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Abstract

Background: Link prediction is an important and well-studied problem in network biology. Recently, graph represen-
tation learning methods, including Graph Convolutional Network (GCN)-based node embedding have drawn
increasing attention in link prediction.

Motivation: An important component of GCN-based network embedding is the convolution matrix, which is used to
propagate features across the network. Existing algorithms use the degree-normalized adjacency matrix for this
purpose, as this matrix is closely related to the graph Laplacian, capturing the spectral properties of the network.
In parallel, it has been shown that GCNs with a single layer can generate more robust embeddings by reducing the
number of parameters. Laplacian-based convolution is not well suited to single-layered GCNs, as it limits the propa-
gation of information to immediate neighbors of a node.

Results: Capitalizing on the rich literature on unsupervised link prediction, we propose using node similarity-based
convolution matrices in GCNs to compute node embeddings for link prediction. We consider eight representative
node-similarity measures (Common Neighbors, Jaccard Index, Adamic-Adar, Resource Allocation, Hub- Depressed
Index, Hub-Promoted Index, Sorenson Index and Salton Index) for this purpose. We systematically compare the
performance of the resulting algorithms against GCNs that use the degree-normalized adjacency matrix for convolu-
tion, as well as other link prediction algorithms. In our experiments, we use three-link prediction tasks involving
biomedical networks: drug–disease association prediction, drug–drug interaction prediction and protein–protein
interaction prediction. Our results show that node similarity-based convolution matrices significantly improve the
link prediction performance of GCN-based embeddings.

Conclusion: As sophisticated machine-learning frameworks are increasingly employed in biological applications,
historically well-established methods can be useful in making a head-start.

Availability and implementation: Our method, SIGRAC, is implemented as a Python library and is freely available at
https://github.com/mustafaCoskunAgu/SiGraC.

Contact: mustafa.coskun@agu.edu.tr

1 Introduction

Graphs (networks) are commonly used to represent a broad range of
interactions and associations (as edges) among biomedical entities (as
nodes) (Cowen et al., 2017). Developing computational methods to
analyze and understand these networks is one of the major
research challenges in bioinformatics. A common problem that arises
in the analysis of biomedical networks is the prediction of new asso-
ciations or interactions using existing information on the network(s).
This problem is often abstracted in the form of ‘link prediction’, a
commonly studied problem in data mining and machine learning (Lü

and Zhou, 2011). In the context of biomedical networks, link predic-
tion is useful in discovering previously unknown associations or
interactions, as well as identifying missing or spurious interactions
(Yue et al., 2020). Link prediction problems on biological networks
include disease gene prioritization (Erten et al., 2011a), prediction of
drug–disease associations (DDAs) (Liang et al., 2017), functional an-
notation of long non-coding RNAs (Zhang et al., 2018), de-noising
of protein interaction networks (Yoo et al., 2017) and prediction of
drug response in cancer cell lines (Stanfield et al., 2017).

Earlier approaches to link prediction aim to assess the similarity
between pairs of nodes based on local topological features (Zhou
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et al., 2009). These local features usually focus on the shared neigh-
borhood of node pairs and differ from each other in terms of how
they evaluate the size of the overlap and the individual nodes in the
overlap. Post-genomic developments in network biology establish
the relevance of global network topology in delineating the function-
al relationships between biomolecules (Cowen et al., 2017; Pandey
et al., 2008). Motivated by these insights, network proximity quan-
tified via random walk-based algorithms is commonly utilized for
link prediction (Valdeolivas et al., 2019).

While powerful in capturing global network topology, random
walk-based methods have several limitations, including degree bias
(Coşkun and Koyutürk, 2015; Erten et al., 2011a), over-emphasis of
proximity information at the expense of structural information
(Devkota et al., 2020; Ribeiro et al., 2017) and dependency on the
choice of hyper-parameters (usually, the damping factor) (Grover
and Leskovec, 2016; Perozzi et al., 2014). Topological similarity-
based algorithms aim to circumvent these issues by using random
walk-based proximity scores as topological features (Cao et al.,
2014; Erten et al., 2011b; Lei and Ruan, 2013). The concept of
topological similarity is further generalized by node embeddings,
which provide representations of nodes in a multi-dimensional la-
tent feature space (Grover and Leskovec, 2016; Perozzi et al., 2014).
The objective of node embedding is to optimize the embedding space
and the mapping of nodes to this space in such a way that nodes
that are ‘similar’ in the network are ‘close’ to each other in the
embedding space. By representing nodes as vectors in multi-
dimensional feature space, node embeddings enable use of off-the-
shelf machine-learning algorithms for link prediction (Perozzi et al.,
2014).

Earlier algorithms for node embedding utilize random walk-
based objectives to define node ‘similarity’ (Grover and Leskovec,
2016; Hamilton et al., 2019; Perozzi et al., 2014; Tang et al., 2015).
With the advent of deep learning, neural network-based algorithms,
including Graph Convolutional Networks (GCNs), are also applied
to the computation of node embeddings (Gilmer et al., 2017; Kipf
and Welling, 2016b). In a recent study, Yue et al. (2020) extensively
investigate the effectiveness of network embedding techniques in the
context of supervised link prediction on a broad range of biomedical
networks. Among various embedding techniques, GCN-based
embedding delivers encouraging results for most of the biomedical
link prediction tasks (Yue et al., 2020).

Graph Auto-Encoder (GAE) is a direct application of GCNs to
the computation of node embeddings (Gilmer et al., 2017; Kipf and
Welling, 2016b). GAE uses a loss function that aims to reconstruct
the adjacency matrix of the network using a dot product decoder.
Veli�ckovi�c et al. (2019) propose Deep Graph Infomax (DGI), which
uses an improved loss function and limit the neural network to a sin-
gle layer, thereby reducing the number of parameters to be learned.
Despite DGI’s effectiveness, its use of the degree-normalized adja-
cency matrix as the convolution matrix limits its ability to propagate
features across the network.

In this article, we aim to develop an effective method for the
computation of node embeddings in biological networks by integrat-
ing three key insights: (i) GCNs are potentially effective in comput-
ing powerful node embeddings for biological networks. (ii) Reduced
number of layers in GCNs renders the computation of node embed-
dings more stable and robust. (iii) Local measures of node similarity,
which demonstrated effectiveness in early applications of unsuper-
vised link prediction, can provide ‘shortcuts’ for shallow neural net-
works to propagate features across the network in a way that is
useful for link prediction. In other words, we propose using
node-similarity matrices (computed using local measures of node
similarity) as convolution matrices for GCNs that are used to com-
pute node embeddings for link prediction. To comprehensively in-
vestigate the promise of this idea, we explore the effectiveness of
node-similarity measures as convolution matrices in DGI’s single-
layered GCN encoder, by focusing on eight representative measures
of node similarity (Zhou et al., 2009).

In our computational experiments, we use BIONEV, a frame-
work developed by Yue et al. (2020) to benchmark link prediction
algorithms in biomedical applications. We focus on three-link

prediction tasks: (i) prediction of DDAs (Gottlieb et al., 2011), (ii)
prediction of drug–drug interactions (DDIs) (Zhang et al., 2018)
and (iii) prediction of protein–protein interactions (PPIs) prediction
(Cho et al., 2016; Wang et al., 2017). Our results show that GCN
encoders equipped with node similarity-based convolution matrices
significantly outperform those that utilize the degree-normalized ad-
jacency convolution matrix across all datasets. These results show
that insights provided by established techniques in unsupervised link
prediction can help improve the accuracy of new machine-learning
techniques in a large margin.

2 Materials and methods

2.1 Link prediction and node embedding
In a general setting, the link prediction problem can be stated as
follows: given a network G ¼ ðV; EÞ, where V denotes the set of n
entities (e.g. genes/proteins, biological processes, functions, diseases,
drugs etc.) and E denotes a set of m interactions/associations among
these entities, predict pairs of entities that may also be interacting or
associated with each other (Yue et al., 2020). Link prediction can be
supervised or unsupervised, where unsupervised link prediction aims
to directly score and rank pairs of nodes using features derived from
network topology. Supervised link prediction, on the other hand,
uses a set of ‘training’ edges and non-edges to learn the parameters
of a function that relates these topological features to the likelihood
of the existence of an edge.

To extract features that represent network topology, graph rep-
resentation learning techniques are used to embed the nodes of the
network into a multi-dimensional feature space. For a given network
G ¼ ðV; EÞ, a network embedding is defined as a matrix H 2 Rn�d,
where n ¼ jVj and d is a parameter that defines the number of
dimensions in the embedding space. Each row of this matrix repre-
sents, for each biomedical entity u 2 V, the embedding of u as
hu 2 Rd.

To facilitate supervised link prediction using node embeddings
as features, a given number of edges are randomly sampled from E.
To generate a set of ‘negative’ samples, the same number of node
pairs from the set V � V � E is also randomly sampled. Next, for a
given pair of nodes ðu; vÞ 2 V � V, their corresponding embeddings,
hu;hv 2 Rd are concatenated to a single score via Hadamard prod-
uct with the label 1 or 0 depending on whether (u, v) represents a
positive (extant edge) or negative (non-extant edge) sample. Finally,
these combined latent features’ scores with their labels are fed into a
supervised machine-learning algorithm (e.g. support vector machine,
Random Forest), to train a classifier for link prediction (Yue et al.,
2020).

2.2 Network embedding via GCNs
GCNs are simplified versions of Graph Convolutional Neural
Networks, which are generalizations of conventional Convolutional
Neural Networks on graphs (Li et al., 2018). In the context of vari-
ous machine-learning tasks, GCNs facilitate the use of network top-
ology in computing latent features from input features associated
with network nodes. GCNs are also used to compute node embed-
dings, i.e. features that represent network topology, by setting the
loss function appropriately to capture the correspondence between
the embeddings and network topology.

In GCNs, each graph convolution layer involves three steps: (i)
feature propagation, (ii) linear transformation and (iii) application
of a non-linear activation function (Wu et al., 2019). Feature propa-
gation is accomplished by using a convolution matrix that is com-
puted from graph topology. In the context of computing network
embeddings, the choice of convolution matrix is critical as it defines
the relationship between network topology and computed embed-
dings. The parameters of linear transformation are learned by train-
ing the GCN to minimize a loss function and standard non-linear
functions are used for activation (e.g. sigmoid or ReLU). Thus, the
key ingredients of a GCN-based network embedding technique are
the choice of the convolution matrix and the loss function.
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2.2.1 Graph Auto-encoder

Kipf and Welling (2016b) propose GAE as a direct application of
their GCN model (Kipf and Welling, 2016a) to the computation of
node embeddings in a network. GAE uses the degree-normalized ad-

jacency matrix as the convolution matrix in a two-layer neural net-
work. In this context, the convolution matrix is defined as

L̂sym ¼ D̂
�1=2

ÂD̂
�1=2

; (1)

where A denotes the adjacency matrix of the network, O2¼WSO1

denotes the adjacency matrix with self-loops added and D ¼
diagðd1;d2; . . . ;dnÞ denotes the degree matrix, D̂ ¼ IþD. Since I �
L̂sym is equal to the graph Laplacian, we refer to L̂sym as Laplacian-
based convolution matrix throughout this article.

Using L̂sym as the convolution matrix, GAE defines the network
embedding matrix HGAE as:

HGAE ¼ ReLUðL̂symReLUðL̂symIHð0ÞÞHð1ÞÞ; (2)

where 0 � i < n and Hð1Þ are trainable weight matrices. These

weight parameters are trained using the following loss function:

OðAn; SÞ ¼ �þmaxi<nðOiðAn; SÞÞ; (3)

where r denotes logistic sigmoid function.

2.2.2 Deep Graph Infomax

Veli�ckovi�c et al. (2019) develop DGI using the infomax principle

(Linsker, 1988) to define a loss function that can be used in various
learning settings. In the context of link prediction, DGI computes
the embedding matrix HDGI using a single-layered neural network:

HDGI ¼ PReLUðL̂symIHð0ÞÞ; (4)

where PReLU denotes parametric ReLU (Veli�ckovi�c et al., 2019) as

the non-linear activation function and Hð0Þ is a trainable weight ma-
trix. The loss function used to train Hð0Þ is defined as binary cross

entropy loss:

‘DGI ¼
X
u2V

log rðhT
u MsÞ þ

Xn

i¼1

log ð1� rð~hT

i MsÞÞ; (5)

where s ¼ r 1
n

P
u2V hiÞ

�
represents the global graph-level summary,

~hi for 1 � i � n denote the corrupted embedding vectors that are

obtained by shuffling the nodes (randomly permuting the rows of I)
and M 2 Rd�d is a trainable scoring matrix.

Although DGI has not yet been implemented in biological appli-
cations, it has demonstrated great potential in other applications
(Veli�ckovi�c et al., 2019). DGI owes its promising results to two fac-

tors: (i) capturing the global information of the network by incorpo-
rating node summaries and corrupted embeddings in its loss

function, and (ii) utilizing the power of this loss function to reduce
the number of layers, thereby the number of parameters to be learn-
ed and avoiding oversmoothing. Namely, the number of parameters

to be learned for DGI is djVj þ djVj þ d2, while this number is
d � d0 � jVj, where jVj represents the number of nodes in the net-

work, d represents the number of dimensions in the embedding
space and d0 represents the number of nodes in the hidden layer of
the GAE neural network.

However, the single-layered nature of DGI also limits its ability
to diffuse information across the network. In the context of link pre-

diction, node embeddings are utilized to assess the similarity be-
tween pairs of nodes. Motivated by this consideration, we
hypothesize that coupling of DGI’s neural network architecture and

loss function with convolution matrices that are based on node simi-
larities can deliver superior link prediction performance as com-

pared to convolution matrices that directly incorporate the
adjacency matrix of the network.

2.3 Node-similarity measures as convolution matrices
An important design choice in GCN-based network embedding is
the choice of the convolution matrix. As discussed above, most of
the existing algorithms use the Laplacian-based convolution matrix.

To date, the effect of the convolution matrix on algorithm perform-
ance has not been comprehensively characterized in the context of
link prediction in biomedical networks.

We stipulate that network similarity measures can be effective as
convolution matrices in conjunction with a single-layered neural
network. Such measures include those that have demonstrated suc-

cess in earlier applications of link prediction, including Common
Neighbors (CNs), Adamic-Adar (AA) and others (Liben-Nowell and
Kleinberg, 2007; Zhou et al., 2009), Below, we describe these meas-

ures and discuss how they can be adopted into the framework of
DGI as convolution matrices. For this purpose, we consider the fol-
lowing formulation for computing node embeddings [where Hð0Þ is

optimized using the loss function in (5)]:

H ¼ PReLUðCIHð0ÞÞ: (6)

Below, we discuss various options for the convolution matrix C

based on the rich literature on unsupervised link prediction. Observe
that, for both DGI and GAE, C ¼ L̂sym.

(i) CNs: for a given node u 2 V, let CðuÞ � V be the set of neigh-
bors of u. Then, the number of CNs of nodes u 2 V and v 2 V is

defined as:

sCNðu; vÞ ¼ jCðuÞ \ CðvÞj ¼ jfw 2 Vjðv;wÞ ^ ðu;wÞ 2 Egj: (7)

Since ðÂ2Þu;u ¼ du þ 1 and for u 6¼ v, ðÂ2Þu;v ¼ sCNðu; vÞ, the
convolution matrix representing count of CNs can be formulated as:

CCN ¼ Â
2
: (8)

(ii) Jaccard Index (JI): this measure assesses the overlap between
the neighbors of two nodes by normalizing the size of the intersec-

tion by the size of the union:

sJIðu; vÞ ¼
jCðuÞ \ CðvÞj
jCðuÞ [ CðvÞj : (9)

In matrix form, JI can be formulated as a convolution matrix as

follows:

CJI ¼ Â
2�ðÂNþNÂ � Â

2Þ: (10)

Here, N denotes an all-ones matrix with the same size as A and
� denotes element-wise (Hadamard) division.

(iii) AA: this commonly utilized measure of node similarity
refines the notion of CNs by assigning more weight to less-
connected CNs (Adamic and Adar, 2003):

sAAðu; vÞ ¼
X

w2jCðuÞ\CðvÞj

1

log ðjCðwÞjÞ : (11)

This notion of node similarity can be formulated as a convolu-
tion matrix as follows:

CAA ¼ Â log ðD̂�1ÞÂ: (12)

(iv) Resource Allocation (RA): this measure also aims to reduce
the effect of highly connected CNs, but does so more agressively by

normalizing with the degree of the neighbor. Thus, RA-based convo-
lution matrix can be formulated as:

CRA ¼ ÂD̂
�1

Â: (13)

(v) Hub-Depressed Index (HDI): similar to JI, HDI aims to nor-
malize the overlap between neighbors of two nodes based on the

degrees of the nodes, but does so by focusing on the node with
higher degree (thus penalizing hubs):
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sHDIðu; vÞ ¼
jCðuÞ \ CðvÞj

maxfjCðuÞj; jCðvÞjg : (14)

Using the notation introduced above, HDI-based convolution
matrix can be formulated as:

CHDI ¼ Â
2�maxfÂN;NÂg: (15)

(vi) Hub-Promoted Index (HPI): in contrast to HDI, HPI nor-
malizes the size of the overlap of the neighbors of two nodes by the
degree of the less-connected node, thereby promoting hubs. This
index can be represented as a convolution matrix as:

CHPI ¼ Â
2�minðÂN;NÂÞ: (16)

(vii) Sørenson Index (SI): similar to JI, SI normalizes the size of
the overlap of the two nodes by taking into account the degree of
both nodes, but uses the average of the degrees instead of the size of
the union:

sSIðu; vÞ ¼ 2
jCðuÞ \ CðvÞj
ðjCðuÞj þ jCðvÞjÞ : (17)

Thus, compared to JI, SI is more conservative toward high-
degree nodes as the common neighborhood is counted twice in the
denominator. SI can be formulated as a convolution matrix as
follows:

CSI ¼ 2Â
2�ðÂNþNÂÞ: (18)

(viii) Salton Index (ST): ST also normalizes the size of the over-
lap by the degrees of the two nodes, but uses the geometric mean of
the degrees instead of the arithmetic mean:

sSTðu; vÞ ¼
jCðuÞ \ CðvÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjCðuÞj � jCðvÞjÞ

p : (19)

ST can be formulated as a convolution matrix as follows:

CST ¼ Â
2�D̂: (20)

To summarize our approach, we use the node-similarity meas-
ures to compute node embeddings for all nodes in the network as
follows in Algorithm 1:Once the node embeddings are computed
using the above (unsupervised) procedure, we feed these embeddings
into BIONEV, the supervised link prediction algorithm implemented
by Yue et al. (2020). BIONEV takes as input a training network and
node embeddings, uses these embeddings to train supervised link
prediction models and uses a test dataset to evaluate the perform-
ance of the embeddings.

3 Results and discussion

3.1 Datasets and experimental setup
In our experiments for within-network link prediction, we use four
biomedical networks compiled by Yue et al. (2020). The descriptive
statistics of these four networks are shown on Table 1. These net-
works represent link prediction tasks in the context of three different
biomedical applications:

• DrugBank DDIs: the DrugBank–DDI network is composed of

verified pairwise interactions between chemical compounds used

as drugs, obtained from DrugBank, a freely accessible online

database that contains detailed information about drugs and

drug interactions (Wishart et al., 2018).
• Comparative Toxicogenomics Database (CTD) DDAs: CTD is a

database that catalogues the effects of environmental exposures.

It contains associations between chemicals and diseases, repre-

senting toxic effects of chemicals (Davis et al., 2019).
• National Drug File Reference Terminology (NDFRT) DDAs:

This dataset contains DDAs based on NDFRT in the unified

medical language system. In the network, there is an edge be-

tween a disease and drug if the drug is used for the treatment of

the disease (Bodenreider, 2004).
• PPIs: The PPI network contains Homo sapiens PPIs extracted

from the STRING database (Szklarczyk et al., 2015).

In addition, we use four additional molecular interaction net-
works for cross-network link prediction, provided by Cho et al.
(2016). These networks represent two different types of interactions
among genes/proteins of Saccharomyces cerevisiae and H.sapiens,
obtained from the STRING database v9.1 (Franceschini et al.,
2013). This collection contains two types of networks for each or-
ganism: (i) co-expression networks obtained using correlation of the
expression of genes coding for respective proteins across a range of

biological states (thus, these are statistical networks indicating po-
tential functional association) and (ii) experimentally identified PPI

networks (thus, these networks contain potential functional/physical
interactions). The descriptive statistics of these networks are shown
on Table 2.

3.1.1 Baseline embedding methods

For GAE and DGI algorithms, we use the Python implementation

provided respectively by Kipf and Welling (2016a) and Veli�ckovi�c
et al. (2019). For other state-of-the-art network embedding methods
(Table 3), we use OpenNE (https://github.com/thunlp/OpenNE),

Python source code implementation. We implement our node-simi-
larity measure-based embedding methods on top of PyTorch imple-

mentation provided by Veli�ckovi�c et al. (2019).

Table 1. Descriptive statics of the networks used in computational

experiments

# Nodes (jVj) # Edges (jEj) Avg. degree Density

Datasets

DrugBank DDI 2191 242 027 110.5 0.1

CTD DDA 12 765 92 813 7.3 0.0011

NDFRT DDA 13 545 56 515 4.2 0.0006

STRING PPI 15 131 359 776 23.8 0.0031

Note: Avg. degree is defined as jEjjVj, density is defined as 2jEj
jVj2 :

Algorithm 1: Similarity-Based Graph Convolution (SIGRAC)

Input: given the adjacency matrix Â of a network

Output: Embedding matrix, H

1 Compute the convolution matrix C based on the specified

node-similarity index (CN, JI, AA, RA, HDI, HPI, SI, or ST)

2 Compute embeddings H ¼ PReLUðCIHð0ÞÞ using the single-

layered GCN encoder.

3 Randomly row-wise shuffle I to obtain corrupted node

identities Î.

4 Compute corrupted embeddings ~H ¼ PReLUðC~IHð0ÞÞ, using

the single-layered GCN encoder

5 Compute network-level summary of embeddings

s ¼ r 1
n

Pn
i¼1

hi

 !
.

6 Update Hð0Þ and M using gradient descent to minimize

‘DGI: (5)
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3.1.2 Within-network link prediction

For the networks presented on Table 1, we assess the performance
of the algorithms using randomized test and training tests, where the
randomized tests are repeated 10 times for each algorithm/param-
eter setting. For each randomized test, we select a certain fraction
(referred to as test ratio) of the edges in the network uniformly at
random, remove these edges from the network and reserve them as
the positive test set. We then compute node embeddings and per-
form training on the remaining network.

3.1.3 Cross-network link prediction

For the networks presented on Table 2, we use one network type
(e.g. yeast co-expression network) to compute node embeddings and
use these embeddings as features to train and use a supervised link
prediction model on the other network type (e.g. yeast experimental-
ly identified PPI network) after removing overlapping edges from
the test network.

3.1.4 Training supervised link prediction models

For training, we use the Hadamard product of node embedding vectors
to construct a feature set for each pair of nodes. For each node pair,
we assign label ‘1’ if the pair has an edge in the training network and
label ‘0’ otherwise. We use these data to train a Logistic Regression-
based binary classifier by dividing feature scores to 80% train set and
20% test set. Subsequently, we make predictions for the pairs of nodes
in the positive and negative test sets and compute the area under the re-
ceiver operating characteristic curve (AUC) accordingly. The negative
test sets are obtained by sampling, uniformly at random, pairs of nodes
with no edge in between such that the number of these ‘true negative’
pairs is equal to the number of test edges that were removed; i.e. for
each test instance, we create a ‘true positive’ and a ‘true negative’ set of
equal size. Then we score all pairs in these two sets and compute the
AUC using these scores. We repeat this process 10 times.

For the test ratio for embedding, we use 10%, 30% and 50% as
the fraction of edges removed from the networks. For the neural net-
works used in computing node embeddings, we use default hyper-
parameters suggested by the baseline papers; namely embedding
dimension d ¼ 100, training epoch ¼200.

3.2 Link prediction performance
We compare the link prediction performance of node similarity-
based convolution matrices (using DGI’s single-layered GCN en-
coder) against encoders that use Laplacian-based convolution.
Specifically, we use the following methods for comparison: (i) DGI
(which uses the single-layered GCN encoder, we also use for the

convolution matrices) and (ii) GAE (which uses a double-layered
GCN encoder). Selection of these two methods for comparison ena-
bles assessment of the effect of the convolution matrix (similarity-
based versus DGI), as well as effect of the architecture of the GCN
(DGI versus GAE).

The comparison of the link prediction performance of node simi-
larity-based convolution matrices against that of Laplacian-based
convolution for within-network link prediction is shown in Figure 1.
Based on these results, we make the following observations:

1. With Laplacian-based convolution, DGI’s single-layered neural

network delivers superior prediction performance over GAE’s

two-layered neural network, except multiplex human PPI.

2. The link prediction performance of DGI and all node similarity-

based convolution matrices (all using single-layer neural net-

work) is robust to decreasing size of training data.

3. The accuracy provided by node similarity-based convolution

matrices tend to depend on the dataset.

4. For all datasets, most of the node similarity-based convolution

matrices deliver more accurate predictions as compared to DGI.

5. For node similarity-based convolution, ST, HPI and CN deliver

better accuracy than other node-similarity measures.

The results of computational experiments for cross-network link
prediction are shown in Figure 2. We observe that the overall pre-
dictive performance of cross-network link prediction is worse than
that of within-network link prediction compared to within-network
link prediction, but the embeddings computed on the other network
are still informative. Interestingly, the single-layered GCN (DGI)
performs better than the double-layered GCN (GAE) on the yeast
networks, while performing significantly worse on the human net-
works. The improvement provided by node similarity-based convo-
lution matrices is consistent with the patterns observed for within-
network link prediction, in that HDI and HPI significantly outper-
form DGI with Laplacian-based convolution on yeast networks,
while common neighborhood and AA significantly outperform GAE
with Laplacian-based convolution on human networks.

These results demonstrate that node similarity-based convolu-
tion matrices can be more effective than Laplacian-based convolu-
tion in computing node embeddings for various link prediction tasks
on biological networks. As suggested by the superior performance
and low variance of DGI as compared to GAE, the use of a single-
layered neural network improves and stabilizes predictive perform-
ance. The use of node-similarity matrices in a single-layered network
adds to this improvement by enabling the network to

Table 2. Descriptive statistics of the networks used in cross-network link prediction experiments

Datasets # Nodes # Co-expression edges # Experimental edges # Overlapping edges

Yeast PPI 6400 314 602 220 226 34 898

Human PPI 18 362 775 319 302 400 75 910

Table 3. Comparison of the link prediction performance of neural network-based node embeddings and other state-of-the-art algorithms on

four biological networks

Datasets Node similarity-based-NN Laplacian-based-NN Random Walk

CN HPI Salton GAE DGI Line DeepWalk Node2vec Struct2vec

DrugBank 0.91860.019 0.90560.007 0.93360.003 0.85360.005 0.86460.003 0.78260.004 0.84560.004 0.85360.004 0.85760.007

CTD_DDA 0.92260.005 0.95960.004 0.95060.004 0.80460.003 0.86260.012 0.81360.012 0.90360.005 0.87160.023 0.91360.007

NDFRT 0.91960.005 0.93560.002 0.94360.004 0.90460.007 0.91260.003 0.90760.009 0.89360.010 0.88560.009 0.85960.004

STRING 0.94360.003 0.91760.006 0.95260.004 0.87660.005 0.88760.003 0.84360.006 0.91260.006 0.88160.004 0.90360.007

Note: Node similarity-based-NN refers to node embeddings computed using node similarity-based convolution matrices (CN, Common Neighbor; HPI, hub-

promoted index; Salton, Salton Index), Laplacian-Based-NN refers to node embeddings using Laplacian-based convolution and Random Walk refers to methods

that use random walk-based proximity measures to predict links. For each dataset, the best performing method(s) is (are) underlined and shown in bold.
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take multiple steps during convolution. Node similarity-based con-
volution accomplishes this by using established ‘features’ that are
proven to be useful in unsupervised link prediction.

3.3 Effect of graph density
Node similarity-based convolution matrices perform substantially
better than DGI and GAE on all six networks, we consider in our

experiments. To further investigate the robustness of methods and

effects of network density on the accuracy of link prediction, we per-
form another set of experiments by sparsifying a network. For this
purpose, we use the densest network in our datasets, namely
DrugBank_DDI. We randomly sample edges from the
DrugBank_DDI to construct networks with density ranging from
0.0005 to 0.1 (the network’s original density). We then perform
cross-validation on these sampled networks with 50% test ratio.
Observe that as the network gets sparser, the availability of training
data declines drastically.

GAE
DGI

CN AA

Ja
cc

ar
d

RA
HDI

HPI

Sore
nso

n

Salt
on

Algorithms

0.8

0.85

0.9

0.95

1
A

re
a 

U
n

d
er

 C
u

rv
e 

(A
U

C
) 

DrugBank_DDI Dataset, Test Ratio = 0.1

Laplacian Node Similarity Measures

 **, p =0.0063

 **, p =0.0051

GAE
DGI

CN AA

Ja
cc

ar
d

RA
HDI

HPI

Sore
nso

n

Salt
on

Algorithms

0.8

0.85

0.9

0.95

1

A
re

a 
U

n
d

er
 C

u
rv

e 
(A

U
C

) 

DrugBank_DDI Dataset, Test Ratio = 0.3

Laplacian Node Similarity Measures

 ***, p =0.00057

 ***, p =0.00052

GAE
DGI

CN AA

Ja
cc

ar
d

RA
HDI

HPI

Sore
nso

n

Salt
on

Algorithms

0.8

0.85

0.9

0.95

1

A
re

a 
U

n
d

er
 C

u
rv

e 
(A

U
C

) 

DrugBank_DDI Dataset, Test Ratio = 0.5

Laplacian Node Similarity Measures

 **, p =0.0021

 **, p =0.0011

GAE
DGI

CN AA

Ja
cc

ar
d

RA
HDI

HPI

Sore
nso

n

Salt
on

Algorithms

0.8

0.85

0.9

0.95

1

A
re

a 
U

n
d

er
 C

u
rv

e 
(A

U
C

) 

CTD_DDA Dataset, Test Ratio = 0.1

Laplacian Node Similarity Measures

 **, p =0.0075

 ***, p =0.00016

GAE
DGI

CN AA

Ja
cc

ar
d

RA
HDI

HPI

Sore
nso

n

Salt
on

Algorithms

0.8

0.85

0.9

0.95

1

A
re

a 
U

n
d

er
 C

u
rv

e 
(A

U
C

) 

CTD_DDA Dataset, Test Ratio = 0.3

Laplacian Node Similarity Measures

 **, p =0.0044

 ***, p =0.00048

GAE
DGI

CN AA

Ja
cc

ar
d

RA
HDI

HPI

Sore
nso

n

Salt
on

Algorithms

0.8

0.85

0.9

0.95

1

A
re

a 
U

n
d

er
 C

u
rv

e 
(A

U
C

) 

CTD_DDA Dataset, Test Ratio = 0.5

Laplacian Node Similarity Measures

 **, p =0.0060

 ***, p =0.00001

GAE
DGI

CN AA

Ja
cc

ar
d

RA
HDI

HPI

Sore
nso

n

Salt
on

Algorithms

0.8

0.85

0.9

0.95

1

A
re

a 
U

n
d

er
 C

u
rv

e 
(A

U
C

) 

NDFRT_DDA Dataset, Test Ratio = 0.1

Laplacian Node Similarity Measures

 *, p =0.014

 **, p =0.0045

GAE
DGI

CN AA

Ja
cc

ar
d

RA
HDI

HPI

Sore
nso

n

Salt
on

Algorithms

0.8

0.85

0.9

0.95

1

A
re

a 
U

n
d

er
 C

u
rv

e 
(A

U
C

) 

NDFRT_DDA Dataset, Test Ratio = 0.3

Laplacian Node Similarity Measures

 *, p =0.030

 **, p =0.0053

GAE
DGI

CN AA

Ja
cc

ar
d

RA
HDI

HPI

Sore
nso

n

Salt
on

Algorithms

0.8

0.85

0.9

0.95

1

A
re

a 
U

n
d

er
 C

u
rv

e 
(A

U
C

) 

NDFRT_DDA Dataset, Test Ratio = 0.5

Laplacian Node Similarity Measures

 **, p =0.0096

 **, p =0.0071

GAE
DGI

CN AA

Ja
cc

ar
d

RA
HDI

HPI

Sore
nso

n

Salt
on

Algorithms

0.8

0.85

0.9

0.95

1

A
re

a 
U

n
d

er
 C

u
rv

e 
(A

U
C

) 

STRING_PPI Dataset, Test Ratio = 0.1

Laplacian Node Similarity Measures

 **, p =0.0045

 **, p =0.0036

GAE
DGI

CN AA

Ja
cc

ar
d

RA
HDI

HPI

Sore
nso

n

Salt
on

Algorithms

0.8

0.85

0.9

0.95

1

A
re

a 
U

n
d

er
 C

u
rv

e 
(A

U
C

) 

STRING_PPI Dataset, Test Ratio = 0.3

Laplacian Node Similarity Measures

 **, p =0.0047

 **, p =0.0019

GAE
DGI

CN AA

Ja
cc

ar
d

RA
HDI

HPI

Sore
nso

n

Salt
on

Algorithms

0.8

0.85

0.9

0.95

1

A
re

a 
U

n
d

er
 C

u
rv

e 
(A

U
C

) 

STRING_PPI Dataset, Test Ratio = 0.5

Laplacian Node Similarity Measures

 **, p =0.0032

 ***, p =0.00072

Fig. 1. Link prediction performance of node embeddings computed using different convolution matrices. In each figure, the x-axis shows the neural network architecture (on

the left of the red line; these methods use Laplacian-based convolution) or convolution matrix (on the right of the red line; these methods use a node similarity-based convolu-

tion matrix on a single-layered neural network as in DGI), the y-axis shows the AUC for link prediction. Asterisks indicate the significance of performance gain provided by

the best node-similarity method against the two baseline methods (*P < 0.05, **P < 0.01, ***P < 0.001). Each row corresponds to a different dataset, each column represents

different test ratios (e.g. on the left-most column 10% of the edges in the network are deleted and used as positive test samples, the remaining 90% of the edges are used for

training), where the training data get smaller as we move from left to right. GAE, Graph Auto-encoder; DGI, Deep Graph Infomax; CN, Number of common neighbors; AA,

Adamic-Adar; RA, Resource Allocation; HDI, Hub-deprived index; HPI, Hub-promoted index
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The results of our density analysis are shown in Figure 3. As seen
in the figure, the network’s density plays a major role on the per-
formance of link prediction algorithms. While the accuracy provided
by all methods declines steadily as density goes down, the accuracy
of node similarity-based convolution stays above that of DGI until
the graph becomes extremely sparse. When graph density goes down

to 0.001, we observe that the accuracy of node-similarity convolu-
tion becomes more variable and comparable to DGI.

3.4 Comparison to other link prediction algorithms
Algorithms that are used for link prediction in biological networks
are not limited to those that utilize neural network-based node
embeddings. Many other approaches exist, including unsupervised
methods that use node similarity (which we use as convolution
matrices in this work), and random walk-based algorithms (which
use random walks to compute node embeddings). To further evalu-
ate the performance of the node similarity-based graph convolution
against state-of-the-art methods in link prediction, we consider mul-
tiple algorithms in two categories: (i) Neural Network-based algo-
rithms and (ii) Random Walk-based algorithms. For each of these
three categories, we select three algorithms that are reported to per-
form best on biological networks (Yue et al., 2020) and compare the
link prediction performance of these algorithms on our four
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Fig. 2. Link prediction performance of supervised link prediction using network embeddings computed on a different network. The figures show the link prediction perform-

ance of a logistic regression-based classifier on one type of network trained using node embeddings computed using a different type of network. The top and bottom rows re-

spectively show results for S.cerevisiae and H.sapiens networks. The left column shows results for link prediction performance on co-expression networks using embeddings

computed on experimentally identified PPI networks. The right column shows results for link prediction performance on experimentally identified PPI networks using embed-

dings computed on co-expression networks. In each figure, the x-axis shows the neural network architecture (on the left of the red line; these methods use Laplacian-based con-

volution) or convolution matrix (on the right of the red line; these methods use a node similarity-based convolution matrix on a single-layered neural network as in DGI), the

y-axis shows the AUC for link prediction. Asterisks indicate the significance of performance gain provided by the best node-similarity method against the two baseline methods

(*P < 0.05, **P < 0.01, ***P < 0.001)

Fig. 3. The relationship between topological properties of input graphs and the link

prediction performance of convolution matrices. AUC for the single-layered neural

network using graph Laplacian (DGI), CN and Salton Index as a function of

network density. Networks are generated by randomly sampling edges from the

Drugbank–DDI dataset
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networks. The results of these experiments are shown on Table 3.
As seen, our proposed approach significantly outperforms the exit-
ing node embedding algorithms and set the new state-of-the-art.

4 Conclusion

In this article, by capitalizing on the rich literature on unsupervised
link prediction, we proposed using node similarity-based convolu-
tion to compute GCN-based node embeddings for link prediction.

We comprehensively tested eight different node-similarity measures
(CNs, JI, AA, ResourceAllocation, HDI, HPI, Sorenson Index and

SI) using four different networks representing different link predic-
tion problems in biomedical applications as well as two multiplex
networks. Our results showed that node similarity-based convolu-

tion in a single-layered GCN encoder delivers superior performance
as compared to GCNs that use Laplacian-based convolution. Future

efforts in this direction would include incorporation of other simi-
larity measures into our framework, consensus learning of these
proximity measures all together, and their applications, such as

node classification and clustering.
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