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Abstract
Feedback algorithms can be efficiently applied to con-

trol the basic characteristics of quantum batteries (QBs):
the ergotropy, the charging power, the storage capacity
and others. We invent here two alternative approaches,
target repeller and speed gradient feedback, to maximize
the ergotropy for bosonic types of single-qubit based
quantum batteries. We demonstrate the achievability of
the control goal and discuss some pros and cons of both
proposed algorithms.
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1 Introduction
Quantum Battery (QB) is a quantum device for the ef-

ficient storage of energy and its transfer to consumption
centers. Quantum batteries have different physical real-
izations (Dicke QB, spin QB, harmonic oscillator QB),
and they vary with their basic characteristics, such as the
ergotropy, the charging power, the storage capacity and
others [Kamin et al., 2020].

The optimization of the working process in QBs de-
mands the application of control methods driving the ba-
sic characteristics of the quantum battery itself and its
charger. Feedback algorithms can be based on different
approaches: Kolesnikov’s target attractor and Fradkov’s
speed gradient (SG), and they both can be successfully
invented for different configurations of the QB–charger
system.

The basic idea to maximize an energy-based target

function via speed gradient approach has been pro-
posed in [Fradkov, 2000], and it was discussed in de-
tails in [Fradkov, 2007], including the evaluation of
the excitability index for the mechanical oscillators (see
Ch.4). SG control over the energy works successfully
for the case of quantum systems [Borisenok, Fradkov,
Proskurnikov, 2010]. Target atractor feedback has been
applied to the control over the performance of qubit-
based sensors [Borisenok, 2018].

Here we compare two alternative algorithms for the
control over the basic working characteristics of a
bosonic quantum battery. We invent them in the forms
of target repeller feedback and speed gradient feedback,
and then find the control field to drive the egrotropy of
single-qubit QB.

2 Mathematical Model for Bosonic Quantum Bat-
tery

We study here the particular type of QB: bosonic quan-
tum battery based on a single qubit. The charger A
for such a battery B is implemented via the field which
controls over pumping the energy into the battery. Our
model covers also the energy decay due to the coupling
of the charger/QB system with the environment.

2.1 Model Hamiltonian
Let’s consider a model quantum system consisting of

two parts: the charger A and the battery B with the cor-
responding Hamiltonians HA and HB . Both Hamilto-
nian terms have a zero ground-state energy. Apart from
that there is the Hamiltonian component H1 coupling
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the charger A and the battery B together [Ferraro et al.,
2018]:

H(t) = HA +HB + u(t)H1 , (1)

where u(t) is a time-dependent coupling parameter play-
ing a role of the control signal.

The charger A is described with the pair of the
creation-annihilation operators a+, a; and the bosonic
harmonic oscillator battery B is composed by N non-
mutually interacting elements marked with the index k,
with the corresponding creation-annihilation operators
b+k , bk; such that the model Hamiltonian (1) is given by:

HA = ω0a
+a ;

HB = ω0

∑
k

b+k bk ; (2)

H1 = g
∑
k

(
ab+k a

+bk
)
,

with the positive constants ω0 and g; the Planck constant
~ = 1.

For simplicity we discuss here a single-qubit based
quantum battery in the form of quantum oscillator. To
cover the effects of the interaction between the battery
and the environment, we consider also the system (2)
to be placed in a Markovian bath, such that its density
matrix ρ is described with the Lindblad-type operator
[Pechen, 2011]:

dρ

dt
= −i

[
H0 + u(t)Q̂, ρ

]
+ L̂[ρ] , (3)

with

H0 =

(
ω0 +

1

2

)
b+b ;

Q̂ =
b+ + b√

2ω0
; (4)

P̂ = i

√
ω0

2
(b+ − b) ,

and

L̂[ρ] = γ (n(t) + 1)
(
2bρb+ − ρb+b− b+bρ

)
+

+γn(t)
(
2b+ρb− bb+ρ− ρbb+

)
. (5)

The model (3)-(5) covers a decay due to the interaction
of QB with the environment, and for that reason it pos-
sesses one extra control parameter n(t). The positive
constant γ stands for the rate of this decay.

2.2 Quasi-Classical Representation
To apply the control algorithms based on the differ-

entiable functions the quantum model (3)-(5) can be re-
formulated in the quasi-classical form as a set of real
ordinary differential equations.

To do that we define the functions:

E(t) = Tr(H0ρ) ;

Q(t) = Tr(Q̂ρ) ; (6)
P (t) = Tr(P̂ρ) .

By (6) the system (3)–(5) can be re-written as
[Borisenok, 2020-1]:

Ė(t) = 2γ (ω0n(t)− E(t))− u(t)P (t);

Q̇(t) = P (t)− γQ(t); (7)
Ṗ (t) = −ω2

0Q(t)− γP (t)− u(t) .

Thus, our finalized model for the driven bosonic QB
involves three ODEs for the real functions: E(t), P (t)
and Q(t), and two control parameters: u(t) and n(t).

2.3 Ergotropy
The energy storage of quantum battery depends on the

reference Hamiltonian H with the finite Hilbert space
of the battery system. The difference between the use-
ful energy exacted from QB in the state ρ and its ener-
getically lowest accessible state σρ defines its ergotropy
[Francisca et al., 2017]:

W = Tr(ρH)− Tr(σρH) . (8)

In our model (7) the ergotropy could be found by (8)
as:

W (t) = E(t)− E0 , (9)

where E0 is the energy of the lowest accessible passive
battery state.

3 Repelling Feedback Control Algorithms
There are few alternative approaches to perform an ef-

ficient feedback control over the ergotropy (9). Let’s fo-
cus on two the most popular ones.

The first scheme is represented with the Kolesnikov’s
’synergetic’ control [Kolesnikov, 2012]. We need to de-
fine a goal function which serves to design in the dynam-
ical system a target attractor locking the phase space tra-
jectories in its neighborhood. That means that the trajec-
tories converge exponentially fast to the target attractor
phase space subset. The existence of such target attrac-
tor demands the permanent pumping of the energy to the
dynamical system.

The alternative form is based on the family of gradi-
ent algorithms, for example, on Fradkov’s speed gradient
[Fradkov, 2007]. In this approach a goal function should
be a differential non-negative function to drive the dy-
namical system toward its minimization. Fradkov’s al-
gorithm creates in the system a sort of ’target friction’
which provides the maximum decay of the dynamical
trajectories in the neighborhood of the control goal. As
soon as the goal is achieved, Fradkov’s control is off.

Very recently we invented a modification of
Kolesnikov’s control based on designing a target
repeller in the system of small neuron population
[Borisenok, 2020-2]. Here we extend our approach to
the case of bosonic QB and, alternatively, propose a
similar gradient algorithm based on Fradkov’s control.
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3.1 Target Repeller Feedback
The Target Repeller Feedback (TRF) approach creates

in the system (7) a dynamical target repeller driving the
trajectories in the phase space far away from the cer-
tain space sub-set [Borisenok, 2020-2]. Here we apply it
for the ergotropy (9) to maximize exponentially fast the
function W :

Ẇ (t) =
W (t)

T1
. (10)

For the system (7) we use two control parameters, for
that reason we need two control equations: one for the
functionE(t) via TRF equation (10), and another for the
function P (t) in the form of Kolesnikov’s target attractor
algorithm [Kolesnikov, 2012]:

Ė(t) =
E(t)− E0

T1
;

Ṗ (t) = −P (t)− P∗

T2
. (11)

Here T1 and T2 are positive constants, P∗ stands for the
target stabilization P (t).

Eqs (11) have the solution with the exponential behav-
ior:

E(t) = (E(0)− E0) et/T1 + E0 ;

Ṗ (t) = P (0)e−t/T2 + P∗

(
1− e−t/T2

)
. (12)

By the substitution of (11) into Eqs (7) we can restore
the control signals:

n(t) =
1

2γω0

[
E(t)− E0

T1
+ 2γE(t) + u(t)P (t)

]
;

u(t) =
P (t)− P∗

T2
− γP (t)− ω2

0Q(t) . (13)

The functions (13) provide the exponential achievabil-
ity of the control goal, i.e. the maximization of the er-
gotropy (9).

To analyze shortly the achievability of the control goal,
let’s study the case of a week coupling between the sys-
tem and the environment: γ → 0. Suppose that as
t → ∞ (t >> T2): P (t) → P∗. Under these condi-
tions the system (7) could be simplified. Let’s assume
also that the magnitude of the control field u(t) is lim-
ited: |u(t)| ≤ umax. Then we can evaluate: Q(t) ' P∗t
and u(t) ' −ω0P∗t. It applies the limit for the time:

tmax =
umax
ω0P∗

. (14)

By that we end up with the time evaluation for the er-
gotropy:

W (t) ' −T1P∗u(t) = T1P
2
∗ω0t , (15)

such that by (14) finally we get:

Wmax = T1P∗umax . (16)

Due ti its RHS Eq.(16) does nor growth infinitely.
Thus, in the frame of the given model the value of

the ergotropy W as a result of TRF cannot increase in-
finitely; its upper limit is constrained with the upper limit
of the control signal u.

3.2 Speed Gradient Feedback
Now let’s develop the control via the speed gradient

approach based on Fradkov’s feedback. To do that, we
define a non-negative function of the control goal in the
form:

G(t) =
W 2(t)

2
=

(E(t)− E0)2

2
. (17)

This goal (17) should drive the system far away from
the lowest accessible energy E0 of QB to increase its
ergotropy W .

Then, following Fradkov’s approach [Fradkov, 2007],
we get the control anti-gradient signals:

n(t) = Γn
∂Ġ(t)

∂n
;

u(t) = Γu
∂Ġ(t)

∂u
. (18)

with constant positive Γn, Γu. Correspondingly, they
become:

n(t) = 2γω0Γn (E(t)− E0) ;

u(t) = −Γu (E(t)− E0)P (t) . (19)

By (19) Eqs (7) could be re-written as:

Ẇ (t) =
[
ΓuP

2(t)− 2γ + 4γ2ω2
0Γn

]
W (t)− 2γE0;

Q̇(t) = P (t)− γQ(t); (20)
Ṗ (t) = −ω2

0Q(t)− γP (t) + Γu (E(t)− E0)P (t) ,

The control system (20) provides the maximization of
the ergotropy (9). Particularly, we can study the achiev-
ability of the control goal (19) as γ → 0. For Γu >> ω0

we get:

P (t) '

√
c1ec1t

Γu (c2 − ec1t)
;

W (t) ' c1c2
2Γu (c2 − ec1t)

, (21)

with the constants based on the initial conditions:

c1 = Γu[2W (0)− P 2(0)] ;

c2 =
2W (0)

P (0)
. (22)
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If the upper limit for the control signal magnitude is
umax, then:

|u| = |ΓuWP | ≤ umax (23)

and

Wmax =
umax
ΓuP∗

. (24)

Again, the upper limit of the control signal bounds the
maximal ergotropy.

4 Conclusions and Discussions
The control algorithms proposed here have few distinct

features:
– They are universal and do not depend on the initial

conditions of the dynamical variables.
– They are robust and stable under the perturbation

of the initial conditions and the relatively small external
noise.

– They can be easily extended for a multi-qubit model.
The proposed approach could be applied also for dif-

ferent physical realizations of quantum batteries: Dicke
QB, spin QB; and for all working stages of the quan-
tum battery: charging, long time storage and the energy
transfer to a consumption center or engine.

The construction of the repeller in the dynamical sys-
tem seems to be natural in the frame of Kolesnikov’s al-
gorithm. From another hand, the definition of the dy-
namical attractor via the negative feedback loop could
be also performed in the frame of any optimal or sub-
optimal approaches: Pontryagin’s optimal control, Frad-
kov’s speed gradient, and others.

The choice of the particular feedback form depends
on the practical conditions. In general, the gradient-
based algorithms are less energy-consuming, which is
extremely important for the energy-storing quantum de-
vices. Also such algorithms could be easily computed
in the real time regime. From another side, the gradient-
based approaches are less accurate in the achievement of
the goal to compare with target attractor / repeller feed-
back. Thus, the basic criteria for the choice should be:
the computational time cost and the cost of the energy
that we need to pump into the system to support the con-
trol dynamics. Pros and cons of different alternative ap-
proaches will be a matter of our following research.
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