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ABSTRACT
DEVELOPMENT OF CONTROL STRATEGIES IN SMART
MICROGRIDS

Yeliz YOLDAS
Ph.D. in Electrical and Computer Engineering
Advisor: Assoc. Prof. Ahmet ONEN

September 2021

This thesis concerns the transformation of aged power systems to modern power
systems that include microgrids with renewable energy sources and energy storage
systems. The integration of renewable energy sources brings excellent opportunities to
provide better reliability and efficiency. The aim of this dissertation is to maintain the
supply-demand balance in microgrids while minimizing the cost in real time operation.
A microgrid energy management system that can optimize the dispatch of the controllable
distributed energy resources in grid-connected mode of a pilot microgrid on a university
campus in Malta was developed to achieve this goal. Designing intelligent method for the
real-time energy management of the stochastic and dynamic microgrid is the primary goal
of this research. Moreover, the detailed mathematical models of the network model and
of the technical model are considered for the economic and environmental operation of
the microgrid system to solve the optimization problem under more real-world conditions.
The objective is to minimize the total daily operation costs, which include the degradation
cost of batteries, the cost of energy bought from the main grid, the fuel cost of the diesel
generator, and the emission cost. Q-learning algorithm is adopted to solve the sequential
decision subproblems. The proposed algorithm decomposes a multi-stage mixed-integer
nonlinear programming (MINLP) problem into a series of single-stage problems so that
each subproblem can be solved using Bellman’s equation. A predictive control
framework is also proposed to provide optimal operation with minimum cost. This
method allows the consideration of operational cost values, demand with uncertainty,
generation units’ profiles with uncertainty, and constraints related to the network model

and technical model.

Keywords: Microgrid, Rolling horizon control, Reinforcement learning, Energy
management



OZET
AKILLI MIKRO-SEBEKELERDE KONTROL
STRATEJILERININ GELISTIRILMESI

Yeliz YOLDAS
Elektrik ve Bilgisayar Miihendisligi Anabilim Dal1 Doktora
Tez Yoneticisi: Dog. Dr. Ahmet ONEN
Eylul-2021

Bu tez, eskimis gii¢ sistemlerinin yenilenebilir enerji kaynaklari ve enerji depolama
sistemleri ile mikro sebekeleri iceren modern gii¢ sistemlerine doniisiimii ile ilgilidir.
Yenilenebilir enerji kaynaklarinin belirsizligi ve kesintili dogasi, elektrik sebekesinin
istikrarini ve kalitesini diistirebilir. Bu nedenle, bu tezin amaci, ger¢cek zamanli ¢alismada
minimum maliyetle mikro sebekede arz-talep dengesini saglamaktir. Bu amaca ulagsmak
icin Malta'daki bir Gniversite kampisinde pilot bir sebekeye bagli mikro sebekenin
kontrol edilebilir dagitik enerji kaynaklarinin ¢ikislarini optimize edebilen enerji yonetim
sistemi gelistirilmistir..

Stokastik ve dinamik mikro sebekenin gercek zamanli enerji yonetimi i¢in akilli
sistem tasarlamak, birincil hedefe ulagmanin en 6nemli pargasidir. Ayrica, optimizasyon
problemini daha ger¢cek diinya kosullarinda ¢6zmek i¢in mikro sebeke sisteminin
ekonomik ve g¢evresel calismasi i¢in sebeke modelinin ve teknik modelin ayrintili
matematiksel modelleri diistiniilmiistir. Buradaki optimizasyon problemindeki amag,
bataryanin degradasyon maliyetini, ana sebekeden satin alinan enerjinin maliyetini, dizel
jeneratoriin yakit maliyetini ve emisyon maliyetini kapsayan toplam giinliik isletme
maliyetlerini en aza indirmektir. Sirali karar alt problemlerini ¢6zmek igin Q-6grenme
algoritmasi kullanilmistir. Onerilen algoritma, ¢cok asamali Tamsayili Karisik Dogrusal
Olmayan Programlama (TKDOP) problemini tek asamali probleme Serisine ayristirir,
boylece her bir alt problem Bellman denklemi kullanilarak ¢o6ziilebilir.

Ayrica, minimum maliyetle optimum ¢alismay1 saglamak icin bir 6ngorili kontrol
metot Onerilmistir. Bu yontem; isletme maliyet degerlerini, degiskenlik gosteren talebi,
belirsizlik iceren Gretim elemanlarinin profillerini ve sebeke & teknik model ile ilgili
kisitlamalarin dikkate alinmasini saglamaktadir.

Anahtar kelimeler: Mikro sebeke, Yuvarlanan ufuk kontroll, Pekistirmeli ogrenme,

Enerji yonetimi



Acknowledgements

First of all, I would like to express my deepest gratitude to my advisor Assoc. Prof.
Ahmet ONEN for his helpful advice and valuable assistance throughout the doctoral
study. | am eternally grateful for his endless patience, support, and encouragement.

I would like to give special thank you to Assist. Prof. Selcuk Géren who helped me
to carry out this thesis. | am most grateful for the opportunity he gave me to work together,
and also for his valuable comments and useful discussions.

With the same level of gratitude, I would also like to thank Prof. irfan Alan, who
was a member of my thesis committee throughout this thesis, for his valuable comments
and understanding.

I am also grateful to the committee members, Prof. Ferhat Daldaban and Assist.
Prof. Nurettin Ustkoyuncu. Thank you for your time and valuable comments.

I would also like to thank all my colleagues who directly and indirectly help me for
their unlimited support and encouragement.

Finally, |1 owe a deep gratitude to everyone who supported and encouraged me in
my private life. I am especially grateful to my precious mother, father, and sisters for their

endless support throughout my life.



TABLE OF CONTENTS

1. INTRODUCTION ..ottt sttt ae et eneesneeneeas 1
1.1 RESEARCH MOTIVATION AND PROBLEM STATEMENT .....oiviitiiiieniieniesieesieenieseenieas 5
1.2 RESEARCH OBJECTIVES AND CONTRIBUTIONS ......ceiutieitiesiiiesieeaieesieeseeesineenieeseeens 6
1.3 DISSERTATION OUTLINE ....cttietiiitesiieiesieesteestesseesieesesseesbeebesseesbeesnessnesseessesseenneas 7

2. ENHANCING SMART GRID WITH MICROGRIDS: CHALLENGES AND

OPPORTUNITIES ...ttt 9
2.1 MICROGRID TO SMART GRID.....ceiuttitiesiteateesiteastessseesseesssesssesssesssessseesssessssssssesssnens 9
2.2 ARCHITECTURAL MODEL OF FUTURE SMART GRID ....cceitiitiaiiinieesieeiesieesieeniesneeseeas 11

2.2.1 AC MICKOQIIAS .....eevtiuieieteete sttt bbbt 11
A B O 111 o] oo o [0 PSS OSPSURS 11
2.2.3 Hybrid AC-DC MICIOGIIOS .......coviieieieienienie et 11
2.3 FUNCTIONS OF SMART GRID COMPONENTS .....uvitieiisiiesieesteaseesiessieseessessseesesseesneas 12
2.3.1. Smart device interface COMPONENTS .........cccoreriririeieiee e 12
2.3.2 Advanced fOreCasting.........cccueiverieiieieeie e 19
2.3.4 Control of generation UNITS...........ccooeieiinininisieeeeeee e 20
2.3.5 Control of StOrage UNItS.........cccveueiieiiiie e 20
2.3.6 Data transmission and MONITOTING .....cc.oovreriririnieeieie e 21
2.3.7 Power flow and energy management...........ccvevueieeieerieiiese e 24
2.3.8 VENICIE 10 grid (V2G)....ccviiiiieiieieieeeee e 25
2.4 CHALLENGES AND OPPORTUNITIES ...ccitteiteieieesiriesteesireesieesseesieessseesneessneessesssee e 26
2.4.1 Technical ChallENQES. ..o 26
2.4.2 Regulation Challenges. ........cvciieiiiieie e 27
2.4.3 SMAIT CONSUMET ...ttt ettt ettt ettt ettt ettt et e et e e s beeenteenneeenes 27
2.4.4 Opportunities iN MICFOGIId.........cccoveiiiie e 28
2.5 CONCLUSION .....ceetiteitie st ateesiee et e st et esbee et e ssbe e beessbeesbeesabeeabeeanbeesbeeanbeeaneeensee e 29

3. OPTIMIZATION-BASED CONTROL STRATEGIES FOR ENERGY

MANAGEMENT SYSTEMS IN MICROGRIDS ........ccoooiiieiierceeseene e 30
3.1 LITERATURE REVIEW. ...cuttiiitiitiesiieateestee ettt e bt e ste e bt e sseeebeesseeenbeessneenneesseeannee e 30
3.2 MIXED INTEGER NONLINEAR PROGRAMMING ......veeiiiiaieeiiieaieesieeaiessieesseesseesnseees 33
3.3 ROLLING HORIZON CONTROL ...ccuttiitiiititeiiesiieaiee st siee et e sieessbeesnneeneesnneenee e 34
3.4 REINFORCEMENT LEARNING . .....cetutteteestttatiesireateesseeatesssseesseesseeassesssneesseessnesnseees 35

3.3.1 Optimal value function and optimal poliCy..........ccccoeveviiiieniiiiecee, 37
3.3.2 Markov decision process (MDP) .......cccveiiiiiieiie e 38
3.3.3 Bellman EQUALIONS........cc.oiiiiiiiiiiieiee e 38
3.3.4 Q-lEAINING......eiitii it 39

4. DYNAMIC ROLLING HORIZON CONTROL APPROACH.......cccccevvviiiennnn 41
4.1 INTRODUCTION ..ciutiettietee sttt esteesseeesbeeasseeseesseeasbeesseeasbeessseanbeeaseeanbeesaneanneesseeansee e 41
4.2 MICROGRID MODEL DESCRIPTION ....ccutiiuiitieiesiiesiiesiesieesieesie e i e s e e esnesnne e 43

4.2.1 Battery MOGEI .......c.oouiiieiiee e s 44
4.2.2 Diesel GeNerator (DG) .....c.coviueiverieiieieeieseese e e sa et see e e sae e snees 45
A.2.3 MAIN GEI oottt nre s 45
4.2.4 AC POWET FIOW....cuiiiiiiiiieie ettt 46
4.2.5 ODJECHIVE FUNCHION......iiiiiiiii it 46



4.3 ROLLING HORIZON CONTROL APPROACH ... ieee ettt eeeeteee e e e e e e e e e e aeaaees 47

4.4 SIMULATION ENVIRONMENT & NUMERICAL ANALYSIS . .vviiiieeiirieeiirieesirieesireee s 49
4.4.1 SIMulation ENVIFONMENT ......eviiiiiiiiee it 49
4.4.2 NUMEIICAl ANAIYSIS .....cciiiiiieiecie ittt sne s 51

Y O] N[0 MU ] (0] P 55

. OPTIMAL CONTROL OF MICROGRIDS WITH MULTI-STAGE MIXED-
INTEGER NONLINEAR PROGRAMMING GUIDED Q-LEARNING

ALGORITHM ..ottt s s bbr e e e s e aree s 57
5.1 INTRODUCTION ..uuuuuuuuuuuuutuuuiuusnssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnsnnes 58
5.2 MICROGRID MODEL DESCRIPTION ....vviiiiiiiieeeiiitieeeietreeeesirreeessssssesessssreessssssseeesns 60

5.2.1 Battery MOGEl ......c.ooiiii e 61
YA B (1= [ CT=T o= = (o] 62

5. 2.3 MAIN GG .ot 63
5.2.4 AC POWEE FIOW......viiiiiiicciie ettt 63
5.2.5 EMIsSIon CoSt CalCUIAtiON.........c.evviiiiiiiii e 64
5.3 MDP MODEL FOR REAL-TIME SCHEDULING OF MICROGRID ......c.ccveiiiviieesirveeeenns 64
5.3.1 State Variables and Decision (Action) Variables.............ccccociininiiiinnnnn, 65
5.3.2 ODjJECtIVE FUNCLION......ccuiiieiiccie et 65
5.4 PROPOSED OPTIMIZATION IMODEL .....coevtteiiiiee ettt e e sivraaen e e e e s sabbbaeee s 65
5.5 NUMERICAL AND RESULT ANALYSIS 1.iiiiitvieeeiitrieeeiiitiieeesirrieesssssessssssresssssrsnesenns 67
5.5.1 SIMulation ENVIFONMENT ......oviiiiiiiiie ettt 67
RO O T I (1[0 [ = 69
1 OT0] N0 I £ L] N 74
. CONCLUSIONS AND FUTURE PROSPECTS ... 75
L 070 ] N0 I £ (] N L 75
6.2 SOCIETAL IMPACT AND CONTRIBUTION TO GLOBAL SUSTAINABILITY .....cccvrvvee.. 76
5.3 FUTURE PROSPECTS .oiiiiiiiiitttieiie e e e e s st bbttee st e s s s s seaabb et es s s e s s s s ssssbasesesesssssssssbbaennesas 77



LIST OF FIGURES

Figure 1.1 Total gross electricity production, 1974-2018 ...........cccceieieiinininicieee 1
Figure 1.2 World electricity final consumption, by sector, 1974-2018.............cccceevennee. 2
Figure 1.3 World electricity generation mix 1971-2018 .........ccccceeviiievveveciieseece e 2
Figure 1.4 Energy related CO2 emissions, 1990-2019..........cccccvveiiiiievveie s e 3
Figure 1.5 Fuel shares of world electricity production, 2018.............cccocevvnienenreniinnnnns 5
Figure 1.6 Annual net capacity additions by technology...........cccoceviiininiiiniiniee 5
Figure 2.1 Smart grid conceptual model............cccooveiiiiiii i, 10
Figure 2.2 A general structure for hybrid microgrid ............c.cocooveiiiiiiie i, 12
Figure 2.3 Smart grid with an energy Storage SYSteM.........cccvvvrerierenereneseseeeeeeees 15
Figure 2.4 Wind speed in Hokkaido Island, Japan ... 16
Figure 2.5 Frequency fluctuation at heavy load (conventional pitch controller)............ 16
Figure 2.6 Frequency fluctuation at low load (conventional pitch controller) ............... 17

Figure 2.7 Frequency fluctuation at heavy load (conventional and new pitch controllers)

................................................................................................................................ 17
Figure 2.8 Frequency fluctuation at low load (conventional and new pitch controllers) 18
Figure 2.9 Frequency fluctuation at low load (USINg ESS).........cccevveviiieiiciececeee, 18
Figure 3.1 Rolling horizon framework ............ccooeieiiiineiiieeeee s 35
Figure 3.2 Agent and environment interactions in reinforcement learning .................... 36
Figure 4.1 Schematic diagram of MiCrogrid...........cccceveiiieiieie i, 43
Figure 4.2 The flowchart of energy management ProCesS...........ccevvvevveevveieerreerieseennnan, 48

Figure 4.3 Load demand and PV power generation for each building in stochastic case

................................................................................................................................ 50
Figure 4.4 Profile of eleCtriCity PriCe.......ccciiiiiiiiiiees s 51
Figure 4.5 Percentage of the optimality...........ccccoovveiiiiiic i 52
Figure 4.6 Behaviour of the SOC value and power outputs of the assets at each time step,

TESPECTIVEIY ...t bbbt 54
Figure 5.1 Schematic diagram of MICrogrid. .........cccccerereiiiiniiniiiee e 61
Figure 5.2 Flowchart of training ProCESS. .....cceoueiieiiiieiie e 66
Figure 5.3 Profiles of 10ad demand. ..........ccccooiriiiiiiiii e 67
Figure 5.4 Profile of €leCtriCIty PriCe......cccoeiieieiieie e 69
Figure 5.5 Output power of all Sources for Case 1........cccccvviveveiiieiieenesiee e 70

Vi



Figure 5.6 Output power of all sources for Case 2
Figure 5.7 Output power of all sources for Case 3

vii



LIST OF TABLES

Table 1.1 Overview of main potential impacts on the electricity system due to climate

(010 U o T OSSR 4
Table 4.1 Parameters of diStribution liNES ..........cccocvviriiiiiiiie e 49
Table 4.2 Parameters 0F DG .......cooiiiiiieiiee et 49
Table 4.3 Parameters of lithium-ion Dattery ... 50
Table 4.4 Performance comparison for deterministiC Case........cccccvvvvevvevecvienecse s, 52
Table 4.5 Performance comparison for stochastic case with different noises................. 53
Table 4.6 Comparison of results of problem no. 1 with different DoD level................. 55
Table 5.1 Parameters 0F DG .......coovoiiiieiiee et nne s 68
Table 5.2 Parameters of lithium-ion battery ..., 68
Table 5.3 Parameters of diStribution lINeS ...........ccocereiiiiiiiiiiie e 68

Table 5.4 Parameters of externality costs and emission factors of DG and main grid... 69
Table 5.5 Simulation results of proposed algorithm compared with QL algorithm for

S L .. ittt ne e 70
Table 5.6 Simulation results of proposed algorithm compared with QL algorithm for
08 L= 3R UR PRI 72
Table 5.7 Simulation results of proposed algorithm compared with QL algorithm for
(08 L I T TSRO UP TR PPRRPP 73
Table 5.8 Emission cost and daily energy cost comparison for three cases with SOC of
D000, ettt e e e e naae e e tteeanrreeannraeanreeeas 73

viii



LIST OF ABBREVIATIONS

ACD Adaptive Critic Design

ADHDP Action-Dependent Heuristic Dynamic Programming
ADP Adaptive Dynamic Programming

AMI Advanced Metering Infrastructure

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
CHP Combined Heat and Power

DER Distributed Energy Resources

DG Diesel Generator

DGS Distributed Generator Sources

DMS Data Management System

DP Dynamic Programming

DoD Depth of Discharge

DON Deep Q-Network

EMS Energy Management System

ERGEG European Regulators Group for Electricity and Gas
ESS Energy Storage System

ETPS European Technology Platform Smart Grids

GA Genetic Algorithm

GAMS General Algebraic Modelling System

GHG Greenhouse Gas

HAN Home Area Networks

ICT Information and Communication Technology

IEA International Energy Agency

LAN Local Area Networks

MAS Multi-Agent System

MCAST Malta College of Arts, Science and Technology
MDMS Meter Data Management System

MDP Markov Decision Process

MG Microgrid

MILP Mixed Integer Linear Programming



MINLP Mixed Integer Nonlinear Programming

MPC Model Predictive Control

NAN Neighborhood Area Networks
PEV Plug-in Electric Vehicles

PCC Point of Common Coupling

PLC Power Line Communication

PSO Particle Swarm Optimization

PV Photovoltaic

RES Renewable Energy Sources

RHC Rolling Horizon Control

RL Reinforcement Learning

SG Smart Grid

SMI Smart Metering and Infrastructure
SMES Superconducting Magnetic Energy Storage
SOC State of Charge

TD Temporal Difference

V2G Vehicle to Grid

VSI Voltage Source Inverter

WAN Wide Area Network

WSN Wireless Sensor Networks



To my family



Chapter 1

Introduction

The demand for electricity has been exponentially increasing over the past several
generations as humanity moves into a more technological world. According to the
Electricity Information Overview 2020 report, the world gross electricity generation
reached 26,730 TWh, 3.9% above the 2017 figure. Figure 1.1 compares the period
between 1974 and 2018, with an average annual growth rate of 3.3%. Based on the same
growth rate of 3.3%, it should also be pointed out that the world electricity final
consumption increased from 5000 TWh to 22,315 TWh between 1974 and 2018, as shown
in Figure 1.2 below. In 2018, consumption was 4.0% higher than in 2017 [1].
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Figure 1.1 Total gross electricity production, 1974-2018 [1]
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Figure 1.2 World electricity final consumption, by sector, 1974-2018 [1]

From Figure 1.3 below, it can be observed that electricity generation from coal (the
top fuel in 2018 by far) constituted 38% of the total electricity generation. Renewable
sources (including hydro, wind, solar, geothermal, biofuels, tidal and other sources)
become the second fuel used for electricity generation, at 26% in 2018. Natural gas took
third place, with 23% of the world gross electricity production in 2018. It can thus be

inferred that 63.9% of electricity production was provided from fossil fuels in 2018 [2].

e N Uclear Coal Oil Natural gas e Renewables e Qther
45
N M
35
30
25
X
20 —
15
10
5
0
- o wn ~N o [42] wn ~N O o« o wn ~N O o o wn ~N o o« (e2] wn ~N O
NS IS IS IS IS 0 0 60 0 00 O & &0 &0 &0 © © © O O oW« o o
a o o o oo oo o o oo oo oo oo o 0o 0O O O O O O O O o o o
i — i i i i i i i i i i — - — o (V] o o~ o (o] N o~ o~ o

Figure 1.3 World electricity generation mix 1971-2018 [2]



Since more than half of the electricity generation has been provided by fossil fuels
(according to Figure 1.4), the energy-based greenhouse gas (GHG) emission increased
from 20.5 GtCO2 to 33.3 GtCo2 between 1900 and 2019. This rapid increase in energy-
related emissions, which rose by approximately 2.5 times between 1990 and 2019, was

mostly due to the energy consumption of countries other than countries with advanced
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Figure 1.4 Energy related CO2 emissions, 1990-2019 [3]

With the increase of GHG emission, climate change has become an increasing
threat to electricity systems and directly affects every segment of the electricity network.
Rising global temperatures and the escalation of extreme weather events can cause
decreased efficiency in generation, transmission, and distribution systems and can also
affect demand for cooling and heating. Table 1.1 below presents an overview of the major
potential impacts on the electricity system caused by climate change [4].



Table 1.1 Overview of main potential impacts on the electricity system due to climate
change [4]

Climate impact Generation Transmission and distribution Demand
o Efficiency
. o Cooling efficiency
Rising global o ) )
e Generation potential o Efficiency e Cooling and heating
temperatures
o Need for additional
generation
o Output and potential
Changing precipitation e Cooling
o Peak and variability o Physical risks
patterns o Water supply

e Technology application

e Output o
. L o Physical risks
Sea-level rise o Physical risks o Water supply
o New asset development
o New asset development

e Physical risks e Physical risks )
Extreme weather events o . e Cooling
o Efficiency o Efficiency

Clean energy transition is needed to combat the effects of climate change. Variable
renewable energy sources (like wind and PVs) have become among the fastest growing
and cheapest electricity resources in the world. Thanks to falling costs, variable renewable
energy technologies are seen as the heart of the transformation from conventional forms
of power generation to clean energy sources. The deployment and development of clean
energy technologies is crucial to reduce carbon emissions and other pollutants caused by
energy use, and also to contribute to economic development. As shown in the Figure 1.5
below, renewable energy sources are the second largest contributor to world energy
production, at 25.2% in 2018 [5]. Looking at the annual capacity increase by technology
between 2000 and 2018, it can be seen that the increase in capacity is gradually increasing.
Net renewable capacity additions reached to 178 GW in 2018, of which around 85% was
made by variable renewable energy sources as given in Figure 1.6 [6]. According to the
IEA Stated Policies Scenario [7], low-carbon sources will provide more than half of total
electricity generation by 2040. Moreover, the average annual share of variable renewables

in total generation will reach 45% by 2040.

With the rapid growth of renewable energy, power system transformation is
inevitable. Because variable renewable energy sources have different technical
characteristics such as limited controllability and intermittent nature than conventional

technologies, their integration into the power system poses new challenges.
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Figure 1.5 Fuel shares of world electricity production, 2018 [5]
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Figure 1.6 Annual net capacity additions by technology [6]

1.1 Research Motivation and Problem Statement

The modern world has been faced with a crisis of unsustainable energy. Although

the primary source of this crisis has been an increase of the global energy demand, other

reasons have contributed as well, namely: a diminished availability of primary energy

sources and the aging of traditional transmission and distribution networks. These factors,

taken in conjunction with the impact of global warming, has sparked the search for

innovation regarding traditional grid architectures.



One such solution in the modern world is Distributed Generation Sources (DGS) of
electricity, as this technology is highly efficient, protects the environment, reduces the
loss of transmission and distribution, and supports the local power grid to improve system
stability. In addition to this, DGSs are able to integrate with existing renewable energy
sources, including wind, hydro, photovoltaic, and more. However, applying distributed
generators is not without its drawbacks, as it has been prone to cause as many problems
as it addresses. Instead of DGS technology on its own, a more efficient method of
implementing the benefits of this technology is to implement a system which recognizes
generation and its associated loads as a subsystem. This is also known as a “microgrid.”

One of the natural benefits of such microgrid (MG) technology is the ability to
connect and/or disconnect from the grid whenever necessary. As such, microgrids provide
improved reliability and offer a lower investment cost, and they are able to reduce
emissions, improve the quality of power, and reduce the power losses of a distributed
network. Despite the potential benefits, the development of microgrids suffers from
several major challenges. One of the challenges is stability and reliability issues caused
by the natural uncertainty of distributed energy resources (DERs). The management of
the power system operation is quite complex because this instability and unreliability
make it very difficult to maintain a balance between supply and demand of energy in real-
time operation. When integrating renewable energy sources (RESs) into the power
systems, the complicated systems become even more complex, rendering the
management of power systems including DERs a real challenge. It is crucial to have
appropriate energy management in place for the success of such complicated power
systems. A microgrid energy management system (EMS) plays a critical role in the
economic, sustainable, and reliable operation by providing the optimal coordination
between conventional energy resources, RESs, energy storage systems (ESSs), and

consumers [3].
1.2 Research Objectives and Contributions

The primary objective of this thesis is to develop a microgrid energy management
system that can optimize the dispatch of the controllable distributed energy resources in
a microgrid along the grid-connected mode of operation. Designing an intelligent method
for the real-time energy management of the stochastic and dynamic microgrid is thus the
primary goal. Moreover, the detailed mathematical model of the network is considered



for the economic and environmental operation of the microgrid system. Therefore, based

on the objectives of this thesis, the main contribution of the research can be listed as

follows:

1.3

A detailed mathematical model for the microgrid. The thesis has proposed a
detailed mathematical model by taking into account the constraints of the network
model and technical model to operate the microgrid effectively.

Design of an energy management system under stochastic and dynamic
environment. The thesis has used an advanced control technique, rolling horizon
control, to provide an online energy management system under a dynamic and
stochastic environment. The proposed model is formulated as mixed integer linear
programming (MILP).

Design of an intelligent energy management system. The thesis has used
machine learning algorithm to provide optimal operation, which includes a
sequential decision-making process to overcome uncertainty in demand and
overcome the problem arising from the integration of variable power generation
units into the main grid.

This work provides minimum energy cost and minimum emission cost by
balancing the energy sources and demand within the microgrid, considering
optimization requirements and all the constraints of the diesel generator, battery,
photovoltaic system, demand, and network.

Using reinforcement learning (RL). This thesis has proposed a Mixed Integer
Nonlinear Programming (MINLP) guided Q-learning algorithm for smart
microgrid operation, which improves Q-learning based optimization performance

with large state-space.

Dissertation Outline

The remainder of the thesis is organized as follows:

Chapter 2:

A comprehensive literature review of microgrid is provided in this chapter. It

represents background and detailed technical overview of microgrid and smart grid. The

microgrid architecture and functions, existing technical and regulation challenges, polices

and opportunities are presented in this chapter.



Chapter 3:
This chapter focuses on optimization-based control strategies for energy

management systems in microgrids used in the literature. Moreover, the algorithms used
in this study are explained in detail.
Chapter 4:

This chapter provides a real-time energy management system with rolling horizon
control under deterministic and stochastic conditions. Deterministic and stochastic case
studies are defined and simulated. The results were compared with the MILP and myopic
approach to display how it copes with randomness of PV generation and demand.
Chapter 5:

A MINLP guided Q-learning algorithm has been proposed for smart microgrid
operation, which improves vanilla Q-learning based optimization performance with large
state-space. The proposed algorithm decomposes a multi-stage MINLP problem into a
series of single-stage problems so that each subproblem can be solved. The proposed
model has implemented three case studies with different objectives. Moreover, each case
is operated under different battery operation conditions to investigate the battery lifetime.
Finally, performance comparisons are carried out with a conventional Q-learning
algorithm.

Chapter 6
A summary of the main conclusions of this thesis are provided. Future works are

given.



Chapter 2

Enhancing smart grid with microgrids:

Challenges and opportunities

Modern electric power systems are going through a revolutionary change. This is caused
by an increasing demand of electric power worldwide, developing political pressure and
public awareness to reduce carbon emission, incorporating large scale renewable power
penetration, and the blending of information and communication technologies with the
operation of power systems. The result of these was the establishment of the microgrid
concept, which has undergone major development and changes over the last decade,
recently boosted by smart grid technologies. The objective of this chapter is to present a
detailed technical overview of microgrid and smart grid in light of present developments
and future trends. First, the architecture and functions of microgrid are discussed.
Following that, the smart features of the microgrid are mentioned to demonstrate the
recent architecture of smart grids. Finally, the existing technical challenges,
communication features, policies and regulation are discussed from the perspective of

visualizing the future smart grid architecture.
2.1 Microgrid to smart grid

Smart grids [8] greatly benefit the progress of electricity grids. According to The
European Regulators Group for Electricity and Gas (ERGEG), based on the definition
from the European Technology Platform Smart Grids (ETPS), a smart grid is an
electricity network that can integrate the behavior and actions of all users connected to it
— generators, consumers and those that do both — in order to ensure an economically
efficient, sustainable power system with low losses and high levels of quality and security
of supply and safety [9]. The concept of the smart grid model can be briefly explained
under several domains, as shown in Figure 2.1. Smart grids are characterized by the

following [10]:



e Self-healing

e Consumer friendly

e Resistant to physical and cyber attacks

e Optimizes asset utilization

e Eco-friendly

e The use of robust two-way communications, advanced sensors and distributed
computing technology

e Improve the efficiency, reliability and safety of power delivery and use.
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Figure 2.1 Smart grid conceptual model

Notwithstanding the many advantages, smart grid technology is faced with many
obstacles. These include: bidirectional communication systems, integration to grids with
renewable energy resources, ineffective utilization of the DGS, inadequate existing grid
infrastructure, and storage. One of the methods to attain effective utilization of the DGS
is to handle electricity generations, energy storages, and loads as a localized group [11].

Microgrids play a key role in the smart grid concept. These are pieces of the larger
grid, which involve nearly all of components of the utility grid but are smaller in size.
While smart grids take place at the larger utility level, such as large transmission and
distribution lines, microgrids are smaller scale and can operate independently from the
larger utility grid.
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2.2 Architectural model of future smart grid

Microgrids can be classified into three main groups, depending on the way in which
the AC and DC buses are connected. The proposed classification is as follows: AC-

microgrids, DC-microgrids, and hybrid AC/DC microgrids.

2.2.1 AC microgrids

AC microgrids have acommon AC bus which is generally connected to mixed loads
(DC and AC loads), distributed generations, and energy storage devices. AC microgrids
are easily integrated to conventional AC grids because most loads and the grid itself are
AC. Therefore, it has more capacity, controllability, and flexibility. That said, DC loads,
the DC sources, and energy storage devices are connected to the AC bus via the DC/AC
inverter. This causes a significantly decrease in efficiency [12-13].

2.2.2 DC microgrids

In DC microgrids, a common DC bus is used to connect to the grid through an
AC/DC converter. The operation principle of the DC microgrid is similar to the AC
microgrid. Compared with AC microgrids, DC microgrids present a good solution to
reduce the power conversion losses because they only need to convert power once
connected to the DC bus. Therefore, DC microgrids have higher system efficiency, lower
cost, and smaller system size. Moreover, DC microgrids are better compatible to
integration of distributed energy resources (DERs) and offer better stability due to the
absence of reactive power [14-15]. Different types of DC microgrids have been presented
in the literature [12,16] (i.e. the monopolar, bipolar and homopolar type).

2.2.3 Hybrid AC-DC microgrids

Hybrid AC/DC microgrid is a combination of AC and DC microgrids in the same
distribution grid. This type of microgrid facilitates the direct integration of both AC- and
DC- based DGS, Energy Storage System (ESS), and loads and is shown in Figure 2.2.
This architecture has advantages over both AC and DC microgrids, such as the minimum
number of interface elements, higher reliability, easier integration of DERs, and the

reduction of conversion stages, energy losses, and total costs. Moreover, when DGS,
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loads and energy storage system (ESS) are directly connected either to the AC or DC

networks, there is no need for synchronization of generation and storage units [17-18].
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Figure 2.2 A general structure for hybrid microgrid
2.3 Functions of smart grid components

2.3.1. Smart device interface components

The elements that form a microgrid are described below:
2.3.1.1 Distributed Generators

Distributed generator units are the base of microgrids and located at or near the
point of use. Two types of generation technologies can be implemented into microgrid
systems: renewable resources (such as solar photovoltaics (PV), wind, small hydro power,
ocean) and non-renewable resources (such as reciprocating engines, gas turbines, modern
Combined Heat and Power (CHP)) [14,19].

Most of the distributed generator technologies require a power electronics interface
in order to convert the energy into grid-compatible AC power. The power electronics
interface contains the necessary circuitry to convert power from one form to another [20].
These converters may be a single-stage converter (DC-AC converter) or a double stage
converter (DC-DC and DC-AC converter). The converter contains the necessary output
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filters (L, LC, LCL, and LCL with damping resistor), connected in series with the
converters improving harmonic performance at lower switching frequencies [21].

Distributed generation for a microgrid must be properly selected according to the
characteristics and cost of the different technologies [13].

2.3.1.2 Energy storage devices

Energy storage devices can be classified into three categories: electrochemical
systems (batteries and flow batteries), kinetic energy storage systems (flywheel) and
potential energy storage (pumped hydro and compresses air storage). In [22-23], a
detailed comparison of different energy storage devices can be found. Since pumped
hydro storage and compressed air energy storage systems are large scale energy storage
system, they are mostly used in the high power range for standard power systems, and
hence, are not suitable for small-scale renewable energy systems [24].

Energy storage devices in microgrid applications may improve power imbalance,
power quality, reliability and stability between loads and distributed generated resources
output. More suitable energy storage devices can be determined according to the
characteristic of loads and the distributed energy resources. Some key energy storage
technologies available for MG applications are summarized as follows:

e Batteries are one of the most used energy storage devices. They are classified as
lead acid, nickel cadmium (Ni-Cd), nickel metal hydride (NiMh) and lithium-ion
(Li-on) batteries. Lead acid batteries are suitable for storing energy for long
periods of time although they have a relatively poor performance and limited cycle
life (1200-1800 cycles). When Ni-Cd batteries are compared with lead acid
batteries, Ni-Cd batteries have longer cycle life, higher energy densities, and
lower maintenance. Still, it features a major hindrance in its high initial capital
cost. NiMh batteries have more energy density than Ni-Cd batteries
(approximately 25-30% more) with equivalent lifecycle as lead acid batteries. The
highest energy density is found in Li-on batteries compared to lead acid, Ni-Cd,
and NiMh batteries, but the investment cost and limited life cycle are the main
drawbacks of Li-on batteries [24-25]. Reference [26] proposed that a battery
storage system be integrated into solar PV systems to mitigate the negative
impacts of PV integration. Analyses performed by Simulink and Homer have been
done to assess different battery storage systems from a techno-economic point of
view in [24].
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Flywheel energy storage devices have long life cycles, as well as high energy and
power density. Despite that, the drawback of flywheel energy storage is that they
are inclined to have high friction losses. They can be used to mitigate the
fluctuations in power generated by wind and solar systems [22]. Flywheel storage
systems coupled with diesel generator are used in the studies of [27-28]to provide
UPS service to the critical loads.

Supercapacitors (also known as ultracapacitors or electric double layer capacitors)
are based on the characteristics of the capacitor and electrochemical batteries
without a chemical process. The main difference between capacitors and
supercapacitors is the use of a porous membrane which provides ion transfer
between two electrodes, thus electrical energy can be stored directly, causing a
very low response time [29]. Moreover, its capacitance and energy density values
can be hundreds to thousands of times larger than that of capacitors. When
compared with lead acid batteries, supercapacitors have lower energy density but
also have higher power density, longer lifecycles, and better energy efficiency
(about 75-80%). The most important disadvantage of this technology is their high
cost, about five times more expensive than lead acid batteries [25]. The research
of Molina [30] and Brando [31] reported that supercapacitors are a good choice to
mitigate the inherent natural fluctuations of intermittent renewable sources, such
as wind and waves.

Superconducting magnetic energy storage (SMES) systems have very long-life
cycles (tens to thousands of cycles), very high efficiency (up to 95%), very fast
response time, and high implementation cost. Possible applications are power
factor improvement, frequency regulation, transient stability, and power quality
improvement [32-33]. In study of Nguyen [34], SMES integrated with wind power
was used to control the frequency and voltage of the microgrid in island mode.
When the microgrid operates in the grid-connected mode, the SMES system is
used to provide a constant power flow at point of common coupling (PCC) to
overcome the fluctuations in power arising from the wind power.

One of the commercially available flow batteries is the Vanadium Redox Battery
(VRB). It has many advantages over many traditional battery energy storage
systems (BESS), such as a long lifecycle, low maintenance, independent power
and energy capacity, quick charge and discharge response, and high efficiency.

However, the initial operating and maintenance costs are still relatively high in
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comparison to BESS [29]. The current literature on VRB-based microgrids is
limited, since this technology has been commercialized recently [34-35].

To demonstrate the importance of ESS on a smart grid, a case study has been made,
based on the model shown in Figure 2.3 below. A 6.0 GW power system on the Hokkaido
Island of Japan, which consists of hydro, thermal, and nuclear generators, is scaled down
to 100 MW. Then a renewable energy park, consisting of wind and/or a photovoltaic
system, is connected to the power system considering a maximum renewable power
penetration of 10% of the original power system capacity. The original model shown in
the study of Muyeen [36] is modified to show the effect of a high penetration of renewable
energy on the modern smart grid and a path forward to overcome grid code barriers using

storage technology.
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Figure 2.3 Smart grid with an energy storage system
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Figure 2.4 Wind speed in Hokkaido Island, Japan
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Figure 2.5 Frequency fluctuation at heavy load (conventional pitch controller)

The wind turbines are equipped with advanced pitch controllers [37] which can
smooth the power going to the line when generated power is greater than the reference
power produced from a low pass filter (i.e., the advanced pitch controller works even at
wind speed lower than rated speed). The conventional pitch controller only works once
the wind speed is above the rated speed. Figure 2.4 shows the different wind speed for
different wind generations of two wind farms that were shown in Figure 2.3. Figure 2.5
and Figure 2.6 show the frequency fluctuations levels for different wind power
penetration levels at high and low load conditions when only a conventional pitch
controller is used. It is seen that when the wind power penetration level is maximum, the
frequency fluctuation increases. However, when the advanced pitch controller is used, the

frequency fluctuation is within the acceptable range for high load conditions, as shown in
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Figure 2.7. Figure 2.8 shows that the advance pitch controller does not effectively control
the frequency at a low load condition. However, when an ESS is used in the smart grid
(Figure 2.3), the frequency can be maintained at the rated value, as shown in Figure 2.9.
In this study, an energy capacitor system is used as ESS. Therefore, ESS will play a vital
role in future smart grid operation, though the cost and lifecycles of ESSs remain the

primary challenges.
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Figure 2.6 Frequency fluctuation at low load (conventional pitch controller)
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Figure 2.7 Frequency fluctuation at heavy load (conventional and new pitch
controllers)
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Figure 2.9 Frequency fluctuation at low load (using ESS)

2.3.1.3. Loads

Microgrids can supply electrical energy to different types of loads such as residential,
commercial, and industrial. These loads can be categorized into two sections: critical load
and noncritical loads. In general, commercial and industrial users are defined as critical
loads, which require a high degree of power quality and reliability, while most of
residential loads are considered non-critical loads, which require a lower service quality
[13]. The load classification provides the advantages listed below while obtaining the
desired operation, stability and control [38]:

o the load/source operation strategy required to meet the net active/ reactive power

in grid-tied mode, and stabilization of the voltage and frequency in island mode,
e improved power quality and reliability of critical and sensitive loads,

e reduction of peak load to enhance the DER ratings,
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e maintaining the desired operation and control.

2.3.2 Advanced forecasting
2.3.2.1 Demand (load) forecasting

Demand (load) forecasting [39-40] plays a crucial role in smart grids. The aim of
demand forecasting is to accurately predict future energy requirements of a system for a
specific period of time. That prediction helps unit commitment strategies to match
demands and generations. Since demands depend on the weather conditions and activities
of customers, predictions may be hourly for the next 24/48 hours for the operation process
and may be for 20 to 50 years for planning purposes [41]. Many methods for demand
forecasting are introduced in the literature. These methods can be classified into two
sections: i) statistical based methods and ii) artificial intelligence (Al) based methods.
Statistical based methods include Auto Regressive (AR) [42], Moving Average (MA)
[43], Auto Regressive Moving Average (ARMA) [39], and Auto Regressive Integrated
Moving Average (ARIMA) [44]. Some of the artificial intelligence-based forecasting
models are Artificial Neural Network (ANN) [45], Grey-Back Propagation (GBP) Neural
Network [46], Improved Variable Learning rate Back Propagation (IVL-BP) [47],
Support Vector Machines (SVMs) [48], Least Squares-Support Vector Machine (LS-
SVM) Algorithm [49], Particle Swarm Optimization (PSO) [50], and Fuzzy Logic (FL)
[51].
2.3.2.2 Electricity price forecasting

Electricity price forecasting may be important in real time electricity markets.
Extreme difference between the agreed cost and the cost of power to be sold can lead to
huge financial losses or even bankruptcy [52]. In the literature, Motamedi [53] and Zhou
[54] investigated the relationship between electricity price and demand.
2.3.2.3Wind and PV production forecasting

The output power of renewable energy sources depends on several variables, such
as weather and location. Accurate forecasts of wind and PV output power can alleviate
negative impacts on the required spinning reserves for reliable operation of the grid. They
reduce the total cost of integration of renewable energy into the grid [55]. The methods
used to forecast wind and PV [56] production are partly similar to demand forecasting
methods [55]. For instance, in the literature, the methods of SVM [57-58], vector auto
regression theory [58], and the Bayesian Method with Monte Carlo [59] are used for PV.
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2.3.4 Control of generation units

Smart grid technologies can include large amount of different DERs that are
connected to a grid either directly or via a power electronic interface. The voltage source
inverter (VSI) is connected to the grid as an interface to contribute to the proper
adjustment of the grid voltage and frequency [60]. In the literature, while some authors
classify VSI-based DGS interfaces as two groups, it is categorized into three groups by
the other researchers. In this review study, these controllers were investigated under two
domains related to their former classification: grid-forming and grid-following. A grid
forming controller is responsible for voltage control between DGS units and loads. A
grid-following controller is generally used in current-control mode to maximize obtained
power from DGSs. This control strategy is the most widely used for DGS units, with the
most common used grid-following techniques being synchronous reference frame (dq)
and stationary reference frame (o) [21, 61-62]. The authors in [63] proposed a passivity-
based control technique to improve system stability of DGSs. In the research of Vandoorn
[64], unbalanced mitigation is investigated by using symmetrical component
transformation for different types of grid-following controllers.

Besides the voltage and current control, DGSs must also regulate the active and
reactive powers. The most used methods in smart grids are the Q/f and P/V droop
controllers. When the Q/f droop controller is used for reactive power compensation, the
active power controller uses a P/V droop control [65-66].

2.3.5 Control of storage units

Energy storage devices are an essential component of microgrids, which effectively
balance power between renewable energy resources and loads. Specific charge/discharge
control strategies are needed to achieve this objective. In the literature, different control
strategies are available. The authors in [67] explained how to improve the wind output
power rate using fuzzy control for an energy storage system on a wind farm. Other
strategies include: hysteresis current control, neural network, Pl and PID control, sliding

mode control, H-infinity control, and the Monte Carlo simulation method [25, 68-69].
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2.3.6 Data transmission and monitoring

2.3.6.1 Smart Metering Infrastructure (SMI)

Smart metering and infrastructure (SMI), which is also called advanced metering

infrastructure (AMI), provides bidirectional communication for smart grids. The SMI

consists of the integration of smart meters, a communication system, hardware and

software that enable the measurement, gathering, storage, analysis, and usage of energy

between the smart meter and utility or between the smart meter and customer [70-71].

Smart meter: Smart meter is the advanced new generation of meters, which
measures the real-time consumption of energy, record and store this measurement
at predefined time intervals. It also has the ability to transfer the bidirectional
communications of data. Thus, data transfer is realized not only from the smart
meter to the meter data management system (MDMS) but also from the MDMS
to the smart meter [72-73]. In [74], authors investigated the relationship between
electricity consumers and smart meters and formed a report at the end of 2012 for
Romania. This study demonstrated that smart meters are user-friendly and
profitable for customers, and that it is important to devote close attention to the
customer in terms of acceptability and affordability of the smart meters.

Wide area network (WAN): Wide area network (WAN) provides communication
between the smart grid and utility grid, which collects data from multiple
neighborhood area networks (NANs) and sends it to control center [75]. It
connects the highly distributed smaller area networks that serve the power systems
at different locations. It consists of two types of networks: backhaul and core
network. A variety of technologies, such as WiMAX, 4G, and PLC, can be used
in WAN networks. The WAN can cover an area over thousands of square miles,
so data transfer rates may be up to 10-100 Mbps [76].

Home (local) area network (HAN/LAN): Home (local) area networks (HAN or
LAN) connect to in-home smart devices and appliances such as plug-in electric
vehicles (PEVs), programmable communicating thermostats, in-home displays
(IHD) and distributed energy generation facilities [72-73]. Typically, HANs need
to cover areas of up to 200 m? and support speeds 10 to 100 kilobits per second
(kbps) [85]. One important component of HAN is the IHD that measures how

much power is consumed and displays the real-time energy price to the customers.
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The IHD also allows the consumer to customize their power usage profile in order
to minimize their electricity bill.

Neighborhood area networks (NANs) NANs are an important component of the
communication network infrastructure that connects to smart meters in the
customer domain and some field gateways in the distribution domain [77]. The
NANSs are used for data collection from smart meter to exchange energy data and
control information between other components. This network can be designed
based on wired and wireless communication technologies such as WiMAX, 3G
and 4G. With these technologies, it covers long distances between one to ten
square miles and the data rate is around 10-1000 Kbps [76].

Meter data management system (MDMS): A meter data management system
(MDMS) is a system or an application which imports, verifies, edits and processes

on the AMI data before making it available for billing such analysis [78].

2.3.6.2 Communication systems

Communication technologies are a key feature of smart grids, allowing them to be

implemented in the real world. The chosen communication technologies have to be cost

efficient and should provide a good transmittable range, better security features,

bandwidth, power quality, and with the least possible number of repetitions [72]. They

can be classified into two categories: wired technologies and wireless technologies.

Wired technologies: Wired technologies may include three systems: Power line
communication (PLC), Optical communication and Digital Subscriber Lines
(DSL). The PLC system is a popular method for communication, which consists
of introduction of the modulated carrier over the power line cable in order to
provide bidirectional communications [79]. The power line cable is used in both
energy transmission and data communication. In a typical PLC network, smart
meters are connected to the data concentrator through power lines. Data is
transferred to the data center via cellular network technologies [71]. PLC systems
use the existing communication infrastructure. Thus, the cost of installation is
lower than other communication system [80]. It can be classified into two
categories: Narrowband PLC and Broadband PLC. Fiber optic communication
technology has been widely connected to substations to provide communication
between substations and control centers. It has many advantages, such as data

transmission over long distances with a very high data rate, lower losses, and is
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less expensive than traditional communication system. DSL is a high-speed
communication technology which uses telephone lines. The most important
advantages of DSL are low-cost, high data rate, and widespread availability [70-
71, 81].

Wireless technology: Wireless Sensor Networks (WSNs) are a crucial part of a
smart grid that provide a highly reliable and self-healing power grid, as well as
strong flexibility because a complex infrastructure construction is not needed [82-
83]. A WSN can improve the efficiency and stability of a network. In the smart
grid, the WSN collects and processes the specific and useful data in the target area
and monitors control devices, allowing bidirectional information exchange,
monitoring, control and maintenance in real time [84]. Wi-Fi (which is the family
of IEEE 802.11 standards) is generally used for home and local area networking
due to the simple and flexible access structures based on the Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA) principle, operation in
unlicensed 2.4 GHz and 5 GHz frequency bands, and availability low-cost radio
interfaces [70]. The most popular among IEEE 802.11 standards are IEEE
802.11b and IEEE 802.11g. IEEE 802.11g supports a maximum data rate of 54
Mbps, while IEEE 802.11b supports a data rate up to 11 Mbps for indoor
environments and 1 Mbps for outdoor environments. The latest release is the IEEE
802.11n that supports the highest data rates up to 150 Mbps [76]. In the smart grid,
Wi-Fi is the key connection for all smart devices to access the Internet and manage
their energy usage. Wi-Fi is a superior technology for the HAN of the Smart Grid
in particular [85]. WIMAX (Worldwide Interoperability for Microwave Access),
also known as the IEEE 802.16 standard, is a wireless broadband technology that
supports thousands of simultaneous users over a large distance (up to 48 km) with
high data rates of up to 70 Mbps. The WiMAX technology provides a reliable,
high data rate and automatic network connectivity along with low overall
installation costs and a large coverage area for smart grid applications [86-87].
GSM/GPRS technologies are a good option for communicating between smart
meters and the utility, which transfers data and control signals over long distances.
Global System for Mobile (GSM) is considered among the most secure
communication networks. General Packet Radio Service (GPRS) employs
wireless packets based on the GSM network. If the infrastructure exists, extra cost

for building the communications infrastructure will not be needed. In smart grid
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applications, it is mostly used for remote monitoring purposes. Satellite
technologies are used in rural or geographically remote locations where other
communication technologies are not available. While this technology has high
cost, recent developments in satellite systems may open up new opportunities for
the use of satellite communications in smart grids [70]. ZigBee is a wireless
communication technology that has relatively low in power usage, data rate,
complexity, and cost, based on the IEEE 802.15.4 standard. It is used for home
automation, security systems, remote control, smart meters, healthcare, computer

peripheral applications, and more [88-89].

2.3.7 Power flow and energy management

An energy management system (EMS) [90] is a control tool which controls the
power flows among main grid, DERs and loads in order to provide stable, reliable, and
sustainable operation of the microgrid and other operational goals such as minimizing
costs and fuel consumption [91-92]. It is also responsible for system resynchronization
during the transition between grid and island mode. Two main approaches can be
identified for EMS: decentralized and centralized control, with various hierarchical
controls [93-94].
2.3.7.1 Centralized controller

The centralized controller gathers all the measured data of all DERs in microgrid,
and then adjusts the control variable for all the control equipment and sends them to
central system [95]. This control is especially suitable for small scale MGs. However, this
type of control has low reliability and redundancy. Other drawbacks of this control are
that may cause several communication problems and that it requires a shutdown of the
whole system in case of system maintenance.

From an economic point of view, centralized hierarchical control provides an
efficient solution. The hierarchical control architecture depends on the type of microgrid
or the existing infrastructure. In this case, a centralized hierarchical control scheme may
consist of three controller layers: a) local controllers, b) a microgrid central controller
(MGCC) [96], and c) distribution management system (DMS). The local controllers use
local measurements to control voltages and frequency of the MG system without
communication systems, because the communication system is often avoided over

reliability concerns. A MGCC is available for each microgrid to interface with DMS. The
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MGCC performs power management of the microgrid by determining the DERS’ active
power, load demand and storage requirements. The MGCC has two-way communication
with the local controller (LC), which enables it to meet the utility requirements [97]. The
overall grid demands and stability requirements are met at the data management system
level [98].

2.3.7.2 Decentralized controller

The decentralized EMS enables independent control of the DER units and loads.
This type of EMS is more suitable if users of the microgrid have different aims or a
different operational environment. In this management system, all local controllers are
connected with a communication bus. This bus is used to exchange data among each
household or DGS [92]. Local controllers are no longer subject to a MGCC to determine
the optimal power output in such a distributed system. Hence, this kind of structure
significantly reduces the computational need and releases the stress on the communication
network of the entire microgrid system [91].

The multi-agent system (MAS) approach can be seen as the best example of a
decentralized energy management system [99]. This approach aims to turn large and
complex systems into small and autonomy subsystems and uses Al-based methods (such
as neural networks and fuzzy systems) to determine each DGS's operation point while
improving the stability of the microgrid [92].

The decentralized based MAS has several advantages compared with centralized
EMS. Since the MAS enables autonomous operation of the DGSs and uses the essential
data from local controller, it reduces computation time. But the centralized control
requires a significant flow of data to a central point [100-101]. Another advantage is plug
and play capability. If a new DER is connected to the microgrid, a programmable agent
in its control is provided without modifying the rest of the control. However, in
centralized controls the MGCC has to be programmed when a new DER is connected
[101].

2.3.8 Vehicle to grid (V2G)

Recently, vehicle to grid (V2G) technologies are more attractive to researchers of
smart grid technology because it can improve efficiency, reliability, stability, and
flexibility of the utility grid. Under this concept, electric vehicles can either be charged

or discharged by providing power to the grid. In other words, either the utility grid can
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absorb power from the V2G or the grid can send power back to the electric vehicle during
charging. By providing power to the grid, this technology provides many benefits such as
voltage and frequency regulation, spinning reserve, electrical demand side management,
active/reactive power compensation, load balancing, and harmonic filtering. Furthermore,
the electric vehicles would be used to store power produced by renewable energy
resources [102-104]. V2G is also used both unidirectional and bidirectional applications
[105]. K.M. Tan et al. [106] classify the V2G technology into two categories:
unidirectional V2G and bidirectional V2G. This paper also presents the advantages and

disadvantages, as well as optimization algorithms of V2G in a smart grid.

2.4 Challenges and opportunities

2.4.1 Technical challenges
2.4.1.1 Operation

Large mismatches which lead to a severe frequency and voltage control problems
can occur between generation and loads because microgrid systems have the ability to
transition from grid-connected mode to islanded mode [107-108]. If the connection and
disconnection operations contain a large number of generation units at once, the "plug
and play" capability can be a serious problem [109].
2.4.1.2 Components and compatibility

Because a microgrid may have many components (such as diesel generator,
microturbine, fuel cell, CHP, energy storage devices, inverters, communication system,
and control software), these components have different characteristics in their generation
capacity, startup/shutdown time, operation cost/efficiency, energy storage charging/
discharging rate, control and communication limits [107, 110].

2.4.1.3 Integration of renewable generation

The variability, unpredictability, and weather dependence of renewable energy
resources are several of the major challenges for the integration of renewable generation
to main grid. Therefore, the power output of these resources can vary abruptly, frequently
imposing challenges on maintaining microgrid stability [10, 111-112]. Furthermore, one

of the problems experienced is that the increasing renewable shares may cause congestion
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in distribution networks [113]. Other problems may include the intermittency of
renewable energy generation and the lack of a dispatch ability.
2.4.1.4 Protection

Microgrid protection is one of the most important challenges because it is not easy
to design an appropriate protection system that must respond to both main grid and
microgrid faults. That is because fault current magnitudes in the system depend on the
microgrid operation mode, and may vary significantly between grid-connected and
autonomous operation [114]. Traditional power systems have been designed and
constructed with unidirectional fault current flow for radial distribution systems.
However, the integration of DERs into the main grid with microgrids changes the flow of
fault currents from unidirectional to bidirectional. The MG is interfaced to the main power
system by a fast static switch to protect it in both modes of operation against all types of
faults [108]. Several papers exist in the literature regarding microgrid protection schemes
[115-117].

2.4.2 Regulation challenges

Regulation is a crucial topic to facilitate microgrid application, which provides
guidance and allows DER penetration, integration, and main network connection. That
said, regulations for microgrid implementation remain limited and prevent the proper use
of microgrids. Moreover, interconnection rules between the MG and main grid are
designed in order to standardize the process and manage the impacts of DERs integration
without disturbing the functionality and safety of the main grid [107]. These rules must
immediately disconnect with grid connection in case of any faults, blackouts, or other
problems. However, the most consistent challenge of interconnecting microgrids with the

main grid is the high connectivity costs caused by fee policies [118].

2.4.3 Smart consumer

Smart consumers are end users in the smart grid and take an active role in the
problem of balancing demand with supply. They are mostly interested in decreasing their
electricity bills, at maintaining their present levels of comfort (at least), and the
availability and ease of use when faced with the volatile production capacity over volume
and time [119]. With the consumers providing an active participation in the management

of the demand, utilizing the intelligent information and communication technology
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devices (ICT) has become common practice in domestic environments [120]. It is easy to

envision that in the near future smart homes will be equipped with energy management

systems in order to optimize the electricity consumption, to minimize costs and meet

supply constraints, while at the same time maintaining the users’ desired level of comfort

[121].

2.4.4 Opportunities in microgrid

Some of the possible solutions featured in the literature for microgrid challenges are

summarized below:

Stability and reliability problems occurred due to the integration of renewable
energy resources will be resolved with FACTs devices such as: static synchronous
compensator (STATCOM), static VAR compensator (SVC), static series
synchronous compensator (SSSC), and unified power flow controller (UPFC).
Additionally, the harmonics resulting from power circuits will be mitigated by
filters integrated with these devices [112]. The stability classifications and
analysis methods for microgrid have been investigated in reference [122]. Other
researchers also compiled the available methodologies to improve the stability of
microgrids.

The study of Zamani [123] presents a protection scheme for microgrids for both
modes of operation based on microprocessor-based overcurrent relays and
directional elements. Among other protection solution methods are: the adaptive
protection system [124], symmetrical component theory [125], and differential
protection [126].

Fast static switches, fault current limiters, and energy storage devices can be used
as external protection devices [127]. Fast static switches provide high-speed
isolation for loads when transitioning from grid connected to islanded mode.
Some authors investigate novel algorithms to minimize system costs [128-130].
The research of Khodaei [131] featured the use of the mixed integer programming
optimization method to minimize total system costs, including investment and
operation costs of candidate generation units, transmission lines, and microgrids.
The paper of Ahn [132] proposed a decentralized voltage control algorithm, which
was designed with two control layer. When the low control layer regulates the
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power output and terminal voltage, the high-level controller minimizes power
losses of the microgrid with its cost function concept.

e The study Papadimitriou [133] proposed a new islanding detection method (IDM)
with an intelligent hybrid automatic transfer switch (HATS). HATS detects the
operation modes of the microgrid and is able to manage grid status.

2.5 Conclusion

Power systems are faced with the challenge of providing efficient and reliable
energy to customer. One of the major challenges is the increasing energy demand while
primary energy supplies remain limited. This issue necessitates that more generation
should be provided by distributed energy sources, which brings new problems such as
uncertain power generation and intermittency. That problem also requires storage units
to provide better power quality. A better way to solve the problems of energy demand,
uncertain and non-sustainable power from renewable sources is to take a small subsystem
approach to match the demand and supply balance. This was the key motivation for the
development and expansion of microgrids.

The inherent characteristics of microgrids are that they provide flexibility to
connect/disconnect from the grid when needed. This provides better reliability, lower
investment cost, reduces emissions, improves power quality, and reduces the power losses
of the distribution network. This review provides the technical development status of
existing microgrid technology with its various functions and features. The microgrid
architecture is categorized into three categories based on future smart grid vision: AC,
DC, and hybrid microgrids.

The elements used in microgrids, control of power generation, forecasting
techniques, data transmission and monitoring techniques have been reviewed as smart
grid functions. While it is possible to implement microgrids with the usage of these
functions, all issues cannot be solved. Finally, several other important issues in the
implementation of microgrid are discussed. These are the technical, regulatory, and

customer barriers, with opportunities of solving these barriers also being presented.
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Chapter 3

Optimization-based Control Strategies
for Energy Management Systems in

Microgrids

3.1 Literature review

Elements in microgrids have some limits with minimum and maximum boundaries.
Microgrids must operate within these limitations for reliable, stable, and cost-effective
operation. PV units usually work at their maximum power output. Batteries also have
limitations, such as charging and discharging speed limits. Excessive and/or frequent
charging and discharging of the battery will shorten the lifespan of the battery and reduce
its efficiency. Moreover, there are operational constraints for generation units, such as the
limitations of ramp limits of diesel generators and starting power limits of generation.
Pricing may also change depending on the energy trading situation with the main grid.

In the light of all above information, microgrids present great opportunity for
composing a holistic system out of elements of different types and characteristics. These
operational and technical constraints are taken into account to ensure proper energy
management between conventional energy generation units, renewable energy sources,
battery storage devices, and consumers. Therefore, the energy management system
controls the output of power generation units and the charging or discharging operation
of battery storage devices to maintain and optimize the power exchange, maximize energy
efficiency, and minimize operational cost, while ensuring economic, environmental, and
safe operation of the microgrid.

The uncertainty of DERs raises great challenges, especially in the real-time
operation of the microgrids. This issue has attracted much attention in recent years and

different methods such as classical methods (linear and nonlinear programming) [134-
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136], meta-heuristic approaches [137], artificial intelligence methods [138-139], model
predictive control (MPC) [140-141], stochastic, and the robust programming approach
[142-144] have been proposed to optimize the effective operation of the MG.

To solve the challenge in MG operation as a deterministic optimization problem,
many studies have been published in the literature. In the deterministic optimization
model, output power of renewable energy sources (RESs) and load demand have not been
taken into consideration as a factor of uncertainty. In the model, only forecasted outputs
are taken into account to achieve the desired objectives. Since unexpected power
changing in real time operation that effects the economic dispatch or ancillary services
cannot be addressed effectively in the deterministic model, optimal control cannot be
fulfilled properly. As a deterministic optimization algorithm, mixed integer linear
programming (MILP) [135,145], deterministic MPC [146], rolling horizon control (RHC)
[147-149], and adaptive dynamic programming (ADP) [150] have been used in the
literature. Wei [151] proposed a mixed iterative ADP based on priori known load and
electricity price rate.

To tackle the uncertainty problem, studies on the stochastic MG energy
management [152-154] have increased. However, there are not enough studies in the field
of stochastic optimization of MG, with a need for further improvement. The stochastic
optimization algorithms (such as dynamic programming (DP) [155-157], approximate DP
(ADP) [150, 158-159], and stochastic MILP [160-161], and MINLP [153, 162-163] as
classical methods, and chance-constraint method as robust optimization [164-165]) can
be used for energy management in MG. As meta-heuristic methods, genetic algorithm
(GA) [34-36], particle swarm optimization (PSO) [166-168], and artificial bee
optimization [169] were also found in the literature.

While scenario-based stochastic optimization algorithms were proposed in [170-
172], the accuracy of the forecasted data in real-time depends on the training scenarios.
That’s why the desired functionality in MG energy management may not be performed
correctly in the midst of real-time changes. The uncertainties of RESs, load demand ,and
electricity price were handled based on training scenarios via the Monte Carlo method in
[170]. Piecewise linear function (PLF) based ADP was used to minimize the total
operation cost of MG. Day-ahead and intra-day optimization were used by adding forecast
error distribution to the forecast information.

Many studies propose online algorithm in real-time by taking into consideration

uncertainties such as stochastic MPC [173-175] and Lyapunov optimization [171,176].
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Rahbar [177] proposed a new online algorithm for real-time energy management based
on sliding-window sequential optimization combining offline solution, assuming that the
net energy profile is perfectly predicted or known ahead of time. In this study, however,
optimal control in real-time completely depends on the offline solution which gives the
prior information about net-energy profile. Moreover, the constraints of the load and
battery were taken into account to minimize the energy cost. Su [178] and Kanvhev [179]
studied double stage stochastic programming for energy management to minimize the
operational cost. In the first stage, the authors performed day-ahead operational planning
by using DP to minimize the economic cost and CO- equivalent emissions. In the second
stage, an adjustment was carried to retrieve day-ahead plan by using a sequential quadratic
programming method if the forecasted values change [179].

Another algorithm used in the literature is adaptive critic design (ACD) based
algorithms, implemented to reduce the computational complexity in comparison with DP.
Han [180] proposed a stochastic dynamic optimal control based on dual heuristic dynamic
programming, which is a kind of adaptive-critic design method. The aim was to smoothen
the PV and wind power output, reduce the system losses, and minimize the voltage
deviation, without considering the cost of energy. The network model was not included
in the optimization model. Venayagamoorthy [181] proposed model-free heuristic
dynamic programming by updating the optimal control policy. To speed up the
convergence, an evolutionary learning algorithm was used. However, the convergence
totally depends on offline action-dependent heuristic dynamic programming (ADHDP)
learning. In [182], the authors proposed ADHDP for residential MG. The system consists
of PV and battery. ADHDP was used to reduce the electrical cost. Weather types and
battery states are classified into categories 3 and 4, respectively. In this way, the
computational complexity was reduced. The paper provided no exact information about
how they handled uncertainty of solar power, load demand and electricity price in real-
time. The main limitation of the adaptive critic design (ACD) based algorithm in real time
is the computational power and communication delay.

One of the applications of tackling such challenges as nonlinearities, computational
burden, and randomness in real-time is approximate dynamic programming, which is a
powerful stochastic optimization modeling method. Liu [159] solved the optimization
problem for residential MG which composes of wind turbine, solar panel, and
shiftable/non-shiftable loads. To reduce the energy cost, the dynamic programming, Q-

learning, and Lyapunov methods were used under perfect, partial and no information,
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respectively. Then, centralized and distributed Q-learning and the Lyapunov methods
were compared. Still, the main issue in this paper is that it did not consider a battery and
only considered loads constraints, without extra constraints to model the microgrid. When
perfect and partial knowledge about demand, electricity price, and the renewable energy
profiles are known, in the no information scenarios, only real-time information is known.
Das [183] proposed a post-decision value function approximation to minimize the daily
operational cost of a diesel generator and battery for islanded MG energy management.
They used uniform and pseudo normal distribution to find next wind power interval and
load demand. However, the constraints of the network were not integrated to the
optimization algorithm. Multi-time stochastic MINLP optimization was divided to single
time stochastic nonlinear programming in [184]. This paper handled the uncertainty in
similar fashion as the previous papers. They used day ahead and intra-day optimization
by adding a forecast error distribution to the forecasted information. They used
approximate dynamic programming (ADP) to reduce the operational cost. In [185], an
ADP approach based on value function approximation with deep recurrent neural network
was proposed to minimize the expected operational cost.

The EMSs presented in this thesis essentially use three different optimization
algorithms: MINLP, MILP approach based on rolling horizon control, and reinforcement

learning. Detailed information about these methods is given in the sections below.
3.2 Mixed integer nonlinear programming

Mixed integer nonlinear programming (MINLP) refers to numerical optimization
problems with nonlinear functions in the objective function and/or the constraints as well
as continuous and integer/binary variables. The canonical form of a MINLP is shown in
equation (3.1):

Zygvep = minimize 1 (x,y)
subject to g(x,y) <0, (3.)
X€EX, yEY N 7P

where f:R"*? - R and g:R"*?P — R™ are twice continuously differentiable
functions, x and y are continuous and discrete variables, respectively; X is polyhedral

subset of R™, and Y is a bounded polyhedral subset of Z?.
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Since the battery contains both binary variables, charging or discharging states, and
nonlinear variable, and the calculation average cycle number at particular depth of
discharge (DoD), MINLP is used in this thesis.

3.3 Rolling Horizon Control

Rolling horizon control (RHC) is an iterative and finite-time optimization approach
that can be used for real-time/online issues. RHC aims to find the optimal solution for the
current time step over sliding window by considering future time steps. RHC can compute
the decision variables to fulfil the objective function, while considering exogenous
information, future predictions, and constraints. In this way, RHC can adapt to new
situation when a disturbance or fault occurs by changing the decision variables according
to this new situation [186]. This algorithm considers different time horizons as shown
Figure 3.1.

e The prediction horizon indicates how far in the future the model should
predict the states of the system.

e The control horizon is the number of decisions to be optimized which should
be applied to the system.

The operation logic of RHC is given in Figure 3.1. The model is simulated from the
current time to prediction horizon (H steps forward in time) to obtain the predicted future
values of the states. Then, these predicted values are used to create an optimization
problem at each time step. After, the optimization problem is solved by optimization
solvers to find best decision variables at the control horizon. In RHC, only the first
decision variable is taken in the environment, then shifted to the next time step. The

procedure continues recursively until the final scheduled period of time [187].
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Figure 3.1 Rolling horizon framework [187]

3.4 Reinforcement learning

Reinforcement learning (RL) is one of the machine learning algorithms and differs
in several aspects from other machine learning algorithms, classified as supervised
learning and unsupervised learning. RL does not need a labelled dataset. The labelled
dataset contains the answer or solution key, so the model is trained with the solution key
to find correct answer. RL does not discovers patterns that exist in the dataset. In RL, the
agent learns by directly interacting with its environment through trial-and-error without
any supervisor. The following discussion is based on Sutton and Barto [188].

In essence, RL uses a framework that consists of agent, environment, state, action,
and reward, as shown in Figure 3.2. The agent is defined as learner or decision maker.
The environment is where the agent interacts and performs actions at each time step t. At
each time step t, the agent obtains an observation, S; € §, from its environment. Then, it
takes an action, A; € A(s), according to the observation following the behavior policy.
The environment is affected by the action taken, the agent receives a reward value,
R:11 € R c R,toevaluate the action and finds itself in a new state S; ;. So, this process
gives us a sequence like So, Ao, R1, S1, A1, R2, Sz, A2, Rz ... In that way, the agent’s goal is
to maximize the total amount of reward obtained from the environment by learning an

optimal action strategy.
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Figure 3.2 Agent and environment interactions in reinforcement learning

Beyond the agent, the environment and the reward, there are three main sub-

elements in RL:

Policy: Policy maps the action based on the agent’s state. That is, it tells us
which action to take in state s, and can be deterministic or stochastic:

- Deterministic: ©(s) = a

- Stochastic: m(als) =Pr(a; =a|s; =5s)

Value function: Value function estimates the “how good” it is to be in a
given state in the long term. While the reward demonstrates what is good
and what is bad at each time step (immediate reward), value function shows
the total amount of reward an agent has collected over the long run, which

is called as return, Gi:

Ge = Rey1 + YRy + ¥ Regz + - = z Y¥Revrrn (3.2)
k=0

where y is called as discount rate, 0 < y < 1. The discount rate is used to
reduce the future rewards’ effect on the action choice.
The state value function, v, (s), returns the expected return when starting

in a certain state s and following then policy =:

v (s) = E[G¢|S: = s] = E, [Z Y¥Rerks1 1S = 5] (3.3)
k=0

forall s € S. E,[-] denotes the expected value by following policy 7, and t
is any time step.
Similarly, the action value function under policy &, (s, a), is the expected

return for taking the action a in a certain state s:
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qr(s,a) = Ex[G; | S¢ = 5, A; = 5] = E[XxZo Y*Resk1 | S¢ = s,4; = a]
(3.4)
e Model: It helps the agent to observe the behavior of the environment. So,
the model can infer how the environment will behave for given state and
action by knowing probability distributions. In other words, there is a
probability distribution, p, of each choice of state s to move next state s’
after taking action a while obtaining reward R:
p(s’,r|s,a) =Pr{S;=s',R, =1 |S;_; =54, = a} (3.5)
foralls',s € §,r € R,and a € A(s).
So, the state-transition probabilities can be defined as a function of

p(s',r|s,a):

p(s'ls,a) = Pr{S; =s" | Se-1 = 5,4,y = a} = Z p(s’,r|s,a)
TER
(3.6)

Expected rewards for state-action pairs can also be computed as:
r(s,a) = E[R; | S—1 = 5, A¢-1 = a] = YrerT Xsres0(s', 7| 5,0)  (37)

3.3.1 Optimal value function and optimal policy

An optimal state value or an action value achieves the maximum expected return.
the optimal state value function and the optimal action value function are defined
respectively as:

v,(s) = maxv,(s), foralls €S (3.8)
A
q.(s,a) = maxq,(s,a),foralls € S and a € A(s) (3.9)
V3
q, can be written in terms of v, as follows:

q.(s,a) = E[Ryy1 + vu(St41) | St = 5, 4; = a] (3.10)

A policy that produces the optimal state value or action value is called the optimal
policy. The optimal policy can be defined as follows:

m,.(s) = arg max v,(s) (3.11)

m.(s) = arg max q,(s,a) (3.12)
T
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So, we can write the following equation for an optimal policy:
v,(s) = ax qn: (s,a) (3.13)

3.3.2 Markov decision process (MDP)

RL is modelled as an MDP, which is a mathematical framework of sequential
decision making. MDPs mean that the next state and reward depend only on the current
state and action because the current observation summarizes all previous experiences.
This can be formulated as:

Pr(St+1, Re411S0, Ao Ry, oy Se—1, Ar—1, R, Sty A) = Pr(Ses1, RevalSe, A) (3.14)

A MDP consists of five elements as listed below (which were defined in the
previous section):
e S-aset of states;
e A -asetof actions;
e p - state- transition probability function;
e R -reward function;

e y-discount rate.

3.3.3 Bellman Equations

Bellman equations helps us to solve MDP. Therefore, they form the basis of solving
RL problems. Bellman Equations decompose the value functions into two parts:
immediate reward and discounted future value function.
State value function for a policy m can be broken into:
U (5) = Eg[G¢|S; = 5]
= En[Res1 + VGrs1 | S¢ = 5]
= Yan(als) Yo Xrp(s', 7] 5, A)[r + VEr[Grs1]Se1 = 5']]

=Yam(als) Xy Xrp(s' vl s,a)[r + yve(s")] foralls€S
(3.15)

Action value function for a policy © can be broken into:

qr(s,a) = Ex[G|S; = s, A = a]
= Ep[Res1 +¥Gri1 | Se = 5, A = al
=Yamn(als) Xg X p(s', 1l s, a)[r + VEr[Gr1|Se41 = 5", Appr = @’ ]]
= Xam(als) Xy Xrp(s',rl s, a)[r +v qq(s’,a")] (3.16)
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Expanding equation (3.4) with equation (3.13), Bellman optimality equations for
state-value function are obtained as follows:

v,(s) = ax, g (s,a)

= max E +[G¢|S; = s,A; = a]
a
= max E[Riy1 + ¥0u(Se41) | Se = 5, Ar = d]

=max Yy, p(s’, 7| s,a)[r + yv.(s')] (3.17)

Bellman optimality equations for action-value function:

q.(s,a) = E [Rm +ymaxq.(Sess, @) | Sp = 5,4 = a]

= X rp(s',7|s,a) [r + max q.(s’, a’)] (3.18)

For the cases in which the transition probabilities and reward functions are known
(model-based), Bellman optimality equations can be solved via dynamic programming.
As the transition probabilities and reward function are not available, model free
algorithms are used (such as Monte Carlo, temporal difference (TD), and policy search
methods). This thesis implements Q-learning, which is an off-policy TD control

algorithm.

3.3.4 Q-learning

Q-learning is an efficient algorithm of RL to solve the MDP based optimization
problem without an explicit environment model. The objective of the Q-learning is to
seek the optimal policy by maximizing the expected discounted reward of actions based
on the given states. The output of the Q-table for a state S and an action A is represented
as Q(S,A). In Q-learning, the Q-values of each action A when performed in a state S can

be updated recursively using Bellman’s action-value function as follows:

QS A) <« Q(Sp A + a [Rt+At t+y max Q(Stsar @) — Q(St:At)] (3.19)
where y € [0,1] is a discount parameter, learning parameter o, € [0,1] decreases over time
interval At in the suitable way. R, 5, IS the immediate reward when the agent takes action
A at state S. (S;, A;) is the state-action pair and (S;,4¢, @) is the possible state-action pair
in the next time interval. The immediate reward is defined as the daily cost of the MG

system.

39



The basic principle behind Q-learning is that the agent takes an action based on the
e-greedy policy, which is a way to choose an action from a set of feasible action. The
agent selects the best action with probability (1-¢) or takes actions randomly with
probability € to discover new actions. The taken action gives rise to a change of the
environmental state, so the agent transitions to a new state and observes the immediate
reward from taking action A in state S. Then, the Q-value for a given state S and action A
is updated. The Q-learning algorithm is shown in Algorithm 1. The optimal value of a

state at each iteration is obtained by computing the maximum value.

Q.(S,ap) = gg}l( Q(S ar) (3.20)

Algorithm 1: Q-learning

Initialize Q(s,a), Vs € §,a € A(s), arbitrarily, and Q(terminal, .) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., e-greedy)

Take action A, observe R, S'
Q(S,4) « Q(S,A) + a[R+ ymaxQ(s',a) — Q(S, 4)]

S « S

until S is terminal

In conventional Q-learning, the Q values are stored in a lookup table. This approach
is especially suitable for a small number of state-action spaces. As the state-action space
increases, it will become impossible to store all Q values in a lookup table because an
enormous storage capacity is required to store the data. This phenomenon is known as
the “curse of dimensionality.” Moreover, this approach is computationally expensive
because the time required to visit all the states becomes impossible. The proposed method

to enhance of the performance of original Q-learning algorithm is given in Chapter 5.
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Chapter 4

Dynamic Rolling Horizon Control

Approach

An energy management system based on the rolling horizon control approach has been
proposed for the grid-connected dynamic and stochastic microgrid of a university campus
in Malta. The aims of the study are to minimize the fuel cost of the diesel generator,
minimize the cost of power transfer between the main grid and the micro grid, and
minimize the cost of deterioration of the battery to be able to provide optimum economic
operation. Since uncertainty in renewable energy sources and load is inevitable, rolling
horizon control in the stochastic framework is used to manage uncertainties in the energy
management system problem. Both the deterministic and stochastic processes were
studied to identify the effectiveness of the algorithm. In addition, the results are compared
with the myopic and mixed integer linear programming algorithms. The results reveal
that the life span of the battery and the associated economic savings are correlated with
the SOC values.

4.1 Introduction

Optimization methods are used to find the best solutions for controlling the MG by
ensuring stable and reliable operation. Existing studies in the literature are classified as
deterministic MG operation or stochastic MG operation [189-191]. In the deterministic
operation, RES power output and load demand have not been taken into consideration as
a measure of uncertainty. Only accurately forecasted variables are considered to achieve
the desired objectives. Since unexpected power changes in real time operation, which

effect the economic dispatch or ancillary services, cannot be effectively addressed in the
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deterministic model, the optimal operation of MG cannot be performed properly
[146,148].

Stochastic based energy management of MG has also been studied to tackle the
uncertainty problem of RESs and loads. Several approaches exist, which are generally
based on scenario-based stochastic optimization algorithm [192-194]. Since these
scenarios or samples are generated from historical data, the accuracy of the forecasted
data in real-time depends on the training scenarios. Therefore, the desired functionality
in microgrid energy management may not be performed correctly in the face of real-time
changes. This is because a high number of scenarios causes computation complexity,
which is unacceptable in most real-world applications. For this reason, scenarios
reduction approaches are needed to eliminate the scenarios without loss of critical
information [195-196].

The rolling horizon control (RHC), also known as model predictive control (MPC),
is used in the literature to solve different control issues in microgrids. RHC can cope with
the randomness and intermittence nature of RESs and load demand in real-time microgrid
operation. In [197], scenario-based rolling horizon is proposed via a two stage stochastic
formulation to minimize the operational cost, including the costs of generators and
batteries, purchases, penalties, and revenues from electricity exported to the grid. The
other paper used a scenario-based model predictive control to minimize the operating cost
and total emission of toxic gases [198]. Two stage stochastic approach is formulated as
mixed integer linear programming problem (MILP), incorporating model predictive
control, and considering load and renewable energy generation uncertainties. The work
in [173] proposes a chance constraint MPC for a grid-connected microgrid composed of
a gas turbine, battery, and PVs. The authors aimed to minimize the deviation with optimal
schedule by taking into consideration uncertainty in the low-level control unit, while high
level is used to make economic optimization over a long-time horizon. A four-level MPC
controller was proposed with different electricity market rules in [199]. Also, different
kinds of ESS were included in the system to achieve system objectives without
considering losses and power flows limits. The study in [200] proposes a fitted rolling
horizon control for the stochastic situations, in case of mission or no forecast information.
These studies are limited in scope because there is no consideration of battery
degradation, and the network constraints are missing.

This paper suggests a real-time energy management system with RHC for a MG

operation under a stochastic and dynamic environment by taking network constraints and
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battery degradation into account. Stochastic RHC is used to plan the MG operation over
24 hours, and with a time interval with 1h. The aim of the study is to minimize the
operational cost, including the battery degradation cost, the energy cost of main grid, and
the fuel cost of the diesel generator. The suggested algorithm has been tested in a real MG
pilot of the Malta College of Arts, Science and Technology (MCAST) by considering the
constraints of the network model. Formulation of the MG system, including all constraints
and limitations, has nonlinear equations, with the nonlinearity issue handled through an
adaptive grid search algorithm. Through this, the optimum value has been obtained in a
very short time. The proposed model is formulated as mixed integer linear programming
(MILP), which is solved by the CPLEX solver included in GAMS.

4.2 Microgrid Model Description

The scheme of the microgrid system is shown in Figure 4.1 below. The system is
comprised of solar PV arrays (63 kW in total), a diesel generator (300 kW), lithium-ion
batteries (300 kWh capacity in total), and loads. This paper assumes that the microgrid
operates in grid-connected mode. A finite time horizon of the microgrid operation is
considered as t = {0,At, 2At, ... T-At, T}, where At= 1 hour is the time interval and T =
24 hours.

Distribution Network

| Load PVL Diesel
Generatol

S

Block J Block F Block D

Figure 4.1 Schematic diagram of microgrid
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4.2.1 Battery Model

The energy storage system is one of the core parts of the microgrid system, which
can improve the microgrid system performance. Because the initial investment cost of a
battery is high, it is crucial to extend the battery life. The battery cycle life is directly
related to the depth of discharge (DoD). The cycle life data is given by the battery
manufacturer in the form of total cycle number with respect to the DoD. The relationship
between the expected cycle life and DoD is exponential for the li-ion battery, as given in
4.2).

L(D) = D%?® (4.1)
where D is the DoD in percentage at which the battery is cycled, L denotes the average
cycle number at that particular D, and a and b are battery dependent coefficients. From
the logarithmic fitted curve between DoD and cycle life specified in the data sheet of the
battery used, these coefficients are found as a = -1.24, b = 7.043. From the fitted curve,
battery wear cost in € per kWh can be calculated as follows:

Ciny
2EmaxL(D)Dn%n¢

where C;,,, is the capital cost of battery; E,,,, is the total capacity of battery; and n¢ and

Cw = (4.2)

n“ are the charging and discharging efficiencies, respectively.
The operation cost of a battery based on wear cost is written as:
Chat = CwPpareAt (4.3)
where Py 4, . is the charging or discharging power of the battery at time t.
At any given time, the state of charge (SOC) of the lithium- ion battery system
should be within a certain range. It can be expressed as:

SOCpmin < SOC; < SOCpmax (4.4)
where SOC,,;,, and SOC,,,,, are the lower limit and upper limit of SOC, respectively. The
charging and discharging states, charging and discharging power limits, and SOC
formulation of the lithium-ion battery are given respectively as follows:

c d
Upate T Upare < 1

d (4.5)
[
Upat,er Upaer € 10,1}

d d d
0 < Pbat,t < ubat,thax (4-6)
0 < Ppare < Upar,Prax 4.7)
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d
Pbat,tAt

SOCepe — —g2— Piatt > 0
SOC, = 1 Bmax (4.8)
N°Ppa At c
SOCi_pe + A Pyaee >0
max

where ug,, . and ul,, . are the charging and discharging states of the battery, respectively;
Pgqe e and P,;iat't are the charging and discharging power of the battery, respectively; and
PS¢, and P&,. are the maximum charging and discharging power of the battery,

respectively. The charging efficiency (4°) and discharging efficiency (%) are both

assumed to be 95%, according to the practical situation of the MCAST system.

4.2.2 Diesel Generator (DG)

The hourly fuel consumption FC, of a DG is modeled as a linear function, which is
based on data provided by the manufacturer.
FCp = FiPrgtea + FoPag: (4.9)
where F; and F, are the coefficients of fuel consumption function, which are set as 0.0183
and 0.22, respectively; and Pyq¢eq and P44, are the rated power and the actual output
power of DG, respectively.
The power limits of DG are imposed as:
kPratea < Pagt < Pratea (4.10)
where k is set to be 0.3 based on the suggestion of manufacturers.
The fuel cost of DG at time step t can be calculated as:

Cdg,t = CfuelFCtAt (411)

where Cy,,, is the fuel cost.

4.2.3 Main grid

The power transaction between main grid and microgrid should be constrained as:
—Pgria < Pgriat < Pgria (4.12)

where Pg.;q ¢ is the active power exchange between microgrid and main grid at time t;
and Pgyig is the maximum active power that can be exported to and imported from the

main grid.
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The cost related to the power transaction at time step t is:
Cgrid,t = prCtPgrid,tAt (4.13)

where prc; is the real-time electricity price at time step t.

4.2.4 AC Power Flow

The power flow limits in each branch ij are considered as:

| t| COS(HU) |Vi,t||Vj,t| cos(8;: — 5j,t + Hij)

P = 2] |Zi] -

00 = |VZ| sin(6; D [Vie|[Vie| sin(8ir — 8¢ + 6:)) (4.15)
|Z] 2]

l] + QU . < (Smax (4.16)

where the subscript i,j € {1, 2,...,n} are the indexes of the MG system bus and n is the
total number of the bus; P;;, and Q;; . are the active and reactive power flows of branch
ij, respectively; |Vi,t| and ;. are the voltage amplitude and angle at bus i, respectively;
|Zij| and 6;; are the impedance magnitude and corresponding phase angle of branch ij,
respectively; and S/ is the maximum complex power flow of branch ij.
The transmission capacity limit of power cables is also considered as:
Py < P (4.17)
where P[7'** is the maximum power flow limit from bus i to bus j.
The voltage amplitude limit is bounded by:
vt < v, | < v (4.18)
where V™™ and V/™** are the minimum and maximum voltage magnitudes of bus i,
respectively.
The power balance equation is also considered as:
Ppv,e + Poria + Page + (Phace — Phaee) = Pije + Pry (4.19)
where Py, . is the total active power output of PV arrays; and P, . is the total active load

demand.

4.2.5 Objective Function

The objective function of this study is to minimize the daily operational cost, which

includes the degradation cost of battery, the fuel cost of the diesel generator and the cost
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of power transaction between the main grid and microgrid. Thus, the objective function

can be expressed as:

Ce(Sear) = Cpar,e(Styae) + Cagt(Seyar) + Cyria,e(Se, ar) (4.24)

Exogenous information vector E;, includes at time t, which is given by:

Et = {PL,t; val,tr vaz,t’ va3,t} (4-25)

where Py ¢, Pyy1 ¢, Pyvars Ppyse @re the available information in the load demand and PV

power of each building at time t, respectively.
The exogenous information includes random forecast error (€), so the exogenous
information at time t+At is given by:

Epone = Epige + ¢ (4.26)

The available information at time t can be expressed as:
It = (SOCt’EtFEt+1l ""Et+H) (427)

where E¢ is the available exogenous information at time t, Et+1:+++ iS the future exogenous
information with random forecast error between time t+1 to t+H.

The decision variables vector a; of the problem can be given as by:

— d c
ar = {Pbat,t' Pbat,t ) Pdg,t: Pgrid,tr val,t ’ vaz,t ’ va3,t } (4-28)

where Pglat,t, Pyq: . are the discharge and charge power, respectively. Pyg ¢, Pyria,
represent the dispatched power of the DG and transferred power between the main grid
and microgrid, respectively. Ppyq ¢, PpyotPpvse represent the injected power by solar
panels.

The overall operational cost can be minimized as:
T
V = min E [Z C(t, It)] (4.29)
t=1

4.3 Rolling Horizon Control Approach

The operation flowchart of the MILP based rolling horizon control is given in
Figure 4.2 below. The algorithm is initialized by setting horizon size H, time period T,
and the initial SOC value of the battery. Then, the exogenous data (PV power and

demand) are updated for prediction horizon H. These exogenous data and current state of
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the system (which is called available information for t:t+H) are sent to the optimizer (the
CPLEX solver of GAMS). After the MILP optimization problem is solved from t to t+H
at time t subject to constraints, optimal decision variables are obtained. While only the
first decision variable is applied to the MG system, the operational cost is calculated and
the SOC value is observed for the following time step. Then, it is moved to the next time
step. This process continues for each time step of one hour until the optimization horizon
T is reached. This means that an optimization problem is solved at each time step with an

updated information set.

Set the prediction horizon &, time period T and
initial S0C of the battery

Update the PV power and demand for the
prediction horizon &

v

Available information for the £:1+5
I, =\SOC_.E_E_...E.)
Solve the MILP optimization problem by
CPLEX solver of GAMS subject to constraints

v

Get the optimal decision variables, apply first
decision variable to the MG system

v

Observe SOC value for next time step and
calculate the operational cost for current time step ¢

t=t+At

*, N
End of the
process

Figure 4.2 The flowchart of energy management process

To cope with the nonlinearity property of the power flow equation, adaptive grid

search is used to find the minimum and maximum values of power flow between buses
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by taking into consideration voltage and phase angle limits. In this way, there will not be

voltage and phase angle violations. Thus, the computation time is drastically reduced.

4.4 Simulation Environment & Numerical Analysis

4.4.1 Simulation Environment

The MG is equipped with a 300 kW/375 kVA DG, 3x21 kW solar generators, and
150 kW/300 kWh battery as shown in Figure 4.1 above. The distribution line parameters

are presented in Table 4.1 below, while the parameters of DG and the battery are given

Table 4.2 and Table 4.3, respectively.

Table 4.1 Parameters of distribution lines

Line Resistance Reactance

From To (mQ) (mQ)

Bus 0 Bus 1 129 78.225

Bus 1 Bus 2 19.737 11.969

Bus 3 Bus 4 11.536 12.208

Bus 3 Bus 5 3.770 3.989

Bus 4 Bus 6 3.770 3.989

Bus 5 N1 3.770 3.989

Bus 5 N2 3.770 3.989

Bus 5 N3 3.770 3.989

Bus 6 N4 9.048 9.550

Bus 6 N5 9.048 9.550

Bus 6 N6 4,901 5.186

Bus 6 N7 6.786 7.181

Bus 6 N8 6.786 7.181

Table 4.2 Parameters of DG
Parameter Value Parameter Value
Prated (KW) 300 k 0.3
F, (L-h™1-kw™) 0.0183 Cruel (€/L) 1.1
F, (L-h™1-kw™1) 0.22
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Table 4.3 Parameters of lithium-ion battery

Parameter Value Parameter Value
Emax (KWh) 300 P (kW) 50
Cycle life 2700 @50% DoD PE.. (KW) 40
nt 0.95, 0.95 a -1.24
SOChnin (%) 50 b 7.043
SOCax (%) 100 Battery Cost (€/kWh) 220

The stochastic load demand and stochastic PV power supply can be modelled as:

Ppiiq = min{maX{PL,t + &4 1, PLomin }: PL,max} (4.30)

— : pv
Ppyry1 = mln{max{valt + €21, Povmin }!va,max} (4.31)

where el and £P? is either pseudo normally or uniformly distributed. In this study,
gL~ (0,22%) and eP~V (0, 0.5%). After the probabilities are calculated for load demand
and PV power as in [201], the exogenous variables for the next time interval are calculated
using equations (4.30) and (4.31). The stochastic load demand profile and PV power
profile are shown in Figure 4.3. The electricity price is represented in Figure 4.4 below.
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Figure 4.3 Load demand and PV power generation for each building in stochastic

case
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Figure 4.4 Profile of electricity price

The percentage of optimality (%) is found by the following equation:

V*
% percentage of optimality = I x 100% (4.32)
where V is the daily operational cost of the MG system using RHC and V* is the reference

(optimal) operational cost obtained from MILP.

4.4.2 Numerical Analysis

4.4.2.1 Deterministic Case

In this case, the deterministic dataset of PV power and load demand are used as
input at each time step. To determine the horizon length of the RHC, the optimality
percentage is calculated for each time horizon until obtaining the optimum operation cost
of the microgrid. When the optimal percentage is obtained as 100% at horizon h, we can
observe the optimal value of the system. As shown in Figure 4.5, when horizon size h=0,
optimality is 97.84%. It is seen that as the horizon length increases, the optimality reaches
100%. In this study, 100% optimality obtained at h=11, so with values larger than 11, the
optimal value can be achieved. For the examples in this section, the prediction horizon of
11 hours is used with known exogenous data. Since each hour has a total of seven decision
variables, a total of 77 decision variables must be resolved over the prediction horizon.
MILP is applied to obtain the decision variables (PV power outputs, charge and discharge
power of the battery, dispatched power of the DG, and transferred power between the

main grid and MG) which are used to achieve the minimum operation cost. Table 4.4
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shows the comparison of the optimization approaches in terms of daily operational cost
and percentage of optimality. While the myopic approach achieves 97.84% optimality,
the optimality percentage using MILP based RHC is obtained as 100%. In this case, the
traditional MILP is used to obtain a reference daily operational cost value.

100.5

100

99.5

99

Optimality (%)

98.5
98
97.5

123456 7 8 9101112131415161718192021222324
Horizon length, h

Figure 4.5 Percentage of the optimality

Table 4.4 Performance comparison for deterministic case

Approaches Operational cost (€) % of optimality

MILP 510.6646
RHC 510.6646 100 %
Myopic 521.9159 97.84 %
4.4.2.2 Stochastic Case

In this case, two different probability distribution functions, uniform (U) and
normal (N) distributions, are used to make the system stochastic. For example, U(-1,1)
represents the uniform distributed numbers in the interval (-1,1). For the one of the other
cases, N(0,2%) shows the normal probability distribution, where the mean is 0 and the
variance is 2. After obtaining the noise values, the PV power and load demand are
calculated using equation (4.30) and (4.31).

Table 4.5 shows the comparison of the performance of the MILP based RHC and

the percentage of the optimality according to different stochastic test problems. In this
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case, 300 simulation runs were conducted, with the average daily costs reported in table
below. All test problems were conducted when the SOC of the battery was at 75%. For
example, for problem no. 1, the average daily operational cost of the microgrid system is
obtained as €510.4034, where the optimal cost incurred by MILP is €510.3115. So, the
percentage of optimality in this problem is estimated as 99.98%. The results show that
optimality of at least 99.94% is achieved via stochastic RHC. Moreover, the average daily

costs and percentage of optimality were calculated by myopic approach for comparison.

Table 4.5 Performance comparison for stochastic case with different noises

MILP-based RHC Myopic approach
) Average Daily o Average Daily o
Problem No. Noise % of optimality % of optimality
Cost (€) Cost (€)
1 N(0,0.5%) 510.4034 99.98% 521.8671 97.78%
2 N(0,1.0%) 510.4307 99.97% 522.0690 97.74%
3 N(0,1.5%) 510.4849 99.96% 522.2638 97.71%
4 N(0,2.0%) 510.6103 99.94% 522.4578 97.67%
5 U(-1,1) 510.3233 99.99% 521.9851 97.76%

The power outputs of the battery, DG, PVs and main grid are presented in Figure
4.6. The results show that the battery stores energy when the main electricity price is
lowest between 4-5 h. Then, PV power is dispatched as long as it is available. When the
operational cost of DG is cheaper than the electricity price, DG is activated between 12-
14h and 19-21h. Because DG is operated at 90 kW minimum, power can be bought/sold
from/to the main grid in that situation. Table 4.6 shows the effect of the battery SOC on
the average daily operational cost.
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Figure 4.6 Behaviour of the SOC value and power outputs of the assets at each time
step, respectively

Table 4.6 shows the effect of the DoD of the battery in terms of battery life and
daily operational cost in the stochastic case. We assume that the average battery
throughput during a year is as stated in Table 4.6. When the battery is operated at 55%
DoD, the daily operational cost and battery throughput are €509.3745 and 144.1437kWh,
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respectively. As the level of DoD drops, we can see from the table that the daily
operational cost increases to €513.6191 at 40% DoD and battery throughput falls to
114.00 kWh. In terms of battery life extension, it is assumed that battery life is on average
10 years and the total capital cost of the battery is (300 kWh x 220 €/kWh) €66,000. So,
the calculated cost for each year is €6,600. Thus, the battery life increases from 7.15 years
to 9.76 years, while DoD value decreases from 55% to 40%. So, the capital cost is
deferred as 2.61 years, with a net saving of (2.61 x 6,600) €17,226.

Table 4.6 Comparison of results of problem no. 1 with different DoD level

Operational Battery cost Battery Maximum battery
DoD level (%) ]
cost (€) Chat (€) throughput (kWh) life (years)
55 509.3745 25.2607 144.1437 7.15
50 510.4034 24.4052 142.4843 7.39
45 511.9696 21.4186 128.2500 8.44
40 513.6191 18.5081 114.0000 9.76

4.5 Conclusion

This study proposes an online energy management of the grid-connected stochastic
microgrid operation. In order to achieve optimal economic operation, the rolling horizon
control approach is presented by addressing the uncertainties of load demand and PV
power generation. To validate the performance of the approach, deterministic and
stochastic case studies are conducted. The results demonstrate that the RHC can provide
100% of optimality for the deterministic case and at least 99.94% of optimality for the
stochastic case. The stochastic case was conducted with a random forecast error obtained
from historical data, with a performance comparison made with MILP. The results show
that the RHC approach can perform efficiently even in uncertain circumstances. This
method integrates the operational costs of each asset in a microgrid, including the
degradation cost of the battery, as well as the cost of the main grid and diesel generator.

Besides the integration of the network and technical constraints, by adjusting the DoD
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level of the battery, we can see that the battery life is extended by 2.61 years. Thus, the

system’s net saving related to its battery is estimated as €17,226.
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Chapter 5

Optimal Control of Microgrids with
Multi-stage  Mixed-integer Nonlinear
Programming Guided Q-learning

Algorithm

This chapter proposes an energy management system (EMS) for the real-time operation
of a pilot stochastic and dynamic microgrid on a university campus in Malta consisting
of a diesel generator, photovoltaic panels, and batteries. The objective is to minimize the
total daily operation costs, which include the degradation cost of batteries, the cost of
energy bought from the main grid, the fuel cost of the diesel generator, and the emission
cost. The optimization problem is modeled as a finite Markov Decision Process (MDP)
through a combination of network and technical constraints, with Q-learning algorithm
adopted to solve the sequential decision subproblems. The proposed algorithm
decomposes a multi-stage mixed-integer nonlinear programming (MINLP) problem into
a series of single-stage problems so that each subproblem can be solved by using
Bellman’s equation. To prove the effectiveness of the proposed algorithm, three case
studies are taken into consideration: (1) minimizing the daily energy cost, (2) minimizing
the emission cost, and (3) minimizing the daily energy cost and emission cost
simultaneously. Moreover, each case is operated under different battery operation
conditions to investigate the battery lifetime. Finally, performance comparisons are

carried out with a conventional Q-learning algorithm.
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5.1 Introduction

Distributed energy resources (DERS) such as wind power, solar power, and an
energy storage system (ESS) are viewed as a solution due to the reduction in primary
energy reserves and ever-increasing load demand. Thus, microgrids play a crucial role in
the integration of DERs into future electric power grids. Despite the many advantages of
microgrids, there are several technical challenges, such as stability and reliability issues
caused by the natural uncertainty and unpredictability of renewable energy sources
(RESSs). The management of power system operation is already quite complex because
instability and unreliability make it very difficult to maintain a balance between the
supply and demand of energy in real-time operation. When integrating RESs into the
power systems, the complicated systems get even more complex, rendering the
management of power systems which include DERs a real challenge. It is crucial to have
appropriate energy management in place for the success of such complicated power
systems. A microgrid energy management system (EMS) plays a critical role in offering
economic, sustainable and reliable operation by providing the optimal coordination
between conventional energy resources, RESs, ESSs, and consumers.

The existing studies in the literature can be classified according to the objectives of
EMSs or the optimization approaches used. Microgrid energy management has been
studied for many purposes such as operation cost reduction [170, 183-185], maximization
of battery life and renewable energy penetration [181], environmental pollution and
operation cost reduction [161, 179, 202], and improvement of stability and reliability of
the system [180, 203]. For example, while the main objective in [170] is to minimize the
total operation cost of a microgrid by focusing on the fuel cost of power generators, the
cost of operation and maintenance, the cost of purchasing electricity from main grid and
penalties on the curtailment of renewable energy and load shedding, [181] intends to
maximize the reliability and customer satisfaction.

The intermittent nature of RESs and the nonlinear characteristics of other devices
make it inevitable to have an optimization process in place, as trivial straightforward
decisions result in severely suboptimal management systems. In this regard, mathematical
optimization methods like MILP and MINLP are used to obtain exact solutions to integer
programming problems, while state-of-the-art solution algorithms still rely on implicit
enumeration, which carries a large computational burden for practical problems. Hence,

several heuristic algorithms are used for the power systems in the literature. The main
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limitation of these heuristic algorithms is that they cannot guarantee optimality, nor can
they provide bounds on the amount of suboptimality, i.e., the optimality gap.

The determination of the optimal operation involves a sequential decision-making
process to tackle the uncertainty in weather-related generation units, as well as the
demand, electricity price, and problems arising from the integration of variable power
sources into the main grid. Thus, energy management for a microgrid becomes
unavoidable to enable stable and reliable operation, seek optimal dispatch, and maximize
its performance. To solve these issues, adaptive and intelligent methods are essential,
especially for a large-scale microgrid. Reinforcement learning (RL) is a promising
computational method for solving the stochastic sequential decision-making problems, in
which a learning agent learns what actions to take by interacting with its environment to
maximize a reward signal [188]. In this method, the agent is not told what to do in the
current state, but instead needs to try the actions to find out which one gives the maximum
reward. However, the RL suffers from the “curse of dimensionality” as the complexity of
microgrid system increases. Due to the fact that coarse-grained discretization causes
information loss, fine-grained discretization is required, and that causes the “curse of
dimensionality” problem. Several studies have been published in the literature regarding
RL. In [204], an RL-based optimal control method is proposed to improve the transient
performance of hybrid microgrid systems. In [205], a well-known batch RL (fitted Q-
iteration) for residential demand response is suggested. In [206], the fitted Q-iteration is
also used on a residential scale to minimize the amount of imported power from the main
grid.

In [207], a dynamic pricing strategy using a Q-learning (QL) algorithm is proposed
by considering the hierarchical electricity market. The aim is to find a financial balance
between the profits of service providers and costs of customers. In other words,
customers, service providers, and main grids constitute the whole system. In [208], a
strategic bidding is proposed by using a QL algorithm. In this study, customers need a
bidding strategy to maximize their long-term profit. In [209], a two-step ahead RL method
is proposed for a simple microgrid system to plan battery schedules without considering
the detailed mathematical model of devices. In [210-212], a multi-agent RL method is
applied to a microgrid considering the uncertainties. Moreover, operation cost reduction
is targeted with an RL method in [159, 213].

This paper proposes an EMS that employs an MINLP guided QL algorithm for
microgrid operation in a stochastic and dynamic environment to tackle the
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aforementioned challenges. The main feature of the proposed algorithm is that the “curse
of dimensionality” can be handled without coarse-grained discretization. The proposed
algorithm decomposes the multi-time horizon optimization problem into sub-problems
based on consecutive time-indexed periods. Then, each sub-component at each time is
solved by the MINLP method. The purpose of the study is to minimize the total daily
operation costs which include the degradation cost of batteries, the cost of energy bought
from the main grid, the fuel cost of the diesel generator (DG), and the emission cost.
Compared with prior studies (e.g., [136, 202, 207]), the main contributions of the paper
are as follows:

e The proposed real-time EMS is formulated as a Markov decision process (MDP)
problem, where the solar energy, DG and battery are considered. The proposed
algorithm has been developed to provide efficient energy management of a real
microgrid pilot of the Malta College of Arts, Science and Technology (MCAST)
by considering the constraints of the network model and technical model.

e This paper tackles the problem with multiple smaller sub-problems by
decomposing multiple time period operation cost optimization over a finite
horizon. Thus, MINLP sub-problems can be solved effectively.

e In order to reduce the dependency on the forecasted information, the historical
data are used offline to deal with uncertainties of load demand and photovoltaic
(PV).

e The proposed algorithm enables finding optimal solutions without applying an
approximation method, which enhances the performance of QL-based

optimization with large state space.
5.2 Microgrid Model Description

The structure of the microgrid system is illustrated in Figure 5.1, where PCC stands
for point of common coupling and SS stands for substation. The system is comprised of
solar PV arrays (63 kW in total), a DG (300 kW), lithium-ion batteries (300 kWh capacity
in total) and loads. This paper assumes that the microgrid operates in grid-connected
mode. A finite time horizon of the microgrid operation is considered as t =
{0,At, 2A¢, ..., T — At, T}, where At = 5 min is the time interval and T = 24 hours.
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Figure 5.1 Schematic diagram of microgrid.

5.2.1 Battery Model

The ESS is one of the core parts of the microgrid system, which can improve its
performance. Since the initial investment cost of batteries is high, it is crucial to extend
the battery life. The battery cycle life is directly related to the depth of discharge (DoD).
The cycle life data are given by the battery manufacturer in the form of total cycle number
with respect to the DoD. The relationship between expected cycle life and DoD is
exponential for the lithium-ion battery as given in (5.1).

L(D) = D%e? (5.1)
where D is the DoD in percentage at which the battery is cycled; L(D) is the average cycle
number at that particular D; and a and b are the battery dependent coefficients. From the
logarithmic fitted curve between DoD and cycle life specified in the data sheet of the
battery used, these coefficients are found as a = -1.24, b = 7.043. From the fitted curve,
the battery wear cost can be calculated as:

Cinv
2E qx L(D)Dine

where C;,,,, is the capital cost of battery; E,,,, IS the total capacity of battery; and n¢ and
n< are the charging and discharging efficiencies, respectively.

The operation cost of battery based on wear cost is written as:
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Cvar = CwPpar At (5.3)
where P4, . IS the charging or discharging power of the battery at time t.
At any given time, the state of charge (SOC) of the lithium- ion battery system
should be within a certain range. It can be expressed as:

SOCpmin < SOC; < SOCpmax (5.4)
where SOC,,;, and SOC,, ., are the lower limit and upper limit of SOC, respectively. The
charging and discharging states, charging and discharging power limits, and SOC
formulation of the lithium-ion battery are given respectively as follows:

c d
Upatt T Upgre < 1

d (5.5)
ulgat,tl Upat,t € {0,1}
0 =< Plglat,t < ugat,tprgax (5-6)
0 < Ppare < Upar,ePrax (5.7)
Pa . At

(SOCt—At - # Pl?at,t >0

S0C, = T~ Smax (5.8)
N Ppqt, At c
kSOCt—At + E— Pbat,t > 0
max

where uf,, . and ul,, . are the charging and discharging states of the battery, respectively;
P, and P, . are the charging and discharging power of the battery, respectively; and
PS¢, and P&, are the maximum charging and discharging power of the battery,

respectively. n¢ and n¢ are both assumed to be 95%, according to the practical situation
of the MCAST system.

5.2.2 Diesel Generator

The hourly fuel consumption FC, of a DG is modeled as a linear function, which is
based on data provided by the manufacturer.
FCe = F1Pratea + F2Pag,s (5.9)
where F; and F, are the coefficients of fuel consumption function, which are set as 0.0183
and 0.22, respectively; and Pyq:0q and P4 . are the rated power and the actual output
power of DG, respectively.
The power limits of DG are imposed as:
kPratea < Pagt < Pratea (5.10)
where k is set to be 0.3 based on the suggestion of manufacturers.

The fuel cost of DG at time step t can be calculated as:
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Cdg,t = CfuelFCtAt (511)

where Cry, is the fuel cost.

5.2.3 Main grid

The power transaction between main grid and microgrid should be constrained as:
—Pgtid < Pgriar < Pgriq (5.12)
where Pg.;q is the active power exchange between microgrid and main grid at time t;
and Pgyig is the maximum active power that can be exported to and imported from the
main grid.
The cost related to the power transaction at time step t is:
Cyriar = PrcePyria At (5.13)

where prc; is the real-time electricity price at time step t.

5.2.4 AC Power Flow

The power flow limits in each branch ij are considered as:
V] cos(6ij) Vi [Vye| cos(8;e — 6 + 6))

T 2] €10

Quie = V| sin(8i)  [Vie||Vye| sin(8ie — & + 6i) (5.15)
|ZU| |ZlJ|

P+ Qf . < (Sm“x (5.16)

where i,j € {1,2,...,Np}, and N, is the total number of buses; P;;, and Q;;. are the
active and reactive power flows of branch ij, respectively; |Vl-,t| and &; ; are the voltage
amplitude and angle at bus i, respectively; |Zl-j| and 6;; are the impedance magnitude and
corresponding phase angle of branch ij, respectively; and S;"“* is the maximum complex
power flow of branch ij.
The transmission capacity limit of power cables is also considered as:
Py, < P (5.17)
where P[7'** is the maximum power flow limit from bus i to bus j.
The voltage amplitude limit is bounded by:
vt < v | < v (5.18)
where V™™ and V/™** are the minimum and maximum voltage magnitudes of bus i,

respectively.
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The power balance equation is also considered as:
Ppve + Pyriar + Page + (Pl;iat,t - Pl;:at,t) =P+ Pre (5.19)
where Py, . is the total active power output of PV arrays; and P, . is the total active load

demand.

5.2.5 Emission Cost Calculation

Toxic gas externalities including CO2, NOx, and SO2 must be considered as cost
function to reduce the greenhouse gas effect. The mass of the three gases is calculated
with mathematical equation of the generated power of the DG and electricity grid as:

Nem Nps

Ceme = ). ) ECq- EFy - Py, (520)
i=1

k=11
where N, is the number of emission types (COz, NOx, SO2); N, is the number of power
sources that release the toxic gases (main grid and DG); ECy is the externality cost of
emission type k; EF;; is the emission factor of power source i and the emission type k;

and P; . is the power output of power source i.
5.3 MDP Model for Real-Time Scheduling of Microgrid

In the MDP model, there are four components: state variables, decision (action)
variables, state transitions, and rewards. The state variables denote the current state of the
system and the basis for making operation decisions. The decision variables identify the
choices, while the agent selects an action from a set of available actions, which is then
sent to the environment. A time step later, the agent receives a reward which is an
evaluation of taken actions, and the environment responds to these actions as a new state
transition. Clearly, MDP allows us to predict the next state and reward given the current
state and action. The next state depends only on the states and actions at time t instead of
the previous history.

The centralized EMS collects two types of information to make optimal decisions:
the first is the historical data of PV generation and demand at the annual, monthly, daily,
hourly and minute levels, and the second is the real-time information from microgrid
assets including the SOC of the battery, electricity price, and the output of the battery and
DG. Based on this information, EMS decides the power outputs of DG, PV, and battery,
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as well as the power exchange between the main grid and microgrid, to achieve the

objectives of this research.

5.3.1 State Variables and Decision (Action) Variables

The state variables S; at time t include SOC,, available active power outputs of PVs

ov1,er Ppva,ts Ppva e, total active load demand P, ., and real-time electricity price prc,.

Hence, S; can be given as:
Se = {SOCt: Pgo1e Povz,tr Ppvaes Pt prct} (5.21)
The decision variable x, at time t of the problem can be given as:
Xy = {Pgat,tfplfat,t'Pdg,t} (5.22)

The transition function for the battery SOC can be formulated as:

d

_ Pbat,t c c
$OCeune = SOC, + (=07 = Phacn® | Bt (5.23)

5.3.2 Objective Function

The total cost of microgrid is considered as a trade-off between power generation
cost and emission cost caused by the grid and DG. In this study, three case studies are
considered including individual minimization of power generation cost, individual
minimization of emission cost, and simultaneous minimization of power generation cost
and emission cost. Thus, the objective function can be expressed as

Ce(Serxt) = Cpar,t(Sey xt) + Cag,e(Se, %) + Cyriat(Se, xt) + Come(Se, xt) (5.24)

where x; is an action variable; and (S, x;) is the state-action pair.
5.4 Proposed Optimization Model

The main advantage of the QL algorithm is that it does not need any environment
model and can handle uncertainties and stochastic transitions without requiring full
information of the system. However, it can be inefficient for large state-action space and
cannot be applied easily to continuous state-action spaces involved in our problem. The
simplest solution to a continuous working space is to discretize the space. Making
discretization at smaller intervals can compensate for the changes of the system, but the
state-action pair number will increase exponentially. In this study, after making

discretization with larger intervals, each subproblem at each time step is solved by the
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MINLP method using the DICOPT solver of General Algebraic Modeling System
(GAMS) to get precise results. Thus, the problem can be handled with a MINLP-guided
QL algorithm, without discretization in smaller way. In this way, it can overcome the
challenges and find a more precise solution instead of an approximated value.

The complete training process of the proposed algorithm using a combination of

QL algorithm and MINLP optimization is presented in Figure 5.2.

( Start )

A

Initialize with a discrete state, action space
and the Q value table with instant reward.

[ -l
Ll -«

v
Compute feasible actions according to
current state by (5.4-5.8) and select an action
according to e-greedy policy

Y
Solve the problem using MINLP
optimization by DICOPT solver of GAMS
using (5.1-5.20) and (5.24)

y t=t+At

n=n+1 \

Get optimal actions from GAMS and
perform the obtained actions to the system

A

Calculate the operational cost by (5.24) and
move to next state (5.23)

Y

Update the Q(s,a) using (5.25)

t<T

n<N

N
End

Figure 5.2 Flowchart of training process.

In the flowchart, a discrete state, the whole action space of the system and the Q-

value table are initialized at the start. Instead of storing every state-action pair of the
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system, iteration begins by choosing only a discrete state. Additionally, the Q(S;, x;)
values of each state-action pairs are initialized with the total discounted reward r,, with y
= 0 to reduce the convergence time, which can be obtained as the instant reward at time
step O before the learning process starts. Then, the iteration starts by finding feasible
actions at that state. An action is then selected from the feasible action set using e-greedy
policy. The selected actions are sent to the GAMS to solve the economic dispatching
problem as MINLP. Thus, GAMS that uses the discretized actions at large intervals as
inputs will give us optimal actions that minimize the cost function. The obtained optimal
actions are then performed in the microgrid system. In the next step, the objective function
at time t is calculated using (5.24). Then, the Q(S;, x;) value and time are updated,
respectively. Finally, after the number of episode n is updated, if n < N, where N is the
total number of episodes, the system goes to the next episode.

5.5 Numerical and Result Analysis

5.5.1 Simulation Environment

The microgrid is equipped with a 300 kW/375 kVA DG, 3x21 kW solar generators,
and 150 kw/300 kWh battery, as shown in Figure 5.1 above. Moreover, the profiles of
load demand and the electricity price are shown in Figures 5.3 and 5.4, respectively. The
parameters of the DG and lithium-ion battery are given in Tables 5.1 and 5.2, respectively.

The parameters of distribution lines are given in Table 5.3.

L=
1

|

| R ]
=

(]

= Ln

= =
T

M\I“

Ui
|

._

-

=
T

i
N’ﬁl”“l |h
\ l\wwhirr“\‘”“ |

il T

= L
—
T

Power (kW)

'ﬂ
.

L "'f"

L,
—

0 240 480 720 960 1200 1440
Time (min)

Figure 5.3 Profiles of load demand.
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Table 5.1 Parameters of DG

Parameter Value Parameter Value

Prated (KW) 300 k 0.3
F, (L-h™1-kw™) 0.0183 Cruel (€/L) 1.1
F, (L-h™*-kW™1) 0.22

Table 5.2 Parameters of lithium-ion battery

Parameter Value Parameter Value
Emax (KWh) 300 P4 (kW) 50
Cycle life 2700 @50% DoD PE. (KW) 40

7, e 0.95, 0.95 a -1.24

SOChin (%) 50 b 7.043
SOCax (%) 100 Battery Cost (€/kWh) 220

Table 5.3 Parameters of distribution lines

Line Resistance Reactance
From To (mQ) (mQ)
Bus 0 Bus 1 129 78.225
Bus 1 Bus 2 19.737 11.969
Bus 3 Bus 4 11.536 12.208
Bus 3 Bus 5 3.770 3.989
Bus 4 Bus 6 3.770 3.989
Bus 5 N1 3.770 3.989
Bus 5 N2 3.770 3.989
Bus 5 N3 3.770 3.989
Bus 6 N4 9.048 9.550
Bus 6 N5 9.048 9.550
Bus 6 N6 4,901 5.186
Bus 6 N7 6.786 7.181
Bus 6 N8 6.786 7.181
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Figure 5.4 Profile of electricity price

For all simulation cases, since the SOC changes from 40% to 60%, it is discretized
into 70 to 130 states. The discharging/charging power of the battery, the output power of
DG, the generated PV power and the load demand are discretized into 10/8 states, 7 states,
5 states, 60 states, respectively. Table 5.4 demonstrates the externality costs and emission
factors of the main grid and DG. The optimization horizon of all simulations is set at 24
hours, and At = 5 min. Although the time interval is five minutes in the operation of the
algorithm, the results in all cases are drawn with a time interval of one hour so that the
graphics can be clearly seen. All studies have been simulated using MATLAB 2020 and
GAMS 24.9.2 on a 64-bit Linux based computer with 250 GB of RAM and a 2.10 GHz

Intel® Xeon® processor.

Table 5.4 Parameters of externality costs and emission factors of DG and main grid

Emission tvpe Externality cost Emission factors Emission factors of
yP (€/kg) of DG (kg/kWh) main grid (kg/kWh)
CO2 0.0308 0.743 0.922
SO, 2.181 4.045x10~ 3.583x107°
NOy 9.2527 9.36x1073 2.295x1072

5.5.2 Case Studies
5.5.2.1 Case 1: Minimize Operation Cost without Emission Cost

In this case, the main objective is to minimize the operation costs of the battery, DG
and main grid. The emission costs were not considered. When the battery is operated at
SOC of 50%, the simulation results are illustrated in Figure 5.5.
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Figure 5.5 Output power of all sources for Case 1
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It can be observed from Figure 5.5 that the battery stores energy during the Oth-4th

hour. Then the power generated by PV is dispatched. When the operation cost of DG is

less than the electricity price, DG is turned on between the 11th-13th hour. Since DG is

operated at minimum 90 kW, the power can be bought from the main grid in that situation.

Table 5.5 shows the effect of battery SOC on the average daily operation cost.

Table 5.5 Simulation results of proposed algorithm compared with QL algorithm

for Case 1

SOC (%) 40

45

50

55

60

G-QL c-QL

G-QL c-QL

G-QL c-QL

G-OL c-QL

G-OL c-QL

Total

emission 2139.04 2161.46
(kg/kWh)

Emission

Cost (€)

Battery

throughput ~ 150.0000  142.0833
(kWh)

Daily

energy 547.3606  554.4926
cost (€)

129.6250  130.8125

2150.28 2161.50

130.2584  132.0833

150.0000  142.0833

550.6309  556.9808

2153.69 2163.93

133.8653  134.1898

1429167  142.0833

555.4273  558.2455

2163.85 2165.2087

134.1640 135.3101

129.5833 128.2500

555.6116  558.5268

2171.6735  2178.3315

136.1739 137.3908

115.4167 114.0000

558.2421 561.9658

When the battery is operated at SOC of 40%, the average daily operation cost is
€547.3606, while it goes up to €558.2421 at SOC of 60%. According to this table, the

proposed algorithm performs better than the QL algorithm on the average daily operation
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cost. If we assume that the battery is operated at that power level on average during a
year, by changing the SOC level from 40% to 60%, the battery life increases from 6.71
years to 9.65 years. In this way, the capital cost of the battery is deferred as 2.94 years, if
we assume the average lithium-ion battery life as ten years and the total capital cost of
battery as (300%220) €66,000. The annual cost throughout the life of the battery is €6,600.
Thus, the net saving of battery renewal is (2.94x6600) €19,404.

4.5.2.2 Case 2: Minimize Operation Cost with Emission Cost

DG is not used in this case, because the total cost of the DG (including the fuel cost
and emission cost) is higher than that of the main grid. The simulation results are
illustrated in Figure 5.6. As in Case 1, the battery charges at low electricity price intervals

and discharges at peak price intervals to support the load demand.
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Figure 5.6 Output power of all sources for Case 2

Table 5.6 shows the results of the proposed algorithm and QL algorithm according
to different SOC values. It can be seen from Table 5.6 that the proposed algorithm works
better than the QL algorithm. Comparing Table 5.6 with Table 5.5, it can be seen that for
the proposed algorithm, the emission cost decreases by 5.68% (7.97%), while the daily
energy cost increases by 0.66% (0.37%) with SOC of 40% (60%).
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Table 5.6 Simulation results of proposed algorithm compared with QL algorithm
for Case 2

SOC (%) 40 45 50 55 60

G-QL C-QL G-QL C-QL G-QL C-QL G-QL C-QL G-QL C-QL
Total
emission 2167.85 2192.75 2179.91 2194.68 2189.63 2199.13 2202.16 2208.6829  2211.7894  2220.3729
(kg/kwh)
Emission
Cost (€) 122.2626  123.6544  122.9418  123.7633  123.4897 124.0138  124.1954 124.5518 125.3180 125.7182
ost
Battery

throughput ~ 150.0000  141.6667  150.0000 141.6667  142.9167 141.6667 129.5000  128.2500 115.8333 114.0000
(kwh)
Daily
energy cost ~ 550.9850  557.6795  554.5246  558.7408  556.5094  559.6482  558.7096  560.8216 560.3257 563.0461
®

4.5.2.3 Case 3: Minimize Emission Cost

Figure 5.7 shows the dispatched power by the proposed algorithm considering the
goal of reducing the emission cost. According to the figure, the microgrid system uses the
maximum capacity of renewable sources since they have no emission. Since the emission
cost of the main grid is less than that of the DG, the whole day demand is supplied by the
main grid, and the battery also contributes to supply the demand. It can be observed
clearly from Figure 5.7 that the battery charging and discharging states are constantly

changing, which adversely affects battery life.
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Figure 5.7 Output power of all sources for Case 3
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Based on Table 5.7, the battery lifetime can be calculated, which varies from 5.32

to 7.03 years as the SOC value of the battery increases. Thus, the capital cost of the battery

renewal is deferred for 1.71 years and the net saving is (1.71x6600) €11286. Comparing

this figure with that of Case 1, the net saving decreases by 41.84%.

Table 5.7 Simulation results of proposed algorithm compared with QL algorithm
for Case 3

SOC (%)

40

45

50

55

60

Total
emission
(kg/kwh)

Emission
cost (€)

Battery
throughput
(kWh)
Daily
energy cost
©

G-QL

c-QL

G-QL

c-QL

G-QL

c-QL

G-OL

c-QL

G-QL

c-QL

2102.03

118.4323

189.0191

555.8055

2108.02

118.7715

187.2234

557.9767

2120.36

119.4620

181.2250

559.4833

2124.43

119.6959

177.4557

560.4852

2129.73

119.9896

184.4583

561.9195

2137.03

120.4056

172.8813

562.8523

2147.73

121.0038

169.3868

563.6109

2152.8422

121.2964

162.4661

564.7938

2162.6823

121.8460

158.3448

565.7577

2165.4063

122.0151

148.6896

568.3321

Table 5.8 shows the emission cost and daily energy cost comparison of the three

cases for with SOC of 50% the proposed algorithm.

Table 5.8 Emission cost and daily energy cost comparison for three cases with SOC

of 50%
Emission Cost (€) Daily Energy Cost (€) Total Cost (€)
Case 1 133.8633 555.4273 689.2906
Case 2 123.4897 556.5094 679.9991
Case 3 119.9896 561.9195 681.9090

It can be seen that the emission cost in Case 3 decreases by 10.364% compared to

Case 1. However, in Case 3, the daily energy cost is higher than the other cases since only

the emission cost is taken into consideration. Case 2 provides a relatively balanced result

compared with the other two cases in terms of daily energy cost and emission cost. As

both emission cost and energy cost are tried to be minimized, the total operation cost is

the lowest in Case 2.
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5.6 Conclusion

This paper proposes an MINLP guided QL algorithm for the real-time energy
management of the stochastic and dynamic microgrid in Malta. The AC power flow
equations and constraints, the battery wear cost and constraints, the fuel cost, and the
emission cost are considered for the economic and environment-friendly operation of the
microgrid system. Three different cases are considered with three different objective
functions: (1) minimization of daily operation cost regardless of emission cost, (2)
minimization of both daily energy cost and emission cost, and (3) minimization of
emission cost without considering daily energy cost. The simulation results, using real
pilot data of MCAST, prove the cost effectiveness of the proposed algorithm compared
with the traditional QL algorithm. In case studies using the proposed algorithm, there is
a 1.348% reduction in the daily total operation cost (in Case 2 compared with Case 1).
The daily total operation cost of the proposed algorithm is up to 1.25% lower than that of
the QL algorithm. From the simulation results, we can also find that the battery lifetime

is affected by the adjustment of the battery’s SOC value.
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Chapter 6

Conclusions and Future Prospects

6.1 Conclusions

Electricity is the largest contributor to the modern way of life. It has become
impossible to imagine a day without it. Moreover, it must be said that mankind owes the
increase in living standards throughout history largely to electricity. Therefore, operating
an electricity system with high reliability and stability is extremely crucial to
prevent/reduce the consumer from being affected by any disturbance. With the increasing
electricity demand and reduction of fossil fuels necessary for electricity generation,
researchers have turned to nature to provide a solution. The abundance and clean nature
of renewable energy sources have allowed the development of the existing electricity
system. Therefore, microgrids become an important factor in ensuring electricity reaches
the customers. This research has developed methodologies to overcome potential
problems related to the penetration of renewable energy sources to the main electricity
network. The interoperability of the microgrid and distribution network has been made
more secure and robust through optimization.

This thesis demonstrates the energy management of a microgrid consisting of
renewable energy sources, loads, and a battery. Three optimization methods were used to
manage the microgrid. The objective function of the present microgrid management used
the mixed integer linear programming (MILP), rolling horizon control (RHC) and Q-
learning optimization methods to control the operation of the renewable energy sources,
diesel generator, and battery. The formulations of the network model and of the technical
model have been considered for the economic and environmental operation of the
microgrid system to solve the optimization problem under more real-world conditions.
The results and conclusions of each chapter have been presented separately at the end of

each chapter. Therefore, the work presented in this thesis is summarized in this section.
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In Chapter 1, the reports published by IEA were investigated to show the course of
electricity production, consumption, and carbon dioxide production from electricity
generation. Moreover, the effects of global warming on electricity systems and the need
for a transition to clean energy have been explained, including the various difficulties and
complexity it brings.

In Chapter 2, a literature review related to microgrid has been provided, including
the microgrid concept, architectural models of microgrid, functions of smart grid
components, challenges, and opportunities.

In Chapter 4, dynamic rolling horizon control has been proposed to achieve optimal
economic operation by addressing the uncertainties of demand and PV power generation.
The algorithm was tested on both stochastic and deterministic environments with 98%
and 100% optimality respectively. The performance comparison has been made with the
MILP and myopic approach. Moreover, the effect of battery life was investigated by
operating at different DoD levels.

In Chapter 5, a Mixed Integer Nonlinear Programming (MINLP) guided Q-learning
algorithm has been proposed for smart microgrid operation, which improves the vanilla
Q-learning based optimization performance with large state-space. The proposed
algorithm decomposes a multi-stage MINLP problem into a series of single-stage
problems so that each subproblem can be solved. The proposed model has been
implemented as three case studies with different objectives. Moreover, each case is
operated under different battery operation conditions to investigate the battery lifetime.
Finally, performance comparisons are carried out with a conventional Q-learning
algorithm.

Publications from the studies presented in this dissertation are given in the

curriculum vitae at the end of the thesis.

6.2 Societal Impact and Contribution to Global

Sustainability

The environmental benefits of microgrids are generally related to emissions
released during power generation. Around the world, 63.9% of electricity production was
provided from fossil fuels in 2018. Since more than of the electricity generation has been
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provided by fossil fuels, the energy-based greenhouse gas (GHG) emission increased
from 20.5 GtCO2 to 33.3 GtCO2 between 1900 and 2019. With the increase of GHG
emission, climate change has become an increasing threat.

To that point, microgrids are a great opportunity to use renewable energy sources
or low carbon sources efficiently. In these times when global warming is an increasing
threat, microgrids play an important role in the integration of renewable energy sources
to the main electricity system. This thesis focuses on toxic gases containing CO2, NOx,
and SOz to reduce the greenhouse gas effect.

In terms of social benefits, it is well suited to establish microgrids in
underdeveloped regions where the electricity infrastructure is insufficient or where the
infrastructure is not available. In this way, the problem of people who have difficulty in
accessing electricity will be solved. They will also benefit economically by using
renewable energy sources.

In addition to all those environmental and social benefits, this thesis is strongly
connected and related to the seventh United Nation’s Sustainable Development Goal
titled “Ensure access to affordable, reliable, sustainable and modern energy for all”, and
corresponds to its targets 7.1 and 7.2. Considering the indicators of Target 7.1, microgrid
construction will increase the proportion of the population with access to electricity. In
addition, the ratio of the population which relies on clean fuels and technology will
increase, achieving the second indicator of Target 7.1.

As the second target (7.2) which is “By 2030, increase substantially the share of
renewable energy in the global energy mix”, the thesis will contribute the literature in
terms of the construction of microgrids and their benefits to the main grid for sharing

renewable energy with the total final global energy consumption rate.
6.3 Future Prospects

To extend the current work, a summary of possible future research directions is
summarized as follows:
1. Grid-connected mode is assumed in this research. For future research, adopting
the scheme for islanded mode can be examined.
2. The microgrid system model used in this thesis can be diversified with electrical

vehicle, controllable loads, etc.
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3. Instead of the value-based reinforcement learning methods used in this thesis,

policy-based reinforcement learning methods can be used with continuous

action space.
4. Deep value-based and policy-based reinforcement learning algorithms method
can be applied with large state-action space problem causing memory and

computational complexity problem.
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