframe.at[index, "occurences"] += 1

 if not fromFile == None:
 clusterList = dataframe.at[index, 'cluster']
 if isinstance(clusterList, str):
 clusterList = [clusterList]

 if fromFile not in clusterList:
 clusterList.append(fromFile)
 dataframe.at[index, "cluster"] = clusterList
 # print (dataframe)
 return dataframe

iterateAndAppend is a generalized method for getting elements from .csv file to

iterate. Elements that has not been exist in the dataframe will add, else if the

element is already in the dataframe, this method calls .addOccurence method for

adding occurrence to specific element, in this case proteins.

def iterateAndAppend(dataframe, csvDF, fromFile=None):
 for protein in csvDF.values:
 protein=protein[0]
 # print(dataframe.head())
 # print(protein)
 index = getProteinIndex(dataframe, protein)
 if index == None:
 dataframe = addProteinDataFrame(dataframe, protein,
fromFile)
 else:
 dataframe = addOccurence(dataframe, index, fromFile)
 return dataframe

searchExist is basic search method in the main dataframe. It is specifically written

for indexing. While building connection network for PPI, it searches if and index

is exists or not. This method gives the knowledge of a protein exists in the

dataframe or not.

59

def searchExists(mainDataFrame, protein):
 searchIndex = mainDataFrame.index[mainDataFrame["lines"] ==
protein].tolist()
 if len(searchIndex) == 0:
 return None
 else:
 return searchIndex[0]

getAllConnections method as name suggest collects the information in the

coonection network. getAllConnections enables the neighborhood properties. If

there is a link between two proteins it is a valid connection and the respective

adjacent matrix value between these proteins has value of 1. Otherwise it is not a

valid connection and it appends the value of 0 to the matrix.

def getAllConnections(connectionDataframe, protein):
 columns = connectionDataframe.columns

 connections = []
 for column in columns:
 if connectionDataframe[column][protein] == 1.0:
 isValidConnection = True
 else:
 isValidConnection = False

 if isValidConnection:
 connections.append(column)
 return connections

listProteinsWithOccurenceX is basic filtering method to see proteins occurred

with X times where X is an arbitrary number for user’s input.

def listProteinsWithOccurencesX(DataFrame, X):
 proteins = []
 for index, row in DataFrame.iterrows():
 occurence = DataFrame.at[index, "occurences"]
 if occurence == X:
 proteins.append(DataFrame.at[index,"lines"])
 return proteins

For exemplary intentions and input code for .csv files and main data frame will

be shown below as well. Full codes can be found on the supplementary file or

source page of the thesis work.

Df1=ReadCsv(filename="path/to/your/file/lung?cancer_proteins.csv")
fileName="lung"
mainDataFrame=iterateAndAppend(dataframe=mainDataFrame, csvDF=df2,
fromFile=fileName)
print(mainDataFrame)

60

Node Object

In order to visualize proteins, we need to convert them as objects in order to work

with the codes itself. This process requires creating a generalized object that will

work with the respective framework, in this case, sigma.js.

For this purposes a node object is created while adding required information as

well. Note that coloring part is leaved to be handled in the frond-end section since

user will select the color of the added nodes to the cluster. This decision allows

us to save from performance as well even though it seems unnecessary, note that

Protein Protein Interaction Network parses 16480 protein to interact with each

other meaning size of [16480x16480] matrix, 256000000 unit of element is

created. Memory size and capacity of this network is simply extraordinary. To

prevent memory loss and crashes sparse matrix is used.

class Edge:
 def __init__(self, source, target):
 self.id = "e_{}_{}".format(source, target)
 self.source = source
 self.target = target
 def edgeToDict(self):
 data = {
 'id': self.id,
 'source': self.source,
 'target': self.target
 }
 return data
class Node:
 def __init__(self, protein, size=1):
 self.id = protein
 self.label = protein
 self.size = size

 def setSize(self, size):
 self.size(size)

 def setSizeByMultiplier(self, occurence, size=None,
multiplier=None):
 if size == None:
 size = self.size
 if multiplier == None:
 multiplier = 1
 self.size = occurence * size * multiplier
 def nodeToDict(self):
 data = {
 'id': self.id,

61

 'label': self.label,
 'size': self.size
 }
 return data

 Creating Json File

After creating an object, in order to create a json file that will interact with front-

end part of the code, there has to be some work needs to be done. Code below gets

the created nodes from the network and with the help of object, it adds node id,

label, size with the respective edge information from the connection network.

def getEdges(dfnet,protein):
 # for column in dfnet.columns:
 indexes = list(dfnet.loc[dfnet[protein] == 1].index)

 return indexes
print (dfnet.columns)
for col in dfnet.columns:
 print ("\nprotein: {}\nedges: {}".format(col, getEdges(dfnet,
col)))

nodes = []
edges = []

for protein in proteinID:
 node = Node(protein)
 nodes.append(node)

 edgesList = getEdges(dfnet, node.label)
 for edgeValue in edgesList:
 edge = Edge(node.label, edgeValue)
 edges.append(edge)

jsonDict = {
 'nodes': [node.nodeToDict() for node in nodes],
 'edges': [edge.edgeToDict() for edge in edges]
}

jsonObject = json.dumps(jsonDict)

with open('data.json', 'w') as f:
 json.dump(jsonDict, f)

3.3.2 Front-End Approach

One of the keys for a successful story is the how to present it. Hence, the face of

the BioNetVis has importance. While starting front-end approach this key was

62

important. Initially, work needed to be look much more professional than other

web-based available tools for visualization yet easy to use. To achieve this task,

other projects and ideas has been thoroughly inspected and decided to present

BioNetVis as a single web page with additional information pages such as about

and contact pages.

Boosting cognitive abilities of the user with single page and giving all the

necessary information is intricate even though it seems easy. Interaction between

user interface and user has to be understandable, changes should be visible quickly

and every button’s purpose on the page should be clear and has to work without a

problem.

Reasons mentioned above, BioNetVis interface is reduced to be simple as much

as possible while maintaining the high performance visualization tool behind the

hood. Hood refers to back end and front-end section at the same time. In this

subsection I will try to explain the coding parts of the front end section with the

materials mentioned earlier. In a result of that, HTML, CSS, JavaScript sections

will be explained with respective events, scripts and functions.

3.3.3.2.1 HTML Section

Home of the webpages are the faces presented information and because of that it

is important as much as the codes behind the project. This section I will explain

major coding parts of the front-end development.

This code block indicates the document we are starting is should be read as html

file. In html code block there are some elements we need to indicate. These are

head and body. In head section developers define the character set that will be

used while writing code. Additionally, name of the page, reference to css code

with stylesheet is also given. HTML codes has a feature to indicate starting and

end points of the code blocks with “smaller than” and “greater than” signs. As

you can see below these signs “< startofcode >” let compiler know this the starting

point of that specific code block. To end that code block next to the smaller than

sign, there is also a “slash” sign as well. “</ endofcode >”

63

We start codeblock with getting bootstrap framework inside of our project with

taking stylesheet as well.

<!DOCTYPE html>
<html lang="en" >
<head>
 <meta charset="UTF-8">
 <title>BioNetVis 2.1</title>
 <link rel='stylesheet'
href='https://cdnjs.cloudflare.com/ajax/libs/twitter-
bootstrap/4.4.1/css/bootstrap.min.css'><link rel="stylesheet"
href="./style.css">

In this code block we are starting to pull sigma.js framework and related plug-ins

developed for sigma.

<body>
<head>
 <meta charset="UTF-8">
 <title>Test Page</title>
 <script
src="https://cdnjs.cloudflare.com/ajax/libs/sigma.js/1.2.0/sigma.min.j
s"></script>
 <script
src="https://cdnjs.cloudflare.com/ajax/libs/sigma.js/1.2.0/plugins/sig
ma.parsers.json.min.js"></script>
 <script
src="https://cdnjs.cloudflare.com/ajax/libs/sigma.js/1.2.0/plugins/sig
ma.renderers.edgeLabels.min.js"></script>

Bootstrap framework already has functions, methods we can use instead of

creating by ourselves. This also eliminates time consuming part of the coding

process. The codeblock below is for creating a navigation bar for the tool. This

“navbar” contains other two pages for giving additional information about the

thesis work.

<nav class="navbar navbar-expand navbar-light bg-light">
 VizTool
 <button class="navbar-toggler" type="button" data-toggle="collapse"
data-target="#navbarNavAltMarkup" aria-controls="navbarNavAltMarkup"
aria-expanded="false" aria-label="Toggle navigation">

 </button>
 <div class="collapse navbar-collapse" id="navbarNavAltMarkup">
 <div class="navbar-nav">
 Home <span
class="sr-only">(current)
 About
 Contact
 </div>

64

 </div>
</nav>

Since the project is single page, there has to be some information needs to give

quickly to server as a user manuel. Bootstrap has an element called “jumbotron”

which gives highlighted information. Developers can add anything inside to a

jumbotron and it can work smoothly. Additional grid system of bootstrap makes

all of the elements responsive even though working with more than 16 thousand

nodes on the tablets or phone is not recommended.

Code block below creates a jumbotron and we add a container to store information

in it. In there title of the project and instructions are given with a “card” element

as well. Instructions are deleted purposely for saving from the space on this page.

<div class="jumbotron jumbotron-fluid">
 <div class="container">
 <h1 class="display-4">VizTool</h1>
 <p class="lead">Biological network visualization based on protein-
protein interactions.</p>
 <div class="card">
 <div class="card-body">
 ...User Instructions...
 </div>
 </div>
 </div>
</div>

To use filtering elements on the project, radio buttons are used. To keep all of the

filtering elements, respective section are combined in a column inside of a row

and then a container as well. Similarly above, to save place ending section of the

classes are not shown.

<div class="jumbotron jumbotron-fluid">
 <div class="container">
 <div class="row">
 <div class="col-3 my-col"> Filtering Elements
 <!-- Row 1 COL 1 FILTERING -->
 <div class="row">
 Display HUMAN PPI Network:
 <div class="btn-group" data-toggle="buttons-radio">
 <button id="disppi_on" type="button" class="btn
active">On</button>
 <button id="disppi_off" type="button"
class="btn">Off</button>
 </div>
 Show Common Proteins in the Clusters:

 (Occurences more than 2)

65

 <div class="btn-group" data-toggle="buttons-radio">
 <button id="disppi_on" type="button" class="btn
active">On</button>
 <button id="disppi_off" type="button"
class="btn">Off</button>
 </div>

To post user’s input into to BioNetVis, we need a input group. Input groups and

folders are specifically designed for that. According to the user’s input, PPI

Network updates itself and changing respective colors. There are six input groups,

text boxes there.

</div>
 <div class="col-9 my-col">Text Boxes
 <div class="row">
 <!-- TB1 -->
 <div class="col">
 <div class="input-group">
 <div class="input-group-prepend">
 <input id="cluster_form" type="text" style="font-
weight: bold;" value="Cluster 1"/>
 </div><textarea resize: none class="form-control
textarea" aria-label="With textarea"></textarea></div>
 </div>
 <!-- TB2-->
 <div class="col">
 <div class="input-group">
 <div class="input-group-prepend">
 <input id="cluster_form" type="text" style="font-
weight: bold;" value="Cluster 2"/>
 </div><textarea class="form-control textarea" aria-
label="With textarea"></textarea></div>
 </div>

Since PPI Network has no coordinates assigned for the proteins, all of the nodes

are given random coordinates. And this system makes hard to understand the data

and the visualization. To overcome this problem we come up with a strong

solution. Creating an function and event trigger to function that will pull all of the

nodes that are neighbor to each other and based on the density on the canvas,

move nodes to much empty spaces so that there won’t be any tangled network. .

ForceAtlas allows is created for this. Since network is refreshing with all the new

coordinates, ForceAtlas needs to be turned off manually, otherwise it is constantly

works. To trigger ForceAtlas, a toggle button is created and added on top of the

canvas for sigma and visualization.

<div class="custom-control custom-switch">
 <input type="checkbox" class="custom-control-input"

66

id="customSwitches" onchange="isToggle()">
 <label class="custom-control-label" for="customSwitches">Toggle
ForceAtlas</label>
</div>

An export button for network built by BioNetVis, as .svg format is also created.

Snap() event is called from JavaScript codes, which will be shown after HTML

Section.

<li onclick="snap()" class="list-group-item"><button type="button"
class="btn btn-dark" >export</button>

Sigma framework is based on JavaScript language, yet to show it we need to get

help from HTML. Sigma is called in the codes below in a container. That

container created a workspace, called canvas, to visualize network on the canvas

like paintings. To give information about nodes and clicked events, Information

panel added also below the canvas.

<!-- sigmaJS visualization -->
<div class="container container-fluid"><div id=sigma-
container></div></div>
<!-- NODE INFO PANEL <-->
<div class="container">
 <div class="jumbotron jumbotron-fluid">NODE INFO PANEL

 <li class="list-group-item" >Names:
 <p id="nodeName"><p>
</div>
</div>

Latter for giving citing information we conclude HTML part with a jumbotron

and Bootstrap’s finalizing codes which will be given in the thesis’ github page.

3.3.3.2.2 JavaScript

JavaScript part of the front-end equally important while comparing html section

due to main event, required information stored, processed and visualized in here.

We start JS with defining the data. Note that this data created from back-end

section of the project. There are more than 16000 nodes in the data and for each

note there are id, label, edges, size, coordinates, color information stored in the

data. For saving space purposes only dummy data showed below.

67

var data ={ "nodes": [{
 "id": "n0",
 "label": "A node",
 "x": 0,
 "y": 0,
 "size": 3
 },
 {
 "id": "n1",
 "label": "Another node",
 "x": 3,
 "y": 1,
 "size": 2
 },
 {
 "id": "n2",
 "label": "And a last one",
 "x": 1,
 "y": 3,
 "size": 1
 }
],
 "edges": [
 {
 "id": "e0",
 "source": "n0",
 "target": "n1"
 },
 {
 "id": "e1",
 "source": "n1",
 "target": "n2"
 },
 {
 "id": "e2",
 "source": "n2",
 "target": "n0"
 }
]
}

PPI Data does not contain any coordinates information, as we mentioned above.

For visualizing data and interact with the elements, proteins, this information

needs to be created. Code block showed below is creates and assigns each node x

and y coordinates on the canvas. In addition to that, instead of changing color of

each node manually, automating this feature we added one line of code in this

function as well.

// function to produce random xy position for each node
function xyCoordinate (data){

68

 let len = Object.keys(data.nodes).length
 let nodes = data.nodes
 for(let i=0;i<len;i++){
 nodes[i].x = Math.random();
 nodes[i].y = Math.random();
 nodes[i].size -= Math.random();
 nodes[i].color = '#'+(Math.random()*0xFFFFFF<<0).toString(16);
 }
}
xyCoordinate(data)

To initiate sigma with existing data, a container is created on the sigma

framework. Note that this container is called on the html part.

// the graph function
s = new sigma({
 graph: data,
 container: 'sigma-container',
 settings: {
 scalingMode: 'outside',
},
});

Click and get neighbors method and function. Pretty self-explanatory as title

indicates, this method returns an information each time when it is called. Later we

use this information for highlighting the nodes event. Neighbors also showed it in

the information panel which we call on the html part.

// function to get the neighbor nodes
sigma.classes.graph.addMethod('neighbors', function(nodeId) {
 var k,
 neighbors = {},
 addn = {}
 index = this.allNeighborsIndex[nodeId] || {};
 for (k in index)
 neighbors[k] = this.nodesIndex[k];
 // for (k in neighbors)
 // addneighbors[k] = this.allNeighborsIndex
 // neighbors[k] = neighbors.concat(addneighbors[k]);
 return neighbors;
});

This built-in function in the sigma.js highlights the color of clicked node and its

neighbors. While this event happens, rest of the unselected nodes are passive and

becoming invisible to user.

69

// function to color only the clicked node and its neighbours
function picker(s) {

 s.graph.nodes().forEach(function(n) {
 n.originalColor = n.color;
 // if the node has nieghbours give it a bigger size
 if (Object.keys(s.graph.neighbors(n.id)).length>2){
 n.size = 0.5
 }
 else{
 n.size = 0.1
 }
 });
 s.graph.edges().forEach(function(e) {
 e.originalColor = e.color;
 });

 s.bind('clickNode', function(e) {
 var nodeId = e.data.node.id,
 toKeep = s.graph.neighbors(nodeId);
 toKeep[nodeId] = e.data.node;
 document.getElementById("nodeName").innerHTML =
Object.keys(toKeep);

 s.graph.nodes().forEach(function(n) {
 if (toKeep[n.id])
 n.color = n.originalColor;
 else
 n.color = '#eee';
 });

 s.graph.edges().forEach(function(e) {
 if (toKeep[e.source] && toKeep[e.target])
 e.color = e.originalColor;
 else
 e.color = '#eee';
 });
 s.refresh();
 });

 s.bind('clickStage', function(e) {
 s.graph.nodes().forEach(function(n) {
 n.color = n.originalColor;
 });

 s.graph.edges().forEach(function(e) {
 e.color = e.originalColor;
 });

 // Same as in the previous event:
 s.refresh();

70

 });
}
picker(s)

To toggle ForceAtlas, code block below is used.

var t = true
function isToggle(){
 if (t){
 s.startForceAtlas2(
 {worker: true, barnesHutOptimize: false,
 scalingRatio:10,
 adjustSizes: true

 })
 }else{
 s.stopForceAtlas2()

 }
 t=!t

}

To export created visualization a renderer added from sigma’s plugins and later

with snap() function it is called and downloaded to user’s device as .svg format.

//export button script
// Adding a canvas renderer
s.addRenderer({
 container: 'graph-container',
 type: 'canvas'
});
function snap() {
 console.log('exporting...');
 var output = s.toSVG({download: true, filename: 'mygraph.svg', size:
1000});
 // console.log(output);
};

Color picker function is required in order to get user’s desired color selection for

the specific cluster and visualize on the network. For that a modern bootstrap color

picker have been used. [105]

// Colorpicker
(function ($) {
 $('#cp_1, #cp_2, #cp_3, #cp_4, #cp_5,
#cp_6').colorpicker().on('colorpickerChange colorpickerCreate',
function (e) {
 $(this).siblings().css('border-color', e.value);
 $(this).children('.input-group-text').css('border-color',
e.value);

71

 });
})(jQuery);

3.4 Proposed Method

In this part we will explain the proposed BioNetVis with its features and usability

for the user. Like above, before each figure an explanation will be made with its

reasoning.

Like every web-based tool, our purpose is give user a simple, understandable

instructions with easy to use user interface. Figure 28 shows the header of the

proposed work with several information. Elements in the footer are; a header to

give basic explanation of the BioNetVis, a hero unit which highlights the

information above it and simple instructions for researchers to use tool.

Figure 28: BioNetVis' Landing Page

Figure 29 shows the input area of the proposed tool for user the log their genes or

proteins based on their intentions to use the BioNetVis. Cluster names and the

respective colors next to input areas are predefined and can be changed with

clicking on them. There for the visualizing input nodes user might select the color,

it’s density and also, for future references rgb values are shown as well.

72

Figure 29: Input areas and color selection event of BioNetVis

Visualizing cannot be complete without filtering based on the topological

properties of the nodes. These properties have been used while visualizing based

on proteins interactions with neighbor numbers and applied to the node’s size.

Moreover, some of the filtering elements are depended on the user’s input. Hence

simple explanations have been made next to them. There user can find filtering

options for displaying on or off Human PPI network. Since user input does not

contain any relation about connections within, BioNetVis cannot visualize

randomly solo nodes, as a result of these option will not work if user did not add

any elements and can be found in the network. Occurrences, showing common

proteins and searching features are simple and self-explanatory filtering options.

Figure 30 shows the filtering elements of the work.

73

Figure 30: Filtering elements of the BioNetVis

BioNetVis visualize PPI Network nodes randomly and for that reason visualizing

more than 16 thousand nodes is visually tiring and requires a lot of computational

power. To explain simplistically and showing the work that BioNetVis can handle

visualization have been made with 1300 nodes for this proposed tool section.

Figure 31 shows a zoomed out image of visualizing. All of the nodes’ coordinates

are randomly created and assigned. Based on nodes topological properties size of

the nodes changes. Node labels cannot be seen without hovering on them or

zooming in. More visualization will be shown.

Figure 31: A simple visualization example with BioNetVis

74

Figure 32 shows the snap event while clicking a node, the clicked node and its

neighbor nodes are highlighted and keep their original color. Every other node in

the visualization is changing color and remains passive until clicking an empty

coordinate on the canvas.

Figure 32: Highlighting a node and neighbors event

Randomly visualized nodes are not the suitable option for visualizing and

understanding the data. To overcome this problem a built-in plugin, ForceAtlas

have been used with the sigmajs. ForceAtlas has ability to change coordinates and

based on their relations. Since it is an intuitive problem, ForceAtlas updates the

coordinates constantly. That means if user does not end the work of ForceAtlas,

it will be work continuously. Hence to on and off ForceAtlas a toggle button has

been placed on top of visualization panel, that triggers ForceAtlas. Figure 33

shows ForceAtlas toggle button and export button that will downloads

visualization in .svg format.

Figure 33: ForceAtlas toggle button and export button

75

Figure 34 and 35 respectively shows the output results while toggling ForceAtlas

and inputting some proteins and selecting a color.

Figure 34: Toggling ForceAtlas for 3 seconds. It continuously updated the coordinates and

pulls the nodes that interacts with each other.

Figure 35: After adding arbitrary protein names to cluster 2 and visualizing nodes.

To highlight common proteins in the clusters, color blending technique have been

used. This technique is mostly have been used for two colors in the programming.

Luckily in this project we improve this technique for more than two colors.

BioNetVis can mix more than two colors. Figure 36 shows color of a randomly

selected node “kit” added three different clusters and each time color has been

76

changed. This feature is one of the important specialization for computational

drug repurposing and highlighting important nodes, genes.

Figure 36: Multiple color mixing feature. (4 layer of image is combined to save up space)

From left to right. A randomly selected protein "kit" has been added Cluster 2 and

visualized. This processed followed after "kit" added and visualized with cluster 1 & 2.

Lastly, it visualized with adding protein to cluster 1, 2 & 3.

Figure 37 shows node information panel, that after clicking a node, neighbor

nodes of that specific node and cluster that has been inputted can be seen.

Figure 37: Node information panel of BioNetVis

Last element of proposed work is citation panel for giving proper citation

information to the user. Even though currently this thesis work is written,

BioNetVis has great potential and will be updated regularly. For raising awareness

to the tool, a paper is also in the works and will be placed here after publication.

Figure 38: Citation panel for the BioNetVis

77

Chapter 4

Use Case

In this chapter we are going to present a use case for the developed thesis.

Measuring success of a tool is subjective and relatively distant from the project

itself. Most of the implementation thesis, projects, papers do not contain a results

section. Instead many of them relates their work with “usability” of the

implemented project. Hence, in this chapter to relate with results we are going to

present a use case for BioNetVis.

Use cases are the milestones for the implementation projects. For our project it is

clear to say, a working tool for aimed tasks can be considering as success. After

developing the BioNetVis with several aims that mentioned in the introduction,

such as drug repurposing, personal drug research, rare diseases treatment and

investigation, tool’s testing, scaling for online environment and optimizing the

written code itself is also challenging. Tackling this tasks and visualization with

specific purpose, let’s say a drug repurposing research would come out via

BioNetVis, thesis work achieved what it aims and thus makes it a successful.

Before showing use case, to show capacity of the project, there are couple points

should be mentioned. In terms of scalability, visualizing a PPI Network online

with more than 16000 nodes is incredible achievement if we consider the

information this network stores. With adding user’s input data to visualizing, it

needs to be a strong tool in the background and BioNetVis meets this needs. In

addition to that, elegant and simple user interface with flexible features like

compatibly to the many devices such as phones, tablets and desktops, makes the

BioNetVis much more compelling when we consider it’s non-competitive similar

tools.

78

Lastly, another reason for to say this thesis is succeeded is that besides a working

tool itself, the person who tried to develop this project has many endless nights

and tried to learn couple of programming languages with some other

bioinformatics background as well. I hope this is enough.

 And this use case result will show us that developing a web based tool like

BioNetVis for bioinformatics eliminates some of the downsides of package based

programs and give additional benefits. It has power of complex package programs

in a web interface with simple design. Proposed tool is a perfect candidate to take

places of simple visualization tools. This use case is merely a surface of the

program that we developed and researchers and academics can be used.

4.1 Drug Repurposing for Alzheimer’s and

Cerebral Palsy

In this use case we are going to implement a drug repurposing research into the

BioNetVis. The main focus on the drug repurposing is studying two diseases

commonly occurred protein and found target genes. Afterwards this targeted

genes are searched in the drug’s target genes datasets. Moreover, if targeted genes

are using in the another disease, that is the starting point of the computational drug

repurposing. Hence we need two disease information, mainly name of related

genes and targeted drug. BioNetVis will come to the stage here. Instead of

focusing tedious researching, data discovery and cleaning, finding occurrences

between these two disease becomes too much effort for this simple task, all user

have to do is simply adding gene values to the text fields in the BioNetVis. The

tool itself automatically updates the visualization and show occurrences clearly in

the network. Later we focus on the targeted genes, drugs and repurposing of this

specific drug.

For this specific use case obviously the data needed. Currently, there are some

projects for storing bioinformatics data and publishing online. For convenience,

as data source we are going to use DisGeNET.

79

DisGeNET is a research site which contains one of the largest databases for genes

and variants related to the human diseases open to the public. [106]–[109].

DisGeNET includes new data with an expert curation repository, Genome-Wide

Association Studies (GWAS) catalogues, animal models and scientific

publications. Collected data is homogeneously annotated and controlled

vocabulary used for general community. [109]

Last version of DisGeNET is currently v6.0 contains 628,685 gene-disease

associations (GDAs), between 17,549 genes and 24,166 diseases, disorders, traits,

and clinical or abnormal human phenotypes, and 210,498 variant-disease

associations (VDAs), between 117,337 variants and 10,358 diseases, traits, and

phenotypes. [108], [109] For more data collection process you can refer cited

articles and web pages. [106], [107], [110]–[112]

For use case collected genes are for Alzheimer’s diseases and Cerebral Palsy

diseases taken from DisGeNET. In addition to that since BioNetVis is need only

gene names collected data cleaned from unnecessary information.

BioNetVis can visualize more than 16000 Nodes without giving errors.

Unfortunately, due to insufficient graphics cards unit on many computers,

computation takes time and often it canvas element of visualization crashes while

trying to compiling data. As you can see in the figure 39, our graphics cards unit

cannot handle this amount of data. We need to remind that with each time an event

triggered such as zooming in and out, clicking a node to highlight neighbors and

edges, all of nodes edges and nodes themselves are compiling again. In result of

that we couldn’t show the commonly affected proteins and find targeted drug.

Additionally, we can say BioNetVis is capable of visualizing larger amount of

nodes and networks. But to work with this amount of information requires a lot

of computational power. With higher performance hardware units this issue can

be resolved.

80

Figure 39: After visualizing for a split second due to insufficient graphics power unit canvas

cannot properly visualize and only visualizing element crashes due to Sigma Framework.

81

Chapter 5

Conclusions and Future Prospects

5.1 Conclusions

Scientific researchers aim to improve human life and knowledge with available

tools and widen it as much as possible trying new perspectives. This is true for

any academician, or a researcher that they motive their study while they start to a

new scientific paper, project, thesis work or a similar study. Likewise, when I start

this study, my aim was not to change the world with a brand new invention or

tool, but just to improve it as much as I can. BioNetVis, which is the proposed

tool in this thesis is the “current” end result for now.

There are several tools that await their turn to be used and they are disregarded

for unknown reasons. Most of the times, publicity or even design can effect the

tool’s success. The main advantage of BioNetVis is simply its usability among

geneticists, bioinformaticians, scientific researchers and developers. It is placed

in between complex package-based tools and simple, elementary grade

visualization tools.

Can it be improved further? Of course like every web-based project, BioNetVis

is also designed and developed in this era’s necessities and requirements. In

future, it could be outdated in terms of its design and capabilities. There is still

some room for the improvement for BioNetVis.

This thesis work has its own limitations in terms of time and work-force. Since it

is developed with one people under Thesis advisor’s supervision, there can be that

needs to be improved later on. In the following section, we will indicate potential

reference points and possible improvements as our future work. These future

82

prospects can make the tool more suitable to a much broader audience and more

powerful.

5.2 Future Prospects

In this section, we are going to address future prospects and plans to improve the

improvement aspects of BioNetVis. Before listing the future plans for BioNetVis,

there are a couple of questions that needs to be answered. These are related with

other approaches for this specific project and if there are, the restrictions needed

to be lifted.

There are other approaches that can be followed while building a tool like

BioNetVis. Because of the current available tools, these approaches can be seen

as unnecessary for several reasons. For example, adding complex features for

other bioinformatics tasks will require prior knowledge and memory. Since it’s

an online tool migrating from online to creating a package based tool would come

as a weak option because of its competitor’s strong motives, industry level work

force and behavior. On the other hand, BioNetVis define itself as easy-to-use

interface with strong background coding execution process. Making it much more

simplistic is basically a step backwards.

In terms of restrictions, BioNetVis has some limitations. It has several framework

dependencies for visualization and front-end sections. Creating libraries from

scratch, and changing visualization framework to a new tool becomes time-

consuming and similar event to try to invent wheel again.

In despite of that some changes can be acceptable and actually move further to

BioNetVis. While we add these suggestions there will be two main focus areas;

design wise and coding wise.

Design is abstract and related to human’s taste, hence it constantly moves. Yet we

can always add little features to increase “likeability” of the tool and engage with

users. In this work since I was learned JavaScript later, interaction between sigma

canvas can be enhanced in couple ways. One adding bigger canvas would be

83

helpful. Secondly information panel for the visualization is currently very simple.

Adding more events and animations can help understanding the visualization. In

addition to that, DOM Operations can be added to make interface much smoother.

Additionally, currently once user adds information, if nodes exists only color and

density of the node changes. Instead of color change, changing the node’s

structure to a pie chart would be much more efficient to see for a specific node in

which cluster it belongs to.

In terms of coding wise automation of the BioNetVis definitely can be improved.

Currently the tool uses one main network which is PPI network. At the back-end

codes, there is already a method created for changing visualized bigger network.

If user want to upload it’s own network that is possible with back-end codes.

However, since codes already has some computational challenges this feature is

disabled and will be activated for future releases of BioNetVis. Additionally,

changing node’s structure also requires writing code process as well.

To conclude, BioNetVis is already a powerful and flexible tool for visualization,

and biological data analysis, that could be potentially used in drug repurposing

and rare disease treatment studies. Yet, it can be and will be enhanced in the future

as planned above. It is obvious that BioNetVis has its own limitations yet it is

build for one specific purpose. The tool does not claim that it will change the

world, it is simply a representation of a humble idea that each individual can

contribute to improve our environment.

84

BIBLIOGRAPHY

[1] F. Ruskey and M. Weston, “A Survey of Venn Diagrams,” THE

ELECTRONIC JOURNAL OF COMBINATORICS, 1997. [Online].

Available: https://www.combinatorics.org/files/Surveys/ds5/ds5v3-

2005/VennEJC.html. [Accessed: 17-Mar-2020].

[2] V. K. Pounraja, G. Jayakar, M. Jensen, N. Kelkar, and S. Girirajan, “A

machine-learning approach for accurate detection of copy number

variants from exome sequencing,” Genome Res., vol. 29, no. 7, pp. 1134–

1143, 2019.

[3] J. Thomas and K. Cook, Illuminating the Path: Research and

Development Agenda for Visual Analytics. IEEE-Press, 2005.

[4] S. O. Sümer, “CHISIO WEB : A WEB-BASED FRAMEWORK FOR

CUSTOMIZABLE VISUALIZATION OF RELATIONAL

INFORMATION,” 2012.

[5] D. W. Mount, “Bioinformatics : Sequence and Genome Analysis . Second

Edition. By David W Mount . Bioinformatics : Sequence and Genome

Analysis . Second Edition . by David W Mount The Quarterly Review of

Biology , Vol . 80 , No . 1 (March 2005), p . 109,” vol. 80, no. 1, pp. 51–

52, 2014.

[6] “Bioinformatics - Wikipedia.” [Online]. Available:

https://en.wikipedia.org/wiki/Bioinformatics. [Accessed: 14-Mar-2020].

[7] I. Y. Abdurakhmonov, “Bioinformatics : Basics , Development , and

Future,” pp. 3–28, 2016.

[8] A. M. Lesk, “Bioinformatics | science | Britannica,” Encyclopædia

Britannica, inc. [Online]. Available:

https://www.britannica.com/science/bioinformatics. [Accessed: 13-Mar-

2020].

[9] “Omics - Wikipedia.” [Online]. Available:

https://en.wikipedia.org/wiki/Omics. [Accessed: 14-Mar-2020].

[10] “DNA - Wikipedia.” [Online]. Available:

85

https://en.wikipedia.org/wiki/DNA. [Accessed: 14-Mar-2020].

[11] A. Mashaghi and A. Katan, “A physicist’s view of DNA,” Nov. 2013.

[12] “WHO | WHO definitions of genetics and genomics.” [Online].

Available: https://www.who.int/genomics/geneticsVSgenomics/en/.

[Accessed: 14-Mar-2020].

[13] “Genomics.” [Online]. Available:

https://en.wikipedia.org/wiki/Genomics. [Accessed: 14-Mar-2020].

[14] “RNA - Wikipedia.” [Online]. Available:

https://en.wikipedia.org/wiki/RNA. [Accessed: 14-Mar-2020].

[15] “RNA | Definition, Structure, Types, & Functions | Britannica.” [Online].

Available: https://www.britannica.com/science/RNA. [Accessed: 14-Mar-

2020].

[16] “Transcriptome - Wikipedia.” [Online]. Available:

https://en.wikipedia.org/wiki/Transcriptome. [Accessed: 14-Mar-2020].

[17] W. P. Blackstock and M. P. Weir, “Proteomics: Quantitative and physical

mapping of cellular proteins,” Trends Biotechnol., vol. 17, no. 3, pp. 121–

127, 1999.

[18] N. L. Anderson and N. G. Anderson, “Proteome and proteomics: New

technologies, new concepts, and new words,” Electrophoresis, vol. 19,

no. 11, pp. 1853–1861, 1998.

[19] R. L. Anderson, Johnathon D.; Johansson, Henrik J.; Graham, Calvin S.;

Vesterlund, Mattias; Pham, Missy T.; Bramlett, Charles S.; Montgomery,

Elizabeth N.; Mellema, Matt S.; Bardini, “Comprehensive Proteomic

Analysis of Mesenchymal Stem Cell Exosomes Reveals Modulation of

Angiogenesis via Nuclear Factor-KappaB Signaling,” pp. 601–613, 2016.

[20] “Human Genome Project .” [Online]. Available:

https://en.wikipedia.org/wiki/Human_Genome_Project. [Accessed: 11-

May-2020].

[21] S. (Battelle M. I. Tripp and M. (Battelle M. I. Grueber, “Economic

Impact of the Human Genome Project,” 2011.

[22] G. Vaidyanathan, “Redefining clinical trials: The age of personalized

86

medicine,” Cell, vol. 148, no. 6, pp. 1079–1080, 2012.

[23] “Metabolite - Wikipedia.” [Online]. Available:

https://en.wikipedia.org/wiki/Metabolite. [Accessed: 14-Mar-2020].

[24] “Metabolomics - Wikipedia.” [Online]. Available:

https://en.wikipedia.org/wiki/Metabolomics. [Accessed: 14-Mar-2020].

[25] B. Daviss, “Growing Pains for Metabolomics,” The Scientist, 2005.

[Online]. Available: https://www.the-scientist.com/technology/growing-

pains-for-metabolomics-48835. [Accessed: 14-Mar-2020].

[26] T. T. Ashburn and K. B. Thor, “Drug repositioning: Identifying and

developing new uses for existing drugs,” Nat. Rev. Drug Discov., vol. 3,

no. 8, pp. 673–683, 2004.

[27] A. Sertkaya, Aylin; Birkenbach, “Examination of clinical trial costs and

barriers for drug development,” Erg, pp. 679–715, 2011.

[28] Y. Yeu, Y. Yoon, and S. Park, “Protein localization vector propagation: a

method for improving the accuracy of drug repositioning,” Mol. Biosyst.,

vol. 11, no. 7, pp. 2096–2102, 2015.

[29] H. Xue, J. Li, H. Xie, and Y. Wang, “Review of drug repositioning

approaches and resources,” Int. J. Biol. Sci., vol. 14, no. 10, pp. 1232–

1244, 2018.

[30] S. Pushpakom et al., “Drug repurposing: Progress, challenges and

recommendations,” Nat. Rev. Drug Discov., vol. 18, no. 1, pp. 41–58,

2018.

[31] A. Breckenridge and R. Jacob, “Overcoming the legal and regulatory

barriers to drug repurposing,” Nat. Rev. Drug Discov., vol. 18, no. 1, pp.

1–2, 2018.

[32] M. Zitnik, F. Nguyen, B. Wang, J. Leskovec, A. Goldenberg, and M. M.

Hoffman, “Machine learning for integrating data in biology and medicine:

Principles, practice, and opportunities,” Inf. Fusion, vol. 50, no. June

2018, pp. 71–91, 2019.

[33] D. M. Gysi et al., “Network Medicine Framework for Identifying Drug

Repurposing Opportunities for COVID-19,” 2020.

87

[34] R. Kerber, “Old drugs, new life / Boston Globe,” Boston Globe

Newspaper, 2003. [Online]. Available:

http://archive.boston.com/business/globe/articles/2003/12/31/old_drugs_n

ew_life/. [Accessed: 05-May-2020].

[35] O. Osakwe and S. A. A. Rizvi, Social Aspects of Drug Discovery,

Development and Commercialization. Academic Press, 2016.

[36] A. P. Kumar, S. Lukman, and M. N. Nguyen, Drug repurposing and

multi-target therapies, vol. 1–3. Elsevier Ltd., 2018.

[37] J. L. Medina-Franco, J. Yoo, and A. Dueñas-González, “DNA

Methyltransferase Inhibitors for Cancer Therapy,” Epigenetic Technol.

Appl., pp. 265–290, 2015.

[38] J. Jesús Naveja, A. Dueñas-González, and J. L. Medina-Franco, Drug

Repurposing for Epigenetic Targets Guided by Computational Methods.

Elsevier Inc., 2016.

[39] S. H. Sleigh and C. L. Barton, “Repurposing strategies for therapeutics,”

Pharmaceut. Med., vol. 24, no. 3, pp. 151–159, 2010.

[40] J. W. Astin et al., “Innate immune cells and bacterial infection in

zebrafish,” Methods Cell Biol., vol. 138, pp. 31–60, 2017.

[41] B. A. Kidd and J. T. Dudley, Systems Immunology. Elsevier Inc., 2016.

[42] H. Heberle, V. G. Meirelles, F. R. da Silva, G. P. Telles, and R. Minghim,

“InteractiVenn: A web-based tool for the analysis of sets through Venn

diagrams,” BMC Bioinformatics, vol. 16, no. 1, pp. 1–7, 2015.

[43] J. C. (Centro N. de B. (CNB-C. Oliveros, “Venny 2.1.0.” [Online].

Available: https://bioinfogp.cnb.csic.es/tools/venny/. [Accessed: 17-Mar-

2020].

[44] H. Chen and P. C. Boutros, “VennDiagram: a package for the generation

of highly-customizable Venn and Euler diagrams in R,” BMC

Bioinformatics, 2011.

[45] V. Nagarajan and M. Pirooznia, “GeneVenn - a web application for

comparing gene lists using Venn diagrams. .” [Online]. Available:

http://genevenn.sourceforge.net/. [Accessed: 17-Mar-2020].

88

[46] T. Hulsen, J. de Vlieg, and W. Alkema, “BioVenn - A web application for

the comparison and visualization of biological lists using area-

proportional Venn diagrams,” BMC Genomics, vol. 9, pp. 1–6, 2008.

[47] T. Hulsen, J. de Vlieg, and W. Alkema, “BioVenn - a web application for

the comparison and visualization of biological lists using area-

proportional Venn diagrams,” 2008. [Online]. Available:

http://www.biovenn.nl/. [Accessed: 18-Mar-2020].

[48] “Medical Systems Biology - VennMaster.” [Online]. Available:

https://sysbio.uni-ulm.de/?Software:VennMaster. [Accessed: 18-Mar-

2020].

[49] H. A. Kestler et al., “VennMaster: area-proportional Euler diagrams for

functional GO analysis of microarrays.,” BMC Bioinformatics, vol. 9, p.

67, 2008.

[50] H. A. Kestler, A. Müller, T. M. Gress, and M. Buchholz, “Generalized

Venn diagrams: A new method of visualizing complex genetic set

relations,” Bioinformatics, vol. 21, no. 8, pp. 1592–1595, 2005.

[51] P. Bardou, J. Mariette, F. Escudié, C. Djemiel, and C. Klopp, “venn: an

interactive Venn diagram viewer,” BMC Bioinformatics, vol. 15, no. 293,

pp. 1–7, 2014.

[52] “jQuery.” [Online]. Available: https://jquery.com/. [Accessed: 18-Mar-

2020].

[53] “Graph and Data Visualization | Tom Sawyer Software.” [Online].

Available: https://www.tomsawyer.com/graph-and-data-visualization/.

[Accessed: 03-May-2020].

[54] H. Cai et al., “VennPlex-A Novel Venn Diagram Program for Comparing

and Visualizing Datasets with Differentially Regulated Datapoints,” PLoS

One, vol. 8, no. 1, 2013.

[55] B. Martin et al., “VENNTURE-A novel Venn diagram investigational

tool for multiple pharmacological dataset analysis,” PLoS One, vol. 7, no.

5, 2012.

[56] M. E. Smoot, K. Ono, J. Ruscheinski, P. L. Wang, and T. Ideker,

89

“Cytoscape 2.8: New features for data integration and network

visualization,” Bioinformatics, vol. 27, no. 3, pp. 431–432, 2011.

[57] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An open source

software for exploring and manipulating networks. BT - International

AAAI Conference on Weblogs and Social,” Int. AAAI Conf. Weblogs Soc.

Media, pp. 361–362, 2009.

[58] “NetworkX — NetworkX documentation.” [Online]. Available:

https://networkx.github.io/. [Accessed: 06-May-2020].

[59] “NodeXL: network analysis & insights as easy as pie charts.” [Online].

Available: https://nodexl.com/. [Accessed: 06-May-2020].

[60] “Graphviz - Graph Visualization Software.” [Online]. Available:

https://www.graphviz.org/. [Accessed: 06-May-2020].

[61] B. Alsallakh, L. Micallef, W. Aigner, H. Hauser, S. Miksch, and P.

Rodgers, “The State-of-the-Art of Set Visualization,” Comput. Graph.

Forum, vol. 35, no. 1, pp. 234–260, 2016.

[62] J. R. Conway, A. Lex, and N. Gehlenborg, “UpSetR: An R package for

the visualization of intersecting sets and their properties,” Bioinformatics,

vol. 33, no. 18, pp. 2938–2940, 2017.

[63] A. Lex, N. Gehlenborg, H. Strobelt, R. Vuillemot, H. Pfister, and A.

Manuscript, “UpSet: Visualization of Intersecting Sets Europe PMC

Funders Group,” IEEE Trans Vis Comput Graph, vol. 20, no. 12, pp.

1983–1992, 2014.

[64] A. Lex and N. Gehlenborg, “Points of View (37): Sets and intersections,”

Nat. Methods, vol. 11, no. 8, p. 779, 2014.

[65] L. Wilkinson, “Exact and approximate area-proportional circular venn

and euler diagrams,” IEEE Trans. Vis. Comput. Graph., vol. 18, no. 2, pp.

321–331, 2012.

[66] “hms-dbmi/UpSetR: An R implementation of the UpSet set visualization

technique published by Lex, Gehlenborg, et al..” [Online]. Available:

https://github.com/hms-dbmi/UpSetR. [Accessed: 06-May-2020].

[67] Ü. Bulut, “Biological Network Visualization (BioNetVis),

90

umitbulut/BioNetVis.” [Online]. Available:

https://github.com/umitbulut/BioNetVis. [Accessed: 20-Jun-2020].

[68] Python Software Foundation, “Python.org.” [Online]. Available:

https://www.python.org/. [Accessed: 02-Apr-2020].

[69] T. E. Oliphant, “Python for Scientific Computing Python Overview,”

Comput. Sci. Eng., pp. 10–20, 2007.

[70] D. Kuhlman, “A Python Book,” A Python B., pp. 1–227, 2013.

[71] Python Software Foundation, “PyPI · The Python Package Index.”

[Online]. Available: https://pypi.org/. [Accessed: 04-Apr-2020].

[72] “JavaScript - Wikipedia.” [Online]. Available:

https://en.wikipedia.org/wiki/JavaScript#cite_note-tc39-7. [Accessed: 04-

Apr-2020].

[73] “ECMAScript® 2021 Language Specification.” [Online]. Available:

https://tc39.es/ecma262/#sec-overview. [Accessed: 04-Apr-2020].

[74] D. Flanagan, JavaScript: The Definitive Guide, Sixth Edition. O’Reilly

Media, 2011.

[75] D. R. Brooks, Programming in HTML and PHP. 2017.

[76] “HTML - Wikipedia.” [Online]. Available:

https://en.wikipedia.org/wiki/HTML. [Accessed: 04-Apr-2020].

[77] W3C, “‘What is CSS?’ World Wide Web Consortium.” [Online].

Available: https://www.w3.org/standards/webdesign/htmlcss#whatcss.

[Accessed: 04-Apr-2020].

[78] “Cascading Style Sheets - Wikipedia.” [Online]. Available:

https://en.wikipedia.org/wiki/Cascading_Style_Sheets. [Accessed: 04-

Apr-2020].

[79] “Source-code editor - Wikipedia.” [Online]. Available:

https://en.wikipedia.org/wiki/Source-code_editor. [Accessed: 05-Apr-

2020].

[80] “PyCharm: the Python IDE for Professional Developers by JetBrains.”

[Online]. Available: https://www.jetbrains.com/pycharm/. [Accessed: 05-

Apr-2020].

91

[81] “Collaboration with Anaconda, Inc. | PyCharm Blog.” [Online].

Available: https://blog.jetbrains.com/pycharm/2019/04/collaboration-

with-anaconda-inc/. [Accessed: 05-Apr-2020].

[82] “Apache License, Version 2.0.” [Online]. Available:

https://www.apache.org/licenses/LICENSE-2.0. [Accessed: 05-Apr-

2020].

[83] “PyCharm Community Edition and Professional Edition Explained:

Licenses and More | PyCharm Blog.” [Online]. Available:

https://blog.jetbrains.com/pycharm/2017/09/pycharm-community-edition-

and-professional-edition-explained-licenses-and-more/. [Accessed: 05-

Apr-2020].

[84] “PyCharm - Wikipedia.” [Online]. Available:

https://en.wikipedia.org/wiki/PyCharm. [Accessed: 05-Apr-2020].

[85] “Full-stack Web Development - Features | PyCharm.” [Online].

Available:

https://www.jetbrains.com/pycharm/features/web_development.html.

[Accessed: 05-Apr-2020].

[86] “CodePen: Build, Test, and Discover Front-end Code.” [Online].

Available: https://codepen.io/. [Accessed: 05-Apr-2020].

[87] “About CodePen.” [Online]. Available: https://codepen.io/about/.

[Accessed: 05-Apr-2020].

[88] “Welcome to Flask — Flask Documentation (1.1.x).” [Online]. Available:

https://flask.palletsprojects.com/en/1.1.x/. [Accessed: 06-Apr-2020].

[89] “Flask | The Pallets Projects.” [Online]. Available:

https://palletsprojects.com/p/flask/. [Accessed: 06-Apr-2020].

[90] “Flask (web framework) - Wikipedia.” [Online]. Available:

https://en.wikipedia.org/wiki/Flask_(web_framework). [Accessed: 06-

Apr-2020].

[91] “Extensions — Flask Documentation (1.1.x).” [Online]. Available:

https://flask.palletsprojects.com/en/1.1.x/extensions/. [Accessed: 06-Apr-

2020].

92

[92] “Jinja (template engine) - Wikipedia.” [Online]. Available:

https://en.wikipedia.org/wiki/Jinja_(template_engine). [Accessed: 06-

Apr-2020].

[93] “Jinja — Jinja Documentation (2.11.x).” [Online]. Available:

https://jinja.palletsprojects.com/en/2.11.x/. [Accessed: 06-Apr-2020].

[94] “Jinja | The Pallets Projects.” [Online]. Available:

https://palletsprojects.com/p/jinja/. [Accessed: 06-Apr-2020].

[95] “Bootstrap · The most popular HTML, CSS, and JS library in the world.”

[Online]. Available: https://getbootstrap.com/. [Accessed: 06-Apr-2020].

[96] “Bootstrap (front-end framework) - Wikipedia.” [Online]. Available:

https://en.wikipedia.org/wiki/Bootstrap_(front-end_framework).

[Accessed: 06-Apr-2020].

[97] “Grid System · Bootstrap · Migrating to v4.” [Online]. Available:

https://getbootstrap.com/docs/4.4/migration/#grid-system. [Accessed: 06-

Apr-2020].

[98] “Sigma js.” [Online]. Available: http://sigmajs.org/. [Accessed: 06-Apr-

2020].

[99] “Home · jacomyal/sigma.js Wiki.” [Online]. Available:

https://github.com/jacomyal/sigma.js/wiki. [Accessed: 06-Apr-2020].

[100] “pandas - Python Data Analysis Library.” [Online]. Available:

https://pandas.pydata.org/. [Accessed: 20-Apr-2020].

[101] W. P. D. T. McKinney, “pandas: powerful Python data analysis toolkit

Release 1.0.3,” Pydata Organization. [Online]. Available:

https://pandas.pydata.org/docs/pandas.pdf. [Accessed: 20-Apr-2020].

[102] “NumPy — NumPy.” [Online]. Available: https://numpy.org/. [Accessed:

20-Apr-2020].

[103] “json — JSON encoder and decoder — Python 3.8.2 documentation.”

[Online]. Available: https://docs.python.org/3/library/json.html#rfc-

errata. [Accessed: 20-Apr-2020].

[104] K. Il Goh, M. E. Cusick, D. Valle, B. Childs, M. Vidal, and A. L.

Barabási, “The human disease network,” Proc. Natl. Acad. Sci. U. S. A.,

93

vol. 104, no. 21, pp. 8685–8690, 2007.

[105] “Bootstrap Colorpicker, a color picker component for jQuery, compatible

with Twitter Bootstrap.” [Online]. Available:

https://itsjavi.com/bootstrap-colorpicker/. [Accessed: 09-May-2020].

[106] J. Piñero et al., “DisGeNET: A discovery platform for the dynamical

exploration of human diseases and their genes,” Database, vol. 2015, pp.

1–17, 2015.

[107] J. Piñero et al., “DisGeNET: A comprehensive platform integrating

information on human disease-associated genes and variants,” Nucleic

Acids Res., vol. 45, no. D1, pp. D833–D839, 2017.

[108] J. Piñero et al., “The DisGeNET knowledge platform for disease

genomics: 2019 update,” Nucleic Acids Res., vol. 48, no. D1, pp. D845–

D855, 2020.

[109] “DisGeNET - a database of gene-disease associations.” [Online].

Available: https://www.disgenet.org/home. [Accessed: 28-Apr-2020].

[110] A. Bauer-Mehren, M. Rautschka, F. Sanz, and L. I. Furlong, “DisGeNET:

A Cytoscape plugin to visualize, integrate, search and analyze gene-

disease networks,” Bioinformatics, vol. 26, no. 22, pp. 2924–2926, 2010.

[111] A. Bauer-Mehren, M. Bundschus, M. Rautschka, M. A. Mayer, F. Sanz,

and L. I. Furlong, “Gene-disease network analysis reveals functional

modules in mendelian, complex and environmental diseases,” PLoS One,

vol. 6, no. 6, 2011.

[112] “DisGeNET - a database of gene-disease associations.” [Online].

Available: https://www.disgenet.org/dbinfo. [Accessed: 28-Apr-2020].

	Introduction
	Chapter 2
	Theoretical Background
	2.1 Bioinformatics, It's Scope and Data
	2.1.1 What is Bioinformatics and Its Scope
	2.1.2 Bioinformatics Data
	2.1.3 Drug Repurposing

	2.2 Various Approaches to Visualization Tools
	2.3 Web Based Visualization Tools
	2.3.1 Venny
	2.3.2 VennDiagram
	2.3.3 VennPainter (InteractiVenn)
	2.3.4 GeneVenn
	2.3.5 BioVenn
	2.3.6 VennMaster
	2.3.7 jVenn
	2.3.8 Tom Sawyer Visualization Tool

	2.4 Package Based Visualization Tools
	2.4.1 VennPlex
	2.4.2 Vennture
	2.4.3 Cytoscape
	2.4.4 Gephi
	2.4.5 NetworkX
	2.4.6 NodeXL
	2.4.7 Graphviz
	2.4.8 upsetR

	Implementation and Methods
	3.1 Architecture of BioNetVis
	3.2 Material
	3.2.1 Languages
	3.2.1.1 Python
	3.2.1.2 Javascript
	3.2.1.3 HTML/CSS

	3.2.2 Integrated Development Environments (IDEs)
	3.2.2.1 PyCharm
	3.2.2.2 Codepen

	3.2.3 Frameworks
	3.2.3.1 Flask
	3.2.3.2 jinja
	3.2.3.3 Bootstrap
	3.2.3.4 Sigma js

	3.2.4 Libraries
	3.2.5 Network Data

	3.3 Methods
	3.3.1 Back-End Approach
	Node Object
	Creating Json File

	3.3.2 Front-End Approach
	3.3.3.2.1 HTML Section
	3.3.3.2.2 JavaScript

	3.4 Proposed Method

	Use Case
	4.1 Drug Repurposing for Alzheimer’s and Cerebral Palsy

	Conclusions and Future Prospects
	5.1 Conclusions
	5.2 Future Prospects

	Word Bookmarks
	Chapter_1_Introduction
	Chapter_2_TheoreticalBackground
	Table_2_1
	Chapter_2_1_BioinformaticsandScope
	Chapter_2_1_1_WhatIsBioinformatics
	Chapter_2_1_2_BioinformaticsData
	Figure_1
	Chapter_2_1_3_DrugRepurposing
	Figure_2
	Chapter_2_2_VariousApproaches
	Chapter_2_3_WebBased
	Chapter_2_3_1_Venny
	Figure_3
	Chapter_2_3_2_VennDiagram
	Figure_4
	Chapter_2_3_3_VennPainter
	Figure_5
	Chapter_2_3_4_GeneVenn
	Figure_6
	Figure_7
	Chapter_2_3_5_BioVenn
	Figure_8
	Chapter_2_3_6_VennMaster
	Chapter_2_3_7_Jvenn
	Figure_9
	Chapter_2_3_8_TomSawyerVis
	Chapter_2_4_PackageBased
	Chapter_2_4_1_VennPlex
	Chapter_2_4_2_Vennture
	Chapter_2_4_3_Cytoscape
	Figure_12
	Chapter_2_4_4_Gephi
	Figure_13
	Chapter_2_4_5_NetworkX
	Chapter_2_4_6_NodeXL
	Chapter_2_4_7_Graphviz
	Figure_16
	Chapter_2_4_8_UpsetR
	Figure_17
	Chapter_3_ImplementationAndMethods
	Chapter_3_1_ArchitectureofX
	Figure_18
	Figure_19
	Chapter_3_2_Material
	Chapter_3_2_1_Languages
	Chapter_3_2_2_SourceCodeEditors
	Figure_20
	Figure_21
	Figure_22
	Chapter_3_2_3_Frameworks
	Figure_23
	Figure_24
	Figure_25
	Figure_26
	Chapter_3_2_4_Libraries
	Chapter_3_2_5_NetworkData
	Chapter_3_3_Methods
	Chapter_3_3_1_BackEnd
	Chapter_3_3_2_FrontEnd
	Chapter_3_4_ProposedMethod
	Figure_28
	Figure_29
	Figure_30
	Figure_31
	Figure_32
	Figure_33
	Figure_34
	Figure_35
	Figure_36
	Figure_37
	Figure_38
	Chapter_4_UseCase
	Chapter_4_1_DrugRepurposingforXnY
	Figure_39
	Chapter_5_ConclusionsAndFutureProspects
	Chapter_5_1_Conclusions
	Chapter_5_2_FutureProspects
	Chapter_6_Bibliography

