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ABSTRACT 

DEVELOPMENT OF CONTROL STRATEGIES IN SMART 

MICROGRIDS  

 

Yeliz YOLDAŞ 

Ph.D. in Electrical and Computer Engineering 

Advisor: Assoc. Prof. Ahmet ÖNEN  

September 2021 

 

 

This thesis concerns the transformation of aged power systems to modern power 

systems that include microgrids with renewable energy sources and energy storage 

systems. The integration of renewable energy sources brings excellent opportunities to 

provide better reliability and efficiency. The aim of this dissertation is to maintain the 

supply-demand balance in microgrids while minimizing the cost in real time operation. 

A microgrid energy management system that can optimize the dispatch of the controllable 

distributed energy resources in grid-connected mode of a pilot microgrid on a university 

campus in Malta was developed to achieve this goal. Designing intelligent method for the 

real-time energy management of the stochastic and dynamic microgrid is the primary goal 

of this research. Moreover, the detailed mathematical models of the network model and 

of the technical model are considered for the economic and environmental operation of 

the microgrid system to solve the optimization problem under more real-world conditions. 

The objective is to minimize the total daily operation costs, which include the degradation 

cost of batteries, the cost of energy bought from the main grid, the fuel cost of the diesel 

generator, and the emission cost. Q-learning algorithm is adopted to solve the sequential 

decision subproblems. The proposed algorithm decomposes a multi-stage mixed-integer 

nonlinear programming (MINLP) problem into a series of single-stage problems so that 

each subproblem can be solved using Bellman’s equation. A predictive control 

framework is also proposed to provide optimal operation with minimum cost. This 

method allows the consideration of operational cost values, demand with uncertainty, 

generation units’ profiles with uncertainty, and constraints related to the network model 

and technical model.  

 

Keywords: Microgrid, Rolling horizon control, Reinforcement learning, Energy 

management 
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ÖZET 

AKILLI MİKRO-ŞEBEKELERDE KONTROL 

STRATEJİLERİNİN GELİŞTİRİLMESİ  

 

Yeliz YOLDAŞ 

 Elektrik ve Bilgisayar Mühendisliği Anabilim Dalı Doktora 

Tez Yöneticisi:  Doç. Dr. Ahmet ÖNEN 

Eylül-2021 

 

Bu tez, eskimiş güç sistemlerinin yenilenebilir enerji kaynakları ve enerji depolama 

sistemleri ile mikro şebekeleri içeren modern güç sistemlerine dönüşümü ile ilgilidir. 

Yenilenebilir enerji kaynaklarının belirsizliği ve kesintili doğası, elektrik şebekesinin 

istikrarını ve kalitesini düşürebilir. Bu nedenle, bu tezin amacı, gerçek zamanlı çalışmada 

minimum maliyetle mikro şebekede arz-talep dengesini sağlamaktır. Bu amaca ulaşmak 

için Malta'daki bir üniversite kampüsünde pilot bir şebekeye bağlı mikro şebekenin 

kontrol edilebilir dağıtık enerji kaynaklarının çıkışlarını optimize edebilen enerji yönetim 

sistemi geliştirilmiştir.. 

Stokastik ve dinamik mikro şebekenin gerçek zamanlı enerji yönetimi için akıllı 

sistem tasarlamak, birincil hedefe ulaşmanın en önemli parçasıdır. Ayrıca, optimizasyon 

problemini daha gerçek dünya koşullarında çözmek için mikro şebeke sisteminin 

ekonomik ve çevresel çalışması için şebeke modelinin ve teknik modelin ayrıntılı 

matematiksel modelleri düşünülmüştür. Buradaki optimizasyon problemindeki amaç, 

bataryanın degradasyon maliyetini, ana şebekeden satın alınan enerjinin maliyetini, dizel 

jeneratörün yakıt maliyetini ve emisyon maliyetini kapsayan toplam günlük işletme 

maliyetlerini en aza indirmektir. Sıralı karar alt problemlerini çözmek için Q-öğrenme 

algoritması kullanılmıştır. Önerilen algoritma, çok aşamalı Tamsayılı Karışık Doğrusal 

Olmayan Programlama (TKDOP) problemini tek aşamalı probleme serisine ayrıştırır, 

böylece her bir alt problem Bellman denklemi kullanılarak çözülebilir.  

Ayrıca, minimum maliyetle optimum çalışmayı sağlamak için bir öngörülü kontrol 

metot önerilmiştir. Bu yöntem; işletme maliyet değerlerini, değişkenlik gösteren talebi, 

belirsizlik içeren üretim elemanlarının profillerini ve şebeke & teknik model ile ilgili 

kısıtlamaların dikkate alınmasını sağlamaktadır. 

Anahtar kelimeler: Mikro şebeke, Yuvarlanan ufuk kontrolü, Pekiştirmeli öğrenme, 

Enerji yönetimi 
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Chapter 1 

Introduction 

The demand for electricity has been exponentially increasing over the past several 

generations as humanity moves into a more technological world. According to the 

Electricity Information Overview 2020 report, the world gross electricity generation 

reached 26,730 TWh, 3.9% above the 2017 figure. Figure 1.1 compares the period 

between 1974 and 2018, with an average annual growth rate of 3.3%. Based on the same 

growth rate of 3.3%, it should also be pointed out that the world electricity final 

consumption increased from 5000 TWh to 22,315 TWh between 1974 and 2018, as shown 

in Figure 1.2 below. In 2018, consumption was 4.0% higher than in 2017 [1]. 

 

Figure 1.1 Total gross electricity production, 1974-2018 [1] 
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Figure 1.2 World electricity final consumption, by sector, 1974-2018 [1]  

From Figure 1.3 below, it can be observed that electricity generation from coal (the 

top fuel in 2018 by far) constituted 38% of the total electricity generation. Renewable 

sources (including hydro, wind, solar, geothermal, biofuels, tidal and other sources) 

become the second fuel used for electricity generation, at 26% in 2018. Natural gas took 

third place, with 23% of the world gross electricity production in 2018.  It can thus be 

inferred that 63.9% of electricity production was provided from fossil fuels in 2018 [2]. 

 

Figure 1.3 World electricity generation mix 1971-2018 [2] 
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Since more than half of the electricity generation has been provided by fossil fuels 

(according to Figure 1.4), the energy-based greenhouse gas (GHG) emission increased 

from 20.5 GtCO2 to 33.3 GtCo2 between 1900 and 2019. This rapid increase in energy-

related emissions, which rose by approximately 2.5 times between 1990 and 2019, was 

mostly due to the energy consumption of countries other than countries with advanced 

economies [3].  

 

 

 

Figure 1.4 Energy related CO2 emissions, 1990-2019 [3] 

With the increase of GHG emission, climate change has become an increasing 

threat to electricity systems and directly affects every segment of the electricity network. 

Rising global temperatures and the escalation of extreme weather events can cause 

decreased efficiency in generation, transmission, and distribution systems and can also 

affect demand for cooling and heating. Table 1.1 below presents an overview of the major 

potential impacts on the electricity system caused by climate change [4]. 
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Table 1.1 Overview of main potential impacts on the electricity system due to climate 

change [4] 

Climate impact Generation Transmission and distribution Demand 

Rising global 

temperatures 

• Efficiency 

• Cooling efficiency 

• Generation potential 

• Need for additional 

generation 

• Efficiency  • Cooling and heating 

Changing precipitation 

patterns 

• Output and potential  

• Peak and variability 

• Technology application 

• Physical risks 
• Cooling 

• Water supply 

Sea-level rise 

• Output 

• Physical risks 

• New asset development 

• Physical risks 

• New asset development 
• Water supply 

Extreme weather events 
• Physical risks 

• Efficiency 

• Physical risks 

• Efficiency 
• Cooling 

 

Clean energy transition is needed to combat the effects of climate change. Variable 

renewable energy sources (like wind and PVs) have become among the fastest growing 

and cheapest electricity resources in the world. Thanks to falling costs, variable renewable 

energy technologies are seen as the heart of the transformation from conventional forms 

of power generation to clean energy sources. The deployment and development of clean 

energy technologies is crucial to reduce carbon emissions and other pollutants caused by 

energy use, and also to contribute to economic development. As shown in the Figure 1.5 

below, renewable energy sources are the second largest contributor to world energy 

production, at 25.2% in 2018 [5]. Looking at the annual capacity increase by technology 

between 2000 and 2018, it can be seen that the increase in capacity is gradually increasing. 

Net renewable capacity additions reached to 178 GW in 2018, of which around 85% was 

made by variable renewable energy sources as given in Figure 1.6 [6]. According to the 

IEA Stated Policies Scenario [7], low-carbon sources will provide more than half of total 

electricity generation by 2040. Moreover, the average annual share of variable renewables 

in total generation will reach 45% by 2040. 

With the rapid growth of renewable energy, power system transformation is 

inevitable. Because variable renewable energy sources have different technical 

characteristics such as limited controllability and intermittent nature than conventional 

technologies, their integration into the power system poses new challenges. 
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Figure 1.5 Fuel shares of world electricity production, 2018 [5] 

 

 

 

Figure 1.6 Annual net capacity additions by technology [6] 

1.1 Research Motivation and Problem Statement 

The modern world has been faced with a crisis of unsustainable energy. Although 

the primary source of this crisis has been an increase of the global energy demand, other 

reasons have contributed as well, namely: a diminished availability of primary energy 

sources and the aging of traditional transmission and distribution networks. These factors, 

taken in conjunction with the impact of global warming, has sparked the search for 

innovation regarding traditional grid architectures. 



6 

 

One such solution in the modern world is Distributed Generation Sources (DGS) of 

electricity, as this technology is highly efficient, protects the environment, reduces the 

loss of transmission and distribution, and supports the local power grid to improve system 

stability. In addition to this, DGSs are able to integrate with existing renewable energy 

sources, including wind, hydro, photovoltaic, and more. However, applying distributed 

generators is not without its drawbacks, as it has been prone to cause as many problems 

as it addresses. Instead of DGS technology on its own, a more efficient method of 

implementing the benefits of this technology is to implement a system which recognizes 

generation and its associated loads as a subsystem. This is also known as a “microgrid.” 

One of the natural benefits of such microgrid (MG) technology is the ability to 

connect and/or disconnect from the grid whenever necessary. As such, microgrids provide 

improved reliability and offer a lower investment cost, and they are able to reduce 

emissions, improve the quality of power, and reduce the power losses of a distributed 

network. Despite the potential benefits, the development of microgrids suffers from 

several major challenges. One of the challenges is stability and reliability issues caused 

by the natural uncertainty of distributed energy resources (DERs). The management of 

the power system operation is quite complex because this instability and unreliability 

make it very difficult to maintain a balance between supply and demand of energy in real-

time operation. When integrating renewable energy sources (RESs) into the power 

systems, the complicated systems become even more complex, rendering the 

management of power systems including DERs a real challenge. It is crucial to have 

appropriate energy management in place for the success of such complicated power 

systems. A microgrid energy management system (EMS) plays a critical role in the 

economic, sustainable, and reliable operation by providing the optimal coordination 

between conventional energy resources, RESs, energy storage systems (ESSs), and 

consumers [3]. 

1.2 Research Objectives and Contributions 

The primary objective of this thesis is to develop a microgrid energy management 

system that can optimize the dispatch of the controllable distributed energy resources in 

a microgrid along the grid-connected mode of operation. Designing an intelligent method 

for the real-time energy management of the stochastic and dynamic microgrid is thus the 

primary goal. Moreover, the detailed mathematical model of the network is considered 
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for the economic and environmental operation of the microgrid system. Therefore, based 

on the objectives of this thesis, the main contribution of the research can be listed as 

follows: 

• A detailed mathematical model for the microgrid. The thesis has proposed a 

detailed mathematical model by taking into account the constraints of the network 

model and technical model to operate the microgrid effectively.  

• Design of an energy management system under stochastic and dynamic 

environment. The thesis has used an advanced control technique, rolling horizon 

control, to provide an online energy management system under a dynamic and 

stochastic environment. The proposed model is formulated as mixed integer linear 

programming (MILP). 

• Design of an intelligent energy management system.  The thesis has used 

machine learning algorithm to provide optimal operation, which includes a 

sequential decision-making process to overcome uncertainty in demand and 

overcome the problem arising from the integration of variable power generation 

units into the main grid. 

• This work provides minimum energy cost and minimum emission cost by 

balancing the energy sources and demand within the microgrid, considering 

optimization requirements and all the constraints of the diesel generator, battery, 

photovoltaic system, demand, and network. 

• Using reinforcement learning (RL).  This thesis has proposed a Mixed Integer 

Nonlinear Programming (MINLP) guided Q-learning algorithm for smart 

microgrid operation, which improves Q-learning based optimization performance 

with large state-space. 

1.3 Dissertation Outline 

The remainder of the thesis is organized as follows: 

Chapter 2: 

A comprehensive literature review of microgrid is provided in this chapter. It 

represents background and detailed technical overview of microgrid and smart grid. The 

microgrid architecture and functions, existing technical and regulation challenges, polices 

and opportunities are presented in this chapter. 
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Chapter 3: 

This chapter focuses on optimization-based control strategies for energy 

management systems in microgrids used in the literature.  Moreover, the algorithms used 

in this study are explained in detail. 

Chapter 4: 

This chapter provides a real-time energy management system with rolling horizon 

control under deterministic and stochastic conditions. Deterministic and stochastic case 

studies are defined and simulated. The results were compared with the MILP and myopic 

approach to display how it copes with randomness of PV generation and demand. 

Chapter 5: 

A MINLP guided Q-learning algorithm has been proposed for smart microgrid 

operation, which improves vanilla Q-learning based optimization performance with large 

state-space. The proposed algorithm decomposes a multi-stage MINLP problem into a 

series of single-stage problems so that each subproblem can be solved. The proposed 

model has implemented three case studies with different objectives. Moreover, each case 

is operated under different battery operation conditions to investigate the battery lifetime. 

Finally, performance comparisons are carried out with a conventional Q-learning 

algorithm. 

Chapter 6 

A summary of the main conclusions of this thesis are provided. Future works are 

given. 
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Chapter 2 

Enhancing smart grid with microgrids: 

Challenges and opportunities  

Modern electric power systems are going through a revolutionary change. This is caused 

by an increasing demand of electric power worldwide, developing political pressure and 

public awareness to reduce carbon emission, incorporating large scale renewable power 

penetration, and the blending of information and communication technologies with the 

operation of power systems. The result of these was the establishment of the microgrid 

concept, which has undergone major development and changes over the last decade, 

recently boosted by smart grid technologies. The objective of this chapter is to present a 

detailed technical overview of microgrid and smart grid in light of present developments 

and future trends. First, the architecture and functions of microgrid are discussed. 

Following that, the smart features of the microgrid are mentioned to demonstrate the 

recent architecture of smart grids. Finally, the existing technical challenges, 

communication features, policies and regulation are discussed from the perspective of 

visualizing the future smart grid architecture.  

2.1 Microgrid to smart grid 

Smart grids [8] greatly benefit the progress of electricity grids. According to The 

European Regulators Group for Electricity and Gas (ERGEG), based on the definition 

from the European Technology Platform Smart Grids (ETPS), a smart grid is an 

electricity network that can integrate the behavior and actions of all users connected to it 

– generators, consumers and those that do both – in order to ensure an economically 

efficient, sustainable power system with low losses and high levels of quality and security 

of supply and safety [9]. The concept of the smart grid model can be briefly explained 

under several domains, as shown in Figure 2.1. Smart grids are characterized by the 

following [10]: 
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• Self-healing 

• Consumer friendly 

• Resistant to physical and cyber attacks 

• Optimizes asset utilization 

• Eco-friendly 

• The use of robust two-way communications, advanced sensors and distributed 

computing technology 

• Improve the efficiency, reliability and safety of power delivery and use. 

 

 

Figure 2.1 Smart grid conceptual model 

 

Notwithstanding the many advantages, smart grid technology is faced with many 

obstacles. These include: bidirectional communication systems, integration to grids with 

renewable energy resources, ineffective utilization of the DGS, inadequate existing grid 

infrastructure, and storage. One of the methods to attain effective utilization of the DGS 

is to handle electricity generations, energy storages, and loads as a localized group [11]. 

Microgrids play a key role in the smart grid concept. These are pieces of the larger 

grid, which involve nearly all of components of the utility grid but are smaller in size. 

While smart grids take place at the larger utility level, such as large transmission and 

distribution lines, microgrids are smaller scale and can operate independently from the 

larger utility grid. 
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2.2 Architectural model of future smart grid 

Microgrids can be classified into three main groups, depending on the way in which 

the AC and DC buses are connected. The proposed classification is as follows: AC-

microgrids, DC-microgrids, and hybrid AC/DC microgrids. 

2.2.1 AC microgrids 

AC microgrids have a common AC bus which is generally connected to mixed loads 

(DC and AC loads), distributed generations, and energy storage devices. AC microgrids 

are easily integrated to conventional AC grids because most loads and the grid itself are 

AC. Therefore, it has more capacity, controllability, and flexibility. That said, DC loads, 

the DC sources, and energy storage devices are connected to the AC bus via the DC/AC 

inverter. This causes a significantly decrease in efficiency [12-13].  

2.2.2 DC microgrids 

In DC microgrids, a common DC bus is used to connect to the grid through an 

AC/DC converter. The operation principle of the DC microgrid is similar to the AC 

microgrid. Compared with AC microgrids, DC microgrids present a good solution to 

reduce the power conversion losses because they only need to convert power once 

connected to the DC bus. Therefore, DC microgrids have higher system efficiency, lower 

cost, and smaller system size. Moreover, DC microgrids are better compatible to 

integration of distributed energy resources (DERs) and offer better stability due to the 

absence of reactive power [14-15]. Different types of DC microgrids have been presented 

in the literature [12,16] (i.e. the monopolar, bipolar and homopolar type). 

2.2.3 Hybrid AC-DC microgrids 

Hybrid AC/DC microgrid is a combination of AC and DC microgrids in the same 

distribution grid. This type of microgrid facilitates the direct integration of both AC- and 

DC- based DGS, Energy Storage System (ESS), and loads and is shown in Figure 2.2. 

This architecture has advantages over both AC and DC microgrids, such as the minimum 

number of interface elements, higher reliability, easier integration of DERs, and the 

reduction of conversion stages, energy losses, and total costs. Moreover, when DGS, 
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loads and energy storage system (ESS) are directly connected either to the AC or DC 

networks, there is no need for synchronization of generation and storage units [17-18].  

 

 

Figure 2.2 A general structure for hybrid microgrid 

 

2.3 Functions of smart grid components 

2.3.1. Smart device interface components 

The elements that form a microgrid are described below: 

2.3.1.1 Distributed Generators 

Distributed generator units are the base of microgrids and located at or near the 

point of use. Two types of generation technologies can be implemented into microgrid 

systems: renewable resources (such as solar photovoltaics (PV), wind, small hydro power, 

ocean) and non-renewable resources (such as reciprocating engines, gas turbines, modern 

Combined Heat and Power (CHP)) [14,19]. 

Most of the distributed generator technologies require a power electronics interface 

in order to convert the energy into grid-compatible AC power. The power electronics 

interface contains the necessary circuitry to convert power from one form to another [20]. 

These converters may be a single-stage converter (DC-AC converter) or a double stage 

converter (DC-DC and DC-AC converter). The converter contains the necessary output 
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filters (L, LC, LCL, and LCL with damping resistor), connected in series with the 

converters improving harmonic performance at lower switching frequencies [21]. 

Distributed generation for a microgrid must be properly selected according to the 

characteristics and cost of the different technologies [13]. 

2.3.1.2 Energy storage devices 

Energy storage devices can be classified into three categories: electrochemical 

systems (batteries and flow batteries), kinetic energy storage systems (flywheel) and 

potential energy storage (pumped hydro and compresses air storage). In [22-23],  a 

detailed comparison of different energy storage devices can be found. Since pumped 

hydro storage and compressed air energy storage systems are large scale energy storage 

system, they are mostly used in the high power range for standard power systems, and 

hence, are not suitable for small-scale renewable energy systems [24]. 

Energy storage devices in microgrid applications may improve power imbalance, 

power quality, reliability and stability between loads and distributed generated resources 

output. More suitable energy storage devices can be determined according to the 

characteristic of loads and the distributed energy resources. Some key energy storage 

technologies available for MG applications are summarized as follows: 

• Batteries are one of the most used energy storage devices. They are classified as 

lead acid, nickel cadmium (Ni-Cd), nickel metal hydride (NiMh) and lithium-ion 

(Li-on) batteries. Lead acid batteries are suitable for storing energy for long 

periods of time although they have a relatively poor performance and limited cycle 

life (1200–1800 cycles). When Ni-Cd batteries are compared with lead acid 

batteries, Ni-Cd batteries have longer cycle life, higher energy densities, and 

lower maintenance. Still, it features a major hindrance in its high initial capital 

cost. NiMh batteries have more energy density than Ni-Cd batteries 

(approximately 25–30% more) with equivalent lifecycle as lead acid batteries. The 

highest energy density is found in Li-on batteries compared to lead acid, Ni-Cd, 

and NiMh batteries, but the investment cost and limited life cycle are the main 

drawbacks of Li-on batteries [24-25]. Reference [26] proposed that a battery 

storage system be integrated into solar PV systems to mitigate the negative 

impacts of PV integration. Analyses performed by Simulink and Homer have been 

done to assess different battery storage systems from a techno-economic point of 

view in [24]. 
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• Flywheel energy storage devices have long life cycles, as well as high energy and 

power density. Despite that, the drawback of flywheel energy storage is that they 

are inclined to have high friction losses. They can be used to mitigate the 

fluctuations in power generated by wind and solar systems [22]. Flywheel storage 

systems coupled with diesel generator are used in the studies of [27-28]to provide 

UPS service to the critical loads. 

• Supercapacitors (also known as ultracapacitors or electric double layer capacitors) 

are based on the characteristics of the capacitor and electrochemical batteries 

without a chemical process. The main difference between capacitors and 

supercapacitors is the use of a porous membrane which provides ion transfer 

between two electrodes, thus electrical energy can be stored directly, causing a 

very low response time [29]. Moreover, its capacitance and energy density values 

can be hundreds to thousands of times larger than that of capacitors. When 

compared with lead acid batteries, supercapacitors have lower energy density but 

also have higher power density, longer lifecycles, and better energy efficiency 

(about 75–80%). The most important disadvantage of this technology is their high 

cost, about five times more expensive than lead acid batteries [25]. The research 

of Molina [30] and Brando [31] reported that supercapacitors are a good choice to 

mitigate the inherent natural fluctuations of intermittent renewable sources, such 

as wind and waves. 

• Superconducting magnetic energy storage (SMES) systems have very long-life 

cycles (tens to thousands of cycles), very high efficiency (up to 95%), very fast 

response time, and high implementation cost. Possible applications are power 

factor improvement, frequency regulation, transient stability, and power quality 

improvement [32-33]. In study of Nguyen [34], SMES integrated with wind power 

was used to control the frequency and voltage of the microgrid in island mode. 

When the microgrid operates in the grid-connected mode, the SMES system is 

used to provide a constant power flow at point of common coupling (PCC) to 

overcome the fluctuations in power arising from the wind power. 

•  One of the commercially available flow batteries is the Vanadium Redox Battery 

(VRB).  It has many advantages over many traditional battery energy storage 

systems (BESS), such as a long lifecycle, low maintenance, independent power 

and energy capacity, quick charge and discharge response, and high efficiency. 

However, the initial operating and maintenance costs are still relatively high in 
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comparison to BESS [29]. The current literature on VRB-based microgrids is 

limited, since this technology has been commercialized recently [34-35]. 

To demonstrate the importance of ESS on a smart grid, a case study has been made, 

based on the model shown in Figure 2.3 below. A 6.0 GW power system on the Hokkaido 

Island of Japan, which consists of hydro, thermal, and nuclear generators, is scaled down 

to 100 MW. Then a renewable energy park, consisting of wind and/or a photovoltaic 

system, is connected to the power system considering a maximum renewable power 

penetration of 10% of the original power system capacity. The original model shown in 

the study of Muyeen [36] is modified to show the effect of a high penetration of renewable 

energy on the modern smart grid and a path forward to overcome grid code barriers using 

storage technology. 

 

 

Figure 2.3 Smart grid with an energy storage system 
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Figure 2.4 Wind speed in Hokkaido Island, Japan 

 

 

Figure 2.5 Frequency fluctuation at heavy load (conventional pitch controller) 

 

The wind turbines are equipped with advanced pitch controllers [37] which can 

smooth the power going to the line when generated power is greater than the reference 

power produced from a low pass filter (i.e., the advanced pitch controller works even at 

wind speed lower than rated speed). The conventional pitch controller only works once 

the wind speed is above the rated speed. Figure 2.4 shows the different wind speed for 

different wind generations of two wind farms that were shown in Figure 2.3. Figure 2.5 

and Figure 2.6 show the frequency fluctuations levels for different wind power 

penetration levels at high and low load conditions when only a conventional pitch 

controller is used. It is seen that when the wind power penetration level is maximum, the 

frequency fluctuation increases. However, when the advanced pitch controller is used, the 

frequency fluctuation is within the acceptable range for high load conditions, as shown in 
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Figure 2.7. Figure 2.8 shows that the advance pitch controller does not effectively control 

the frequency at a low load condition. However, when an ESS is used in the smart grid 

(Figure 2.3), the frequency can be maintained at the rated value, as shown in Figure 2.9. 

In this study, an energy capacitor system is used as ESS. Therefore, ESS will play a vital 

role in future smart grid operation, though the cost and lifecycles of ESSs remain the 

primary challenges. 

 

Figure 2.6 Frequency fluctuation at low load (conventional pitch controller) 

 

 

Figure 2.7 Frequency fluctuation at heavy load (conventional and new pitch 

controllers) 
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Figure 2.8 Frequency fluctuation at low load (conventional and new pitch 

controllers) 

 

 

Figure 2.9 Frequency fluctuation at low load (using ESS) 

 

2.3.1.3. Loads 

Microgrids can supply electrical energy to different types of loads such as residential, 

commercial, and industrial. These loads can be categorized into two sections: critical load 

and noncritical loads. In general, commercial and industrial users are defined as critical 

loads, which require a high degree of power quality and reliability, while most of 

residential loads are considered non-critical loads, which require a lower service quality 

[13]. The load classification provides the advantages listed below while obtaining the 

desired operation, stability and control [38]: 

• the load/source operation strategy required to meet the net active/ reactive power 

in grid-tied mode, and stabilization of the voltage and frequency in island mode, 

• improved power quality and reliability of critical and sensitive loads, 

• reduction of peak load to enhance the DER ratings, 
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• maintaining the desired operation and control. 

2.3.2 Advanced forecasting 

2.3.2.1 Demand (load) forecasting 

Demand (load) forecasting [39-40] plays a crucial role in smart grids. The aim of 

demand forecasting is to accurately predict future energy requirements of a system for a 

specific period of time. That prediction helps unit commitment strategies to match 

demands and generations. Since demands depend on the weather conditions and activities 

of customers, predictions may be hourly for the next 24/48 hours for the operation process 

and may be for 20 to 50 years for planning purposes [41]. Many methods for demand 

forecasting are introduced in the literature. These methods can be classified into two 

sections: i) statistical based methods and ii) artificial intelligence (AI) based methods. 

Statistical based methods include Auto Regressive (AR) [42], Moving Average (MA) 

[43], Auto Regressive Moving Average (ARMA) [39], and Auto Regressive Integrated 

Moving Average (ARIMA) [44]. Some of the artificial intelligence-based forecasting 

models are Artificial Neural Network (ANN) [45], Grey-Back Propagation (GBP) Neural 

Network [46], Improved Variable Learning rate Back Propagation (IVL-BP) [47], 

Support Vector Machines (SVMs) [48], Least Squares-Support Vector Machine (LS-

SVM) Algorithm [49], Particle Swarm Optimization (PSO) [50], and Fuzzy Logic (FL) 

[51]. 

2.3.2.2 Electricity price forecasting 

Electricity price forecasting may be important in real time electricity markets. 

Extreme difference between the agreed cost and the cost of power to be sold can lead to 

huge financial losses or even bankruptcy [52]. In the literature, Motamedi [53] and Zhou 

[54] investigated the relationship between electricity price and demand. 

2.3.2.3 Wind and PV production forecasting 

The output power of renewable energy sources depends on several variables, such 

as weather and location. Accurate forecasts of wind and PV output power can alleviate 

negative impacts on the required spinning reserves for reliable operation of the grid. They 

reduce the total cost of integration of renewable energy into the grid [55]. The methods 

used to forecast wind and PV [56] production are partly similar to demand forecasting 

methods [55]. For instance, in the literature, the methods of SVM [57-58], vector auto 

regression theory [58], and the Bayesian Method with Monte Carlo [59] are used for PV. 
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2.3.4 Control of generation units 

Smart grid technologies can include large amount of different DERs that are 

connected to a grid either directly or via a power electronic interface. The voltage source 

inverter (VSI) is connected to the grid as an interface to contribute to the proper 

adjustment of the grid voltage and frequency [60]. In the literature, while some authors 

classify VSI-based DGS interfaces as two groups, it is categorized into three groups by 

the other researchers. In this review study, these controllers were investigated under two 

domains related to their former classification: grid-forming and grid-following. A grid 

forming controller is responsible for voltage control between DGS units and loads. A 

grid-following controller is generally used in current-control mode to maximize obtained 

power from DGSs. This control strategy is the most widely used for DGS units, with the 

most common used grid-following techniques being synchronous reference frame (dq) 

and stationary reference frame (αβ) [21, 61-62]. The authors in [63] proposed a passivity-

based control technique to improve system stability of DGSs. In the research of Vandoorn 

[64], unbalanced mitigation is investigated by using symmetrical component 

transformation for different types of grid-following controllers. 

Besides the voltage and current control, DGSs must also regulate the active and 

reactive powers. The most used methods in smart grids are the Q/f and P/V droop 

controllers. When the Q/f droop controller is used for reactive power compensation, the 

active power controller uses a P/V droop control [65-66]. 

2.3.5 Control of storage units 

Energy storage devices are an essential component of microgrids, which effectively 

balance power between renewable energy resources and loads. Specific charge/discharge 

control strategies are needed to achieve this objective. In the literature, different control 

strategies are available. The authors in [67] explained how to improve the wind output 

power rate using fuzzy control for an energy storage system on a wind farm. Other 

strategies include: hysteresis current control, neural network, PI and PID control, sliding 

mode control, H-infinity control, and the Monte Carlo simulation method [25, 68-69]. 
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2.3.6 Data transmission and monitoring 

2.3.6.1 Smart Metering Infrastructure (SMI) 

Smart metering and infrastructure (SMI), which is also called advanced metering 

infrastructure (AMI), provides bidirectional communication for smart grids. The SMI 

consists of the integration of smart meters, a communication system, hardware and 

software that enable the measurement, gathering, storage, analysis, and usage of energy 

between the smart meter and utility or between the smart meter and customer [70-71]. 

• Smart meter: Smart meter is the advanced new generation of meters, which 

measures the real-time consumption of energy, record and store this measurement 

at predefined time intervals. It also has the ability to transfer the bidirectional 

communications of data. Thus, data transfer is realized not only from the smart 

meter to the meter data management system (MDMS) but also from the MDMS 

to the smart meter [72-73]. In [74], authors investigated the relationship between 

electricity consumers and smart meters and formed a report at the end of 2012 for 

Romania. This study demonstrated that smart meters are user-friendly and 

profitable for customers, and that it is important to devote close attention to the 

customer in terms of acceptability and affordability of the smart meters. 

• Wide area network (WAN): Wide area network (WAN) provides communication 

between the smart grid and utility grid, which collects data from multiple 

neighborhood area networks (NANs) and sends it to control center [75]. It 

connects the highly distributed smaller area networks that serve the power systems 

at different locations. It consists of two types of networks: backhaul and core 

network. A variety of technologies, such as WiMAX, 4G, and PLC, can be used 

in WAN networks. The WAN can cover an area over thousands of square miles, 

so data transfer rates may be up to 10–100 Mbps [76]. 

• Home (local) area network (HAN/LAN): Home (local) area networks (HAN or 

LAN) connect to in-home smart devices and appliances such as plug-in electric 

vehicles (PEVs), programmable communicating thermostats, in-home displays 

(IHD) and distributed energy generation facilities [72-73]. Typically, HANs need 

to cover areas of up to 200 m2 and support speeds 10 to 100 kilobits per second 

(kbps) [85]. One important component of HAN is the IHD that measures how 

much power is consumed and displays the real-time energy price to the customers. 
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The IHD also allows the consumer to customize their power usage profile in order 

to minimize their electricity bill. 

• Neighborhood area networks (NANs) NANs are an important component of the 

communication network infrastructure that connects to smart meters in the 

customer domain and some field gateways in the distribution domain [77]. The 

NANs are used for data collection from smart meter to exchange energy data and 

control information between other components. This network can be designed 

based on wired and wireless communication technologies such as WiMAX, 3G 

and 4G. With these technologies, it covers long distances between one to ten 

square miles and the data rate is around 10–1000 Kbps [76].  

• Meter data management system (MDMS): A meter data management system 

(MDMS) is a system or an application which imports, verifies, edits and processes 

on the AMI data before making it available for billing such analysis [78]. 

2.3.6.2 Communication systems 

Communication technologies are a key feature of smart grids, allowing them to be 

implemented in the real world. The chosen communication technologies have to be cost 

efficient and should provide a good transmittable range, better security features, 

bandwidth, power quality, and with the least possible number of repetitions [72]. They 

can be classified into two categories: wired technologies and wireless technologies. 

• Wired technologies: Wired technologies may include three systems: Power line 

communication (PLC), Optical communication and Digital Subscriber Lines 

(DSL). The PLC system is a popular method for communication, which consists 

of introduction of the modulated carrier over the power line cable in order to 

provide bidirectional communications [79]. The power line cable is used in both 

energy transmission and data communication. In a typical PLC network, smart 

meters are connected to the data concentrator through power lines. Data is 

transferred to the data center via cellular network technologies [71]. PLC systems 

use the existing communication infrastructure. Thus, the cost of installation is 

lower than other communication system [80]. It can be classified into two 

categories: Narrowband PLC and Broadband PLC. Fiber optic communication 

technology has been widely connected to substations to provide communication 

between substations and control centers. It has many advantages, such as data 

transmission over long distances with a very high data rate, lower losses, and is 
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less expensive than traditional communication system. DSL is a high-speed 

communication technology which uses telephone lines. The most important 

advantages of DSL are low-cost, high data rate, and widespread availability [70-

71, 81]. 

• Wireless technology: Wireless Sensor Networks (WSNs) are a crucial part of a 

smart grid that provide a highly reliable and self-healing power grid, as well as 

strong flexibility because a complex infrastructure construction is not needed [82-

83]. A WSN can improve the efficiency and stability of a network. In the smart 

grid, the WSN collects and processes the specific and useful data in the target area 

and monitors control devices, allowing bidirectional information exchange, 

monitoring, control and maintenance in real time [84]. Wi-Fi (which is the family 

of IEEE 802.11 standards) is generally used for home and local area networking 

due to the simple and flexible access structures based on the Carrier Sense 

Multiple Access with Collision Avoidance (CSMA/CA) principle, operation in 

unlicensed 2.4 GHz and 5 GHz frequency bands, and availability low-cost radio 

interfaces [70]. The most popular among IEEE 802.11 standards are IEEE 

802.11b and IEEE 802.11g. IEEE 802.11g supports a maximum data rate of 54 

Mbps, while IEEE 802.11b supports a data rate up to 11 Mbps for indoor 

environments and 1 Mbps for outdoor environments. The latest release is the IEEE 

802.11n that supports the highest data rates up to 150 Mbps [76]. In the smart grid, 

Wi-Fi is the key connection for all smart devices to access the Internet and manage 

their energy usage. Wi-Fi is a superior technology for the HAN of the Smart Grid 

in particular [85]. WiMAX (Worldwide Interoperability for Microwave Access), 

also known as the IEEE 802.16 standard, is a wireless broadband technology that 

supports thousands of simultaneous users over a large distance (up to 48 km) with 

high data rates of up to 70 Mbps. The WiMAX technology provides a reliable, 

high data rate and automatic network connectivity along with low overall 

installation costs and a large coverage area for smart grid applications [86-87]. 

GSM/GPRS technologies are a good option for communicating between smart 

meters and the utility, which transfers data and control signals over long distances. 

Global System for Mobile (GSM) is considered among the most secure 

communication networks. General Packet Radio Service (GPRS) employs 

wireless packets based on the GSM network. If the infrastructure exists, extra cost 

for building the communications infrastructure will not be needed. In smart grid 
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applications, it is mostly used for remote monitoring purposes. Satellite 

technologies are used in rural or geographically remote locations where other 

communication technologies are not available. While this technology has high 

cost, recent developments in satellite systems may open up new opportunities for 

the use of satellite communications in smart grids [70]. ZigBee is a wireless 

communication technology that has relatively low in power usage, data rate, 

complexity, and cost, based on the IEEE 802.15.4 standard. It is used for home 

automation, security systems, remote control, smart meters, healthcare, computer 

peripheral applications, and more [88-89]. 

2.3.7 Power flow and energy management 

An energy management system (EMS) [90] is a control tool which controls the 

power flows among main grid, DERs and loads in order to provide stable, reliable, and 

sustainable operation of the microgrid and other operational goals such as minimizing 

costs and fuel consumption [91-92]. It is also responsible for system resynchronization 

during the transition between grid and island mode. Two main approaches can be 

identified for EMS: decentralized and centralized control, with various hierarchical 

controls [93-94]. 

2.3.7.1 Centralized controller 

The centralized controller gathers all the measured data of all DERs in microgrid, 

and then adjusts the control variable for all the control equipment and sends them to 

central system [95]. This control is especially suitable for small scale MGs. However, this 

type of control has low reliability and redundancy. Other drawbacks of this control are 

that may cause several communication problems and that it requires a shutdown of the 

whole system in case of system maintenance. 

From an economic point of view, centralized hierarchical control provides an 

efficient solution. The hierarchical control architecture depends on the type of microgrid 

or the existing infrastructure. In this case, a centralized hierarchical control scheme may 

consist of three controller layers: a) local controllers, b) a microgrid central controller 

(MGCC) [96], and c) distribution management system (DMS). The local controllers use 

local measurements to control voltages and frequency of the MG system without 

communication systems, because the communication system is often avoided over 

reliability concerns. A MGCC is available for each microgrid to interface with DMS. The 
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MGCC performs power management of the microgrid by determining the DERs’ active 

power, load demand and storage requirements. The MGCC has two-way communication 

with the local controller (LC), which enables it to meet the utility requirements [97]. The 

overall grid demands and stability requirements are met at the data management system 

level [98]. 

2.3.7.2 Decentralized controller 

The decentralized EMS enables independent control of the DER units and loads. 

This type of EMS is more suitable if users of the microgrid have different aims or a 

different operational environment. In this management system, all local controllers are 

connected with a communication bus. This bus is used to exchange data among each 

household or DGS [92]. Local controllers are no longer subject to a MGCC to determine 

the optimal power output in such a distributed system. Hence, this kind of structure 

significantly reduces the computational need and releases the stress on the communication 

network of the entire microgrid system [91].  

The multi-agent system (MAS) approach can be seen as the best example of a 

decentralized energy management system [99]. This approach aims to turn large and 

complex systems into small and autonomy subsystems and uses AI-based methods (such 

as neural networks and fuzzy systems) to determine each DGS's operation point while 

improving the stability of the microgrid [92]. 

The decentralized based MAS has several advantages compared with centralized 

EMS. Since the MAS enables autonomous operation of the DGSs and uses the essential 

data from local controller, it reduces computation time. But the centralized control 

requires a significant flow of data to a central point [100-101]. Another advantage is plug 

and play capability. If a new DER is connected to the microgrid, a programmable agent 

in its control is provided without modifying the rest of the control. However, in 

centralized controls the MGCC has to be programmed when a new DER is connected 

[101]. 

2.3.8 Vehicle to grid (V2G) 

Recently, vehicle to grid (V2G) technologies are more attractive to researchers of 

smart grid technology because it can improve efficiency, reliability, stability, and 

flexibility of the utility grid. Under this concept, electric vehicles can either be charged 

or discharged by providing power to the grid. In other words, either the utility grid can 
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absorb power from the V2G or the grid can send power back to the electric vehicle during 

charging. By providing power to the grid, this technology provides many benefits such as 

voltage and frequency regulation, spinning reserve, electrical demand side management, 

active/reactive power compensation, load balancing, and harmonic filtering. Furthermore, 

the electric vehicles would be used to store power produced by renewable energy 

resources [102-104]. V2G is also used both unidirectional and bidirectional applications 

[105]. K.M. Tan et al. [106] classify the V2G technology into two categories: 

unidirectional V2G and bidirectional V2G. This paper also presents the advantages and 

disadvantages, as well as optimization algorithms of V2G in a smart grid. 

2.4 Challenges and opportunities 

2.4.1 Technical challenges 

2.4.1.1 Operation 

Large mismatches which lead to a severe frequency and voltage control problems 

can occur between generation and loads because microgrid systems have the ability to 

transition from grid-connected mode to islanded mode [107-108]. If the connection and 

disconnection operations contain a large number of generation units at once, the "plug 

and play" capability can be a serious problem [109]. 

2.4.1.2 Components and compatibility 

Because a microgrid may have many components (such as diesel generator, 

microturbine, fuel cell, CHP, energy storage devices, inverters, communication system, 

and control software), these components have different characteristics in their generation 

capacity, startup/shutdown time, operation cost/efficiency, energy storage charging/ 

discharging rate, control and communication limits [107, 110]. 

2.4.1.3 Integration of renewable generation 

The variability, unpredictability, and weather dependence of renewable energy 

resources are several of the major challenges for the integration of renewable generation 

to main grid. Therefore, the power output of these resources can vary abruptly, frequently 

imposing challenges on maintaining microgrid stability [10, 111-112]. Furthermore, one 

of the problems experienced is that the increasing renewable shares may cause congestion 
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in distribution networks [113]. Other problems may include the intermittency of 

renewable energy generation and the lack of a dispatch ability. 

2.4.1.4 Protection 

Microgrid protection is one of the most important challenges because it is not easy 

to design an appropriate protection system that must respond to both main grid and 

microgrid faults. That is because fault current magnitudes in the system depend on the 

microgrid operation mode, and may vary significantly between grid-connected and 

autonomous operation [114]. Traditional power systems have been designed and 

constructed with unidirectional fault current flow for radial distribution systems. 

However, the integration of DERs into the main grid with microgrids changes the flow of 

fault currents from unidirectional to bidirectional. The MG is interfaced to the main power 

system by a fast static switch to protect it in both modes of operation against all types of 

faults [108]. Several papers exist in the literature regarding microgrid protection schemes 

[115-117]. 

2.4.2 Regulation challenges 

Regulation is a crucial topic to facilitate microgrid application, which provides 

guidance and allows DER penetration, integration, and main network connection. That 

said, regulations for microgrid implementation remain limited and prevent the proper use 

of microgrids. Moreover, interconnection rules between the MG and main grid are 

designed in order to standardize the process and manage the impacts of DERs integration 

without disturbing the functionality and safety of the main grid [107]. These rules must 

immediately disconnect with grid connection in case of any faults, blackouts, or other 

problems. However, the most consistent challenge of interconnecting microgrids with the 

main grid is the high connectivity costs caused by fee policies [118]. 

2.4.3 Smart consumer 

Smart consumers are end users in the smart grid and take an active role in the 

problem of balancing demand with supply. They are mostly interested in decreasing their 

electricity bills, at maintaining their present levels of comfort (at least), and the 

availability and ease of use when faced with the volatile production capacity over volume 

and time [119]. With the consumers providing an active participation in the management 

of the demand, utilizing the intelligent information and communication technology 
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devices (ICT) has become common practice in domestic environments [120]. It is easy to 

envision that in the near future smart homes will be equipped with energy management 

systems in order to optimize the electricity consumption, to minimize costs and meet 

supply constraints, while at the same time maintaining the users’ desired level of comfort 

[121]. 

2.4.4 Opportunities in microgrid 

Some of the possible solutions featured in the literature for microgrid challenges are 

summarized below: 

• Stability and reliability problems occurred due to the integration of renewable 

energy resources will be resolved with FACTs devices such as: static synchronous 

compensator (STATCOM), static VAR compensator (SVC), static series 

synchronous compensator (SSSC), and unified power flow controller (UPFC). 

Additionally, the harmonics resulting from power circuits will be mitigated by 

filters integrated with these devices [112]. The stability classifications and 

analysis methods for microgrid have been investigated in reference [122]. Other 

researchers also compiled the available methodologies to improve the stability of 

microgrids. 

• The study of Zamani [123] presents a protection scheme for microgrids for both 

modes of operation based on microprocessor-based overcurrent relays and 

directional elements. Among other protection solution methods are: the adaptive 

protection system [124], symmetrical component theory [125], and differential 

protection [126]. 

• Fast static switches, fault current limiters, and energy storage devices can be used 

as external protection devices [127]. Fast static switches provide high-speed 

isolation for loads when transitioning from grid connected to islanded mode. 

• Some authors investigate novel algorithms to minimize system costs [128-130]. 

The research of Khodaei [131] featured the use of the mixed integer programming 

optimization method to minimize total system costs, including investment and 

operation costs of candidate generation units, transmission lines, and microgrids. 

The paper of Ahn [132] proposed a decentralized voltage control algorithm, which 

was designed with two control layer. When the low control layer regulates the 
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power output and terminal voltage, the high-level controller minimizes power 

losses of the microgrid with its cost function concept. 

• The study Papadimitriou [133] proposed a new islanding detection method (IDM) 

with an intelligent hybrid automatic transfer switch (HATS). HATS detects the 

operation modes of the microgrid and is able to manage grid status. 

 

2.5 Conclusion 

Power systems are faced with the challenge of providing efficient and reliable 

energy to customer. One of the major challenges is the increasing energy demand while 

primary energy supplies remain limited. This issue necessitates that more generation 

should be provided by distributed energy sources, which brings new problems such as 

uncertain power generation and intermittency. That problem also requires storage units 

to provide better power quality. A better way to solve the problems of energy demand, 

uncertain and non-sustainable power from renewable sources is to take a small subsystem 

approach to match the demand and supply balance. This was the key motivation for the 

development and expansion of microgrids. 

The inherent characteristics of microgrids are that they provide flexibility to 

connect/disconnect from the grid when needed. This provides better reliability, lower 

investment cost, reduces emissions, improves power quality, and reduces the power losses 

of the distribution network. This review provides the technical development status of 

existing microgrid technology with its various functions and features. The microgrid 

architecture is categorized into three categories based on future smart grid vision: AC, 

DC, and hybrid microgrids. 

The elements used in microgrids, control of power generation, forecasting 

techniques, data transmission and monitoring techniques have been reviewed as smart 

grid functions. While it is possible to implement microgrids with the usage of these 

functions, all issues cannot be solved. Finally, several other important issues in the 

implementation of microgrid are discussed. These are the technical, regulatory, and 

customer barriers, with opportunities of solving these barriers also being presented. 
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Chapter 3 

Optimization-based Control Strategies 

for Energy Management Systems in 

Microgrids 

 
 

3.1 Literature review 

Elements in microgrids have some limits with minimum and maximum boundaries. 

Microgrids must operate within these limitations for reliable, stable, and cost-effective 

operation. PV units usually work at their maximum power output. Batteries also have 

limitations, such as charging and discharging speed limits. Excessive and/or frequent 

charging and discharging of the battery will shorten the lifespan of the battery and reduce 

its efficiency. Moreover, there are operational constraints for generation units, such as the 

limitations of ramp limits of diesel generators and starting power limits of generation. 

Pricing may also change depending on the energy trading situation with the main grid.   

In the light of all above information, microgrids present great opportunity for 

composing a holistic system out of elements of different types and characteristics. These 

operational and technical constraints are taken into account to ensure proper energy 

management between conventional energy generation units, renewable energy sources, 

battery storage devices, and consumers. Therefore, the energy management system 

controls the output of power generation units and the charging or discharging operation 

of battery storage devices to maintain and optimize the power exchange, maximize energy 

efficiency, and minimize operational cost, while ensuring economic, environmental, and 

safe operation of the microgrid.  

The uncertainty of DERs raises great challenges, especially in the real-time 

operation of the microgrids. This issue has attracted much attention in recent years and 

different methods such as classical methods (linear and nonlinear programming) [134-
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136], meta-heuristic approaches [137], artificial intelligence methods [138-139], model 

predictive control (MPC) [140-141], stochastic, and the robust programming approach  

[142-144] have been proposed to optimize the effective operation of the MG.  

To solve the challenge in MG operation as a deterministic optimization problem, 

many studies have been published in the literature. In the deterministic optimization 

model, output power of renewable energy sources (RESs) and load demand have not been 

taken into consideration as a factor of uncertainty. In the model, only forecasted outputs 

are taken into account to achieve the desired objectives. Since unexpected power 

changing in real time operation that effects the economic dispatch or ancillary services 

cannot be addressed effectively in the deterministic model, optimal control cannot be 

fulfilled properly. As a deterministic optimization algorithm, mixed integer linear 

programming (MILP) [135,145], deterministic MPC [146], rolling horizon control (RHC) 

[147-149], and adaptive dynamic programming (ADP) [150] have been used in the 

literature. Wei [151] proposed a mixed iterative ADP based on priori known load and 

electricity price rate.  

To tackle the uncertainty problem, studies on the stochastic MG energy 

management [152-154] have increased. However, there are not enough studies in the field 

of stochastic optimization of MG, with a need for further improvement. The stochastic 

optimization algorithms (such as dynamic programming (DP) [155-157], approximate DP 

(ADP) [150, 158-159], and stochastic MILP [160-161], and MINLP [153, 162-163] as 

classical methods, and chance-constraint method as robust optimization [164-165]) can 

be used for energy management in MG. As meta-heuristic methods, genetic algorithm 

(GA) [34-36], particle swarm optimization (PSO) [166-168], and artificial bee 

optimization [169] were also found in the literature.   

While scenario-based stochastic optimization algorithms were proposed in [170-

172], the accuracy of the forecasted data in real-time depends on the training scenarios.  

That’s why the desired functionality in MG energy management may not be performed 

correctly in the midst of real-time changes.  The uncertainties of RESs, load demand ,and 

electricity price were handled based on training scenarios via the Monte Carlo method in 

[170]. Piecewise linear function (PLF) based ADP was used to minimize the total 

operation cost of MG. Day-ahead and intra-day optimization were used by adding forecast 

error distribution to the forecast information. 

Many studies propose online algorithm in real-time by taking into consideration 

uncertainties such as stochastic MPC [173-175] and Lyapunov optimization [171,176]. 
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Rahbar [177] proposed a new online algorithm for real-time energy management based 

on sliding-window sequential optimization combining offline solution, assuming that the 

net energy profile is perfectly predicted or known ahead of time.  In this study, however, 

optimal control in real-time completely depends on the offline solution which gives the 

prior information about net-energy profile. Moreover, the constraints of the load and 

battery were taken into account to minimize the energy cost. Su [178] and Kanvhev [179] 

studied double stage stochastic programming for energy management to minimize the 

operational cost. In the first stage, the authors performed day-ahead operational planning 

by using DP to minimize the economic cost and CO2 equivalent emissions. In the second 

stage, an adjustment was carried to retrieve day-ahead plan by using a sequential quadratic 

programming method if the forecasted values change [179]. 

Another algorithm used in the literature is adaptive critic design (ACD) based 

algorithms, implemented to reduce the computational complexity in comparison with DP. 

Han [180] proposed a stochastic dynamic optimal control based on dual heuristic dynamic 

programming, which is a kind of adaptive-critic design method. The aim was to smoothen 

the PV and wind power output, reduce the system losses, and minimize the voltage 

deviation, without considering the cost of energy.  The network model was not included 

in the optimization model. Venayagamoorthy [181] proposed model-free heuristic 

dynamic programming by updating the optimal control policy. To speed up the 

convergence, an evolutionary learning algorithm was used. However, the convergence 

totally depends on offline action-dependent heuristic dynamic programming (ADHDP) 

learning. In [182], the authors proposed ADHDP for residential MG. The system consists 

of PV and battery. ADHDP was used to reduce the electrical cost. Weather types and 

battery states are classified into categories 3 and 4, respectively. In this way, the 

computational complexity was reduced. The paper provided no exact information about 

how they handled uncertainty of solar power, load demand and electricity price in real-

time. The main limitation of the adaptive critic design (ACD) based algorithm in real time 

is the computational power and communication delay.  

One of the applications of tackling such challenges as nonlinearities, computational 

burden, and randomness in real-time is approximate dynamic programming, which is a 

powerful stochastic optimization modeling method. Liu [159] solved the optimization 

problem for residential MG which composes of wind turbine, solar panel, and 

shiftable/non-shiftable loads. To reduce the energy cost, the dynamic programming, Q-

learning, and Lyapunov methods were used under perfect, partial and no information, 
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respectively. Then, centralized and distributed Q-learning and the Lyapunov methods 

were compared. Still, the main issue in this paper is that it did not consider a battery and 

only considered loads constraints, without extra constraints to model the microgrid. When 

perfect and partial knowledge about demand, electricity price, and the renewable energy 

profiles are known, in the no information scenarios, only real-time information is known. 

Das [183] proposed a post-decision value function approximation to minimize the daily 

operational cost of a diesel generator and battery for islanded MG energy management. 

They used uniform and pseudo normal distribution to find next wind power interval and 

load demand. However, the constraints of the network were not integrated to the 

optimization algorithm.  Multi-time stochastic MINLP optimization was divided to single 

time stochastic nonlinear programming in [184]. This paper handled the uncertainty in 

similar fashion as the previous papers. They used day ahead and intra-day optimization 

by adding a forecast error distribution to the forecasted information. They used 

approximate dynamic programming (ADP) to reduce the operational cost. In [185], an 

ADP approach based on value function approximation with deep recurrent neural network 

was proposed to minimize the expected operational cost.  

The EMSs presented in this thesis essentially use three different optimization 

algorithms: MINLP, MILP approach based on rolling horizon control, and reinforcement 

learning. Detailed information about these methods is given in the sections below. 

3.2 Mixed integer nonlinear programming  

Mixed integer nonlinear programming (MINLP) refers to numerical optimization 

problems with nonlinear functions in the objective function and/or the constraints as well 

as continuous and integer/binary variables. The canonical form of a MINLP is shown in 

equation (3.1): 

zMINLP = minimize f (x,y)

subject to        g(x,y) ≤ 0,

x∈X,  y∈Y ∩ ℤp 

      }                                        (3.1) 

where 𝑓: ℝ𝑛 x 𝑝  →  ℝ and  𝑔: ℝ𝑛 x 𝑝  →  ℝ𝑚 are twice continuously differentiable 

functions, x and y are continuous and discrete variables, respectively; X is polyhedral 

subset of ℝ𝑛, and Y is a bounded polyhedral subset of ℤ𝑝. 
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Since the battery contains both binary variables, charging or discharging states, and 

nonlinear variable, and the calculation average cycle number at particular depth of 

discharge (DoD), MINLP is used in this thesis.  

3.3 Rolling Horizon Control 

Rolling horizon control (RHC) is an iterative and finite-time optimization approach 

that can be used for real-time/online issues. RHC aims to find the optimal solution for the 

current time step over sliding window by considering future time steps. RHC can compute 

the decision variables to fulfil the objective function, while considering exogenous 

information, future predictions, and constraints. In this way, RHC can adapt to new 

situation when a disturbance or fault occurs by changing the decision variables according 

to this new situation [186]. This algorithm considers different time horizons as shown 

Figure 3.1.  

• The prediction horizon indicates how far in the future the model should 

predict the states of the system. 

• The control horizon is the number of decisions to be optimized which should 

be applied to the system. 

 

The operation logic of RHC is given in Figure 3.1. The model is simulated from the 

current time to prediction horizon (H steps forward in time) to obtain the predicted future 

values of the states. Then, these predicted values are used to create an optimization 

problem at each time step. After, the optimization problem is solved by optimization 

solvers to find best decision variables at the control horizon. In RHC, only the first 

decision variable is taken in the environment, then shifted to the next time step. The 

procedure continues recursively until the final scheduled period of time [187]. 
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Figure 3.1 Rolling horizon framework [187] 

 

3.4 Reinforcement learning 

 

Reinforcement learning (RL) is one of the machine learning algorithms and differs 

in several aspects from other machine learning algorithms, classified as supervised 

learning and unsupervised learning. RL does not need a labelled dataset. The labelled 

dataset contains the answer or solution key, so the model is trained with the solution key 

to find correct answer. RL does not discovers patterns that exist in the dataset. In RL, the 

agent learns by directly interacting with its environment through trial-and-error without 

any supervisor. The following discussion is based on Sutton and Barto [188]. 

In essence, RL uses a framework that consists of agent, environment, state, action, 

and reward, as shown in Figure 3.2. The agent is defined as learner or decision maker. 

The environment is where the agent interacts and performs actions at each time step t. At 

each time step t, the agent obtains an observation, 𝑆𝑡 ∈  𝒮, from its environment. Then, it 

takes an action, 𝐴𝑡 ∈  𝒜(𝑠), according to the observation following the behavior policy. 

The environment is affected by the action taken, the agent receives a reward value, 

𝑅𝑡+1 ∈  ℛ ⊂ ℝ, to evaluate the action and finds itself in a new state 𝑆𝑡+1. So, this process 

gives us a sequence like S0, A0, R1, S1, A1, R2, S2, A2, R3 … In that way, the agent’s goal is 

to maximize the total amount of reward obtained from the environment by learning an 

optimal action strategy. 
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Figure 3.2 Agent and environment interactions in reinforcement learning 

 

Beyond the agent, the environment and the reward, there are three main sub-

elements in RL: 

• Policy: Policy maps the action based on the agent’s state. That is, it tells us 

which action to take in state s, and can be deterministic or stochastic: 

- Deterministic:   𝜋(𝑠) = 𝑎 

- Stochastic:   𝜋(𝑎|𝑠) = Pr(𝑎𝑡 = 𝑎 | 𝑠𝑡 = 𝑠) 

• Value function: Value function estimates the “how good” it is to be in a 

given state in the long term. While the reward demonstrates what is good 

and what is bad at each time step (immediate reward), value function shows 

the total amount of reward an agent has collected over the long run, which 

is called as return, Gt : 

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾
2𝑅𝑡+3 +⋯ =∑𝛾𝑘𝑅𝑡+𝑘+1

∞

𝑘=0

 (3.2) 

where 𝛾 is called as discount rate, 0 ≤ 𝛾 ≤ 1. The discount rate is used to 

reduce the future rewards’ effect on the action choice.  

The state value function,  𝑣𝜋(𝑠), returns the expected return when starting 

in a certain state s and following then policy π:   

𝑣𝜋(𝑠) = 𝔼𝜋[𝐺𝑡|𝑆𝑡 = 𝑠] = 𝔼𝜋 [∑𝛾𝑘𝑅𝑡+𝑘+1

∞

𝑘=0

|𝑆𝑡 = 𝑠] (3.3) 

for all 𝑠 ∈ 𝑆. 𝔼𝜋[∙] denotes the expected value by following policy π, and t 

is any time step.  

Similarly, the action value function under policy π, 𝑞𝜋(𝑠, 𝑎), is the expected 

return for taking the action a in a certain state s:   

action 

At 

reward 

Rt 

state 

St 

St+1 

Rt+1 

Agent 

Environment 
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𝑞𝜋(𝑠, 𝑎) = 𝔼𝜋[𝐺𝑡 | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑠] = 𝔼𝜋[∑ 𝛾𝑘𝑅𝑡+𝑘+1
∞
𝑘=0 | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]    

(3.4) 

• Model: It helps the agent to observe the behavior of the environment. So, 

the model can infer how the environment will behave for given state and 

action by knowing probability distributions. In other words, there is a 

probability distribution, p, of each choice of state s to move next state s’ 

after taking action a while obtaining reward R:  

𝑝(𝑠′, 𝑟| 𝑠, 𝑎) = 𝑃𝑟{𝑆𝑡 = 𝑠′, 𝑅𝑡 = 𝑟 | 𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎} (3.5) 

for all 𝑠′, 𝑠 ∈ 𝒮, 𝑟 ∈ ℛ, and 𝑎 ∈ 𝒜(𝑠).  

So, the state-transition probabilities can be defined as a function of 

𝑝(𝑠′, 𝑟 | 𝑠, 𝑎):  

𝑝(𝑠′| 𝑠, 𝑎) = 𝑃𝑟{𝑆𝑡 = 𝑠
′ | 𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎} =  ∑𝑝(𝑠′, 𝑟| 𝑠, 𝑎)

𝑟∈ℛ

 

(3.6) 

Expected rewards for state-action pairs can also be computed as: 

𝑟(𝑠, 𝑎) = 𝔼[𝑅𝑡 | 𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎] =  ∑ 𝑟 ∑ 𝑝(𝑠′, 𝑟| 𝑠, 𝑎)𝑠′∈𝒮𝑟∈ℛ       (3.7) 

3.3.1 Optimal value function and optimal policy 

An optimal state value or an action value achieves the maximum expected return. 

the optimal state value function and the optimal action value function are defined 

respectively as:  

𝑣∗(𝑠) = max
𝜋
𝑣𝜋(𝑠),  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝒮                                        (3.8) 

𝑞∗(𝑠, 𝑎) = max
𝜋
𝑞𝜋(𝑠, 𝑎) , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝒮 𝑎𝑛𝑑 𝑎 ∈ 𝒜(𝑠)                       (3.9) 

𝑞∗ can be written in terms of 𝑣∗ as follows: 

𝑞∗(𝑠, 𝑎) = 𝔼[𝑅𝑡+1 + 𝑣∗(𝑆𝑡+1) | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]                             (3.10) 

 

A policy that produces the optimal state value or action value is called the optimal 

policy. The optimal policy can be defined as follows: 

𝜋∗(𝑠) = 𝑎𝑟𝑔 max
𝜋
𝑣𝜋(𝑠)                                                  (3.11) 

𝜋∗(𝑠) = 𝑎𝑟𝑔 max
𝜋
𝑞𝜋(𝑠, 𝑎)                                            (3.12) 
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So, we can write the following equation for an optimal policy: 

𝑣∗(𝑠) = max
𝑎∈𝒜(𝑠)

𝑞𝜋∗(𝑠, 𝑎)                                                 (3.13) 

3.3.2 Markov decision process (MDP) 

RL is modelled as an MDP, which is a mathematical framework of sequential 

decision making.  MDPs mean that the next state and reward depend only on the current 

state and action because the current observation summarizes all previous experiences. 

This can be formulated as: 

𝑃𝑟(𝑆𝑡+1, 𝑅𝑡+1|𝑆0, 𝐴0, 𝑅1, … , 𝑆𝑡−1, 𝐴𝑡−1, 𝑅𝑡, 𝑆𝑡, 𝐴𝑡) = 𝑃𝑟(𝑆𝑡+1, 𝑅𝑡+1|𝑆𝑡, 𝐴𝑡)        (3.14) 

 

A MDP consists of five elements as listed below (which were defined in the 

previous section): 

• S - a set of states; 

• A - a set of actions; 

• p – state- transition probability function; 

• R - reward function; 

• γ - discount rate.  

3.3.3 Bellman Equations 

Bellman equations helps us to solve MDP. Therefore, they form the basis of solving 

RL problems. Bellman Equations decompose the value functions into two parts: 

immediate reward and discounted future value function. 

State value function for a policy π can be broken into: 

                       𝑣𝜋(𝑠) = 𝔼𝜋[𝐺𝑡|𝑆𝑡 = 𝑠]                                                                    

                                  = 𝔼𝜋[𝑅𝑡+1 + 𝛾𝐺𝑡+1 | 𝑆𝑡 = 𝑠] 

                                  = ∑ 𝜋(𝑎|𝑠)∑ ∑ 𝑝(𝑠′, 𝑟| 𝑠, 𝑎)[𝑟 + 𝛾𝔼𝜋[𝐺𝑡+1|𝑆𝑡+1 = 𝑠′]]𝑟𝑠′𝑎  

                                      = ∑ 𝜋(𝑎|𝑠)∑ ∑ 𝑝(𝑠′, 𝑟| 𝑠, 𝑎)[𝑟 + 𝛾𝑣𝜋(𝑠
′)]𝑟𝑠′𝑎     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆  

        (3.15) 

Action value function for a policy π can be broken into: 

         𝑞𝜋(𝑠, 𝑎) = 𝔼𝜋[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 

                         = 𝔼𝜋[𝑅𝑡+1 + 𝛾𝐺𝑡+1 | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 

                         = ∑ 𝜋(𝑎|𝑠)∑ ∑ 𝑝(𝑠′, 𝑟| 𝑠, 𝑎)[𝑟 + 𝛾𝔼𝜋[𝐺𝑡+1|𝑆𝑡+1 = 𝑠′, 𝐴𝑡+1 = 𝑎′ ]]𝑟𝑠′𝑎  

                         = ∑ 𝜋(𝑎|𝑠)∑ ∑ 𝑝(𝑠′, 𝑟| 𝑠, 𝑎)[𝑟 + 𝛾 𝑞𝜋(𝑠
′, 𝑎′)]𝑟𝑠′𝑎                       (3.16) 
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Expanding equation (3.4) with equation (3.13), Bellman optimality equations for 

state-value function are obtained as follows: 

𝑣∗(𝑠) = max
𝑎∈𝒜(𝑠)

𝑞𝜋∗(𝑠, 𝑎) 

= max
𝑎
𝔼𝜋∗[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 

= max
𝑎
𝔼[𝑅𝑡+1 + 𝛾𝑣∗(𝑆𝑡+1) | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 

 = max
𝑎
∑ 𝑝(𝑠′, 𝑟| 𝑠, 𝑎)[𝑟 + 𝛾𝑣∗(𝑠

′)]𝑠′,𝑟                                            (3.17) 

 
Bellman optimality equations for action-value function: 

𝑞∗(𝑠, 𝑎) = 𝔼 [𝑅𝑡+1 + 𝛾max
𝑎′

𝑞∗(𝑆𝑡+1, 𝑎
′) | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 

                                      = ∑ 𝑝𝑠′,𝑟 (𝑠′, 𝑟 |𝑠, 𝑎) [𝑟 + max
𝑎′

𝑞∗(𝑠
′, 𝑎′)]                            (3.18) 

For the cases in which the transition probabilities and reward functions are known 

(model-based), Bellman optimality equations can be solved via dynamic programming.  

As the transition probabilities and reward function are not available, model free 

algorithms are used (such as Monte Carlo, temporal difference (TD), and policy search 

methods). This thesis implements Q-learning, which is an off-policy TD control 

algorithm. 

3.3.4 Q-learning 

Q-learning is an efficient algorithm of RL to solve the MDP based optimization 

problem without an explicit environment model. The objective of the Q-learning is to 

seek the optimal policy by maximizing the expected discounted reward of actions based 

on the given states.  The output of the Q-table for a state S and an action A is represented 

as Q(S,A). In Q-learning, the Q-values of each action A when performed in a state S can 

be updated recursively using Bellman’s action-value function as follows: 

𝑄(𝑆𝑡, 𝐴𝑡)  ←  𝑄(𝑆𝑡, 𝐴𝑡) +  𝛼 [𝑅𝑡+∆𝑡 +  𝛾max
𝑎
𝑄(𝑆𝑡+∆𝑡, 𝑎) −  𝑄(𝑆𝑡, 𝐴𝑡)]       (3.19) 

where γ ∈ [0,1] is a discount parameter, learning parameter α ∈ [0,1] decreases over time 

interval Δt in the suitable way. 𝑅𝑡+∆𝑡 is the immediate reward when the agent takes action 

A at state S. (𝑆𝑡, 𝐴𝑡) is the state-action pair and (𝑆𝑡+∆𝑡, 𝑎) is the possible state-action pair 

in the next time interval. The immediate reward is defined as the daily cost of the MG 

system. 
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The basic principle behind Q-learning is that the agent takes an action based on the 

ε-greedy policy, which is a way to choose an action from a set of feasible action. The 

agent selects the best action with probability (1-ε) or takes actions randomly with 

probability ε to discover new actions. The taken action gives rise to a change of the 

environmental state, so the agent transitions to a new state and observes the immediate 

reward from taking action A in state S. Then, the Q-value for a given state S and action A 

is updated. The Q-learning algorithm is shown in Algorithm 1. The optimal value of a 

state at each iteration is obtained by computing the maximum value. 

 

𝑄∗(𝑆𝑡, 𝑎𝑡) ≐  max
𝑎∈𝒜

𝑄(𝑆𝑡, 𝑎𝑡)                                           (3.20) 

 

Algorithm 1: Q-learning  

Initialize Q(s,a), ∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜(𝑠), arbitrarily, and Q(terminal, .) = 0 

Repeat (for each episode): 

    Initialize S 

    Repeat (for each step of episode): 

         Choose A from S using policy derived from Q (e.g., ε-greedy) 

         Take action A, observe R, S' 

         𝑄(𝑆, 𝐴)  ←  𝑄(𝑆, 𝐴) +  𝛼 [𝑅 +  𝛾max
𝑎
𝑄(𝑆′, 𝑎) −  𝑄(𝑆, 𝐴)] 

         𝑆 ←  𝑆′ 

    until S is terminal           

 

In conventional Q-learning, the Q values are stored in a lookup table. This approach 

is especially suitable for a small number of state-action spaces. As the state-action space 

increases, it will become impossible to store all Q values in a lookup table because an 

enormous storage capacity is required to store the data.  This phenomenon is known as 

the “curse of dimensionality.” Moreover, this approach is computationally expensive 

because the time required to visit all the states becomes impossible. The proposed method 

to enhance of the performance of original Q-learning algorithm is given in Chapter 5. 

 

 

 

 



41 

 

Chapter 4 

Dynamic Rolling Horizon Control 

Approach   

 

 

 

 

An energy management system based on the rolling horizon control approach has been 

proposed for the grid-connected dynamic and stochastic microgrid of a university campus 

in Malta. The aims of the study are to minimize the fuel cost of the diesel generator, 

minimize the cost of power transfer between the main grid and the micro grid, and 

minimize the cost of deterioration of the battery to be able to provide optimum economic 

operation. Since uncertainty in renewable energy sources and load is inevitable, rolling 

horizon control in the stochastic framework is used to manage uncertainties in the energy 

management system problem. Both the deterministic and stochastic processes were 

studied to identify the effectiveness of the algorithm. In addition, the results are compared 

with the myopic and mixed integer linear programming algorithms. The results reveal 

that the life span of the battery and the associated economic savings are correlated with 

the SOC values.  

4.1 Introduction 

Optimization methods are used to find the best solutions for controlling the MG by 

ensuring stable and reliable operation. Existing studies in the literature are classified as 

deterministic MG operation or stochastic MG operation [189-191]. In the deterministic 

operation, RES power output and load demand have not been taken into consideration as 

a measure of uncertainty. Only accurately forecasted variables are considered to achieve 

the desired objectives. Since unexpected power changes in real time operation, which 

effect the economic dispatch or ancillary services, cannot be effectively addressed in the 
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deterministic model, the optimal operation of MG cannot be performed properly 

[146,148].  

Stochastic based energy management of MG has also been studied to tackle the 

uncertainty problem of RESs and loads. Several approaches exist, which are generally 

based on scenario-based stochastic optimization algorithm [192-194]. Since these 

scenarios or samples are generated from historical data, the accuracy of the forecasted 

data in real-time depends on the training scenarios. Therefore, the desired functionality 

in microgrid energy management may not be performed correctly in the face of real-time 

changes. This is because a high number of scenarios causes computation complexity, 

which is unacceptable in most real-world applications. For this reason, scenarios 

reduction approaches are needed to eliminate the scenarios without loss of critical 

information [195-196].  

The rolling horizon control (RHC), also known as model predictive control (MPC), 

is used in the literature to solve different control issues in microgrids. RHC can cope with 

the randomness and intermittence nature of RESs and load demand in real-time microgrid 

operation. In [197], scenario-based rolling horizon is proposed via a two stage stochastic 

formulation to minimize the operational cost, including the costs of generators and 

batteries, purchases, penalties, and revenues from electricity exported to the grid. The 

other paper used a scenario-based model predictive control to minimize the operating cost 

and total emission of toxic gases [198]. Two stage stochastic approach is formulated as 

mixed integer linear programming problem (MILP), incorporating model predictive 

control, and considering load and renewable energy generation uncertainties. The work 

in [173] proposes a chance constraint MPC for a grid-connected microgrid composed of 

a gas turbine, battery, and PVs. The authors aimed to minimize the deviation with optimal 

schedule by taking into consideration uncertainty in the low-level control unit, while high 

level is used to make economic optimization over a long-time horizon.  A four-level MPC 

controller was proposed with different electricity market rules in [199]. Also, different 

kinds of ESS were included in the system to achieve system objectives without 

considering losses and power flows limits. The study in [200] proposes a fitted rolling 

horizon control for the stochastic situations, in case of mission or no forecast information. 

These studies are limited in scope because there is no consideration of battery 

degradation, and the network constraints are missing. 

This paper suggests a real-time energy management system with RHC for a MG 

operation under a stochastic and dynamic environment by taking network constraints and 
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battery degradation into account. Stochastic RHC is used to plan the MG operation over 

24 hours, and with a time interval with 1h. The aim of the study is to minimize the 

operational cost, including the battery degradation cost, the energy cost of main grid, and 

the fuel cost of the diesel generator. The suggested algorithm has been tested in a real MG 

pilot of the Malta College of Arts, Science and Technology (MCAST) by considering the 

constraints of the network model. Formulation of the MG system, including all constraints 

and limitations, has nonlinear equations, with the nonlinearity issue handled through an 

adaptive grid search algorithm. Through this, the optimum value has been obtained in a 

very short time. The proposed model is formulated as mixed integer linear programming 

(MILP), which is solved by the CPLEX solver included in GAMS. 

4.2 Microgrid Model Description 

The scheme of the microgrid system is shown in Figure 4.1 below. The system is 

comprised of solar PV arrays (63 kW in total), a diesel generator (300 kW), lithium-ion 

batteries (300 kWh capacity in total), and loads. This paper assumes that the microgrid 

operates in grid-connected mode. A finite time horizon of the microgrid operation is 

considered as τ = {0,Δt, 2Δt, …Τ-Δt, Τ},  where Δt= 1 hour is the time interval and T = 

24 hours. 

 

Load PV1 Diesel 

Generator
Load PV2 ESS Load PV3

Block J Block F Block D

Distribution Network

Bus 0

Bus 1 Bus 2

Bus 3 Bus 4

Bus 6Bus 5 400V 400V

400V 400V
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Figure 4.1 Schematic diagram of microgrid 
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4.2.1 Battery Model 

The energy storage system is one of the core parts of the microgrid system, which 

can improve the microgrid system performance. Because the initial investment cost of a 

battery is high, it is crucial to extend the battery life. The battery cycle life is directly 

related to the depth of discharge (DoD). The cycle life data is given by the battery 

manufacturer in the form of total cycle number with respect to the DoD. The relationship 

between the expected cycle life and DoD is exponential for the li-ion battery, as given in 

(4.1). 

𝐿(𝐷) = 𝐷𝑎𝑒𝑏 (4.1) 

where D is the DoD in percentage at which the battery is cycled, L denotes the average 

cycle number at that particular D, and a and b are battery dependent coefficients. From 

the logarithmic fitted curve between DoD and cycle life specified in the data sheet of the 

battery used, these coefficients are found as a = -1.24, b = 7.043. From the fitted curve, 

battery wear cost in € per kWh can be calculated as follows: 

𝐶𝑊 =
𝐶𝑖𝑛𝑣

2𝐸𝑚𝑎𝑥𝐿(𝐷)𝐷𝜂𝑑𝜂𝑐
 (4.2) 

where 𝐶𝑖𝑛𝑣 is the capital cost of battery; 𝐸𝑚𝑎𝑥 is the total capacity of battery; and 𝜂𝑐 and 

𝜂𝑑 are the charging and discharging efficiencies, respectively. 

The operation cost of a battery based on wear cost is written as: 

𝐶𝑏𝑎𝑡 = 𝐶𝑊𝑃𝑏𝑎𝑡,𝑡Δ𝑡 (4.3) 

where 𝑃𝑏𝑎𝑡,𝑡 is the charging or discharging power of the battery at time t. 

At any given time, the state of charge (SOC) of the lithium- ion battery system 

should be within a certain range. It can be expressed as: 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝑡 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 (4.4) 

where 𝑆𝑂𝐶𝑚𝑖𝑛 and 𝑆𝑂𝐶𝑚𝑎𝑥 are the lower limit and upper limit of SOC, respectively. The 

charging and discharging states, charging and discharging power limits, and SOC 

formulation of the lithium-ion battery are given respectively as follows: 

𝑢𝑏𝑎𝑡,𝑡
𝑐 + 𝑢𝑏𝑎𝑡,𝑡

𝑑 ≤ 1  

 𝑢𝑏𝑎𝑡,𝑡
𝑐 ,  𝑢𝑏𝑎𝑡,𝑡

𝑑 ∈  {0,1} 
(4.5) 

0 ≤ 𝑃𝑏𝑎𝑡,𝑡
𝑑 ≤ 𝑢𝑏𝑎𝑡,𝑡

𝑑 𝑃𝑚𝑎𝑥
𝑑  (4.6) 

0 ≤ 𝑃𝑏𝑎𝑡,𝑡
𝑐 ≤ 𝑢𝑏𝑎𝑡,𝑡

𝑐 𝑃𝑚𝑎𝑥
𝑐  (4.7) 
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𝑆𝑂𝐶𝑡 =

{
 
 

 
 𝑆𝑂𝐶𝑡−Δ𝑡 −

𝑃𝑏𝑎𝑡,𝑡
𝑑 Δ𝑡

𝜂𝑑 ∙ 𝐸𝑚𝑎𝑥
                 𝑃𝑏𝑎𝑡,𝑡

𝑑 > 0

𝑆𝑂𝐶𝑡−𝛥𝑡 +
𝜂𝑐𝑃𝑏𝑎𝑡,𝑡

𝑐 𝛥𝑡

𝐸𝑚𝑎𝑥
                 𝑃𝑏𝑎𝑡,𝑡

𝑐 > 0

 (4.8) 

where 𝑢𝑏𝑎𝑡,𝑡
𝑐  and 𝑢𝑏𝑎𝑡,𝑡

𝑑  are the charging and discharging states of the battery, respectively; 

𝑃𝑏𝑎𝑡,𝑡
𝑐  and 𝑃𝑏𝑎𝑡,𝑡

𝑑  are the charging and discharging power of the battery, respectively; and 

𝑃𝑚𝑎𝑥
𝑐  and 𝑃𝑚𝑎𝑥

𝑑  are the maximum charging and discharging power of the battery, 

respectively. The charging efficiency (ηc) and discharging efficiency (ηd) are both 

assumed to be 95%, according to the practical situation of the MCAST system. 

4.2.2 Diesel Generator (DG) 

The hourly fuel consumption 𝐹𝐶𝑡 of a DG is modeled as a linear function, which is 

based on data provided by the manufacturer. 

𝐹𝐶𝑡 = 𝐹1𝑃𝑟𝑎𝑡𝑒𝑑 + 𝐹2𝑃𝑑𝑔,𝑡 (4.9) 

where 𝐹1 and 𝐹2 are the coefficients of fuel consumption function, which are set as 0.0183 

and 0.22, respectively; and 𝑃𝑟𝑎𝑡𝑒𝑑 and 𝑃𝑑𝑔,𝑡 are the rated power and the actual output 

power of DG, respectively. 

The power limits of DG are imposed as: 

𝑘𝑃𝑟𝑎𝑡𝑒𝑑 ≤ 𝑃𝑑𝑔,𝑡 ≤ 𝑃𝑟𝑎𝑡𝑒𝑑 (4.10) 

where k is set to be 0.3 based on the suggestion of manufacturers. 

The fuel cost of DG at time step t can be calculated as: 

𝐶𝑑𝑔,𝑡 = 𝐶𝑓𝑢𝑒𝑙𝐹𝐶𝑡Δ𝑡 (4.11) 

 

where 𝐶𝑓𝑢𝑒𝑙 is the fuel cost. 

4.2.3 Main grid 

The power transaction between main grid and microgrid should be constrained as: 

−𝑃𝑔𝑟𝑖𝑑
𝑚𝑎𝑥 ≤ 𝑃𝑔𝑟𝑖𝑑,𝑡 ≤ 𝑃𝑔𝑟𝑖𝑑

𝑚𝑎𝑥 (4.12) 

where 𝑃𝑔𝑟𝑖𝑑,𝑡 is the active power exchange between microgrid and main grid at time t; 

and 𝑃𝑔𝑟𝑖𝑑
𝑚𝑎𝑥 is the maximum active power that can be exported to and imported from the 

main grid. 
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The cost related to the power transaction at time step t is: 

𝐶𝑔𝑟𝑖𝑑,𝑡 = 𝑝𝑟𝑐𝑡𝑃𝑔𝑟𝑖𝑑,𝑡Δ𝑡 (4.13) 

where 𝑝𝑟𝑐𝑡 is the real-time electricity price at time step t. 

4.2.4 AC Power Flow 

The power flow limits in each branch ij are considered as: 

𝑃𝑖𝑗,𝑡 =
|𝑉𝑖,𝑡

2 | cos(𝜃𝑖𝑗)

|𝑍𝑖𝑗|
−
|𝑉𝑖,𝑡||𝑉𝑗,𝑡| cos(𝛿𝑖,𝑡 − 𝛿𝑗,𝑡 + 𝜃𝑖𝑗)

|𝑍𝑖𝑗|
 (4.14) 

𝑄𝑖𝑗,𝑡 =
|𝑉𝑖,𝑡

2 | sin(𝜃𝑖𝑗)

|𝑍𝑖𝑗|
−
|𝑉𝑖,𝑡||𝑉𝑗,𝑡| sin(𝛿𝑖,𝑡 − 𝛿𝑗,𝑡 + 𝜃𝑖𝑗)

|𝑍𝑖𝑗|
 

(4.15) 

𝑃𝑖𝑗,𝑡
2 + 𝑄𝑖𝑗,𝑡

2 ≤ (𝑆𝑖𝑗
𝑚𝑎𝑥)

2
 

(4.16) 

where the subscript i,j ∈ {1, 2,…,n} are the indexes of the MG system bus and n is the 

total number of the bus; 𝑃𝑖𝑗,𝑡 and 𝑄𝑖𝑗,𝑡 are the active and reactive power flows of branch 

ij, respectively; |𝑉𝑖,𝑡| and 𝛿𝑖,𝑡 are the voltage amplitude and angle at bus i, respectively; 

|𝑍𝑖𝑗| and 𝜃𝑖𝑗 are the impedance magnitude and corresponding phase angle of branch ij, 

respectively; and 𝑆𝑖𝑗
𝑚𝑎𝑥 is the maximum complex power flow of branch ij. 

The transmission capacity limit of power cables is also considered as: 

𝑃𝑖𝑗,𝑡 ≤ 𝑃𝑖𝑗
𝑚𝑎𝑥 (4.17) 

where 𝑃𝑖𝑗
𝑚𝑎𝑥 is the maximum power flow limit from bus i to bus j. 

The voltage amplitude limit is bounded by: 

𝑉𝑖
𝑚𝑖𝑛 ≤ |𝑉𝑖,𝑡| ≤ 𝑉𝑖

𝑚𝑎𝑥 (4.18) 

where 𝑉𝑖
𝑚𝑖𝑛 and 𝑉𝑖

𝑚𝑎𝑥 are the minimum and maximum voltage magnitudes of bus i, 

respectively. 

The power balance equation is also considered as: 

𝑃𝑝𝑣,𝑡 + 𝑃𝑔𝑟𝑖𝑑,𝑡 + 𝑃𝑑𝑔,𝑡 + (𝑃𝑏𝑎𝑡,𝑡
𝑑 − 𝑃𝑏𝑎𝑡,𝑡

𝑐 ) = 𝑃𝑖𝑗,𝑡 + 𝑃𝐿,𝑡 (4.19) 

where 𝑃𝑝𝑣,𝑡 is the total active power output of PV arrays; and 𝑃𝐿,𝑡 is the total active load 

demand. 

4.2.5 Objective Function 

The objective function of this study is to minimize the daily operational cost, which 

includes the degradation cost of battery, the fuel cost of the diesel generator and the cost 
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of power transaction between the main grid and microgrid. Thus, the objective function 

can be expressed as:  

𝐶𝑡(𝑆𝑡, 𝑎𝑡) = 𝐶𝑏𝑎𝑡,𝑡(𝑆𝑡, 𝑎𝑡) + 𝐶𝑑𝑔,𝑡(𝑆𝑡, 𝑎𝑡) + 𝐶𝑔𝑟𝑖𝑑,𝑡(𝑆𝑡, 𝑎𝑡) (4.24) 

 
Exogenous information vector 𝐸𝑡, includes at time t, which is given by: 
 

�̂�𝑡 = {�̂�𝐿,𝑡, �̂�𝑝𝑣1,𝑡, �̂�𝑝𝑣2,𝑡, �̂�𝑝𝑣3,𝑡} (4.25) 

 

where �̂�𝐿,𝑡, �̂�𝑝𝑣1,𝑡, �̂�𝑝𝑣2,𝑡, �̂�𝑝𝑣3,𝑡  are the available information in the load demand and PV 

power of each building at time t, respectively. 

The exogenous information includes random forecast error (ε), so the exogenous 

information at time t+Δt is given by: 

𝐸𝑡+𝛥𝑡 = �̂�𝑡+𝛥𝑡 + ε  (4.26) 

  

The available information at time t can be expressed as: 

𝐼𝑡 = (𝑆𝑂𝐶𝑡, 𝐸𝑡, 𝐸𝑡+1, … , 𝐸𝑡+𝐻)  (4.27) 

where Et is the available exogenous information at time t, Et+1:t+H is the future exogenous 

information with random forecast error between time t+1 to t+H. 

The decision variables vector at of the problem can be given as by: 

𝑎𝑡 =  {𝑃𝑏𝑎𝑡,𝑡
𝑑 , 𝑃𝑏𝑎𝑡,𝑡

𝑐  , 𝑃𝑑𝑔,𝑡, 𝑃𝑔𝑟𝑖𝑑,𝑡, 𝑃𝑝𝑣1,𝑡 , 𝑃𝑝𝑣2,𝑡 , 𝑃𝑝𝑣3,𝑡 } (4.28) 

where 𝑃𝑏𝑎𝑡,𝑡
𝑑 , 𝑃𝑏𝑎𝑡,𝑡

𝑐  are the discharge and charge power, respectively. 𝑃𝑑𝑔,𝑡, 𝑃𝑔𝑟𝑖𝑑,𝑡 

represent the dispatched power of the DG and transferred power between the main grid 

and microgrid, respectively. 𝑃𝑝𝑣1,𝑡, 𝑃𝑝𝑣2,𝑡𝑃𝑝𝑣3,𝑡 represent the injected power by solar 

panels. 

The overall operational cost can be minimized as: 

𝑉 = min  E [∑𝐶(𝑡, 𝐼𝑡)

𝑇

𝑡=1

]  (4.29) 

4.3 Rolling Horizon Control Approach  

The operation flowchart of the MILP based rolling horizon control is given in 

Figure 4.2 below. The algorithm is initialized by setting horizon size H, time period T, 

and the initial SOC value of the battery. Then, the exogenous data (PV power and 

demand) are updated for prediction horizon H. These exogenous data and current state of 
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the system (which is called available information for t:t+H) are sent to the optimizer (the 

CPLEX solver of GAMS). After the MILP optimization problem is solved from t to t+H 

at time t subject to constraints, optimal decision variables are obtained. While only the 

first decision variable is applied to the MG system, the operational cost is calculated and 

the SOC value is observed for the following time step. Then, it is moved to the next time 

step. This process continues for each time step of one hour until the optimization horizon 

T is reached. This means that an optimization problem is solved at each time step with an 

updated information set.  

 

 

Figure 4.2 The flowchart of energy management process 

To cope with the nonlinearity property of the power flow equation, adaptive grid 

search is used to find the minimum and maximum values of power flow between buses 
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by taking into consideration voltage and phase angle limits. In this way, there will not be 

voltage and phase angle violations. Thus, the computation time is drastically reduced. 

4.4 Simulation Environment & Numerical Analysis  

4.4.1 Simulation Environment  

The MG is equipped with a 300 kW/375 kVA DG, 3x21 kW solar generators, and 

150 kW/300 kWh battery as shown in Figure 4.1 above. The distribution line parameters 

are presented in Table 4.1 below, while the parameters of DG and the battery are given 

Table 4.2 and Table 4.3, respectively. 

 

Table 4.1 Parameters of distribution lines 

Line Resistance  

(mΩ) 

Reactance  

(mΩ) From To 

Bus 0 Bus 1 129 78.225 

Bus 1 Bus 2 19.737 11.969 

Bus 3 Bus 4 11.536 12.208 

Bus 3 Bus 5 3.770 3.989 

Bus 4 Bus 6 3.770 3.989 

Bus 5 N1 3.770 3.989 

Bus 5 N2 3.770 3.989 

Bus 5 N3 3.770 3.989 

Bus 6 N4 9.048 9.550 

Bus 6 N5 9.048 9.550 

Bus 6 N6 4.901 5.186 

Bus 6 N7 6.786 7.181 

Bus 6 N8 6.786 7.181 

 

Table 4.2 Parameters of DG 

Parameter Value Parameter Value 

Prated (kW) 300 k 0.3 

𝐹1 (L ∙ h
−1 ∙ kW−1)  0.0183 Cfuel (€/L) 1.1 

𝐹2 (L ∙ h
−1 ∙ kW−1) 0.22   
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Table 4.3 Parameters of lithium-ion battery 

Parameter Value Parameter Value 

Emax (kWh) 300 Pmax
d  (kW) 50 

Cycle life 2700 @50% DoD Pmax
c  (kW) 40 

ηd , ηc 0.95, 0.95 a -1.24 

SOCmin (%) 50 b 7.043 

SOCmax (%) 100 Battery Cost (€/kWh) 220 

 

The stochastic load demand and stochastic PV power supply can be modelled as: 

𝑃𝐿,𝑡+1 = min{max{𝑃𝐿,𝑡 + 휀𝑡+1
𝐿 , 𝑃𝐿,𝑚𝑖𝑛 } , 𝑃𝐿,𝑚𝑎𝑥}  (4.30) 

𝑃𝑝𝑣,𝑡+1 = min{max{𝑃𝑝𝑣,𝑡 + 휀𝑡+1
𝑝𝑣 , 𝑃𝑝𝑣,𝑚𝑖𝑛 } , 𝑃𝑝𝑣,𝑚𝑎𝑥} (4.31) 

where 휀𝐿 and 휀𝑝𝑣 is either pseudo normally or uniformly distributed. In this study, 

휀𝐿~𝒩(0, 22) and 휀𝑝𝑣~𝒩(0, 0.52). After the probabilities are calculated for load demand 

and PV power as in [201], the exogenous variables for the next time interval are calculated 

using equations (4.30) and (4.31). The stochastic load demand profile and PV power 

profile are shown in Figure 4.3.  The electricity price is represented in Figure 4.4 below. 

 

 

Figure 4.3 Load demand and PV power generation for each building in stochastic 

case 
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Figure 4.4 Profile of electricity price 

 

The percentage of optimality (%) is found by the following equation: 

% percentage of optimality =
𝑉∗

𝑉
 𝑥 100%  (4.32) 

where V is the daily operational cost of the MG system using RHC and V* is the reference 

(optimal) operational cost obtained from MILP.  

4.4.2 Numerical Analysis  

4.4.2.1 Deterministic Case 

In this case, the deterministic dataset of PV power and load demand are used as 

input at each time step. To determine the horizon length of the RHC, the optimality 

percentage is calculated for each time horizon until obtaining the optimum operation cost 

of the microgrid. When the optimal percentage is obtained as 100% at horizon h, we can 

observe the optimal value of the system. As shown in Figure 4.5, when horizon size h=0, 

optimality is 97.84%.  It is seen that as the horizon length increases, the optimality reaches 

100%. In this study, 100% optimality obtained at h=11, so with values larger than 11, the 

optimal value can be achieved. For the examples in this section, the prediction horizon of 

11 hours is used with known exogenous data. Since each hour has a total of seven decision 

variables, a total of 77 decision variables must be resolved over the prediction horizon. 

MILP is applied to obtain the decision variables (PV power outputs, charge and discharge 

power of the battery, dispatched power of the DG, and transferred power between the 

main grid and MG) which are used to achieve the minimum operation cost. Table 4.4 
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shows the comparison of the optimization approaches in terms of daily operational cost 

and percentage of optimality.  While the myopic approach achieves 97.84% optimality, 

the optimality percentage using MILP based RHC is obtained as 100%. In this case, the 

traditional MILP is used to obtain a reference daily operational cost value. 

 

Figure 4.5 Percentage of the optimality 

 

Table 4.4 Performance comparison for deterministic case 

Approaches Operational cost (€) % of optimality 

MILP 510.6646 - 

RHC 510.6646 100 % 

Myopic 521.9159 97.84 % 

 

4.4.2.2 Stochastic Case 

In this case, two different probability distribution functions, uniform (U) and 

normal (N) distributions, are used to make the system stochastic. For example, U(-1,1) 

represents the uniform distributed numbers in the interval (-1,1). For the one of the other 

cases, N(0,22) shows the normal probability distribution, where the mean is 0 and the 

variance is 2. After obtaining the noise values, the PV power and load demand are 

calculated using equation (4.30) and (4.31).  

Table 4.5 shows the comparison of the performance of the MILP based RHC and 

the percentage of the optimality according to different stochastic test problems. In this 
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case, 300 simulation runs were conducted, with the average daily costs reported in table 

below. All test problems were conducted when the SOC of the battery was at 75%. For 

example, for problem no. 1, the average daily operational cost of the microgrid system is 

obtained as €510.4034, where the optimal cost incurred by MILP is €510.3115. So, the 

percentage of optimality in this problem is estimated as 99.98%. The results show that 

optimality of at least 99.94% is achieved via stochastic RHC. Moreover, the average daily 

costs and percentage of optimality were calculated by myopic approach for comparison.                     

 

Table 4.5 Performance comparison for stochastic case with different noises 

  MILP-based RHC Myopic approach 

Problem No. Noise 
Average Daily 

Cost (€) 
% of optimality 

Average Daily 

Cost (€) 
% of optimality 

1 N(0,0.52) 510.4034 99.98% 521.8671 97.78% 

2 N(0,1.02) 510.4307 99.97% 522.0690 97.74% 

3 N(0,1.52) 510.4849 99.96% 522.2638 97.71% 

4 N(0,2.02) 510.6103 99.94% 522.4578 97.67% 

5 U(-1,1) 510.3233 99.99% 521.9851 97.76% 

 

The power outputs of the battery, DG, PVs and main grid are presented in Figure 

4.6. The results show that the battery stores energy when the main electricity price is 

lowest between 4-5 h. Then, PV power is dispatched as long as it is available. When the 

operational cost of DG is cheaper than the electricity price, DG is activated between 12-

14h and 19-21h. Because DG is operated at 90 kW minimum, power can be bought/sold 

from/to the main grid in that situation. Table 4.6 shows the effect of the battery SOC on 

the average daily operational cost. 



54 

 

 

 

Figure 4.6 Behaviour of the SOC value and power outputs of the assets at each time 

step, respectively 

Table 4.6 shows the effect of the DoD of the battery in terms of battery life and 

daily operational cost in the stochastic case. We assume that the average battery 

throughput during a year is as stated in Table 4.6. When the battery is operated at 55% 

DoD, the daily operational cost and battery throughput are €509.3745 and 144.1437kWh, 
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respectively. As the level of DoD drops, we can see from the table that the daily 

operational cost increases to €513.6191 at 40% DoD and battery throughput falls to 

114.00 kWh. In terms of battery life extension, it is assumed that battery life is on average 

10 years and the total capital cost of the battery is (300 kWh x 220 €/kWh) €66,000. So, 

the calculated cost for each year is €6,600. Thus, the battery life increases from 7.15 years 

to 9.76 years, while DoD value decreases from 55% to 40%. So, the capital cost is 

deferred as 2.61 years, with a net saving of (2.61 x 6,600) €17,226. 

 

 

Table 4.6 Comparison of results of problem no. 1 with different DoD level 

DoD level (%) 
Operational 

cost (€) 

Battery cost 

Cbat (€) 

Battery 

throughput (kWh) 

Maximum battery 

life (years) 

55 509.3745 25.2607 144.1437 7.15 

50 510.4034 24.4052 142.4843 7.39 

45 511.9696 21.4186 128.2500 8.44 

40 513.6191 18.5081 114.0000 9.76 

 

4.5 Conclusion  

This study proposes an online energy management of the grid-connected stochastic 

microgrid operation. In order to achieve optimal economic operation, the rolling horizon 

control approach is presented by addressing the uncertainties of load demand and PV 

power generation. To validate the performance of the approach, deterministic and 

stochastic case studies are conducted. The results demonstrate that the RHC can provide 

100% of optimality for the deterministic case and at least 99.94% of optimality for the 

stochastic case. The stochastic case was conducted with a random forecast error obtained 

from historical data, with a performance comparison made with MILP. The results show 

that the RHC approach can perform efficiently even in uncertain circumstances. This 

method integrates the operational costs of each asset in a microgrid, including the 

degradation cost of the battery, as well as the cost of the main grid and diesel generator. 

Besides the integration of the network and technical constraints, by adjusting the DoD 
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level of the battery, we can see that the battery life is extended by 2.61 years. Thus, the 

system’s net saving related to its battery is estimated as €17,226. 
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Chapter 5 

Optimal Control of Microgrids with 

Multi-stage Mixed-integer Nonlinear 

Programming Guided Q-learning 

Algorithm 

 

 

 

 

This chapter proposes an energy management system (EMS) for the real-time operation 

of a pilot stochastic and dynamic microgrid on a university campus in Malta consisting 

of a diesel generator, photovoltaic panels, and batteries. The objective is to minimize the 

total daily operation costs, which include the degradation cost of batteries, the cost of 

energy bought from the main grid, the fuel cost of the diesel generator, and the emission 

cost. The optimization problem is modeled as a finite Markov Decision Process (MDP) 

through a combination of network and technical constraints, with Q-learning algorithm 

adopted to solve the sequential decision subproblems. The proposed algorithm 

decomposes a multi-stage mixed-integer nonlinear programming (MINLP) problem into 

a series of single-stage problems so that each subproblem can be solved by using 

Bellman’s equation. To prove the effectiveness of the proposed algorithm, three case 

studies are taken into consideration: ① minimizing the daily energy cost, ② minimizing 

the emission cost, and ③ minimizing the daily energy cost and emission cost 

simultaneously. Moreover, each case is operated under different battery operation 

conditions to investigate the battery lifetime. Finally, performance comparisons are 

carried out with a conventional Q-learning algorithm. 
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5.1 Introduction 

Distributed energy resources (DERs) such as wind power, solar power, and an 

energy storage system (ESS) are viewed as a solution due to the reduction in primary 

energy reserves and ever-increasing load demand. Thus, microgrids play a crucial role in 

the integration of DERs into future electric power grids. Despite the many advantages of 

microgrids, there are several technical challenges, such as stability and reliability issues 

caused by the natural uncertainty and unpredictability of renewable energy sources 

(RESs). The management of power system operation is already quite complex because 

instability and unreliability make it very difficult to maintain a balance between the 

supply and demand of energy in real-time operation. When integrating RESs into the 

power systems, the complicated systems get even more complex, rendering the 

management of power systems which include DERs a real challenge. It is crucial to have 

appropriate energy management in place for the success of such complicated power 

systems. A microgrid energy management system (EMS) plays a critical role in offering 

economic, sustainable and reliable operation by providing the optimal coordination 

between conventional energy resources, RESs, ESSs, and consumers.  

The existing studies in the literature can be classified according to the objectives of 

EMSs or the optimization approaches used. Microgrid energy management has been 

studied for many purposes such as operation cost reduction [170, 183-185], maximization 

of battery life and renewable energy penetration [181], environmental pollution and 

operation cost reduction [161, 179, 202], and improvement of stability and reliability of 

the system [180, 203]. For example, while the main objective in [170] is to minimize the 

total operation cost of a microgrid by focusing on  the fuel cost of power generators, the 

cost of operation and maintenance, the cost of purchasing electricity from main grid and 

penalties on the curtailment of renewable energy and load shedding, [181] intends to 

maximize the reliability and customer satisfaction. 

The intermittent nature of RESs and the nonlinear characteristics of other devices 

make it inevitable to have an optimization process in place, as trivial straightforward 

decisions result in severely suboptimal management systems. In this regard, mathematical 

optimization methods like MILP and MINLP are used to obtain exact solutions to integer 

programming problems, while state-of-the-art solution algorithms still rely on implicit 

enumeration, which carries a large computational burden for practical problems. Hence, 

several heuristic algorithms are used for the power systems in the literature. The main 
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limitation of these heuristic algorithms is that they cannot guarantee optimality, nor can 

they provide bounds on the amount of suboptimality, i.e., the optimality gap. 

The determination of the optimal operation involves a sequential decision-making 

process to tackle the uncertainty in weather-related generation units, as well as the 

demand, electricity price, and problems arising from the integration of variable power 

sources into the main grid. Thus, energy management for a microgrid becomes 

unavoidable to enable stable and reliable operation, seek optimal dispatch, and maximize 

its performance. To solve these issues, adaptive and intelligent methods are essential, 

especially for a large-scale microgrid. Reinforcement learning (RL) is a promising 

computational method for solving the stochastic sequential decision-making problems, in 

which a learning agent learns what actions to take by interacting with its environment to 

maximize a reward signal [188]. In this method, the agent is not told what to do in the 

current state, but instead needs to try the actions to find out which one gives the maximum 

reward. However, the RL suffers from the “curse of dimensionality” as the complexity of 

microgrid system increases. Due to the fact that coarse-grained discretization causes 

information loss, fine-grained discretization is required, and that causes the “curse of 

dimensionality” problem. Several studies have been published in the literature regarding 

RL. In [204], an RL-based optimal control method is proposed to improve the transient 

performance of hybrid microgrid systems. In [205], a well-known batch RL (fitted Q-

iteration) for residential demand response is suggested. In [206], the fitted Q-iteration is 

also used on a residential scale to minimize the amount of imported power from the main 

grid. 

In [207], a dynamic pricing strategy using a Q-learning (QL) algorithm is proposed 

by considering the hierarchical electricity market. The aim is to find a financial balance 

between the profits of service providers and costs of customers. In other words, 

customers, service providers, and main grids constitute the whole system. In [208], a 

strategic bidding is proposed by using a QL algorithm. In this study, customers need a 

bidding strategy to maximize their long-term profit. In [209], a two-step ahead RL method 

is proposed for a simple microgrid system to plan battery schedules without considering 

the detailed mathematical model of devices. In [210-212], a multi-agent RL method is 

applied to a microgrid considering the uncertainties. Moreover, operation cost reduction 

is targeted with an RL method in [159, 213]. 

This paper proposes an EMS that employs an MINLP guided QL algorithm for 

microgrid operation in a stochastic and dynamic environment to tackle the 
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aforementioned challenges. The main feature of the proposed algorithm is that the “curse 

of dimensionality” can be handled without coarse-grained discretization. The proposed 

algorithm decomposes the multi-time horizon optimization problem into sub-problems 

based on consecutive time-indexed periods. Then, each sub-component at each time is 

solved by the MINLP method. The purpose of the study is to minimize the total daily 

operation costs which include the degradation cost of batteries, the cost of energy bought 

from the main grid, the fuel cost of the diesel generator (DG), and the emission cost. 

Compared with prior studies (e.g., [136, 202, 207]), the main contributions of the paper 

are as follows: 

• The proposed real-time EMS is formulated as a Markov decision process (MDP) 

problem, where the solar energy, DG and battery are considered. The proposed 

algorithm has been developed to provide efficient energy management of a real 

microgrid pilot of the Malta College of Arts, Science and Technology (MCAST) 

by considering the constraints of the network model and technical model. 

• This paper tackles the problem with multiple smaller sub-problems by 

decomposing multiple time period operation cost optimization over a finite 

horizon. Thus, MINLP sub-problems can be solved effectively. 

• In order to reduce the dependency on the forecasted information, the historical 

data are used offline to deal with uncertainties of load demand and photovoltaic 

(PV). 

• The proposed algorithm enables finding optimal solutions without applying an 

approximation method, which enhances the performance of QL-based 

optimization with large state space. 

5.2 Microgrid Model Description 

The structure of the microgrid system is illustrated in Figure 5.1, where PCC stands 

for point of common coupling and SS stands for substation. The system is comprised of 

solar PV arrays (63 kW in total), a DG (300 kW), lithium-ion batteries (300 kWh capacity 

in total) and loads. This paper assumes that the microgrid operates in grid-connected 

mode. A finite time horizon of the microgrid operation is considered as 𝑡 =

{0, Δ𝑡, 2Δ𝑡, … , 𝑇 − Δ𝑡, 𝑇}, where Δt = 5 min is the time interval and T = 24 hours. 
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Figure 5.1 Schematic diagram of microgrid. 

5.2.1 Battery Model 

The ESS is one of the core parts of the microgrid system, which can improve its 

performance. Since the initial investment cost of batteries is high, it is crucial to extend 

the battery life. The battery cycle life is directly related to the depth of discharge (DoD). 

The cycle life data are given by the battery manufacturer in the form of total cycle number 

with respect to the DoD. The relationship between expected cycle life and DoD is 

exponential for the lithium-ion battery as given in (5.1). 

𝐿(𝐷) = 𝐷𝑎𝑒𝑏 (5.1) 

where D is the DoD in percentage at which the battery is cycled; L(D) is the average cycle 

number at that particular D; and a and b are the battery dependent coefficients. From the 

logarithmic fitted curve between DoD and cycle life specified in the data sheet of the 

battery used, these coefficients are found as a = -1.24, b = 7.043. From the fitted curve, 

the battery wear cost can be calculated as: 

𝐶𝑊 =
𝐶𝑖𝑛𝑣

2𝐸𝑚𝑎𝑥𝐿(𝐷)𝐷𝜂𝑑𝜂𝑐
 (5.2) 

where 𝐶𝑖𝑛𝑣 is the capital cost of battery; 𝐸𝑚𝑎𝑥 is the total capacity of battery; and 𝜂𝑐 and 

𝜂𝑑 are the charging and discharging efficiencies, respectively. 

The operation cost of battery based on wear cost is written as: 
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𝐶𝑏𝑎𝑡 = 𝐶𝑊𝑃𝑏𝑎𝑡,𝑡Δ𝑡 (5.3) 

where 𝑃𝑏𝑎𝑡,𝑡 is the charging or discharging power of the battery at time t. 

At any given time, the state of charge (SOC) of the lithium- ion battery system 

should be within a certain range. It can be expressed as: 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝑡 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 (5.4) 

where 𝑆𝑂𝐶𝑚𝑖𝑛 and 𝑆𝑂𝐶𝑚𝑎𝑥 are the lower limit and upper limit of SOC, respectively. The 

charging and discharging states, charging and discharging power limits, and SOC 

formulation of the lithium-ion battery are given respectively as follows: 

𝑢𝑏𝑎𝑡,𝑡
𝑐 + 𝑢𝑏𝑎𝑡,𝑡

𝑑 ≤ 1  

 𝑢𝑏𝑎𝑡,𝑡
𝑐 ,  𝑢𝑏𝑎𝑡,𝑡

𝑑 ∈  {0,1} 
(5.5) 

0 ≤ 𝑃𝑏𝑎𝑡,𝑡
𝑑 ≤ 𝑢𝑏𝑎𝑡,𝑡

𝑑 𝑃𝑚𝑎𝑥
𝑑  (5.6) 

0 ≤ 𝑃𝑏𝑎𝑡,𝑡
𝑐 ≤ 𝑢𝑏𝑎𝑡,𝑡

𝑐 𝑃𝑚𝑎𝑥
𝑐  (5.7) 

𝑆𝑂𝐶𝑡 =

{
 
 

 
 𝑆𝑂𝐶𝑡−Δ𝑡 −

𝑃𝑏𝑎𝑡,𝑡
𝑑 Δ𝑡

𝜂𝑑 ∙ 𝐸𝑚𝑎𝑥
                 𝑃𝑏𝑎𝑡,𝑡

𝑑 > 0

𝑆𝑂𝐶𝑡−𝛥𝑡 +
𝜂𝑐𝑃𝑏𝑎𝑡,𝑡

𝑐 𝛥𝑡

𝐸𝑚𝑎𝑥
                 𝑃𝑏𝑎𝑡,𝑡

𝑐 > 0

 (5.8) 

where 𝑢𝑏𝑎𝑡,𝑡
𝑐  and 𝑢𝑏𝑎𝑡,𝑡

𝑑  are the charging and discharging states of the battery, respectively; 

𝑃𝑏𝑎𝑡,𝑡
𝑐  and 𝑃𝑏𝑎𝑡,𝑡

𝑑  are the charging and discharging power of the battery, respectively; and 

𝑃𝑚𝑎𝑥
𝑐  and 𝑃𝑚𝑎𝑥

𝑑  are the maximum charging and discharging power of the battery, 

respectively. 𝜂𝑐 and 𝜂𝑑 are both assumed to be 95%, according to the practical situation 

of the MCAST system. 

5.2.2 Diesel Generator 

The hourly fuel consumption 𝐹𝐶𝑡 of a DG is modeled as a linear function, which is 

based on data provided by the manufacturer. 

𝐹𝐶𝑡 = 𝐹1𝑃𝑟𝑎𝑡𝑒𝑑 + 𝐹2𝑃𝑑𝑔,𝑡 (5.9) 

where 𝐹1 and 𝐹2 are the coefficients of fuel consumption function, which are set as 0.0183 

and 0.22, respectively; and 𝑃𝑟𝑎𝑡𝑒𝑑 and 𝑃𝑑𝑔,𝑡 are the rated power and the actual output 

power of DG, respectively. 

The power limits of DG are imposed as: 

𝑘𝑃𝑟𝑎𝑡𝑒𝑑 ≤ 𝑃𝑑𝑔,𝑡 ≤ 𝑃𝑟𝑎𝑡𝑒𝑑 (5.10) 

where k is set to be 0.3 based on the suggestion of manufacturers. 

The fuel cost of DG at time step t can be calculated as: 
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𝐶𝑑𝑔,𝑡 = 𝐶𝑓𝑢𝑒𝑙𝐹𝐶𝑡Δ𝑡 (5.11) 

where 𝐶𝑓𝑢𝑒𝑙 is the fuel cost. 

5.2.3 Main grid 

The power transaction between main grid and microgrid should be constrained as: 

−𝑃𝑔𝑟𝑖𝑑
𝑚𝑎𝑥 ≤ 𝑃𝑔𝑟𝑖𝑑,𝑡 ≤ 𝑃𝑔𝑟𝑖𝑑

𝑚𝑎𝑥 (5.12) 

where 𝑃𝑔𝑟𝑖𝑑,𝑡 is the active power exchange between microgrid and main grid at time t; 

and 𝑃𝑔𝑟𝑖𝑑
𝑚𝑎𝑥 is the maximum active power that can be exported to and imported from the 

main grid. 

The cost related to the power transaction at time step t is: 

𝐶𝑔𝑟𝑖𝑑,𝑡 = 𝑝𝑟𝑐𝑡𝑃𝑔𝑟𝑖𝑑,𝑡Δ𝑡 (5.13) 

where 𝑝𝑟𝑐𝑡 is the real-time electricity price at time step t. 

5.2.4 AC Power Flow 

The power flow limits in each branch ij are considered as: 

𝑃𝑖𝑗,𝑡 =
|𝑉𝑖,𝑡

2 | cos(𝜃𝑖𝑗)

|𝑍𝑖𝑗|
−
|𝑉𝑖,𝑡||𝑉𝑗,𝑡| cos(𝛿𝑖,𝑡 − 𝛿𝑗,𝑡 + 𝜃𝑖𝑗)

|𝑍𝑖𝑗|
 (5.14) 

𝑄𝑖𝑗,𝑡 =
|𝑉𝑖,𝑡

2 | sin(𝜃𝑖𝑗)

|𝑍𝑖𝑗|
−
|𝑉𝑖,𝑡||𝑉𝑗,𝑡| sin(𝛿𝑖,𝑡 − 𝛿𝑗,𝑡 + 𝜃𝑖𝑗)

|𝑍𝑖𝑗|
 

(5.15) 

𝑃𝑖𝑗,𝑡
2 + 𝑄𝑖𝑗,𝑡

2 ≤ (𝑆𝑖𝑗
𝑚𝑎𝑥)

2
 

(5.16) 

where 𝑖, 𝑗 ∈  {1, 2, … ,𝑁𝑏}, and 𝑁𝑏 is the total number of buses; 𝑃𝑖𝑗,𝑡 and 𝑄𝑖𝑗,𝑡 are the 

active and reactive power flows of branch ij, respectively; |𝑉𝑖,𝑡| and 𝛿𝑖,𝑡 are the voltage 

amplitude and angle at bus i, respectively; |𝑍𝑖𝑗| and 𝜃𝑖𝑗 are the impedance magnitude and 

corresponding phase angle of branch ij, respectively; and 𝑆𝑖𝑗
𝑚𝑎𝑥 is the maximum complex 

power flow of branch ij. 

The transmission capacity limit of power cables is also considered as: 

𝑃𝑖𝑗,𝑡 ≤ 𝑃𝑖𝑗
𝑚𝑎𝑥 (5.17) 

where 𝑃𝑖𝑗
𝑚𝑎𝑥 is the maximum power flow limit from bus i to bus j. 

The voltage amplitude limit is bounded by: 

𝑉𝑖
𝑚𝑖𝑛 ≤ |𝑉𝑖,𝑡| ≤ 𝑉𝑖

𝑚𝑎𝑥 (5.18) 

where 𝑉𝑖
𝑚𝑖𝑛 and 𝑉𝑖

𝑚𝑎𝑥 are the minimum and maximum voltage magnitudes of bus i, 

respectively. 
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The power balance equation is also considered as: 

𝑃𝑝𝑣,𝑡 + 𝑃𝑔𝑟𝑖𝑑,𝑡 + 𝑃𝑑𝑔,𝑡 + (𝑃𝑏𝑎𝑡,𝑡
𝑑 − 𝑃𝑏𝑎𝑡,𝑡

𝑐 ) = 𝑃𝑖𝑗,𝑡 + 𝑃𝐿,𝑡 (5.19) 

where 𝑃𝑝𝑣,𝑡 is the total active power output of PV arrays; and 𝑃𝐿,𝑡 is the total active load 

demand. 

5.2.5 Emission Cost Calculation 

Toxic gas externalities including CO2, NOx, and SO2 must be considered as cost 

function to reduce the greenhouse gas effect. The mass of the three gases is calculated 

with mathematical equation of the generated power of the DG and electricity grid as: 

𝐶𝑒𝑚,𝑡 = ∑∑𝐸𝐶𝑘 ∙ 𝐸𝐹𝑖𝑘 ∙ 𝑃𝑖,𝑡

𝑁𝑝𝑠

𝑖=1

𝑁𝑒𝑚

𝑘=1

 (5.20) 

where 𝑁𝑒𝑚 is the number of emission types (CO2, NOx, SO2); 𝑁𝑝𝑠 is the number of power 

sources that release the toxic gases (main grid and DG); 𝐸𝐶𝑘 is the externality cost of 

emission type k; 𝐸𝐹𝑖𝑘 is the emission factor of power source i and the emission type k; 

and 𝑃𝑖,𝑡 is the power output of power source i. 

5.3 MDP Model for Real-Time Scheduling of Microgrid 

In the MDP model, there are four components: state variables, decision (action) 

variables, state transitions, and rewards. The state variables denote the current state of the 

system and the basis for making operation decisions. The decision variables identify the 

choices, while the agent selects an action from a set of available actions, which is then 

sent to the environment. A time step later, the agent receives a reward which is an 

evaluation of taken actions, and the environment responds to these actions as a new state 

transition. Clearly, MDP allows us to predict the next state and reward given the current 

state and action. The next state depends only on the states and actions at time t instead of 

the previous history. 

The centralized EMS collects two types of information to make optimal decisions: 

the first is the historical data of PV generation and demand at the annual, monthly, daily, 

hourly and minute levels, and the second is the real-time information from microgrid 

assets including the SOC of the battery, electricity price, and the output of the battery and 

DG. Based on this information, EMS decides the power outputs of DG, PV, and battery, 
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as well as the power exchange between the main grid and microgrid, to achieve the 

objectives of this research. 

5.3.1 State Variables and Decision (Action) Variables 

The state variables 𝑆𝑡 at time t include 𝑆𝑂𝐶𝑡, available active power outputs of PVs 

𝑃𝑝𝑣1,𝑡
𝑎 , 𝑃𝑝𝑣2,𝑡

𝑎 , 𝑃𝑝𝑣3,𝑡
𝑎 , total active load demand 𝑃𝐿,𝑡, and real-time electricity price 𝑝𝑟𝑐𝑡. 

Hence, 𝑆𝑡 can be given as: 

𝑆𝑡 = {𝑆𝑂𝐶𝑡, 𝑃𝑝𝑣1,𝑡
𝑎 , 𝑃𝑝𝑣2,𝑡

𝑎 , 𝑃𝑝𝑣3,𝑡
𝑎 , 𝑃𝐿,𝑡, 𝑝𝑟𝑐𝑡} (5.21) 

The decision variable 𝑥𝑡 at time t of the problem can be given as: 

𝑥𝑡 = {𝑃𝑏𝑎𝑡,𝑡
𝑑 , 𝑃𝑏𝑎𝑡,𝑡

𝑐 , 𝑃𝑑𝑔,𝑡 } (5.22) 

The transition function for the battery SOC can be formulated as:  

𝑆𝑂𝐶𝑡+∆𝑡 = 𝑆𝑂𝐶𝑡 + (
𝑃𝑏𝑎𝑡,𝑡
𝑑

𝜂𝑑
− 𝑃𝑏𝑎𝑡,𝑡

𝑐 𝜂𝑐)Δ𝑡 (5.23) 

5.3.2 Objective Function 

The total cost of microgrid is considered as a trade-off between power generation 

cost and emission cost caused by the grid and DG. In this study, three case studies are 

considered including individual minimization of power generation cost, individual 

minimization of emission cost, and simultaneous minimization of power generation cost 

and emission cost. Thus, the objective function can be expressed as 

𝐶𝑡(𝑆𝑡, 𝑥𝑡) = 𝐶𝑏𝑎𝑡,𝑡(𝑆𝑡, 𝑥𝑡) + 𝐶𝑑𝑔,𝑡(𝑆𝑡, 𝑥𝑡) + 𝐶𝑔𝑟𝑖𝑑,𝑡(𝑆𝑡, 𝑥𝑡) + 𝐶𝑒𝑚,𝑡(𝑆𝑡, 𝑥𝑡) (5.24) 

where 𝑥𝑡 is an action variable; and (𝑆𝑡, 𝑥𝑡) is the state-action pair. 

5.4 Proposed Optimization Model 

The main advantage of the QL algorithm is that it does not need any environment 

model and can handle uncertainties and stochastic transitions without requiring full 

information of the system. However, it can be inefficient for large state-action space and 

cannot be applied easily to continuous state-action spaces involved in our problem. The 

simplest solution to a continuous working space is to discretize the space. Making 

discretization at smaller intervals can compensate for the changes of the system, but the 

state-action pair number will increase exponentially. In this study, after making 

discretization with larger intervals, each subproblem at each time step is solved by the 
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MINLP method using the DICOPT solver of General Algebraic Modeling System 

(GAMS) to get precise results. Thus, the problem can be handled with a MINLP-guided 

QL algorithm, without discretization in smaller way. In this way, it can overcome the 

challenges and find a more precise solution instead of an approximated value. 

The complete training process of the proposed algorithm using a combination of 

QL algorithm and MINLP optimization is presented in Figure 5.2. 

 

Compute feasible actions according to 

current state by (5.4-5.8) and select an action 

according to ε-greedy policy

Get optimal actions from GAMS and 

perform the obtained actions to the system

Calculate the operational cost by (5.24) and 

move to next state (5.23)

Update the Q(s,a) using (5.25)

t < T

n < N

End 

Start

t=t+Δtn=n+1

Y

Y

N

N

Solve the problem using MINLP 

optimization by DICOPT solver of GAMS 

using (5.1-5.20) and (5.24)

Initialize with a discrete state, action space 

and the Q value table with instant reward. 

 

Figure 5.2 Flowchart of training process. 

 

In the flowchart, a discrete state, the whole action space of the system and the Q-

value table are initialized at the start. Instead of storing every state-action pair of the 
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system, iteration begins by choosing only a discrete state. Additionally, the 𝑄(𝑆𝑡, 𝑥𝑡) 

values of each state-action pairs are initialized with the total discounted reward 𝑟0 with γ 

= 0 to reduce the convergence time, which can be obtained as the instant reward at time 

step 0 before the learning process starts. Then, the iteration starts by finding feasible 

actions at that state. An action is then selected from the feasible action set using ε-greedy 

policy. The selected actions are sent to the GAMS to solve the economic dispatching 

problem as MINLP. Thus, GAMS that uses the discretized actions at large intervals as 

inputs will give us optimal actions that minimize the cost function. The obtained optimal 

actions are then performed in the microgrid system. In the next step, the objective function 

at time t is calculated using (5.24). Then, the 𝑄(𝑆𝑡, 𝑥𝑡) value and time are updated, 

respectively. Finally, after the number of episode n is updated, if n < N, where N is the 

total number of episodes, the system goes to the next episode. 

5.5 Numerical and Result Analysis  

5.5.1 Simulation Environment 

The microgrid is equipped with a 300 kW/375 kVA DG, 3×21 kW solar generators, 

and 150 kW/300 kWh battery, as shown in Figure 5.1 above. Moreover, the profiles of 

load demand and the electricity price are shown in Figures 5.3 and 5.4, respectively. The 

parameters of the DG and lithium-ion battery are given in Tables 5.1 and 5.2, respectively. 

The parameters of distribution lines are given in Table 5.3. 

 

 

Figure 5.3 Profiles of load demand. 

 

 



68 

 

Table 5.1 Parameters of DG 

Parameter Value Parameter Value 

Prated (kW) 300 k 0.3 

𝐹1 (L ∙ h
−1 ∙ kW−1)  0.0183 Cfuel (€/L) 1.1 

𝐹2 (L ∙ h
−1 ∙ kW−1) 0.22   

 

Table 5.2 Parameters of lithium-ion battery 

Parameter Value Parameter Value 

Emax (kWh) 300 Pmax
d  (kW) 50 

Cycle life 2700 @50% DoD Pmax
c  (kW) 40 

ηd , ηc 0.95, 0.95 a -1.24 

SOCmin (%) 50 b 7.043 

SOCmax (%) 100 Battery Cost (€/kWh) 220 

 

 

Table 5.3 Parameters of distribution lines 

Line Resistance  

(mΩ) 

Reactance  

(mΩ) From To 

Bus 0 Bus 1 129 78.225 

Bus 1 Bus 2 19.737 11.969 

Bus 3 Bus 4 11.536 12.208 

Bus 3 Bus 5 3.770 3.989 

Bus 4 Bus 6 3.770 3.989 

Bus 5 N1 3.770 3.989 

Bus 5 N2 3.770 3.989 

Bus 5 N3 3.770 3.989 

Bus 6 N4 9.048 9.550 

Bus 6 N5 9.048 9.550 

Bus 6 N6 4.901 5.186 

Bus 6 N7 6.786 7.181 

Bus 6 N8 6.786 7.181 
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Figure 5.4 Profile of electricity price 

 

For all simulation cases, since the SOC changes from 40% to 60%, it is discretized 

into 70 to 130 states. The discharging/charging power of the battery, the output power of 

DG, the generated PV power and the load demand are discretized into 10/8 states, 7 states, 

5 states, 60 states, respectively. Table 5.4 demonstrates the externality costs and emission 

factors of the main grid and DG. The optimization horizon of all simulations is set at 24 

hours, and Δt = 5 min. Although the time interval is five minutes in the operation of the 

algorithm, the results in all cases are drawn with a time interval of one hour so that the 

graphics can be clearly seen. All studies have been simulated using MATLAB 2020 and 

GAMS 24.9.2 on a 64-bit Linux based computer with 250 GB of RAM and a 2.10 GHz 

Intel® Xeon® processor. 

Table 5.4 Parameters of externality costs and emission factors of DG and main grid 

Emission type 
Externality cost 

(€/kg) 

Emission factors 

of DG (kg/kWh) 

Emission factors of 

main grid (kg/kWh) 

CO2 0.0308 0.743 0.922 

SO2 2.181 4.04510−4 3.58310−3 

NOx 9.2527 9.3610−3 2.29510−3 

5.5.2 Case Studies 

5.5.2.1 Case 1: Minimize Operation Cost without Emission Cost 

In this case, the main objective is to minimize the operation costs of the battery, DG 

and main grid. The emission costs were not considered. When the battery is operated at 

SOC of 50%, the simulation results are illustrated in Figure 5.5. 



70 

 

 

Figure 5.5 Output power of all sources for Case 1 

 

It can be observed from Figure 5.5 that the battery stores energy during the 0th-4th 

hour. Then the power generated by PV is dispatched. When the operation cost of DG is 

less than the electricity price, DG is turned on between the 11th-13th hour. Since DG is 

operated at minimum 90 kW, the power can be bought from the main grid in that situation. 

Table 5.5 shows the effect of battery SOC on the average daily operation cost. 

Table 5.5 Simulation results of proposed algorithm compared with QL algorithm 

for Case 1 

SOC (%) 40 45 50 55 60 

 G-QL C-QL G-QL C-QL G-QL C-QL G-QL C-QL G-QL C-QL 

Total 

emission 

(kg/kWh) 

2139.04 2161.46 2150.28 2161.50 2153.69 2163.93 2163.85 2165.2087 2171.6735 2178.3315 

Emission 

Cost (€) 
129.6250 130.8125 130.2584 132.0833 133.8653 134.1898 134.1640 135.3101 136.1739 137.3908 

Battery 

throughput 

(kWh) 

150.0000 142.0833 150.0000 142.0833 142.9167 142.0833 129.5833 128.2500 115.4167 114.0000 

Daily 

energy 

cost (€) 

547.3606 554.4926 550.6309 556.9808 555.4273 558.2455 555.6116 558.5268 558.2421 561.9658 

 

When the battery is operated at SOC of 40%, the average daily operation cost is 

€547.3606, while it goes up to €558.2421 at SOC of 60%. According to this table, the 

proposed algorithm performs better than the QL algorithm on the average daily operation 
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cost. If we assume that the battery is operated at that power level on average during a 

year, by changing the SOC level from 40% to 60%, the battery life increases from 6.71 

years to 9.65 years. In this way, the capital cost of the battery is deferred as 2.94 years, if 

we assume the average lithium-ion battery life as ten years and the total capital cost of 

battery as (300×220) €66,000. The annual cost throughout the life of the battery is €6,600. 

Thus, the net saving of battery renewal is (2.94×6600) €19,404. 

 

4.5.2.2 Case 2: Minimize Operation Cost with Emission Cost 

DG is not used in this case, because the total cost of the DG (including the fuel cost 

and emission cost) is higher than that of the main grid. The simulation results are 

illustrated in Figure 5.6. As in Case 1, the battery charges at low electricity price intervals 

and discharges at peak price intervals to support the load demand.  

 

Figure 5.6 Output power of all sources for Case 2 

 

Table 5.6 shows the results of the proposed algorithm and QL algorithm according 

to different SOC values. It can be seen from Table 5.6 that the proposed algorithm works 

better than the QL algorithm. Comparing Table 5.6 with Table 5.5, it can be seen that for 

the proposed algorithm, the emission cost decreases by 5.68% (7.97%), while the daily 

energy cost increases by 0.66% (0.37%) with SOC of 40% (60%). 
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Table 5.6 Simulation results of proposed algorithm compared with QL algorithm 

for Case 2 

SOC (%) 40 45 50 55 60 

 G-QL C-QL G-QL C-QL G-QL C-QL G-QL C-QL G-QL C-QL 

Total 

emission 

(kg/kWh) 

2167.85 2192.75 2179.91 2194.68 2189.63 2199.13 2202.16 2208.6829 2211.7894 2220.3729 

Emission 

Cost (€) 
122.2626 123.6544 122.9418 123.7633 123.4897 124.0138 124.1954 124.5518 125.3180 125.7182 

Battery 

throughput 

(kWh) 

150.0000 141.6667 150.0000 141.6667 142.9167 141.6667 129.5000 128.2500 115.8333 114.0000 

Daily 

energy cost 

(€) 

550.9850 557.6795 554.5246 558.7408 556.5094 559.6482 558.7096 560.8216 560.3257 563.0461 

 

4.5.2.3 Case 3: Minimize Emission Cost 

Figure 5.7 shows the dispatched power by the proposed algorithm considering the 

goal of reducing the emission cost. According to the figure, the microgrid system uses the 

maximum capacity of renewable sources since they have no emission. Since the emission 

cost of the main grid is less than that of the DG, the whole day demand is supplied by the 

main grid, and the battery also contributes to supply the demand. It can be observed 

clearly from Figure 5.7 that the battery charging and discharging states are constantly 

changing, which adversely affects battery life.  

 

Figure 5.7 Output power of all sources for Case 3 
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Based on Table 5.7, the battery lifetime can be calculated, which varies from 5.32 

to 7.03 years as the SOC value of the battery increases. Thus, the capital cost of the battery 

renewal is deferred for 1.71 years and the net saving is (1.71×6600) €11286. Comparing 

this figure with that of Case 1, the net saving decreases by 41.84%. 

Table 5.7 Simulation results of proposed algorithm compared with QL algorithm 

for Case 3 

SOC (%) 40 45 50 55 60 

 G-QL C-QL G-QL C-QL G-QL C-QL G-QL C-QL G-QL C-QL 

Total 

emission 

(kg/kWh) 

2102.03 2108.02 2120.36 2124.43 2129.73 2137.03 2147.73 2152.8422 2162.6823 2165.4063 

Emission 

cost (€) 
118.4323 118.7715 119.4620 119.6959 119.9896 120.4056 121.0038 121.2964 121.8460 122.0151 

Battery 

throughput 

(kWh) 

189.0191 187.2234 181.2250 177.4557 184.4583 172.8813 169.3868 162.4661 158.3448 148.6896 

Daily 

energy cost 

(€) 

555.8055 557.9767 559.4833 560.4852 561.9195 562.8523 563.6109 564.7938 565.7577 568.3321 

 

Table 5.8 shows the emission cost and daily energy cost comparison of the three 

cases for with SOC of 50% the proposed algorithm. 

Table 5.8 Emission cost and daily energy cost comparison for three cases with SOC 

of 50% 

 Emission Cost (€) Daily Energy Cost (€) Total Cost (€) 

Case 1 133.8633 555.4273 689.2906 

Case 2 123.4897 556.5094 679.9991 

Case 3 119.9896 561.9195 681.9090 

 

It can be seen that the emission cost in Case 3 decreases by 10.364% compared to 

Case 1. However, in Case 3, the daily energy cost is higher than the other cases since only 

the emission cost is taken into consideration. Case 2 provides a relatively balanced result 

compared with the other two cases in terms of daily energy cost and emission cost. As 

both emission cost and energy cost are tried to be minimized, the total operation cost is 

the lowest in Case 2. 
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5.6 Conclusion  

This paper proposes an MINLP guided QL algorithm for the real-time energy 

management of the stochastic and dynamic microgrid in Malta. The AC power flow 

equations and constraints, the battery wear cost and constraints, the fuel cost, and the 

emission cost are considered for the economic and environment-friendly operation of the 

microgrid system. Three different cases are considered with three different objective 

functions: ① minimization of daily operation cost regardless of emission cost, ② 

minimization of both daily energy cost and emission cost, and ③ minimization of 

emission cost without considering daily energy cost. The simulation results, using real 

pilot data of MCAST, prove the cost effectiveness of the proposed algorithm compared 

with the traditional QL algorithm. In case studies using the proposed algorithm, there is 

a 1.348% reduction in the daily total operation cost (in Case 2 compared with Case 1). 

The daily total operation cost of the proposed algorithm is up to 1.25% lower than that of 

the QL algorithm. From the simulation results, we can also find that the battery lifetime 

is affected by the adjustment of the battery’s SOC value. 
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Chapter 6 

Conclusions and Future Prospects  
 

6.1 Conclusions 

Electricity is the largest contributor to the modern way of life. It has become 

impossible to imagine a day without it. Moreover, it must be said that mankind owes the 

increase in living standards throughout history largely to electricity. Therefore, operating 

an electricity system with high reliability and stability is extremely crucial to 

prevent/reduce the consumer from being affected by any disturbance. With the increasing 

electricity demand and reduction of fossil fuels necessary for electricity generation, 

researchers have turned to nature to provide a solution. The abundance and clean nature 

of renewable energy sources have allowed the development of the existing electricity 

system. Therefore, microgrids become an important factor in ensuring electricity reaches 

the customers. This research has developed methodologies to overcome potential 

problems related to the penetration of renewable energy sources to the main electricity 

network. The interoperability of the microgrid and distribution network has been made 

more secure and robust through optimization. 

This thesis demonstrates the energy management of a microgrid consisting of 

renewable energy sources, loads, and a battery. Three optimization methods were used to 

manage the microgrid. The objective function of the present microgrid management used 

the mixed integer linear programming (MILP), rolling horizon control (RHC) and Q-

learning optimization methods to control the operation of the renewable energy sources, 

diesel generator, and battery. The formulations of the network model and of the technical 

model have been considered for the economic and environmental operation of the 

microgrid system to solve the optimization problem under more real-world conditions. 

The results and conclusions of each chapter have been presented separately at the end of 

each chapter. Therefore, the work presented in this thesis is summarized in this section. 
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In Chapter 1, the reports published by IEA were investigated to show the course of 

electricity production, consumption, and carbon dioxide production from electricity 

generation. Moreover, the effects of global warming on electricity systems and the need 

for a transition to clean energy have been explained, including the various difficulties and 

complexity it brings.  

In Chapter 2, a literature review related to microgrid has been provided, including 

the microgrid concept, architectural models of microgrid, functions of smart grid 

components, challenges, and opportunities.  

In Chapter 4, dynamic rolling horizon control has been proposed to achieve optimal 

economic operation by addressing the uncertainties of demand and PV power generation. 

The algorithm was tested on both stochastic and deterministic environments with 98% 

and 100% optimality respectively. The performance comparison has been made with the 

MILP and myopic approach. Moreover, the effect of battery life was investigated by 

operating at different DoD levels. 

In Chapter 5, a Mixed Integer Nonlinear Programming (MINLP) guided Q-learning 

algorithm has been proposed for smart microgrid operation, which improves the vanilla 

Q-learning based optimization performance with large state-space. The proposed 

algorithm decomposes a multi-stage MINLP problem into a series of single-stage 

problems so that each subproblem can be solved. The proposed model has been 

implemented as three case studies with different objectives. Moreover, each case is 

operated under different battery operation conditions to investigate the battery lifetime. 

Finally, performance comparisons are carried out with a conventional Q-learning 

algorithm. 

Publications from the studies presented in this dissertation are given in the 

curriculum vitae at the end of the thesis. 

 

6.2 Societal Impact and Contribution to Global 

Sustainability 

The environmental benefits of microgrids are generally related to emissions 

released during power generation. Around the world, 63.9% of electricity production was 

provided from fossil fuels in 2018. Since more than of the electricity generation has been 
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provided by fossil fuels, the energy-based greenhouse gas (GHG) emission increased 

from 20.5 GtCO2 to 33.3 GtCO2 between 1900 and 2019. With the increase of GHG 

emission, climate change has become an increasing threat. 

To that point, microgrids are a great opportunity to use renewable energy sources 

or low carbon sources efficiently. In these times when global warming is an increasing 

threat, microgrids play an important role in the integration of renewable energy sources 

to the main electricity system. This thesis focuses on toxic gases containing CO2, NOx, 

and SO2 to reduce the greenhouse gas effect. 

In terms of social benefits, it is well suited to establish microgrids in 

underdeveloped regions where the electricity infrastructure is insufficient or where the 

infrastructure is not available. In this way, the problem of people who have difficulty in 

accessing electricity will be solved. They will also benefit economically by using 

renewable energy sources. 

In addition to all those environmental and social benefits, this thesis is strongly 

connected and related to the seventh United Nation’s Sustainable Development Goal 

titled “Ensure access to affordable, reliable, sustainable and modern energy for all”, and 

corresponds to its targets 7.1 and 7.2. Considering the indicators of Target 7.1, microgrid 

construction will increase the proportion of the population with access to electricity. In 

addition, the ratio of the population which relies on clean fuels and technology will 

increase, achieving the second indicator of Target 7.1. 

As the second target (7.2) which is “By 2030, increase substantially the share of 

renewable energy in the global energy mix”, the thesis will contribute the literature in 

terms of the construction of microgrids and their benefits to the main grid for sharing 

renewable energy with the total final global energy consumption rate.  

6.3 Future Prospects 

To extend the current work, a summary of possible future research directions is 

summarized as follows: 

1. Grid-connected mode is assumed in this research. For future research, adopting 

the scheme for islanded mode can be examined.  

2. The microgrid system model used in this thesis can be diversified with electrical 

vehicle, controllable loads, etc. 
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3. Instead of the value-based reinforcement learning methods used in this thesis, 

policy-based reinforcement learning methods can be used with continuous 

action space.  

4. Deep value-based and policy-based reinforcement learning algorithms method 

can be applied with large state-action space problem causing memory and 

computational complexity problem.  
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