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The influence of hydrogenation on the atomic structure and electronic properties of amorphous boron nitride (a-
BN) is investigated by using an ab-initio molecular dynamics technique. The structural evaluation of a-BN and
the hydrogenated (a-BN:H) models with four different hydrogen concentrations reveals that although their short-
range order is mainly similar to each other, hydrogenation yields some noticeable amendments on the local

structure of a-BN. Hydrogenation suppresses the formation of twofold coordinated chain-like structures and
tetragonal-like rings and leads to more sp? and even sp® hybridizations. It is also observed that the formation of
N—H bonding is more favorable than that of the B—H bonding in the a-BN:H configurations. Furthermore hy-
drogenation is found to have an insignificant impact on the electronic structure of a-BN.

1. Introduction

Boron Nitride (BN), a III-V compound, is a synthetic material having
crystal structures similar to carbon. It is a wide band gap semi-
conductor. Due to its unique physical and chemical features, it has been
attracted a great deal of scientific and advanced technological interests.
It is one of promising candidates as a superhard material after diamond.

BN forms four different crystal structures: hexagonal (h-BN),
rhombohedral (r-BN), cubic (c-BN) and wurtzite (w-BN) [1]. The
ground state structure of BN is the h-BN phase being a two-dimensional
layered material with a weak Van der Waals force [2]. h-BN has various
superior features [3]. The rhombohedral BN (r-BN) also forms in a two-
dimensional structure [4], similar to h-BN. Amongst the other phases, r-
BN is the least understood one [5]. Cubic BN (c-BN) can be manu-
factured from h-BN and r-BN at high temperature and pressure condi-
tions [6]. Due to its extreme hardness, it can be used as a protective
coating of heavy-duty tools [7]. The high pressure and temperature
treatments can possess a phase transformation from h-BN to a wurtzite
structure (w-BN) as well [8], which can be classified as a superhard
material.

Amorphous BN (a-BN) can be synthesized using various experi-
mental techniques such as high frequency chemical vapour deposition
and ball milling [9-11] but relative to the crystalline forms, it has been
little explored and hence less understood [12-17]. Amorphous mate-
rials have coordination defects and strained topologies, which sig-
nificantly influence their electrical and physical properties. Their main
coordination defect is undercoordinated atoms i.e. dangling bonds.
Hydrogenation somehow not only passivates the dangling bonds but
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also breaks strained and weak bonds in amorphous materials and yields
more ordered configurations [18]. Such hydrogenation induced struc-
tural changes improve significantly their physical and electrical prop-
erties. Consequently hydrogenated a-BN (a-BN:H) has been studied
experimentally as well [19,20]. Although there are few theoretical
studies on a-BN [21,22] to shed some light on its atomic structure and
electronic properties, to our knowledge, there has been no attempt to
investigate theoretically a-BN:H. Thus currently the impact of hydro-
genation on the atomic structure and electric properties of a-BN is not
well known. And hence in this work, we generate a-BN:H with four
different hydrogen contents based on an ab initio technique and com-
pare them structurally and electronically with pure a-BN to fill the gap
in the literature. We find that hydrogenation induces drastic structural
changes in the network compared to pure a-BN. Yet in spite of the
changes, hydrogenation is found to have a small influence on its elec-
tronic properties.

2. Methodology

The SIESTA package [23] based on the density functional theory
(DFT) was used to perform molecular dynamics (MD) simulations. The
atomic orbital basis set was selected as a double-zeta plus polarized
(DZP) orbital for the valance electrons. The pseudopotentials were
produced by the Troullier and Martins approach [24]. The Becke gra-
dient exchange functional [25] and Lee, Yang, and Parr correlation
functional [26] were applied to estimate the exchange correlation en-
ergy. The MD simulations were performed within the NPT (isothermal-
isobaric) ensemble in which temperature and pressure were controlled

Received 21 June 2018; Received in revised form 3 August 2018; Accepted 15 August 2018

Available online 26 August 2018
0022-3093/ © 2018 Elsevier B.V. All rights reserved.


http://www.sciencedirect.com/science/journal/00223093
https://www.elsevier.com/locate/jnoncrysol
https://doi.org/10.1016/j.jnoncrysol.2018.08.021
https://doi.org/10.1016/j.jnoncrysol.2018.08.021
mailto:murat.durandurdu@agu.edu.tr
https://doi.org/10.1016/j.jnoncrysol.2018.08.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnoncrysol.2018.08.021&domain=pdf

T.A. Ughdyiik, M. Durandurdu

by the velocity scaling and the Parrinelo-Rahman techniques [27], re-
spectively. The time step of each MD simulation was set to 1.0 fs. We
chose a 216-atom liquid BN model (108 B atoms and 108 N atoms) at
3300 K as an initial structure. We removed arbitrarily 5 B and 5 N atoms
from the melt, replaced 14, 22, 30 and 46H atoms and created 220, 228,
236,252-atoms models that were labeled as modell, model2, model3
and model4, respectively. The hydrogen concentration is about 6.4, 9.6,
12.7 and 18.2% for the modell, model2, model3 and model4, corre-
spondingly. Experiment [20] suggested the existence of 5-10% hy-
drogen in a-BN:H film. So the modell and model2 consist of a H con-
centration in the experimental range. On the other hand, model2 and
model3 have a higher H concentration than the experimental proposi-
tion and hence they can be considered as a hypostatical structure but
they actually allow us to understand the impacts of excessive hydro-
genation on the local structure of the amorphous network. All initial
configurations were subjected to 3300 K for 50.0 ps and then the melts
were gradually cooled to 300 K within 150.0 ps. Finally these structures
were relaxed according to the force criteria of 0.01 eV/A. The relaxed
structures' density is 2.0430 g/cm® for pure a-BN, 1.8033 g/cm® for
modell, 1.9063 g/cm3 for model2, 1.7055 g/cm3 for model3, and
1.8345 g/cm? for model4. They are indeed reasonably comparable with
the experimental value of 1.9 + 0.1 g/cm3 [19].

3. Results

In order to distinguish the short-range order of the a-BN:H config-
urations from that of pure (unhydrogenated) a-BN, we first consider the
partial pair distribution functions (PPDFs) and plot them in Fig.1 (more
visible PPDFs are provided in the supplementary document). The first
peak position of all correlations of the a-BN:H models along with that of
h-BN and pure a-BN model is summarized in Table 1. One can see that
the distances estimated are quite close to each other, suggesting that the
a-BN:H structures are locally similar to pure a-BN [21] and h-BN [28].
The B—H and N—H bond lengths are located at around 1.17 A and
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Fig. 1. PPDFs of the pure a-BN and a-BN:H models.
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Table 1
The first peak position of correlations.
BB(A) BN@ NN@ BHA NH@A HHA

h-BN 2.50 1.57 2.50
pure a-BN 2.51 1.46 2.54
Model 1 2.50 1.43 2.51 1.17 0.98 1.95
Model 2 2.51 1.43 2.52 1.16 0.98 1.74
Model 3 2.49 1.43 2.50 1.17 0.97 1.65
Model 4 2.51 1.44 2.52 1.17 0.98 1.68

0.98 A, respectively for the all a-BN:H networks. These values are
comparable with 1.17 A for B—H bond length and 1.03 A for N—H bond
distance reported in a neutron diffraction study of BH3NHj3 [29]. The
position of the H—H correlation at near 1.65-1.95 A indicates that the
models are free from H—H bonds because H—H bond length is 0.74 A.
From the PPDFs, one can see that these models do not form any N—N
bond as well but have a small amount of B—B homopolar bonds as
denoted by a feeble peak at 1.70-1.74 A in the B—B correlation, similar
to what has been observed for pure a-BN [21]. The fraction of B—B
bonds in a-BN:H is however slightly higher than that of a-BN. The PPDF
analyses suggest that the correlation distances are not affected by hy-
drogenation.

The coordination number (CN) is an essential feature to describe the
short-range order of disordered systems. Using the first minimum of the
PPDFs (~1.86A for B—B, ~2.02A for B—N, ~1.57 A for B—H and
1.49 A for N—H correlations), we estimate the total and partial CNs.
Fig. 2 illustrates the coordination distributions of the a-BN:H models
and the a-BN network. For the pure a-BN configuration, the frequency
of twofold, threefold-, and fourfold-coordinated atoms is 6%, 91%, and
3%, correspondingly. The subsequent average CN is 2.97. By hydro-
genation, one can perceive a decrease in the number of dangling bonds
(twofold chain-like configurations) and almost no twofold coordinated
atoms for the model3 and model4. Hydrogenation leads to more sp® and
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Fig. 2. Coordination distribution of the pure a-BN and a-BN:H models.
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even sp> hybridizations in the first three models, relative to pure a-BN.
Their mean CN is about 3.03-3.06. The situation for model4 is slightly
different: 85% of atoms are threefold coordinated and about 15% of
atoms (15% of B atoms and 16% of N atoms) are fourfold coordinated.
The average B and N CNs are 3.13 and 3.15, correspondingly. For this
model, we find that the at least 50% of sp® configurations involve at
least one H atom while the rest occurs between B and N atoms. The
B—N,, B-N3H, N—B,, N-B3H and N-B,H, configurations are the main sp3
hybridization units in the model. For intermediate hydrogen con-
centration, similar trend has been reported for hydrogenated amor-
phous carbon (a-C:H) called as hydrogenated diamond-like carbon
(DLC) films, in which hydrogenation yields more sp®> C—C bonding
[301.

All H atoms are onefold coordinated and a close investigation re-
veals the fact that there are more N—H bonding than B—H bonding in
all a-BN:H models; about 65-93% of H atoms form a bond with N
atoms. The modell presents the highest fraction of N—H bonding (93%)
while model4 shows the lowest one (65%). Actually we find a corre-
lation between H concentration and the number of N—H bonds (or B—H
bonds) formed in the amorphous systems: the frequency of N—H bonds
decreases with increasing H concentration.

To further understand the atomic structure of a-BN:H in details, we
explore the bond angle distribution functions (BADFs). The B—N—B and
N—B—N angle distributions are provided in Fig.3. The main peak of all
a-BN:H models are located at around 116°-119°, indicating that a-BN:H
has an atomic arrangement related to that of h-BN. Note that the hy-
drogenated configurations (modell, model2 and model3) produce a
sharper peak around 120° than the pure a-BN model, suggesting that
hydrogenation yields a more ordered local structure in the system. We
also note here that while the pure a-BN network has a subpeak at about
80° for the B-N-B and 95° for N-B-N because of the presence of the
tetragonal rings [20], the a-BN:H models do not present such peaks in
the BADFs, indicating that hydrogenation suppress the development of
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Fig. 3. BADF of the pure a-BN and a-BN:H models.
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Fig. 4. Ring distribution of the pure a-BN and a-BN:H models.

tetragonal rings as well. This is further supported by the rings analysis
as shown in Fig.4. Four membered rings exist in pure a-BN but the
fraction of such rings is negligibly small in the a-BN:H models.

To understand the effects of hydrogenation on the electronic prop-
erties of a-BN, we lastly compute the electronic density of states (EDOS)
of the models and demonstrate them in Fig.5. We also provide the EDOS
of pure a-BN and h-BN in the figure for comparison purpose. The band
gap energy defined as the difference of HOMO-LUMO states is found to
be about 4.5eV for h-BN and ~2.0eV for pure a-BN. It should be
pointed out here that DFT-GGA calculations underestimate band gap
widths and hence they are not comparable with experimental values.
For the a-BN:H models, we do not perceive a drastic modification in the
band gaps except that a midgap state is presented in model3. The band
gap of the a-BN:H configurations is close to that of pure a-BN and about
1.8-2.0 eV. A close analysis of the midgap state using the localization of
wavefunctions reveals that it is indeed due to a chain-like B—B structure
formed in model3 (see Fig. 6). We should note here that such a chain-
like structure does not exist in other models although they present a
small amount of B—B homopolar bonds.

To shed additional lights on the electronic properties of the a-BN
and a-BNH models, we probe the partial density of states (PDOS) pro-
vided in Fig. 7. The eigenstates near —20eV are mainly due to N-s
states. B-s and B-p states have some contributions to these energy levels
as well. The valance band has contributions from B-s, B-p and essen-
tially N-p states. The conduction band near Fermi level is controlled by
B-p states. Our observations are quite similar to what have been stated
for h-BN in a previous simulation [31]. The contribution of H atoms to
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Fig. 5. EDOS around the Fermi level for h-BN, a-BN and a-BN:H models.
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Fig. 6. Chain-like B—B structure produces the midgap state in model3.
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Fig. 7. PDOS of selected models.

the PDOS is significantly small.

4. Discussion

On the basis of the structural analyses, we suggest that the main
building unit of both a-BN:H and pure a-BN is hexagonal rings similar to
h-BN. Yet there are some noticeable structural differences between a-
BN:H and a-BN. As expected, hydrogenation passivates twofold-co-
ordinated configurations and yields more sp? bonding. In addition, it
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induces a few sp bonding in the models. Yet as for the hydrogenated
content of 18.2%, a noticeable increase in the fraction of sp> hy-
bridization is observed in the network. Here based on the observation of
the sp>-to-sp® transition in BN at high temperature and pressure treat-
ments, we speculate that the physical origin of such a behavior is
probably due to the high degree of stress caused by the excessive hy-
drogen content in the network. However, further investigations are
needed to fully clarify this issue. The development of more sp> bonding
can be interpreted as some improvement to the mechanical properties
of the amorphous configurations because the BN crystals having sp>
hybridization are a superhard material.

We observe that the formation of N—H bonding is more favorable
than that of B—H bonding in all models. This behavior might be un-
surprising and can be simply explained by bond energy. Based on bond
energy [32], N—H bonding (347 *= 13kj/mol) is energetically more
favorable than B—H bonding (289 + 38 kj/mol).

Since the bonding nature of BN has significant impacts on its phy-
sical, chemical, mechanical and electronic properties, perhaps by
changing hydrogen content, a-BN:H with different features can be en-
gineered.

5. Conclusions

We have generated a-BN:H models with four different hydrogen
concentrations by means of a first-principles MD approach. The com-
parison of the a-BN:H configurations with a-BN reveals that although
they are locally parallel to each other, hydrogenation yields some no-
ticeable changes on the local structure of a-BN. Due to the H passivation
of dangling bonds, the a-BN:H models do not form the twofold co-
ordinated chain-like structures. Furthermore it suppresses the devel-
opment of tetragonal-like rings. All these structural modifications lead
to more sp? and even sp® hybridizations. Because of higher sp® bonding,
a-BN:H is anticipated to possess better mechanical properties than pure
a-BN. Additionally we witness the formation of more N—H bonds than
B—H bonds in the hydrogenated models. Considering the electronic
properties, hydrogenation is found to have minor impact on the elec-
tronic structure of a-BN.
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