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Abstract: Improving the accuracy of protein secondary structure prediction has been an important task in 

bioinformatics since it is not only the starting point in obtaining tertiary structure in hierarchical modeling but 

also enhances sequence analysis and sequence-structure threading to help determine structure and function. 

Herein we present a model based on DSPRED classifier, a hybrid method composed of dynamic Bayesian 

networks and a support vector machine to predict 3-state secondary structure information of proteins. We 

used the SCOPe (Structural Classification of Proteins-extended) database to train and test the model. The 

results show that DSPRED reached a Q3 accuracy rate of 82.36% when trained and tested using proteins 

from all SCOPe classes. We compared our method with the popular PSIPRED on the SCOPe test datasets 

and found that our method outperformed PSIPRED. 

Keywords: Protein secondary structure prediction; SCOPe; Support Vector Machine; Dynamic Bayesian 
Network. 

HIGHLIGHTS 
 

 DSPRED method based on machine learning algorithms to predict 3-state secondary structure 

elements.  

 Comparative results for secondary structure prediction. 

 High accuracy of 82.36% based on SCOPe (Structural Classification of Proteins - extended) 

structural classes. 
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INTRODUCTION 

Proteins are organic molecules that perform certain vital functions in living systems. The structural units 

of proteins are made up of amino acids, which are connected in sequence such that the carboxyl group of 

one amino acid forms a peptide bond with the amino group of the next amino acid. To know the structures of 

proteins is essential to understand the function of proteins. In other words, the structures of proteins reveal 

crucial information at the molecular level on their functions [1]. The structures of proteins are hierarchically 

divided into four groups such as primary, secondary, tertiary and quaternary [2]. Each level has its own 

importance, but the secondary structure is regarded as a bridge between the primary structure and tertiary 

structure. Thus, protein secondary structure prediction (PSSP) plays a crucial role in the accurate prediction 

of tertiary structures. As a result, accurate estimation of the secondary structure has been an important 

research topic for researchers [3]. Protein secondary structure is composed of repeating folding patterns of 

polypeptide chains. Protein secondary structure is traditionally characterized to be in one of the three general 

forms such as helix (H), strand (E), and coil (C). 

Machine learning algorithms have been used since late 1980s [4]. Recently, their use on PSSP problem 

is accelerated. Various datasets were used to train and test these models. In this paper, we give emphasis 

to SCOPe dataset(s) obtained from the SCOPe database, which contains hierarchical classification of 

proteins based on their structural information. Note that the SCOP dataset version used by the methods 

developed in the literature can be different from each other and from our version based on the time each 

study is conducted. Torrisi and coauthors [5] retrained Porter 5 on SCOPe-based dataset. Crooks and 

coauthors [6] have used a simple Hidden Markov Model (HMM) as an alternative prediction algorithm using 

the SCOP 1.61 dataset and have found the prediction accuracy, Q3 = 65.9±0.3%. Plewczynski and coauthors 

[7] have found Q3 score of 73% using the FRAGlib method, which they used as a secondary structure 

prediction algorithm. Lee and coauthors [8] developed data mining-based RT-RICO model for PSSP. They 

used SCOP/SCOPe dataset to train and test the model. The model’s average Q3 accuracy was 80.3%. On 

the other hand, Rashid and coauthors [9] compared the Q3 accuracies of SCOP classes and revealed the 

classes with the lowest and highest accuracy rates. They obtained results ranging from 80% to 85% for 

different SCOP classes in their compact model. Also, in their study, they obtained the best performance from 

class (a) proteins which have a rich presence of helix residues, and the lowest performance from small 

proteins with 74% Q3 accuracy. We have observed that there is a significant similarity between the results of 

this study and our study. Drozdetskiy and coauthors have used JPred4 which is the latest version of JPred 

server developed for PSSP. In this study, JNet 2.3.1, a neural network-based predictor, achieved an average 

Q3 score of 82% [10]. Yadav and coauthors [11] have identified more than 79% accuracy in the secondary 

structure of the Human Oxidoreductase family based on SCOP. Martin and coauthors [12] have obtained a 

75.5% Q3 score with multiple sequences using OSS-HMM for secondary structure prediction. 

Although experimental techniques yield reliable results on protein structure in laboratory environments, 

they are labor-intensive, time-consuming, and expensive processes. Thus, various statistical and machine 

learning computational tools have been developed to predict secondary structure. In this study, we present 

a model based on DSPRED classifier, a hybrid method composed of dynamic Bayesian networks and a 

support vector machine to predict 3-state secondary structure elements. We used the SCOPe (Structural 

Classification of Proteins-extended) database to train and test the model. In recent years, due to 

improvements in the prediction accuracy of protein secondary structure with the use of hybrid models [13], 

our article, which is within the scope of machine learning-based hybrid studies, is important in terms of 

contributing to studies in this field. 

MATERIALS AND METHODS  

Problem Definition 

This study aims to develop a model to determine (i.e. predict) secondary structure states (H: Helix, E: 

Beta Strands, L: Loops) starting from an amino acid sequence as input. As seen in Figure 1, the first row 

contains an amino acid sequence which consists of amino acids connected by peptide bonds, and the second 

row gives the representative secondary structure states (i.e. class labels).  

 

Figure 1. Secondary Structure Prediction Problem. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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Datasets 

SCOPe 

In this study, we used SCOPe [14] database version 2.06 available at http://scop.berkeley.edu, which is 

an extended version of the SCOP [15] database, developed in collaboration with researchers in the Berkeley 

Lab and UC Berkeley. SCOP is a hierarchically ordered database. Class is the top level of the SCOP 

hierarchical classification and is based on secondary structure content and organization [16]. It is generated 

to facilitate the understanding of the historical relationships between proteins and access to available 

information for protein structures whose structure is known. It incorporates and updates the Astral database. 

For backward compatibility, data entries in SCOPe are organized in the same hierarchy as SCOP (version 

1), see Figure 2. In this study, the experiments were carried out on datasets derived from SCOPe with 40% 

sequence identity option (i.e. no two proteins have greater than 40% sequence identity). It should be noted 

that the classification units in SCOP are usually protein domains and a protein domain is a conserved part of 

the tertiary structure that folds and works independently [15], [17]

 
 

Figure 2. Part of the SCOP (version 1) Hierarchy [18].   

The SCOPe database can be accessed from ASTRAL Sequences [19] & Subsets section of the web 

page's Downloads menu [17]. It is in the form of a dataset, which can be obtained in FASTA [20] format and 

filtered according to SCCS identifier. Then, protein domain information of the desired classes is obtained. 

SCCS is the classification string of SCOPe. It is called dot notation and includes SCOPe class, fold, 

superfamily, and family information.  

Non-redundant (NR) database 

NCBI maintains the NR nucleotide database for their BLAST search services [21]. NR contains non-

identical sequences from various databases such as GenBank and widely used by many researchers for 

BLAST or Position Specific Iterated-BLAST (PSI-BLAST) search. In NR database, entries with absolutely 

identical sequences have been merged. NR is available at https://ftp.ncbi.nlm.nih.gov/blast/db/. 

PDB99 

Protein Data Bank (PDB) [22], [23] digital data archive is widely used for research in structural biology 

and it also supplies access to 3D structure data for biological macromolecules [24]. PDB structures are 

available in a plain text file in PDB format. It contains atomic coordinates for biological molecules held in the 

Protein Data Bank. PDB99 is a database of HMM-profiles generated by Aydin lab and is used in the second 

step of an HHblits alignment. The proteins in this database was downloaded from the PISCES server by 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
http://scop.berkeley.edu/
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choosing a threshold value of 99% [25], which is the percentage of sequence identity score, meaning that all 

protein pairs that have score above this threshold have been eliminated. 

Assigning secondary structure labels by DSSP program 

In this paper, the true secondary structure labels are assigned by the DSSP [26] program. In order to run 

this program, first, the PDB files of the proteins in SCOPe should be obtained. For this purpose, the PDB ID 

and chain information of each protein should be extracted from the stable domain identifier of SCOPe. A 

seven-character stable domain identifier (sid) contains "d" followed by the 4 character PDB ID, 1-character 

PDB chain ID and a single character (usually an integer) [17]. For example d4wera1 means chain A of PDB 

entry 4WER, and d1yjdc1 means chain C of PDB entry 1YJD. First, using sid identifiers (the stable domain 

identifier) in SCOPe, corresponding PDB ids were parsed from parseable files of database version SCOPe 

2.06. After, using PDB entries, we downloaded 3D coordinate information for a particular chain from the PDB 

database and then we computed the true secondary structure labels by using DSSP starting from the 3D 

coordinate information.  

Reducing 8-states to 3-states  

Although DSSP uses an eight-state secondary structure representation for the class label of each amino 

acid, it is reduced to 3-states: helix (H), beta strands (E) and loop (L) (see Table 1) since prediction methods 

are usually trained and evaluated for only 3-states [27]. There are different sources where the symbol C for 

coil is used instead of the letter L for loops [28]. 

Table 1. Reducing 8-state DSSP labels to 3-states [27] 

Description 8-state DSSP labels 3-state DSSP labels 

 𝛼- helix H 

H 310 – helix G 

 𝜋 −helix I 

 𝛽- strand E 
                  E 

 𝛽- bridge B 

 𝛽- turn T 

 
L 

 Bend S 

The rest L or C or ‘ ’ 

Comparison with other label assignment programs 

In addition to DSSP, there are also other label assignment programs such as STRIDE and DEFINE. 

Among all three, DSSP [26] and STRIDE [29] are widely used for assigning secondary structure. Note that, 

the output of these programs may agree at different levels. For instance, in a study made on RS126 

benchmark, DSSP and STRIDE agree up to 95%, DSSP and DEFINE agree up to 73% and STRIDE and 

DEFINE agree at 74% (http://www.compbio.dundee.ac.uk/jpred/references/prot_html/node11.html). In the 

present work, a comparison of the assignments made by the DSSP and STRIDE programs has also been 

made (see Supplementary Figure S1 in S3 heading). For this purpose, we randomly selected one protein 

from each SCOP class and compared the secondary structure assignments made by DSSP and STRIDE. 

Supporting the previous finding on RS126 dataset, we also found that DSSP and STRIDE assignments are 

very close to each other with high agreement. Although this is the case, in this paper, DSSP was used as the 

secondary structure assignment program, as DSSP reference values give better results than STRIDE. 

Obtaining train and test sets   

Table 2 lists the SCOPe 2.06 structural protein classes used in this study. 

(https://scop.berkeley.edu/ver=2.06). After the data set belonging to SCOPe was downloaded, six separate 

FASTA files for each class were created by filtering the FASTA headers in this file according to the SCCS 

identifier value. These classes include structures with similar secondary structure composition [18]. We then 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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selected 10% of unique protein domains randomly from each of these six different datasets and produced 

candidate datasets in FASTA format. For each SCOP class, the remaining 90% of the proteins are included 

to the corresponding train set. In the next step, proteins in each candidate dataset were aligned with the 

entire SCOPe dataset using the Blast program, and those with 20% or less identity (remote homologuos) to 

SCOPe formed the corresponding test dataset, and the remaining proteins (i.e. those that are eliminated from 

the 10% candidate set during blast alignments) are included to the corresponding the train set (seeTable 2). 

Finally, we combined the six training sets to form the train set for the all category and combined the six test 

sets to construct the test set for the all category, which is the union of the six SCOP classes.  
Table 2 shows the dataset statistics. In this table, Ptotal denotes the total number of protein domains 

belonging to each class, Prandom denotes randomly and uniquely selected protein domains, Ptest denotes 

protein domains in test dataset, Ptrain denotes protein domains in train dataset.  

Table 2. Different SCOPe Classes and Randomly Selected Subsets of SCOPe. 

Class Description Ptotal Prandom (10%) Ptest Ptrain 

a All alpha proteins 2423 242 143 2280 

b 
All beta proteins 

2673 267 141 2532 

c 
Alpha and beta proteins (a/b) 

3952 395 157 3795 

d 
Alpha and beta proteins (a+b) 

3329 333 189 3140 

e 
Multi-domain proteins (alpha and beta) 

248 124 49 199 

g 
Small proteins 

667 67 53 613 

Class all (Total) 13292 1428 732 12559 

Feature Extraction 

PSI-BLAST Alignments 

Protein sequence profile search methods have been used as one of the important steps in many 

bioinformatics studies from past to present. One of the most used and best known of these methods is the 

BLAST, which contains a set of programs that are used to detect sequence similarities in protein and DNA 

databases. The PSI-BLAST program is significantly more sensitive than BLAST, but each iteration takes a 

little more time to run and can be considered as an iterative version of the BLAST [30] algorithm. Many 

methods developed for PSSP have used the PSSM (Position-Specific Scoring Matrix) [31] which represents 

the homology information associated with its aligned sequences, which is used as the input feature for 

prediction [3]. PSI-BLAST can be downloaded from ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/. 

PSI-BLAST [30] takes an amino acid sequence of a query protein as input and compares it to a protein 

database. For this purpose, in this study, we have used PSI-BLAST to obtain profile matrices (i.e. position 

specific scoring matrix called PSSM) for each protein sequence in the SCOPe dataset. First, we have 

executed PSI-BLAST version 2.3.0+ with the following parameters: number of iterations=3, e-value 

threshold=10, inclusion threshold=0.001 and the number of threads=16. Using the PSI-BLAST program, we 

have searched the non-redundant sequence database NR from the National Center for Biotechnology 

Information (NCBI). PSI-BLAST produces a text-based alignment file and an Nx20 PSSM for each protein 

domain in the SCOPe dataset. The scores in each PSSM are then normalized to interval [0,1] by applying a 

sigmoidal transformation (i.e. by passing the score through a sigmoid function and retrieving the output 

score). 

 

 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/
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HHblits Alignments 

HH-suite, which is a free, open source software suit, is often used for highly sensitive sequence searching 

and protein structure prediction. HH-suite contains HHsearch and HHblits, which is an accelerated version 

of HHsearch. HHBlits converts the query sequence to an HMM and iteratively searches through standard 

HHblits databases such as UniProt20, NR20, and uniclust30. Compared to PSI-BLAST, HHblits is faster [32], 

[33]. An HMM-profile can model protein sequences, which can be used as input features for the purpose of 

protein structure prediction [33], [34]. The latest version of HH-suite is available 

at https://github.com/soedinglab/hh-suite. 

We have used HHblits (from HHsuite 2.0.16) to construct the alignments. We have aligned the SCOPe 

test proteins to the NR20 database (which is a subset of the NR database filtered using a 20% sequence 

identity threshold) and have generated HMM-profile models (first step), which are then aligned to the HMM-

profile models in the PDB99 database (second step).  

Generating Structural Profile Matrices 

Structural profile matrices (SPMs) with .struct extension were obtained for each protein domain in the 

dataset using files with .hhr extension obtained using the HH-suite program. Figure 3 shows a section of an 

example SPM. Each row in an SPM contains three scores (values from 0 to 1) that represent the tendency 

of each amino acid of the target to be in one of the 3-state secondary structure classes. The sum of the 

scores in each row is 1. The size of an SPM generated for secondary structure prediction is N x 3, where U 

is the number of amino acids in the target protein and each column represents one of the three secondary 

structure states: H = helix, E = beta-strand, L = loop. 

 

Figure 3. A subsection of an SPM. 

Prediction Method 

In this study, the PSSP was made with the DSPRED [35], [36] method. The name DSPRED is short for 

DBN SVM predictor. The letter D stands for the Dynamic Bayesian Networks (DBN), and the letter S stands 

for the Support Vector Machine (SVM). DSPRED method is available at: 

https://github.com/yusufzaferaydin/dspred and the web server version is available at http://psp.agu.edu.tr. 

 DSPRED is a two-stage hybrid method, the first stage of which contains DBN classifiers and the second 

stage contains an SVM. In the DBN stage, a separate DBN model is trained for PSI-BLAST and HHMAKE 

PSSMs, see Figure 4. Using the previously generated profile matrices for each class in the SCOPe dataset, 

the Dynamic Bayesian Networks were trained and predicted probability score distributions 1-2 which the 

prediction results from this stage are combined with an SPM obtained from the second stage of the HHBlits 

method to compute distribution 3. In the next step, the PSSM features and all three distributions are forwarded 

as input to an SVM. The datasets were divided into training and testing sets as explained in Section Feature 

Extraction and summarized in Table 2. This includes assigning (i.e. splitting) proteins to train and test sets. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
https://github.com/soedinglab/hh-suite
https://github.com/yusufzaferaydin/dspred
http://psp.agu.edu.tr/
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After this assignment is made, input feature sets (2D arrays with rows representing amino acids and columns 

denoting features) and output labels of the amino acids are formed for train and test sets of the SVM classifier. 

For this purpose, a two-fold cross-validation is performed on each train set to compute the probability 

distributions 1-3 of the DBN step (Figure 4), which are used to form feature set of the SVM model for train 

set proteins when combined with the PSSM features (Figure 4). In the next step, DBN models are trained on 

the full train set and distributions 1-3 are obtained for the corresponding test set, which are combined with 

the PSSM features to form the feature set of the SVM model for test set proteins. A symmetric window of 

size 11 is taken around each amino acid and the corresponding feature vectors coming from PSSMs and 

distributions 1-3 are concatenated to form the feature set of a given amino acid. Once the input features and 

output labels for the train and test sets of the SVM model are formed, model training is performed on each 

train set and predictions are computed on the corresponding test set of the SVM. A separate train set/test 

set pair is formed for each SCOP class tabulated in Table 2.  

The DBN models are implemented using the graphical models toolkit (GMTK) [37] and the SVM classifier 

is implemented using the libSVM [38] (version 3.21) and ThunderSVM software [39], which is the GPU 

accelerated version of libSVM. To be more specific, for the all category in Table 2, SVM model is trained 

using ThunderSVM (since the all class category contains the largest train set) and for the remaining SCOP 

classes libSVM is used. The reason for this choice is because although SVM is a powerful classifier, it is not 

suitable for large datasets due to quadratic optimization involved in model training. Since the training dataset 

for the all category in Table 2 is large, ThunderSVM is used for this dataset (and also for the corresponding 

test set) on a high performance computing (HPC) system. ThunderSVM can use the high-performance of 

Graphics Processing Units (GPUs) or multi-core CPUs [39]. It performs acceleration by parallelizing the 

kernel computation step of SVM. 

As a widely-used choice for small to moderate feature set sizes [40], we used the RBF kernel in our SVM 

model with hyper-parameters set to C=1.0 and α = 0.00781. 

 

Figure 4. Overall pipeline of our DSPRED method. 

System Architecture 

The CPU-based calculations (i.e. DSPRED with libSVM and PSIPRED) are run on a Centos Enterprise 

Linux 7.3 OS, with an 2x Intel Xeon i5-2690 (16 cores 32 threads in total) CPU and 256 GB 1600MHz ECC 

RAM as well as on Ubuntu 16.04.2 LTS (Xenial Xerus) OS, with an 32 CPUs, 2 sockets, 8 cores per socket, 

2 threads per core, 2 nodes, CPU model Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz, and 64 GBs of RAM. 

The GPU-based calculations (i.e. DSPRED with ThunderSVM) are run on NVIDIA DGX-1 Tesla V100 with 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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128 GB GPU RAM, Dual 20-core Intel® Xeon® E5-2698 v4 2.2 GHz CPU, 40960 CUDA cores, and 5120 

Tensor cores.  

RESULTS  

Throughout this section, first, the evaluation metrics used in this study are described. Second, the 

experimental results obtained are presented in graphical form. Detailed version of all results including the 

confusion matrices can be found in Supplementary Section S1. Third, the current study is compared with the 

existing state-of-the-art studies that used the SCOPe database. 

Evaluation Criteria 

As evaluation metrics, in addition to overall accuracy of Q3 [41] and Segment Overlap Measure (SOV) 

[42], class-specific recall, precision and Matthew’s Correlation Coefficient (MCC) [43] measures as well as 

the confusion matrix are also used to assess the performance of the models. The overall accuracy (i.e. Q3) 

refers to the ratio of accurate predictions to all predictions (i.e. the sum of all amino acids in test set). The 

recall value is calculated for each class type as the number of the structural labels estimated correctly divided 

by the total number of actual structural labels belonging to that class type. For example, the recall for helix 

class is the number of correctly predicted helices divided by the number of actual helices. Precision is also 

calculated separately for each class type as the number of structural labels estimated correctly divided by 

the total number of predictions for that class type. SOV is a segment-based evaluation criterion used 

especially for protein secondary structure prediction. Although the ranking of the prediction methods based 

on SOV scores is similar to Q3, SOV is a more sensitive and realistic assessment method in terms of 

prediction quality [42], [44] and typically takes lower values as compared to the residue-based Q3 measure 

due to the fact that the accuracy is computed at segment level, which is more stringent than a residue-based 

evaluation. The Matthews correlation coefficient is a measure of quality of binary classifications. It is a 

correlation coefficient between the observed and predicted binary classifications [45]. In this work, MCC is 

computed for each class-type separately in a one-versus-rest setting. Confusion matrix contains number of 

correct predictions and errors for different secondary structure labels.  

Prediction accuracy of DSPRED for SCOPe classes and comparison to PSIPRED 

In this section, the prediction performance of DSPRED is compared to PSIPRED [46], which is one of 

the popular secondary structure prediction methods. DSPRED is trained and tested separately for each of 

the SCOPe classes given in Table 2. For example, for SCOPe class “a”, the training and test sets of DSPRED 

included proteins belonging to this SCOPe class only. Secondary structure predictions for the test sets of 

different SCOPe class categories in Table 2 are computed using the stand-alone version of PSIPRED version 

4.02 without performing any additional model training (since the trainable version of PSIPRED is not available 

for download). Table 3 includes the overall Q3 accuracy and SOV metrics of DSPRED and PSIPRED for 

various SCOPe classes. Other metrics such as precision, recall, MCC, and confusion matrices that contain 

various types of errors between different secondary structure labels are included in Supplementary Section 

S2. Based on these results, even if the stand-alone version of PSIPRED is used (allowing overlaps between 

the test sets and the train set of PSIPRED), our method DSPRED performs better than PSIPRED except for 

the SOV measure for the all class. Although both methods are two-stage approaches, the reason for having 

a better performance using DSPRED can be mainly associated with the use of HHMAKE PSSM and structural 

profile matrices derived by HHblits as input features. The overall Q3 accuracy of DSPRED reached to 82.36% 

and the SOV accuracy to 72.55%. The highest Q3 accuracy of 87.30% is obtained for Class a and the lowest 

Q3 accuracy of 78.10% for Class g. Figure 5 shows the distribution of the protein-level accuracies for 

DSPRED for the SCOPe all class. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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Figure 5. Distribution of the protein-level accuracies for DSPRED for the SCOPe all class 

 

Table 3. A comparison between the overall Q3 accuracy and SOV metrics of DSPRED and PSIPRED. 

  DSPRED (This work) PSIPRED 

Class Description Q3 SOV Q3 SOV 

a All alpha proteins 87.3 82.2 85.2 80.22 

b 
All beta proteins 

80.39 73.95 78.02 72.85 

c 
Alpha and beta proteins 

(a/b) 
85.08 81.72 81.92 78.74 

d 
Alpha and beta proteins (a+b) 

83.34 78.89 80.1 76.46 

e 
Multi-domain proteins (alpha 

and beta) 
80.5 74.01 78.9 72.78 

g 
Small proteins 

78.1 66.63 71.92 62.59 

Class all (Total) 82.36 72.55 80.72 76.27 

 

 

 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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DISCUSSIONS  

Estimating SCOP class for PSSP 

In order to use the versions of DSPRED trained using proteins that belong to specific SCOP classes 

only, it is necessary to know the SCOP class of the target protein, which may not be available in general. In 

our experiments with the individual SCOP classes (i.e. categories a to g) we assumed that this information is 

available. If the structural class information is not available then we can perform prediction by DSPRED 

trained using a large dataset that includes proteins from all SCOP classes. This is performed in the seventh 

train-test experiment for the all category. As an alternative, it may be possible to estimate the SCOP class of 

the target protein using various techniques and use the model that is trained with proteins belonging to that 

particular SCOP class only to make predictions. One technique to estimate the SCOP class could be to 

perform alignment with HMM-profiles of SCOP proteins using HHblits and taking a majority voting of the 

SCOP classes of the hit proteins in top scoring alignments. There are also other techniques in the literature 

to estimate the SCOP class of a protein, which can be used to select the DSPRED version trained using the 

appropriate SCOP class only. For instance, it can be possible to use chemical shift information from nuclear 

magnetic resonance experiments (when available) to predict structural class as well as secondary structure 

of proteins. We leave exploring these directions as a future work, which may help us to develop our prediction 

method further.  

Structural variability 

In this paper, we framed secondary structure prediction as a single-label classification problem, which 

assumes that there can be one true label only for each amino acid (i.e. one true fold for a protein sequence). 

These labels were derived using the DSSP program. However, it is known in the literature that protein 

structures can be dynamic and can assume multiple folding states. Furthermore, there is no single definition 

for assigning secondary structure labels starting from a single 3D coordinate file and as a result multiple 

secondary structure assignment programs have been developed such as DSSP, STRIDE, and DEFINE. 

These factors may cause the protein to have multiple secondary structure state sequences. In order to 

capture such variations, a better approach could be to develop and train a multi-label prediction model, which 

allows one to assign multiple secondary structure labels to each amino acid. For this purpose, the true labels 

of secondary structure can be derived using different assignment programs such as DSSP, STRIDE, and 

DEFINE. Although a multi-label version of DSPRED may not be developed in a straightforward manner, 

alternative approaches can be followed such as training separate DSPRED versions for each of the label 

assignments made by DSSP, STRIDE and DEFINE and computing separate predictions for these 

assignments. Then the accuracy can be computed in a multi-label setting. Alternatively, deep neural networks 

can be trained in a multi-label and a multi-class setting allowing each amino acid to have multiple class labels.  

In the present study, the HMM-profiles of target proteins are aligned with HMM-profiles of proteins in 

PDB99 database using HHblits. The PDB99 database contains more than thirty thousand proteins, which 

can be considered as large but is derived as a non-redundant version of the PDB database by eliminating 

protein pairs with more than 99% sequence identity. As a result, it does not include all proteins in PDB, where 

a limited number of structures may be kept representing each protein family. This may be a limiting factor for 

capturing the structural variations of the target proteins (e.g. those caused by mutations). It is known that 

even single mutations may have large impacts on the folding of proteins. Therefore in order to increase the 

variability of the structure database used for HHblits, PDB99 can be further extended to include more PDB 

proteins. This may allow us to have more relevant hits per target protein and results in better PSSM and 

better structural profile matrix computation. 

CONCLUSIONS 

In this paper, we have presented a hybrid method for PSSP based on machine learning methods trained 

and tested by using SCOPe datasets. We showed that our method outperformed PSIPRED on SCOPe test 

datasets. In addition to the extensions mentioned in discussion section for future studies, combining different 

structural profile matrices with deep learning methods can also be considered in the future and better results 

can be obtained for further improving the performance.  
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