
CYBERNETICS AND PHYSICS, VOL. 11, NO. 1, 2022, 5–10

DETECTION AND CONTROL OF EPILEPTIFORM REGIME
IN THE HODGKIN–HUXLEY ARTIFICIAL NEURAL

NETWORKS VIA QUANTUM ALGORITHMS

Sergey Borisenok
Department of Electrical and Electronics Engineering

Faculty of Engineering
Abdullah Gül University

Kayseri, Turkey
sergey.borisenok@agu.edu.tr

Feza Gürsey Center for Physics and Mathematics
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Abstract
The problem of detection and the following suppres-

sion of epileptiform dynamics in artificial neural net-
works (ANN) still is a hot topic in modern theoretical
and applied neuroscience. For the purpose of such mod-
eling, the Hodgkin–Huxley (HH) elements are important
due to the variety of their behavior such as resting, sin-
gular spikes, and spike trains and bursts. This dynamical
spectrum of individual HH neurons can cause an epilep-
tiform regime originated in the hyper-synchronization of
the cell outcomes. Our model covers the detection and
suppression of ictal behavior in a small ANN consisting
of HH cells. The model follows our approach [Borisenok
et al., 2018] for the HH neurons as a classical dynam-
ical system driving the collective neural bursting, but
here we use a quantum paradigm-based algorithm em-
ulated with the pair of HH neurons. Such emulation be-
comes possible due to the complexity of the individual
4d HH dynamics. The linear chain of two HH neurons is
connected to the rest of ANN and works autonomously.
The first neuron plays a role of the detecting element
for the hyper-synchronization in the ANN and the quan-
tum algorithm emulator; while the second one works as a
measuring element (emulation of the quantum measure-
ment converting the signals into the classical domain)
and the trigger for the feedback suppressing the epilepti-
form regime. We use here the speed gradient algorithm
for controling the emulating neuron and discuss its pros
and cons to compare with our classical model of epilep-
tiform suppression.
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of quantum algorithms, small–scale ANNs, Hodgkin–
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1 Introduction
The problem of detection and the following suppres-

sion of epileptic dynamics still is a hot topic in mod-
ern theoretical and applied neuroscience [Kim et al.,
2020; Ikeda, 2022]. Being an extremely complex phe-
nomenon, epilepsy should be studied at the different
scales of brain dynamics: micro-scale (individual neu-
rons and their small clusters), meso-scale (neural pop-
ulations) and macro-scale [Kuhlmann et al., 2015; De-
pannemaecker et al., 2021], and each scale has its
own specific, see, for instance, [Freestone et al., 2013;
Medvedeva et al., 2020] for mesoscopic modeling and
[Varsavsky et al., 2011] for the macroscopic level. Ad-
ditionally, the macroscopic ictal patterns observed ex-
perimentally cannot be easily explained by the standard
models of a single micro- or mesoscopic seizure focus
triggering activity that spreads to uninvolved brain re-
gions [Davis et al., 2021]. The detailed review on the
mesoscopic models and their perspectives one can find
in [Wendling et al., 2016].

The processes triggering the epilepsy regimes also are
complex and can be caused by different factors: switch-
ing between different inner attractors in the system
[Lopes da Silva et al., 2003; Suffczynski et al., 2004] and
the effects of unstable transient processes [Medvedeva et
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al., 2020], or stimulated by an external noise [Taylor et
al., 2014]. The topology of the network is another im-
portant matter to be discussed in details [Kramer et al.,
2008].

Thus, the successful modeling of real epileptic pro-
cesses should be a matter of interdisciplinary collabora-
tion for the specialists from different areas [Iasemidis et
al, 2009]. Also, it has been demonstrated recently that,
in general, the complexity in the neural networks can be
drastically reduced by fast processes, organizing the el-
ementary units of the system (’agents’) into relatively
small number of clusters [Proskurnikov and Granichin,
2018].

Here we focus on searching for a new theoretical ap-
proach based on the quantum mechanics paradigm to de-
tect and suppress the hyper-synchronized dynamics in
an artificial neural network (ANN) of a small (miscro-
scopic) scale, and we discuss the principal parts of the
algorithm rather than the modeling real epileptic data.

There are many alternatives to chose the single neuron
models: the Izhikevich [Izhikevich, 2003], FitzHugh–
Nagumo (FHN) [FitzHugh, 1961; Nagumo et al., 1962],
Morris–Lecar [Morris and Lecar, 1981], ’growth trans-
form dynamical’ systems [Gangopadhyay et al., 2020],
and others. FHN artificial neural networks with empir-
ical structural connectivity measured in human subjects
are especially successful for computational mimicking
the fine details on the appearing [Gerster et al., 2020]
and absence [Medvedeva et al., 2020] of the epileptic
seizures in humans.

For our purpose, an artificial neural network with the
Hodgkin–Huxley (HH) elements [Hodgkin and Huxley,
1952] have been chosen due to the variety of their be-
havior such as resting, singular spikes, and spike trains
and bursts [Bonabi et al., 2014]. This wide spectrum of
the individual HH neuron dynamics can cause an epilep-
tiform regime originated in the hyper-synchronization of
the cell outcomes, and at the same time, it can be used
for the efficient control algorithm over the collective dy-
namics. The important feature of the basic model (HH,
FHN, or other) should be the existence of a threshold or
a set of thresholds coming as inputs to drive the vari-
ety of the regimes in the system dynamics. Particularly,
we demonstrated a similar ’quasi-quantum’ approach for
a searching algorithm with FitzHugh–Nagumo neurons
[Borisenok, 2021a]. Our preference of HH neuron is
based on our vision of the perspectives to emulate more
complex quantum algorithms which may demand the de-
veloped set of the thresholds in the system (emulation
analog of multi-qubit operations).

We also should emphasize that the type of neurons
(HH in our case) used for the emulation is not necessary
similar to the rest of the cells in the ANN which could
be modeled with Izhikevich, Morris–Lecar, FitzHugh–
Nagumo or any other appropriate alternative system.

Our basic model covers the detection and suppression
of epileptiform pre-ictal and ictal behavior in a small
ANN consisting of HH cells. The model follows our

approach [Borisenok et al., 2018] for the HH neuron
as a classical dynamical system driving the collective
neural bursting, but here we use a quantum paradigm-
based algorithm emulated with the special linear chain
of two HH neurons. Such emulation becomes possible
due to the complexity of the individual 4d HH dynam-
ics [Borisenok, 2021b]. For the purpose of detecting and
suppressing control we reserve two particular neurons in
the given ANN, they are connected each to another into
a linear chain, such that the second neuron has the only
input from the first neuron. The control algorithm works
autonomously. The first neuron gets inputs from many
companion elements of the network, and it plays a role
of the detecting element for the hyper-synchronization
in the ANN and the quantum algorithm emulator; while
the second neuron works as a measuring element (emula-
tion of the quantum measurement converting the signals
into the classical domain) and the trigger for the feed-
back suppressing the epileptiform regime via its multiple
connections to other cells.

There are different control algorithms to drive the
dynamics of Hodgkin–Huxley neurons [Borisenok and
Ünal, 2017; Andreev and Maksimenko, 2019]. We use
here the speed gradient approach [Fradkov, 2007] for
controling the emulating neuron for its imitation of the
Deutsch–Jozsa quantum procedure for a searching prob-
lem [Deutsch and Jozsa, 1992].

We define the ’states’ of HH neuron in the manner of
the pure qubit states, and propose a simple measurement
procedure of resting or spiking in the following HH neu-
ron of the chain to complete the searching problem in a
single algorithmic cycle.

The algorithm presented in Section 2 develops our pre-
liminary study for detecting the epileptiform dynamics
in the small ANNs [Borisenok, 2021b]. For ANNs the
epileptiform regime is based on hyper-synchronization
of spiking dynamics coming from many neurons. After
the formulation of our ’quasi-quantum’ searching algo-
rithm for the pair of HH neurons, in Section 3 we de-
scribe how to use the function classified by this algo-
rithm for detecting the epileptiform dynamics, and how
to imbed the control pair of HH neurons into a small
ANN.

2 Hodgkin–Huxley Neuron Model Emulating
Quantum Algorithm

Let us briefly formulate the ordinary differential
(ODE) model of Hodgkin-Huxley single neuron and the
signal transfer function for the linear HH chain. Then we
describe the basic method how to emulate the quantum
Deutsch–Jozsa algorithm with the pair of HH neurons.

2.1 Mathematical Model for Hodgkin-Huxley Neu-
rons and Their Linear Chains

The Hodgkin-Huxley differential model has developed
phenomenologically from the experiments with the stim-
ulation of the giant squid axon with the external electri-
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cal current. It has the set of four variables: the output
membrane action potential v(t) and three ion channels
variables m(t), n(t), h(t) related to the probabilities for
the membrane gates to be open or closed [Hodgkin and
Huxley, 1952]:

CM
dv

dt
= −gNam

3h(v − ENa)− gKn4(v − EK)−

−gCl(v − ECl) + I(t) ,

dm

dt
= αm(v) · (1−m) + βm(v) ·m ; (1)

dn

dt
= αn(v) · (1− n) + βn(v) · n ;

dh

dt
= αh(v) · (1− h) + βh(v) · h ;

Here the membrane variables m,n, h are non-linear
functions of the action potential v:

αm(v) =
0.1 · (25− v)

exp
[
25−v
10

]
− 1

;

βm(v) = 4 · exp
[
− v

18

]
;

αn(v) =
0.01 · (10− v)

exp
[
10−v
10

]
− 1

; (2)

βn(v) = 0.125 · exp
[
− v

80

]
;

αh(v) = 0.07 · exp
[
− v

20

]
;

βh(v) =
1

exp
[
30−v
10

]
+ 1

.

The control parameter in model (1) is represented by the
external current I(t) stimulating the axon. The set of
the empirical constants includes the potentials ENa (the
equilibrium potential at which the net flow of Na ions
is zero), EK (the equilibrium potential at which the net
flow ofK ions is zero), ECl (the equilibrium potential at
which leakage is zero) in mV, the membrane capacitance
CM and the conductivities gNa, gK , gCl (the conductiv-
ities for the sodium channel, the potassium channel and
the leakage channel, respectively) in mS/cm2:

gNa = 120 ; ENa = 115 ;

gk = 36 ; EK = −12 ; (3)
gCl = 0.3 ; ECl = 10.36 .

The dynamical system (1) demonstrates the variety of
regimes: it can be in resting (the neuron does not show a
sufficient activity), spiking (the neuron produces a single
spike) or bursting (the neuron generates series of spikes).
A particular regime depends on the control current I . If
it is below a threshold level, then the HH neuron stays
resting; if it overcomes the threshold level, the neuron
generates a spike or a burst.

In a linear chain of HH neurons, the output action po-
tential of the previous element defines the input of the
following cell. We use here our gain model for the

transfer of the output signal from k-th neuron via its
synapse towards the dendrite/soma input of the l-th neu-
ron [Borisenok et al., 2018]:

Il(t) = α[vk(t)− vrest] , (4)

with the phenomenological gain constant α > 0. Here
vrest is the reference rest potential in the HH neuron
(vrest = –70 mV).

Thus, the gain function (4) here serves for the coupling
of two control HH neurons.

2.2 Emulation of Deutsch Algorithm with the Pair
of Hodgkin–Huxley Neurons

Now let’s prove that the quantum searching algorithm
can be emulated with HH neurons.

The Deutsch–Jozsa quantum algorithm deals with a
simple searching problem [Deutsch and Jozsa, 1992].

Suppose that we get a function f mapping {0, 1}n into
{0, 1} for an arbitrary natural n. The function f is cho-
sen either as a constant: f(x) = 0 for all x from {0, 1}n
or f(x) = 1 all x from {0, 1}n, or as balanced: the num-
ber of inputs 0 for the mapping is equal to the number
of inputs 1. The algorithm checks if the given function
f is a constant. To do it for the classical approach we
need 2n−1 − 1 evaluations. Quantum algorithms, from
another hand, can perform it much faster. Due to the
so-called quantum phase kick–back effect in the algo-
rithm, we need only a single measurement to distinguish
between those two cases.

The circuit for the Deutsch–Jozsa algorithm contains
three Hadamard gates, one multi-qubit block with the
function f , and one measurement block [Aradyamath et
al., 2019].

For instance, for the case n = 1 the result of the mea-
surement is equal to:

|output > =
1 + (−1)f(0)

⊕
f(1)

2
|0 > + (5)

+
1− (−1)f(0)

⊕
f(1)

2
|1 > .

Here the addition mod 2 denoted as
⊕

. The out-
put (5) solves the problem of searching. Indeed, if
f(0)

⊕
f(1) = 0, then the output is |0 >, and the func-

tion f is constant. If f(0)
⊕
f(1) = 1, then the output

is |1 >, and the function f is balanced. The same is
valid for the case of n bits. If all n measurement results
are |0 >, we conclude that the function is constant. Oth-
erwise, if at least one of the measurement outcomes is
|1 >, we conclude that the function is balanced.

To emulate the Deutsch–Jozsa quantum algorithm, we
use a linear chain of two sequent HH neurons. The first
neuron plays the role of the computational element. It
works with the information about the function f ; and
it is driven by a certain feedback algorithm towards the
goal action potential. The resulting potential of the first
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neuron with the dendrite/soma model enters the second
neuron, which plays the role of the measuring element.

For the transfer signal between two neurons we define
the threshold (tr) level:

Itr = α · (vtr − vrest) . (6)

The output of the first neuron stimulates the particular
regime of the second measuring element. If the first HH
neuron produces the acting potential below the thresh-
old level vtr, the second neuron does not spike. If the
output action potential of the first neuron v overcomes
slightly the threshold level, the second one produces a
single spike.

To emulate the Deutsch algorithm, let’s define the
’pure quantum states’ for the HH neuron: the resting
|0 > and the single spiking |1 >:

|0 > = 0 · Itr ; (7)
|1 > = 1 · Itr ,

which correspond to the action potentials:

v|0> = vrest + 0 · Itr
α

; (8)

v|1> = vrest + 1 · Itr
α
.

To unify both cases, the goal potential is expressed via
the CNOT logical operator over the function f :

v∗ = vrest + CNOT{f(0), f(1)} · Itr
α
. (9)

The symbol ∗ stands here for the potential v (the out-
put of the first neuron) which should be the goal of our
control signal I in (1).

To achieve the goal (1), let’s use Fradkov’s speed gra-
dient algorithm [Fradkov, 2007], with the non-negative
differentiable goal function:

G(t) =
1

2
[v(t)− v∗]2 . (10)

The control signal in the HH neuron is one-dimensional.
Therefore the speed gradient in the control space is re-
duced to the partial derivative:

I = −Γ
∂

∂I

(
dG

dt

)
= − Γ

CM
(v − v∗) ;

Γ = const > 0 . (11)

The control current (11) drives the system (1) towards
the minimization of the control goal (9). The achievabil-
ity of the stabilization/tracking goal in the HH dynami-
cal system for the speed gradient algorithm has been dis-
cussed in [Borisenok and Ünal, 2017].

Now suppose that we drive the first neuron towards the
goal potential (9). Then via the gain (4) it stimulates
the second measuring element with two possible options:

the second neuron will stay in rest or will generate a sin-
gle spike. Just based on that we can conclude if the func-
tion f is constant or not:
If f(0) = f(1), then v∗ = vrest = v|0>, and f is con-
stant.
If f(0) 6= f(1), then v∗ = vrest + Itr/α = v|1>, and f
is balanced.

Thus, we proposed the classical analog of the Deutsch–
Josza algorithm.

3 Inhibitor Pair of HH Neurons for Detecting and
Suppressing Epileptiform Dynamics

The first version of the algorithm has been proposed
in [Borisenok, 2018] based on the classical algorithms.
Here we will use the emulation of quantum Deutsch–
Josza procedure [Borisenok, 2021b] to construct the
complex control element of two HH neurons for detect-
ing and suppressing the epileptiform dynamics in the
small ANNs.

3.1 Function f for Detecting the Epileptiform
Regime

To formulate an analog of Deutsch’s algorithm for the
hyper-synchronization detection, we need to define the
function f to distinguish between the regular and epilep-
tiform (i.e. hyper-synchronized) regimes. Let’s define
the spiking function for the n-th neuron as:

fn =

{
0 if vn = vrest ,
1 if vn > vrest .

(12)

The function (12) is non-zero for the spiking state, and it
is equal to 0 for the resting. It is a straight analog of the
function f(x) for the Deutsch–Josza algorithm (Section
2).

To detect the hyper-synchronization, let’s choose arbi-
trarily the action potentials of some small number of n
neurons. Thus, the first inhibitor neuron collects the in-
formation on the network state from the set of n arbitrary
chosen cells in the form of binary signals (12). This set
of n inputs can be changed for each next cycle of the de-
tection, i.e. the connectivity matrix for that element is
dynamically changes. The collected set {fn} serves for
the following definition of the function f :

f =
∏
n

fn . (13)

We are interested only in the detection of hyper-
synchronization, when the product of the spiking func-
tion is equal to 1: ∏

n

fn = 1 . (14)

In the absence of hyper-synchronization among the cho-
sen n neurons, the RHS(14) is equal to 0. One can eas-
ily check that the definition (13)-(14) corresponds to two
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cases of f : it is either always 1 (the function fn is con-
stant), or the output consists of ’0’s and ’1’s (but in our
case the function is not necessary balanced). Thus, two
possible cases are:
– Epileptiform regime: f = 1 always; the function fn
is constant.
– Regular regime: f = 0 , i.e. the function fn is not
constant.

Eq.(14) serves for the definition of the goal potential in
the axon of the first neuron:

v∗ = vrest + f · Itr
α
. (15)

which is analog of (9). This goal potential must be sub-
stituted into the SG feedback (11), which works as an
autonomous algorithm driving the first neuron towards
the target state (15). Thus, for each working cycle of the
detection the goal is stabilization, but it depends on the
binary set of the spiking functions fn, which is different
for each working cycle. The output action potential (15)
via the transfer function (4) creates the input current in
the second neuron, and only for f = 1 this ’measuring’
element produces a spike. The resting (f = 0) means
the absence of hyper-synchronization.

Thus, the classical analog of the quantum searching al-
gorithm uses the effects which are similar to the ’phase
effects’ for quantum systems, and it serves for the clas-
sification of the ANN dynamical regimes.

3.2 Finalization of the Control Algorithm
Now we can present the final form of the algorithm for

detecting and suppressing the epileptiform dynamics.
Among all the neurons of the given population, we

should choose arbitrarily n neurons (they are enumer-
ated with the numbers from 1 to n). Based on their out-
puts the function f is defined similarly to (13)-(14). This
function is analyzed with the complex control element
consisting of the pair of the emulating HH neuron and
the ’measuring’ HH neuron.

The emulating neuron driven with the speed gradient
method (11) classifies the regime (the epileptiform dy-
namics vs the regular one) and transfers the result of the
classification for the second companion which produces
or not produces a spike. The measuring element trig-
gers the feedback control loops towards the initial set of
HH neurons to suppress epileptiform regime in the form
described in details in [Borisenok, 2018; Borisenok,
2021b].

To conclude, the finalized algorithm consists of the fol-
lowing steps:
1. Form the function f over the action potentials of arbi-
trary numbers of n neurons in the population.
2. Make the Deutch-type measurement of the function f
with the pair of control neurons using the SG stabiliza-
tion algorithm (15) for the first neuron.
3. If the function f = 0, there is a normal regime in the
population dynamics.
4. If the function f = 1, there is an epileptiform regime

in the population dynamics.
5. If the epileptiform regime is detected, trigger the feed-
back suppressing control signal from the inhibitor con-
trol HH pair to the neurons of the population.
6. Repeat the algorithm for the next cycle of the detec-
tion.

The cycle repetition time is based on the single spiking
temporal intervals, and for the set (3) it can be chosen
between 20 and 50 ms.

4 Conclusions
The pair of 4d Hodgkin–Huxley neurons is capable of

emulating successfully the effects similar to the kick-
back contributions to the Deutch–Josza quantum algo-
rithm.

Such a pair of HH neurons acting as an autonomous
control element could be used for detecting and sup-
pressing the ictal phase of the epileptiform regime in the
small population of HH or other types of neurons. The
algorithm of the detection works more efficiently com-
pared with the standard classical detection algorithms
due to the influence of the phase ’kick-back effect’ ana-
log on the detection of the hyper-synchronized ANN be-
havior.

Our algorithm can be extended to model different
forms of control: driving individual neurons vs control
over the group of the cells in the population; to different
physical realizations: electrical stimulations of the indi-
vidual cells and the group of cells, optogenetic fields,
and others. We strongly believe that the proposed ap-
proach can be extremely useful for modeling micro-scale
epilepsy, for control over the microscopic instability re-
siding in given stable macroscopic dynamics [Yamanaka
et al., 2015], and for many other applications to ANNs.
The adaptation of our approach for real epilepsy model-
ing will be a matter of our further research.
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Škoch, A., Hlinka, J., Lehnertz, K., Schöll, E. (2020).
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