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Abstract
The extreme sensitivity of quantum systems towards

the external perturbations and in the same time their
ability to be strongly coupled to the measured target
field makes them to be stable under the environmen-
tal noise. A high quality quantum sensor can be engi-
neered even on the platform of a single trapped qubit.
There is a variety of optimal and sub-optimal algo-
rithms for effective control over the quantum system
states. Here we discuss the opportunity to improve the
efficiency of the external field quantum sensor based on
a single qubit via its feedback tracking.
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1 Introduction
In the years 2017–2018 we observe a distinct progress

in different engineering applications of quantum sys-
tems trapped by the specific shapes of potentials and in-
teracting with static impurities. Such systems are used
for the purpose of quantum computation, quantum sim-
ulations of many-body physics and for development of
precise quantum analyzers and sensors.
The extreme sensitivity of quantum systems towards

the external perturbations and in the same time their
ability to be strongly coupled to the measured target
field makes them to be stable under the environmental

noise. For example, it is the noise cancellation by the
coherent backaction for quantum dot-base sensors has
been developed in [Hell, Wegewijs, and DiVincenzo,
2014; 2016]. The measurement backaction induced by
the noise of electron cotunneling through the sensor is
mitigated by the recently identified coherent backac-
tion [Hell, Wegewijs, and DiVincenzo, 2014] arising
from quantum fluctuations. The main idea of the ap-
proach is that for this is that the sensor itself is also a
microscopic system, so that the action of the measured
object on the sensor dynamics is not negligible, which
then in turn affects the backaction of the sensor on the
measured part. This coupling should be considered in
the corresponding terms in the total Hamiltonian for
the quantum dynamics equations describing the mea-
surement action, and they represent a backaction of the
measurement on the measured object [Hell, Wegewijs,
and DiVincenzo, 2014]. The coherent backaction is
an integral part of the total backaction together with
stochastic and dissipative backaction, leading to the
cancellation of cotunneling noise [Hell, Wegewijs, and
DiVincenzo, 2016]. The effect of back-actions on dy-
namics of the system is taken into account by calculat-
ing the self-energies and the non-equilibrium Green’s
functions [Tabatabaei, 2017].

Thus, a high quality quantum sensor can be engi-
neered even on the platform of a single qubit. Some
approaches developed for quantum dot-based sensors
could be also useful for the algorithmic concepts of
trapped qubit-based sensors.

In this paper we discuss a feedback algorithm for the
control over the performance of a single qubit-based
sensor. The target function of the control is expressed
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via the quantum analog of the Fisher parameter. It is
driven by the Kolesnikov’s “synergetic” approach to-
wards the target attractor maximizing the Fisher param-
eter, i.e. minimazing the lower bound of the uncertainty
for the sensor measurement procedure.

2 Qubit under the External Control Field
Let’s consider a qubit, two-level quantum system,

attached to a quantum bath [Pechen and Borisenok,
2015]. The Lindblad dynamical equation for density
operator is given by:

dρ

dt
= −i [H0 + u(t)V, ρ] +

+ γ [(n(t) + 1)L12(ρ) + n(t)L21(ρ)] (1)

with Einstein coefficient γ > 1 for the transition be-
tween two states 1 (“the ground level”) and 2 (’the ex-
cited level’); and the Lindblad operators:

L12 = 2ρ22P1−P2ρ−ρP2 ;L21 = 2ρ11P2−P1ρ−ρP1 .

In case if the decay is absent or weak, the system pre-
serves its evolution on the surface of the Bloch sphere
x2(t) + y2(t) + z2(t) = 1 with the dynamical sys-
tem in the dimensionless form [Borisenok, Fradkov,
and Proskurnikov, 2010]:

ẋ = u · z ; ẏ = z ; ż = −y − u · x ,

where

x = ρ22 − ρ11;

y = ρ12 exp{iωt}+ ρ21 exp{−iωt}; (2)
z = i [ρ12 exp{iωt} − ρ21 exp{−iωt}] .

The energy distance between two level is given by ω =
(E2 − E1)/~.

3 Control over the Sensor Performance
The performance of the quantum sensor measurement

is based on the quantum analog [Braunstein and Caves,
1994; Refregier, 2012] of the classical Cramer-Rao
lower bound (CRLB) theorem [Cramer, 1946; Rao,
1945]. CRLB defines a lower bound of uncertainty of
the inferred value ∆um of the measured parameter um
[Refregier, 2012]:

(∆um)
2 ≥ 1

NF
. (3)

Here N stands for the numbers of measuring elements
(qubits in our case). The parameter F is the quan-
tum analog of classical Fisher information, for the

Jachymski-Wasak-Idziaszek (JWI) measurement pro-
tocol and other similar types of sensors it is given by
[Jachymski, Wasak, and Idziaszek, 2018]:

F =
∑
s

1

P (s|um)

(
∂P (s|um)

∂um

)2

, (4)

where the summation is made over the full set {s} of
quantum states, and P (s|um) are the probabilities to
get the corresponding state s under the action of the
external measured dimensionless field um. Thus, the
maximization of the Fisher parameter F minimizes the
lower bound of the uncertainty (3).

3.1 Fisher Parameter for One Sensoring Qubit
For the quantum system (2) making the evolution over

the surface of the Bloch sphere without decay ρ11 +
ρ22 = 1. By that its inversion x = ρ22 − ρ11 defines
the qubit state: ρ11 = (1− x)/2 and ρ22 = (1 + x)/2.
That implies for (4):

F =
1

ρ11

(
∂ρ11
∂u

)2

+
1

ρ22

(
∂ρ22
∂u

)2

. (5)

We remind that dimensionless u(t) stands here for the
external field(s). Under the substitution of the density
matrix elements via the inversion and considering the
dynamical system (2) Eq. (5) becomes:

F =
1

1− x2

(
∂x

∂u

)2

. (6)

One can see that the Fisher parameter F becomes in-
finite under two natural limits x = ±1, which corre-
spond to two pure states of the qubit (the pure ground
and the pure exited states), where the uncertainty, sure,
is zero by (3).

3.2 “Target Attractor” Algorithm for the Control
over the Sensor Performance

Let’s apply now Kolesnikov’s target attractor algo-
rithm with a positive constant T [Kolesnikov, 2012]:

ψ̇ = −ψ
T

(7)

to track the control goal to zero:

ψ =

(
∂u

∂x

)2

→ 0 . (8)

By the simplification we get:

∂

∂x

[
du

dt
+

1

2T
· u

]
= 0 . (9)
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Let’s consider two components of the external field:
u = um + uc, where um is a measured part and uc is a
control signal. Then the tracking algorithm is given by:

duc
dt

+
uc
2T

= −dum
dt

− um
2T

, (10)

with the solution:

uc(t) = e−t/2T

[
uc(0)−

∫ t

0

eτ/2T f(um(τ))dτ

]
(11)

with the given function of the measured field:

f(um(τ)) =
dum(τ)

dτ
+
um(τ)

2T
. (12)

The TA feedback is tracking the measured field um(t)
as a dynamical function and drive the additional con-
trol field uc(t) to minimize the uncertainty (3). If the
function um(t) and its first time derivative are finite
(virtually any real physical measured field satisfies to
such criteria), the algorithm (11) converges.
This approach can be easily extended for the bigger

number of the measuring qubits.

4 Conclusion
We feedback target attractor control is able to provide

the efficient control over the performance of single- and
few-qubit based quantum sensors. The control field uc
is restored via the measured external field um.
Our algorithmic approach could be realized experi-

mentally in a set of physical systems, like nitrogen va-
cancy centers in diamonds, ultracold atoms in magnetic
fields and others.
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