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Human gut microbiota is a complex community of organisms including trillions of
bacteria. While these microorganisms are considered as essential regulators of our
immune system, some of them can cause several diseases. In recent years, next-
generation sequencing technologies accelerated the discovery of human gut microbiota.
In this respect, the use of machine learning techniques became popular to analyze
disease-associated metagenomics datasets. Type 2 diabetes (T2D) is a chronic disease
and affects millions of people around the world. Since the early diagnosis in T2D is
important for effective treatment, there is an utmost need to develop a classification
technique that can accelerate T2D diagnosis. In this study, using T2D-associated
metagenomics data, we aim to develop a classification model to facilitate T2D
diagnosis and to discover T2D-associated biomarkers. The sequencing data of T2D
patients and healthy individuals were taken from a metagenome-wide association study
and categorized into disease states. The sequencing reads were assigned to taxa,
and the identified species are used to train and test our model. To deal with the
high dimensionality of features, we applied robust feature selection algorithms such
as Conditional Mutual Information Maximization, Maximum Relevance and Minimum
Redundancy, Correlation Based Feature Selection, and select K best approach. To
test the performance of the classification based on the features that are selected by
different methods, we used random forest classifier with 100-fold Monte Carlo cross-
validation. In our experiments, we observed that 15 commonly selected features have
a considerable effect in terms of minimizing the microbiota used for the diagnosis of
T2D and thus reducing the time and cost. When we perform biological validation of
these identified species, we found that some of them are known as related to T2D
development mechanisms and we identified additional species as potential biomarkers.
Additionally, we attempted to find the subgroups of T2D patients using k-means
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clustering. In summary, this study utilizes several supervised and unsupervised machine
learning algorithms to increase the diagnostic accuracy of T2D, investigates potential
biomarkers of T2D, and finds out which subset of microbiota is more informative than
other taxa by applying state-of-the art feature selection methods.

Keywords: feature selection, metagenomic analysis, classification, machine learning, type 2 diabetes, human gut
microbiome

INTRODUCTION

Trillions of living creatures live in our bodies, especially in our
gut. These organisms are important to regulate our immune
system. They provide energy, break down foreign matters,
produce some hormones, etc., which are extremely important
for our health. The gut microbiome including different types
and amounts of microorganisms is crucial for human health and
human disorders (Valdes et al., 2018). With the help of new
technologies and methods, we can get gut microbiome data. In
other words, we can measure their amount in our gut more
easily than ever before. Hence, we can try to go after some
correlation signs between these creatures and human diseases.
Type 2 diabetes (T2D) is one of such diseases, which affects
millions of people around the world. Approximately 9–11% of
people in the United States and China have T2D. Four hundred
sixty-three million people in the world, who are older than 20,
have diabetes. One of three people in the United States, who
are older than 20, has prediabetes. Seventy percent of these
prediabetic individuals will also have diabetes (James et al.,
2003; National Diabetes Clearinghouse, 2011; Tabak et al., 2012;
Diabetes.co.uk, 2019; International Diabetes Federation, 2019;
Centers for Disease Control and Prevention, 2020).

Several studies have been conducted on human microbiota
and its relations with type 1 diabetes, T2D, or obesity (Turnbaugh
et al., 2009; Vrieze et al., 2012; Trøseid et al., 2013; Boulangé
et al., 2016; Chobot et al., 2018; Peters et al., 2018). Brunetti
(2007) defined T2D as a worldwide epidemic in 2010 and claimed
that obesity was one of the most important driving forces for
the development of T2D. This is varied by ethnicity though.
For North America, the relationship between T2D and obesity is
90%. Whereas it is smaller than 40% in South Asia (International
Diabetes Federation, 2003; James et al., 2003). The microbiota
studies for obesity is also important for T2D studies. Not all obese
individuals have also T2D, but 86% of T2D individuals are obese
or overweight (Daousi et al., 2006; Narayan et al., 2007). The
diet is one of the important factors that affect the gut microbiota
(Falony et al., 2016; Zhernakova et al., 2016). found that while the
dietary changes have a 57% role for the gut microbiota variations,
the genetic mutations only have 12% role. Despite that there are
some contrary arguments, it is reported in Zhang et al. (2010)
that we can slow down the increase of obesity, and so the T2D, by
regulating the variations of our gut microbiota by doing dietary
changes. After the meal, even the glycemic action type of a body
can be affected by its gut microbiota composition (Zeevi et al.,
2015; Mendes-Soares et al., 2019). Some studies show that biotin
deficiency may be associated with T2D (Maebashi et al., 1993;
Wu et al., 2020) and biotin supplementation may help glucose

regulation (Fernandez-Mejia, 2005; Albarracin et al., 2008; Lazo
de la Vega-Monroy et al., 2013).

Conducting different studies to discover the associations and
the relationships between variations of the gut microbiota and
T2D is essential. For example, Karlsson et al. (2013) emphasize
the importance of gender, age, and family history in these
kinds of studies. Therefore, in order to minimize the source
of variation, they worked on such data that consist of 145
women who are 70 years old. Interestingly, they found that
some Lactobacillus species are increased and some Clostridium
species are decreased in the microbiomes of the T2D patients.
They got 0.83 AUC with a metagenomics cluster level. Increased
Clostridium clostridioforme and decreased Roseburia in T2D
patients are common findings of Karlsson et al. (2013) and Qin
et al. (2012). Larsen et al. (2010) and Lê et al. (2013) also found
that Lactobacillus species are increased in T2D patients.

Forslund et al. (2015) presented a different perspective such
that the possible effects of the T2D drugs on the human gut
microbiome also need to be taken into account. They also
addressed the need to disentangle microbiota signs of the disease
from the medications that patients use. Forslund et al. (2015),
Wu et al. (2017), and Sun et al. (2018) show the effects of
the most commonly used anti-T2D drug metformin. But they
also found that metformin-untreated T2D is still associated with
the butyrate producer species deficiency. The importance of
butyrate-producing species for glucose health is also emphasized
by Karlsson et al. (2013), Qin et al. (2012), Allin et al. (2018), and
Sanna et al. (2019). Wu et al. (2020) also showed that butyrate
producers’ deficiency and the loss of genes for butyrate synthesis
from both proteins and carbohydrates start to occur even from
the prediabetic level. Diet is also important at this point, as
mentioned before. The function of butyrate producers is also
regulated by diet, especially fiber intake, which positively affects
glucose control (Makki et al., 2018; Zhou et al., 2019).

Wu et al. (2020) also considered the potential effects of drugs
on gut microbiota, and they studied the diabetes treatment-naive
T2D cohort. Their findings were also in agreement with earlier
studies (Qin et al., 2012; Karlsson et al., 2013; Forslund et al.,
2015; Allin et al., 2018). They showed that their finding was
independent of metformin, other confounding factors affecting
gut microbiota, and also other confounders like age, BMI, and
sex. Their microbiome-based machine learning model to detect
T2D samples and healthy samples generated a 0.78 AUC score.

Zhong et al. (2019) worked on 254 samples of Chinese cohort.
They found that Dialister nvisus (MLG-3376) and Roseburia
hominis (MLG-14865 and 14920) are lower in the T2D patients
who were also reported before by Forslund et al. (2015). They
also found that Streptococcus salivarius (MLG-6991) is high in the
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pre-sick people, which is in agreement with the previous findings
of Allin et al. (2018) in the Danish prediabetic cohort. Zhong
et al. showed that Megasphaera elsdenii (MLG-1568) was found
in higher amounts in T2D patients compared to the pre-DM and
healthy individuals. A similar finding was previously presented
by He et al. (2018) by conducting a study on 7,000 individuals
from South China.

On the other hand, Thingholm et al. (2019) claim that we
need to differentiate the gut microbiota of obese individuals
with T2D and obese individuals without T2D. This is
proposed because they show different functional capacities and
composition. Obesity is more associated with alterations in
microbiome composition than T2D. They also concluded that
only nominal increases in Escherichia/Shigella happen in the
microbiomes of T2D patients. Also, medications and dietary
supplements are highly related to gut microbiome variations
(Thingholm et al., 2019).

Another important point to consider is the daily changes of the
microbiota. There are some studies about gut microbiota’s diurnal
oscillations in composition (Thaiss et al., 2014; Liang et al.,
2015; Kuang et al., 2019). More specifically to diabetes, Reitmeier
et al. (2020) found that T2D patients exhibit disrupted circadian
rhythms in their microbiome. They show that arrhythmic
bacterial signatures have an additional value for the classification
of T2D, and they found that 13 arrhythmic bacterial species
contribute to risk profiling of T2D. On the other hand, they
found that daily dietary habits (like mealtime or number of
meals per day) are independent of gut microbiota composition
(Reitmeier et al., 2020).

A recent survey paper by Marcos-Zambrano et al. (2021)
summarized the applications of machine learning in the human
microbiome studies and reviewed popular feature selection,
biomarker identification, disease prediction, and treatment
strategies. In this review, the most widely used machine learning
algorithms that were used for microbiome analysis were reported
as Random Forest, support vector machines (SVM), Logistic
Regression, and k-NN. However, no clear recommendation is
given and they have suggested to perform comparison study
to choose the one with the optimal performance. All of
those algorithms require a parameter tuning step to achieve
its optimal model.

In this study, we analyzed T2D-associated metagenomic
dataset via some feature selection algorithms such as Fleuret’s
Conditional Mutual Information Maximization (CMIM), Peng’s
Maximum Relevance and Minimum Redundancy (mRMR), Fast
Correlation Based Filter (FCBF), and select K best (SKB). To
assess the performance of different classifiers, in our preliminary
analysis, we used Random Forest (RF), Decision Tree, Logitboost,
Adaboost, SVM, and K-NN as classification methods. In our
further experiments, we focused on RF classifier. In summary,
this study utilizes both supervised and unsupervised machine
learning algorithms (i) to generate a classification model that aids
T2D diagnosis, (ii) to investigate potential pathobionts of T2D,
and (iii) to find out subgroups of T2D patients.

The rest of this paper is organized as follows. In section
“Materials and Methods”, we present the dataset that we
have used in this study and we describe our methodology.

In section “Experiments”, we present our findings when we
apply feature selection algorithms, classification methods, and
clustering algorithms to T2D-associated metagenomic data. In
section “Discussions”, we discuss the identified species in our
study as candidate taxonomic biomarkers of T2D and compare
them with the gold standard features that are known to be
associated with T2D in literature. In section “Conclusion”, we
conclude the manuscript.

MATERIALS AND METHODS

In this study, we used the raw microbiome DNA sequencing
data of 290 human samples. The raw sequencing data of
samples were obtained from the repository provided by
Qin et al. (2012), deposited in the NCBI Sequence Read
Archive under accession numbers SRA045646 and SRA050230,
and categorized into disease states based on the associated
metadata. The raw sequences were subject to quality filtering
steps, which were described in the SOP of the Human
Microbiome Project Consortium (2012). After preprocessing,
using MetaPhlAn2 taxonomic classification tool, metagenome
samples were assigned to its microbial species of origin (taxa)
and the relative abundance composition of each taxon of a
sample was inferred accordingly. These taxa and their relative
abundances formed the features to be employed in the machine
learning algorithms. As illustrated in Table 1, the data consist of
290 samples and 1,455 microbial species. One hundred thirty-
five of the samples are T2D patients, and 155 are healthy.
Table 1 presents some lines of the metagenomics dataset for
T2D, following the initial preprocessing of the original data. The
relative abundance values of each species for each sample are
shown in this dataset. The features correspond to different species
including bacteria, viruses, and archea. The samples have one
of the two class labels, i.e., healthy (shown with 0) and T2D
patient (shown with 1).

Figure 1 shows the workflow of our methodology. As shown
in Figure 1, the following flowchart is applied: (i) the application
of feature selection to detect the most important species for
the development of T2D (T2D-associated microorganisms),
(ii) model construction and classification, and (iii) application
of clustering algorithms to specify subgroups of patients and
control samples.

Feature Selection
The dimension of the data is 1,455 (1,455 microbial species) that
might influence the performance of the classification algorithms.
Thus, a feature selection process is necessary to reduce the
dimension of the model and make it also easier for classification
and for interpretation. In order to select informative features,
in other words to reduce the number of taxa (species), min
Redundancy Max Relevance (mRMR) (Brown et al., 2012), Lasso
(Tibshirani, 1996), Elastic Net (Zou and Hastie, 2005), and
iterative sure select algorithm (Duvallet et al., 2017) have been
applied in literature.

We suggest that using some feature selection algorithms
such as Peng’s mRMR (Brown et al., 2012), Fleuret’s CMIM
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TABLE 1 | The metagenomics dataset of T2D, after the initial preprocessing of the original metagenomics data.

Methanobrevibacter
smithii

Methanosphaera Acidobacteriaceae . . . Megasphaera sp.
BV3C16

Class label
(healthy/T2D patient)

Sample 1 0.334 0 0 0 0 (Healthy)

Sample 2 0.141 0 0 0.632 0.03 1 (T2D patient)

. . .

Sample 290

The relative abundance values of each species for each sample are shown in this dataset. The features correspond to different species including bacteria, viruses, and
archea. The samples have one of the two class labels, i.e., healthy (shown with 0) and T2D patient (shown with 1).

FIGURE 1 | Flowchart of our method, including three main parts. (i) Feature selection methods are applied to detect the most important species for the
development of T2D (T2D-associated microorganisms). (ii) Using the selected features, models are constructed and used for classification. (iii) K-means clustering
algorithm is applied on data to specify subgroups of patients and control samples.

(Fleuret, 2004), FCBF (Senliol et al., 2008), and SKB (Pedregosa
et al., 2011) could improve classification performance, and
by reducing the number of features, we can detect candidate
taxonomic biomarkers.

Basically, the mRMR (Brown et al., 2012) method aims
to select the features that have the least correlation between
themselves (min redundancy) and the highest correlation with
a class to predict (max relevance). In order to find the
best subset of features, this method starts with an empty
set and uses mutual information to weight features and
forward selection technique with sequential search strategy. It
is a multivariate feature selection method, which calculates
the dependency between each feature pair, in addition to
class relevance.

Conditional Mutual Information Maximization (Fleuret,
2004) determines the importance of features based on their
conditional entropy and mutual information with the class.
If the feature carries additional information, it selects that
feature. Similarly, FCBF (Senliol et al., 2008) ranks features
based on their mutual information with the class to predict,
and then removes the features whose mutual information
is less than a predefined threshold. It uses the idea of
“predominant correlation”. It selects features in a classifier-
independent manner, selecting features with high correlation
with the target variable, but little correlation with other variables.
Notably, the correlation used here is not the classical Pearson or
Spearman correlations, but Symmetrical Uncertainty (SU). SU
is based on information theory, drawing from the concepts of

Frontiers in Microbiology | www.frontiersin.org 4 August 2021 | Volume 12 | Article 628426

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-628426 August 19, 2021 Time: 16:37 # 5

Bakir-Gungor et al. Biomarkers of T2D Using ML

Shannon entropy and information gain. In other words, FCBF
aims at reducing redundancy among selected features. FCBF
provides an interpretable and robust option, with results that are
generally good. The application of filter-based feature selections
for big data analysis in the biomedical sciences not only can
have a direct effect in classification efficiency but also might
lead to interesting biological interpretations and possible quick
identification of biomarkers.

Select K best scores the features against the class label using a
function and selecting features according to the k highest score
(Pedregosa et al., 2011). CMIM, mRMR, FCBF, and SKB feature
selection methods are applied using the skfeature and sklearn
libraries in Python 31.

Hacilar et al. (2019) applied some of these feature
selection methods on inflammatory bowel disease-associated
metagenomics dataset and reported to obtain good performance
metrics. Most of those feature selection approaches are
well studied and well known to achieve good results in
human microbiome studies, as reported in a recent review
(Marcos-Zambrano et al., 2021).

Classification Model Construction
In order to evaluate the effects of different classification methods,
in our preliminary analysis, we have used Decision Tree, RF,
LogitBoost, AdaBoost, an ensemble of SVM with kNN (k
nearest neighbor), and an ensemble of the Logitboost with
kNN. Since the tree model is easy for interpretation and since
one can easily convert the model into rule set, in our further
experiments, we continued with RF. Additionally, RF is one of
the most used algorithms in the human microbiome studies as
reported by Marcos-Zambrano et al. (2021).

We designed our actual experiments as follows. We used 100-
fold Monte Carlo cross-validation (MCCV), which is the process
of randomly selecting (without replacement) some fraction of
the data to generate the training set and then assigning the rest
to the test set (Xu and Liang, 2001). This process is repeated
multiple times, and new training and test partitions are randomly
generated each time. We have chosen 90% for training and 10%
for testing. As shown in Figure 1, the feature selection methods
are applied on the training set.

The Konstanz Information Miner (KNIME) platform
(Berthold et al., 2008) is used for the implementation of our
methodology. We used the RF predictor node from H20
library in KNIME.

Model Performance Evaluation
In order to evaluate model efficiency, we measured a range of
statistical measures such as sensitivity, specificity, accuracy, and
F1 measure for each created model. In this respect, we used the
following formulations:

Sensitivity (Recall) = True Positive
/ (

True Positive + False Negative
)

(1)

Precision = True Positive
/ (

True Positive + False Positive
)

(2)

1https://www.python.org/about/

Specificity = True Negative
/ (

True Negative + False Positive
)

(3)

F1−measure =
(
2∗Precision∗Recall

) / (
Precision+ Recall

)
(4)

Accuracy = (True Positive + True Negative)/(True Positive + True

Negative + False Positive + False Negative). (5)

Additionally, the area under the receiver operating
characteristic (ROC) curve (AUC) is used to approximate
the probability of the classifier that would score a randomly
selected positive instance higher than a randomly selected
negative instance.

The average of 100-fold MCCV (Xu and Liang, 2001) results is
reported for all performance measures.

Unsupervised Learning
In order to find subgroups of patients and subgroups of
healthy people, we have applied the k-means algorithm. k-means
(Steinley and Brusco, 2007) is an unsupervised clustering
algorithm that groups the data into clusters based on similarity
or distance metric. k-means algorithm minimizes the error inside
groups and maximizes the distance between the clusters. We
have considered the Euclidean distance metric in our analysis.
We used the Elbow method2 to determine the optimum number
of clusters. In this method, the slow down point denotes the
optimum number of clusters.

EXPERIMENTS

Feature Selection and Classification
We have 1,455 features in our data, and we investigated for
irrelevant and uninformative features. For this purpose, we
applied four most well-studied feature selection algorithms,
which are CMIM, mRMR, FCBF, and SKB. In our preliminary
analysis, in order to evaluate the effects of different classification
methods, Decision Tree, RF, LogitBoost, AdaBoost, an ensemble
of SVM with kNN (k nearest neighbor), and an ensemble of the
Logitboost with kNN are applied. As shown in Supplementary
Table 1 and Supplementary Figure 1, RF classifier generated the
best performance results and we decided to continue with this
classifier in our further experiments.

At the end of our experiments with 100-fold MCCV and
RF classifier (as shown in Figure 1), we have listed the
top 100 and top 500 identified features for each feature
selection method in Supplementary Tables 2, 3, respectively.
The commonalities between those top 100 and top 500
identified feature sets are investigated, and the commonly
detected 15 and 199 features within top 100 and top 500
identified features are shown in Supplementary Tables 2, 3,
respectively. The commonalities between top 100 identified
feature sets, and the details of the 15 features, which are
selected by all of the feature selection methods, are shown in

2https://predictivehacks.com/k-means-elbow-method-code-for-python/
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FIGURE 2 | Numbers of features, which are selected by different feature selection algorithms. The commonalities between the selected features by different
methods are also illustrated.

Figure 2. In addition to the commonalities in species level, we
investigated the commonalities in genus level. Nineteen genera
are selected by all of the feature selection methods, as shown in
Supplementary Figure 2.

By using several metrics as described in section “Model
Performance Evaluation”, we have compared the performances
of (i) all features (without feature selection); (ii) top 100 and top
500 features selected using CMIM, mRMR, FCBF, and SKB; (iii)
15 and 199 features that are common among top 100 and top
500 features of all four tested feature selection methods; (iv) 329
identified features of 19 commonly detected genera in all four
tested feature selection methods (Supplementary Table 4); and
(v) 162 features of the gold standard genera that are reported
to be associated with T2D in Gurung et al. (2020), as shown in
Supplementary Table 5. A detailed comparative evaluation of
our findings is presented in Table 2 and Figure 3. As shown in
Figure 3, the generated RF model resulted in 0.79 F1-score, 0.74
AUC, and 73% accuracy when all 1,455 features are used (without
applying feature selection methods). On the other hand, when
199 features that are commonly selected in the top 500 features
of all feature selection methods are used, the generated RF model
resulted in 0.79 F1-score, 0.75 AUC, and 73% accuracy. Those
selected 199 features performed as good as all features, even 1%
higher in terms of AUC metric. Those selected 199 features also
performed better compared to the performance (0.78 F1-score,
0.71 AUC, and 71% accuracy) of the 162 features (species) that
belong to the gold standard genera, which are reported to be
associated with T2D in a recent review paper (Gurung et al.,
2020). By only using the 15 features that are commonly selected
in the top 100 features list of all four tested feature selection

methods, 0.75 F1-score, 0.62 AUC, and 64% accuracy metrics
were obtained. In other words, T2D diagnosis could be possible
with 64% accuracy by checking only the amounts of 15 specific
species among 1,455 different species. As shown in Figure 3, the
model using only those 15 species resulted in almost the same F1-
score (0.75), with the F1-score obtained using all features (0.79).
Checking the amounts of fewer features means less time and
cost. In this respect, only using 15 features yielded comparable
evaluation metrics.

Feature Correlations
The pairwise correlations of 15 features, which are commonly
selected by all four tested feature selection methods, may be
important for the further studies of T2D in terms of developing
probiotics. For this reason, we have calculated the pairwise
correlations of those 15 selected features using the tool in3, and
we have generated a heat map, as presented in Figure 4. It can
be concluded from Figure 4 that there are no important positive
correlations between any two species among any two pairs of 15
selected species. This result indicates that each one of the selected
15 features has its own information and each feature (species) has
an independent contribution to T2D development.

Clustering
We attempt to answer whether there could be any direct
relationship between specific species and T2D subgroups. In
order to answer this question, we used k-means clustering

3https://github.com/bhattbhavesh91/GA_Sessions/blob/master/ga_dsmp_
5jan2019/16_feature_selection.ipynb

Frontiers in Microbiology | www.frontiersin.org 6 August 2021 | Volume 12 | Article 628426

https://github.com/bhattbhavesh91/GA_Sessions/blob/master/ga_dsmp_5jan2019/16_feature_selection.ipynb
https://github.com/bhattbhavesh91/GA_Sessions/blob/master/ga_dsmp_5jan2019/16_feature_selection.ipynb
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-628426 August 19, 2021 Time: 16:37 # 7

Bakir-Gungor et al. Biomarkers of T2D Using ML

TABLE 2 | Comparative evaluation of the different feature selection methods, based on different performance metrics.

Methods Accuracy Recall Specificity Precision AUC F1 Number of features

CMIM Score 0.71 0.90 0.48 0.72 0.72 0.78 100

Std. dev. 0.10 0.11 0.34 0.15 0.11 0.05

Score 0.73 0.89 0.53 0.72 0.74 0.78 500

Std. dev. 0.08 0.11 0.25 0.12 0.07 0.04

FCBF Score 0.68 0.91 0.41 0.68 0.70 0.76 100

Std. dev. 0.08 0.10 0.27 0.10 0.09 0.04

Score 0.72 0.91 0.48 0.71 0.74 0.78 500

Std. dev. 0.09 0.10 0.28 0.12 0.09 0.05

MRMR Score 0.63 0.95 0.23 0.62 0.59 0.74 100

Std. dev. 0.06 0.12 0.27 0.10 0.12 0.02

Score 0.73 0.86 0.57 0.74 0.74 0.78 500

Std. dev. 0.07 0.11 0.28 0.14 0.08 0.03

SKB Score 0.69 0.91 0.41 0.68 0.71 0.77 100

Std. dev. 0.08 0.10 0.27 0.10 0.09 0.04

Score 0.71 0.92 0.46 0.69 0.74 0.78 500

Std. dev. 0.08 0.08 0.25 0.10 0.09 0.04

Commonly identified species
(using top 100 features of each
feature selection method)

Score 0.64 0.96 0.25 0.62 0.62 0.75 15

Std. dev. 0.06 0.06 0.19 0.06 0.1 0.03

Commonly identified species
(using top 500 features of each
feature selection method)

Score 0.73 0.89 0.54 0.73 0.75 0.79 199

Std. dev. 0.08 0.09 0.25 0.11 0.09 0.05

Identified species of commonly
detected genus names

Score 0.71 0.91 0.46 0.70 0.73 0.78 329

Std. dev. 0.09 0.09 0.28 0.11 0.09 0.05

Species of gold standard
genera of T2D

Score 0.71 0.91 0.46 0.70 0.71 0.78 162

Std. dev. 0.09 0.11 0.28 0.11 0.10 0.05

All features Score 0.73 0.89 0.52 0.72 0.74 0.79 1,455

Std. dev. 0.08 0.09 0.26 0.11 0.09 0.05

algorithm and subgrouped the healthy samples and sick samples
separately. As shown in Supplementary Figure 3, we decided to
generate four subgroups for healthy samples and four subgroups
for sick samples. Figure 5 illustrates the identified healthy and
T2D subgroups and the presence of the species in each of these
subgroups. In Figure 6, we displayed more in detail the presence
of four selected species in each of the healthy subgroups and one
T2D subgroup, which covers 86% of the T2D patients from our
dataset. It can be concluded from Figures 5, 6 that even though
the samples were divided into subgroups, a single species may
not have a direct effect on the development of T2D for a specific
group. Nevertheless, there are a few observations that we can
make: (i) Bacteroides vulgatus (shown in green in Figures 5A,
6C) is mainly observed in healthy subgroups (healthy 0, 2, and 3)
and found in reduced amounts in T2D patients. (ii) Eggerthella
lenta is observed in reduced amounts in all healthy subgroups
compared to the biggest subgroup of T2D patients (sick0), which
includes 86% of the T2D patients from our dataset (shown in
Figure 6A). (iii) Bacteroides stercoris (shown in red in Figure 5A)
is present in reduced amounts in three of the healthy groups
(healthy 0, 1, 2), compared to the biggest subgroup of T2D

patients (sick0 in Figure 6B). (iv) Similarly, Subdoligranulum
(shown in light green in Figure 5B) is present in reduced amounts
in three of the healthy groups (healthy 0, 1, and 2), compared to
the biggest subgroup of T2D patients (sick0 in Figure 6D).

DISCUSSION

The human gut microbiome contains trillions of living species.
T2D is a disease that affects approximately 500 million people
in the world. Like many other diseases, T2D might have a
special association with gut microbiota (Manor et al., 2020).
In the last decade, the identification of gut microbiota related
to T2D has served as a stimulus for exponential advances in
scientific production (Gurung et al., 2020). Multiple factors are
reported to be involved in the changes of gut microbiota and
hence its relationship to T2D (Sharma and Tripathi, 2019).
The contribution of various molecular mechanisms of gut
microbiota to T2D has been recently reviewed in Aw and
Fukuda (2018). In order to change the gut microbiota to our
benefit, several possibilities are currently available, and these
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FIGURE 3 | Comparative evaluation of different feature selection methods based on (A) ROC area, (B) accuracy, and (C) F-measure metrics.

possibilities are providing encouraging results. In this respect,
in this study, by analyzing the T2D-associated metagenomics
data using several supervised and unsupervised machine
learning algorithms, we attempt to discover potential taxonomic
biomarkers of T2D. Our metagenomics dataset includes the
amounts of 1,455 species, measured on the gut microbiota of 290
humans. We used different feature selection algorithms including
CMIM, mRMR, FCBF, and SelectKBest. In our preliminary
study, we used different classification algorithms including RF,
Decision Tree, LogitBoost, AdaBoost, SVM + k means, and

Logitboost + k means. In these preliminary experiments, as
shown in Supplementary Table 1 and Supplementary Figure 1,
we observed that RF resulted in best performance metrics and we
decided to continue with our experiments using RF classifier.

All tested feature selection methods commonly identified 15
specific features (as shown in Figure 2). Using the amounts of
these 15 features, our generated model with RF could predict the
T2D status of a sample with 64% accuracy. Compared to the 73%
accuracy level using all 1,455 features, 73% accuracy level using
199 selected features, and 71% accuracy level using 162 gold
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FIGURE 4 | Pairwise correlation heat map of 15 commonly identified features. While number 1 (shown in yellow) indicates full correlation, number 0 (shown in dark
blue) indicates no correlation.

FIGURE 5 | The relative amounts of 15 species (A) in all healthy and T2D subgroups. (B) Zoomed-in view of all healthy subgroups and one T2D subgroup, which
covers more than 86% of all samples.

standard features, these 15 selected features yielded reasonable
accuracy results with much lower features. Also, the model using
only those 15 species resulted in almost the same F1-score (0.75),
with the F1-score obtained using all features (0, 79), as shown
in Figure 3. Hence, these features could be further evaluated
as potential taxonomic biomarkers of T2D. The identified
features are Bacteroides dorei, Bacteroides fragilis, Bacteroides
ovatus, Bacteroides stercoris, Bacteroides thetaiotaomicron,
Bacteroides uniformis, Bacteroides vulgatus, Bacteroides
xylanisolvens, E. lenta, Escherichia coli, Faecalibacterium
prausnitzii, Lachnospiraceae bacterium, Parabacteroides
distasonis, Ruminococcus torques, and Subdoligranulum. The

associations of most of these features with T2D is also reported
in literature as follows.

A recent review paper (Gurung et al., 2020) summarized
the potential mechanisms of microbiota and its effects on
the metabolism of T2D patients. Briefly, microbiota modulates
inflammation, interacts with dietary constituents, and affects gut
permeability, glucose and lipid metabolism, insulin sensitivity,
and overall energy homeostasis in the mammalian host. In that
study, Gurung et al. highlighted specific taxa that can affect
T2D and presented the possible roles of these species in terms
of T2D development. They surveyed 42 human observational
studies on T2D and the bacterial microbiome, and they reported
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FIGURE 6 | Zoomed-in view of all healthy subgroups and the biggest T2D subgroup for (A) Eggerthella lenta, (B) Bacteroides stercoris, (C) Bacteroides vulgatus,
and (D) Subdoligranulum.

Bacteroides as the second most commonly reported genus
(Gurung et al., 2020). The studies that investigated this genus
on the species level indicated that the levels of Bacteroides
intestinalis, Bacteroides 20-3, and Bacteroides vulgatus were
dropped in T2D patients, and the levels of Bacteroides stercoris
were increased after sleeve gastrectomy surgery in T2D patients
with diabetes remission (Wu, 2010; Karlsson et al., 2013; Zhang
et al., 2013; Murphy et al., 2017). Additionally, two experimental
animal studies tested the ability of Bacteroides in order to
treat diet-induced metabolic disease (Cano, 2012; Yang, 2017).
These studies indicated that the administration of Bacteroides
acidifaciens (Yang, 2017) and Bacteroides uniformis (Cano, 2012)
improved glucose intolerance and insulin resistance in diabetic
mice. In another study, using a mouse model, Yoshida et al.
(2018) found that B. vulgatus and B. dorei upregulates the

expression of tight junction genes in the colon, which leads to
reduction in gut permeability, reduction of lipopolysaccharides
production, and amelioration of endotoxemia. T2D is known
to be associated with increased levels of pro-inflammatory
cytokines, chemokines, and inflammatory proteins (Gurung
et al., 2020). Along this line, using mono-associated mice,
Hoffman et al. (2016) reported that Bacteroides thetaiotaomicron
reduces Th1, Th2, and Th17 cytokines. Chang et al. (2017)
demonstrated that the induction of IL-10 by Bacteroides fragilis
may contribute to the improvement of glucose metabolism
because the overexpression of this cytokine in muscle protects
from aging-related insulin resistance (Dagdeviren, 2017; Gurung
et al., 2020). Taken together, these studies indicate that
Bacteroides species play a beneficial role on glucose metabolism
in humans and experimental animals. Among these Bacteroides
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species, B. dorei, B. fragilis, B. stercoris, B. thetaiotaomicron,
B. uniformis, and B. vulgatus are identified among the top
15 features list in our study. In addition to these species
as potential taxonomic biomarkers of T2D, in this study, we
suggest B. ovatus and B. xylanisolvens as two potential taxonomic
biomarkers of T2D. Among the abovementioned Bacteroides
species, B. intestinalis, B. 20-3, and B. acidifaciens did not exist
in our top 15 species list.

In addition to the genera of Bacteroides, the effect of
Faecalibacterium genus with respect to T2D development is
discussed in the same review paper by Gurung et al. (2020).
Gao et al. (2018) and Salamon et al. (2018) reported the lower
frequencies of Faecalibacterium in the disease group of case–
control study on T2D. While this genus was mostly reported
to be decreased after different types of antidiabetic treatments
ranging from metformin and herbal medicine (Tong et al., 2018)
to bariatric surgery (Murphy et al., 2017), one study reported an
opposite effect (Patrone et al., 2016). The studies that investigate
this genus at species level usually detected Faecalibacterium
prausnitzii. F. prausnitzii and the peptides secreted by this
bacterium are shown to perform anti-inflammatory effects in
different chemically induced colitis models in mice (Sokol et al.,
2008; Quévrain et al., 2016; Breyner et al., 2017). In different
human case–control studies, F. prausnitzii was found to be
negatively associated with T2D (Furet et al., 2010; Graessler et al.,
2013; Karlsson et al., 2013; Zhang et al., 2013; Remely et al.,
2014). Although F. prausnitzii is commonly used as a probiotic
for colitis (Rossi et al., 2015), only a few studies suggested using
F. prausnitzii as a probiotic for metabolic disease. As shown
in Figure 2, our top 15 features list includes F. prausnitzii
and we suggest it as a potential taxonomic biomarker
of T2D.

The genera of Ruminococcus has also been reported to
have a positive association with T2D in the recent review
paper by Gurung et al. (2020). Gurung et al. added that
the studies reporting species levels of these bacteria reported
conflicting results (Graessler et al., 2013; Murphy et al., 2017;
Wu et al., 2017). For example, while Wu et al. (2017) found
that Ruminococcus sp. SR1/5 is enriched by metformin treatment,
Murphy et al. (2017) demonstrated that Ruminococcus bromii is
enriched and Ruminococcus torques is decreased after bariatric
surgery and diabetes remission. Among these Ruminococcus
species, Ruminococcus torques is identified among the top 15
features list in our study.

A recent study by Wang et al. (2019) demonstrated that
P. distasonis prevents obesity and metabolic dysfunctions
by producing succinate and secondary bile acids. Using
ob/ob and high-fat diet-fed mice, they showed the metabolic
benefits of P. distasonis in terms of decreasing weight gain,
hyperglycemia, and hepatic steatosis. As shown in Figure 2,
we detected P. distasonis in the top 15 features list in
our study and we suggested it as a potential taxonomic
biomarker of T2D.

Recently, the metformin treatment, which is the most
prescribed antidiabetic drug, is shown to disturb the intestinal
microbes. Hence, the compositional shifts were detected in the
representative gut microbiomes of T2D patients undergoing

metformin treatment. Subdoligranulum variabile is one of those
microbes that is found to display increased abundance in those
T2D patients undergoing metformin treatment (Forslund et al.,
2015; Mardinoglu et al., 2016; Wu et al., 2017). As shown in
Figure 2, we identified S. variabile in the top 15 features list.

Qin et al. (2012) demonstrated that the opportunistic
pathogens (e.g., Clostridium hatheway, Bacteroides caccae, E. coli,
and E. lenta) are increased in diabetes. On the other hand,
Doumatey et al. (2020) reported that they did not find any
evidence of such enrichment in their study, where they analyzed
the gut microbiome profiles of T2D patients in Urban Africans.
As shown in Figure 2, our top 15 features list includes E. coli
and E. lenta. Although our top 15 features list did not include
C. hatheway, different strains of this species are identified
by all four tested feature selection methods, as shown in
Supplementary Tables 2, 4. We realized that different strains of
this species such as C. hathewayi_GCF_000160095, Clostridium
hathewayi_GCF_000235505, and C. hathewayi unclassified are
detected in the top 100 lists of all four tested feature selection
methods, as shown in Supplementary Table 2. Also, increased
levels of C. clostridioforme in T2D patients are reported
by Karlsson et al. (2013) and Qin et al. (2012). In our
study, C. clostridioforme is included within the 199 commonly
identified features of top 500 selected features, as shown in
Supplementary Table 3, and the genera of Clostridium is
identified by all tested feature selection methods, as shown in
Supplementary Figure 2.

Lachnospiraceae species constitute the core of gut microbiota.
They colonize the intestinal lumen from the birth, and during
the host’s life, they increase both in terms of the diversity of
their species and their relative abundances. Although they are
commonly found in the gut microbiota and their members are
among the main producers of short-chain fatty acids, different
Lachnospiraceae species are also associated with different intra-
and extraintestinal diseases (Vacca et al., 2020). Kostic et al.
(2015) reported that Lachnospiraceae genus negatively affects
glucose metabolism, which leads to inflammation and promotes
the onset of T1D. Along this line, using both human and mouse
models, some other metagenomics studies demonstrated that
Lachnospiraceae may also be specifically associated with T2D
(Qin et al., 2012; Kameyama and Itoh, 2014). As shown in
Figure 2, we detected Lachnospiraceae in the top 15 features
list in our study.

The recent review paper by Gurung et al. (2020) pointed
out that in addition to the genera of Bacteroides, the
genera of Bifidobacterium is another beneficial genera and
it is most frequently reported in the studies of T2D. They
reported that the genera of Bifidobacterium is most consistently
supported by the literature in terms of containing the microbes
potentially protective against T2D (Gurung et al., 2020). For
example, Wu et al. (2017) and Murphy et al. (2017) found
a negative association between Bifidobacterium adolescentis,
Bifidobacterium bifidum, Bifidobacterium pseudocatenulatum,
Bifidobacterium longum, Bifidobacterium dentium, and disease
in patients treated with metformin or after undergoing gastric
bypass surgery. Although Bifidobacterium has not been used
alone as probiotics for T2D, most of the animal studies that
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tested different species from this genus (B. bifidum, B. longum,
B. infantis, B. animalis, B. pseudocatenulatum, and B. breve)
showed improvement of glucose tolerance (Le, 2015; Moya-
Perez et al., 2015; Wang, 2015; Aoki, 2017; Kikuchi et al., 2018).
These studies strengthen the idea that Bifidobacterium naturally
habituating the human gut or introduced as probiotics play a
protective role in T2D. In our study, several Bifidobacterium
species (including B. bifidum, B. longum, B. pseudocatenulatum,
B. breve, B. animalis, B. adolescentis, and B. dentium) are
found as important features in the top 100 features lists of
each one of four tested feature selection methods (as can
be seen in Supplementary Table 2). However, each feature
selection method selected a different Bifidobacterium species.
When we get the intersection of the selected features from
four different methods, these Bifidobacterium species did not
show up in the top 15 selected features list. But on the
genus level, Bifidobacterium is identified by all feature selection
methods (as can be seen in Supplementary Table 2 and
Supplementary Figure 2). Once we focus on commonly
detected genera instead of commonly detected species in all
four tested feature selection methods, these Bifidobacterium
species showed up among those 329 features, and using
these features, 0.78 F1-score, 0.73 AUC, and 71% accuracy
performance metrics are obtained, as shown in Figure 3. On
the other hand, when we generate the list of top 500 selected
features from each feature selection method and check for the
commonly identified features among these four lists (as shown
in Supplementary Table 3), we end up with 199 commonly
selected features. Bifidobacterium longum, B. pseudocatenulatum,
and B. breve existed in this list. Classification using these
199 commonly selected features resulted in 73% accuracy,
0.75 ROC, and 0.79 F1-measure, as shown in Figure 3.
Those selected 199 features also performed better compared
to the performance (0.78 F1-score, 0.71 AUC, and 71%
accuracy) of the 162 features (species) that belong to the
gold standard genera, which are reported to be associated
with T2D in a recent review paper (Gurung et al., 2020).
Figure 3 illustrates the comparative evaluation of all the feature
selection methods.

Similarly, in our analyses, several Ruminococcus species
(including R. gnavus, R. obeum, R. torques, R. albus, R. callidus,
R. sp, R. lactaris, R. champanellensis, and R. flavefaciens) and
several Blautia species including B. hansenii, B. producta, and
B. sp_KLE_1732 are detected as important features in the top 100
features lists of each one of four tested feature selection methods
(as can be seen in Supplementary Table 2). Accordingly, these
species are included in the identified features list of commonly
detected genera in all four tested feature selection methods,
shown in Supplementary Table 4. In Gurung et al. (2020),
Ruminococcus, Blautia, and Fusobacterium were reported to be
positively associated with T2D. The genera of Fusobacterium is
identified only by SKB feature selection method, as shown in
Supplementary Table 4.

On the other hand, two genera (Akkermansia and Roseburia)
that were found to be negatively associated with T2D in Gurung
et al. (2020) did not show up in the commonly identified
genera list (Supplementary Figure 2). However, these two genera

were detected in the top 100 lists of different feature selection
methods, as shown in Supplementary Tables 2, 4. As shown
in Supplementary Table 4, while the genera of Akkermansia
is identified by FCBF and SKB feature selection methods, the
genera of Roseburia is identified by all tested feature selection
methods except mRmR.

Pasolli et al. (2016) attempted to classify the T2D patients
and healthy samples using the metagenomic-associated dataset
of T2D, downloaded from Qin et al. (2012). They followed
the same preprocessing as we performed. Before applying
MetaPhlAn2, the samples were subject to standard pre-
processing as described in the SOP of the Human Microbiome
Project. Similar to our study, they used species abundance
as input data and tested the performances of the SVM
and RF classifiers and also evaluated Lasso and elastic net
regularized multiple logistic regression. On T2D-associated
metagenomics dataset, without applying any feature selection,
they obtained 0.75 F1-score, 0.62 AUC, and 64% accuracy using
RF classifier, as shown in Figure 2 of their study. Our RF model
without applying feature selection methods resulted in 0.79 F1-
score, 0.74 AUC, and 73% accuracy, as shown in Figure 3
and Table 2.

Pasolli et al. (2016) also investigated the effect of
different feature selection algorithms. On the T2D-associated
metagenomics dataset, by only using 40 species (features)
that are selected using Lasso feature selection, Pasolli et al.
(2016) obtained 0.70 AUC using RF classifier, as shown in
Supplementary Figures 2, 3. In our study, by only using 15
species, 0.74 AUC is obtained using RF classifier, as shown in
Figure 3 and Table 2. We can conclude that there is added value
in studying T2D through metagenomics and machine learning.

Lastly, we clustered the healthy samples and cases according
to these 15 features (the amounts of 15 selected species)
using k-means clustering. Hence, we attempt to distinguish
the subgroups of healthy samples and sick samples. While
the relative amounts of 15 selected species are shown in
Figure 5 for all healthy and T2D subgroups, in Figure 6, the
relative amounts of some specific species are shown for all
four healthy subgroups vs. sick0 subgroup, which covers 86%
of all the patient samples. Once we evaluated Figures 5, 6,
we had some important observations. For example, it can
be deduced from Figure 6A that the amount of E. lenta in
healthy samples is at least 10–11 times less than its amount in
patients. Therefore, the abundance of E. lenta can be evaluated
as a candidate taxonomic biomarker for T2D disorder. Qin
et al. (2012) also demonstrated that the levels of opportunistic
pathogens such as E. lenta are increased in diabetes. Figures 6B–
D indicate that Bacteroides stercoris (which is numbered as
47), Bacteroides vulgatus (which is numbered as 51), and
Subdoligranulum (which is numbered as 179) can be considered
as candidate taxonomic biomarkers of T2D. In literature, the
levels of Bacteroides vulgatus were reported to be dropped
in T2D patients and the levels of Bacteroides stercoris were
reported to be increased after sleeve gastrectomy surgery in
T2D patients with diabetes remission (Wu, 2010; Karlsson
et al., 2013; Zhang et al., 2013; Murphy et al., 2017). In
another study, using a mouse model, Yoshida et al. found that
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B. vulgatus upregulates the expression of tight junction genes
in the colon, which leads to reduction in gut permeability,
reduction of lipopolysaccharides production, and amelioration
of endotoxemia (57). Subdoligranulum variabile is one of those
microbes that is found to display increased abundance in those
T2D patients undergoing metformin treatment (Forslund et al.,
2015; Mardinoglu et al., 2016; Wu et al., 2017).

CONCLUSION

Human gut microbiota, which consists of nearly 200 prevalent
bacterial species and approximately 1,000 uncommon species, is
considered as a multicellular organ. Gut microbiota can affect the
host immune system, which is central to program several host
activities (Qin et al., 2010). Hence, the metagenomic analysis of
the human gut microbiome provides novel insights for several
diseases, including T2D. Although several studies reported
the significance of the gut microbiota in pathophysiology of
T2D, this field is still in its infancy. The existing studies
concluded that some microbial taxa and related molecular
mechanisms may be involved in glucose metabolism related
to T2D. Nevertheless, such simple interpretations are not
enough to explain the heterogeneity and complexity of T2D,
and the redundancy of gut microbiota further complicates
these analyses. Along this line, in this study, we used
the T2D-associated metagenomics data and developed a
machine learning model to increase the diagnostic accuracy
of T2D. We discovered potential taxonomic biomarkers of
T2D and investigated which subset of microbiota is more
informative than other taxa applying some of the state-of-the
art feature selection methods. In our experiments, especially
15 species came into prominence. We present support from
literature regarding the association of these species with T2D.
Hence, we propose these species as candidate taxonomic
biomarkers of T2D, where wet lab scientists can design
validation experiments.
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