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ABSTRACT: In this study, the installed power (Pinst, kW) of several inclined belt conveyors operating in 

the mining industry of Turkey was investigated through two soft computing algorithms (i.e., genetic 

expression programming (GEP) and artificial neural networks (ANN)). For this purpose, the most crucial 

belt (i.e., belt length (L), belt width (W), belt inclination (α)), operational (i.e., belt speed (Vb) and 

throughput (Q)) and infrastructural (belt weight (Wb) and idler weight (Wid)) features of 42 belt conveyors 

were collected for each investigated belt conveyor. The collected data was transformed into a 

comprehensive dataset for soft computing analyses. Based on the GEP and ANN analyses, two robust 

predictive models were proposed to estimate the Pinst. The performance of the proposed models was 

evaluated using several statistical indicators, and the statistical evaluations demonstrated that the models 

yielded a correlation of determination (R2) greater than 0.95. Nevertheless, the ANN-based model has 

slightly overperformed in predicting the Pinst values. In conclusion, the proposed models can be reliably 

used to estimate the Pinst for the investigated conveyor belts. In addition, the mathematical expressions of 

the proposed models were given in the present study to let users implement them more efficiently.  
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Eğimli Bant Konveyörlerde Kurulu Gücün Genetik Algoritma ve Yapay Sinir Ağları Kullanılarak 

Tahmini 

 

ÖZ: Bu çalışmada, madencilik endüstrisinde kullanılan bazı eğimli bant konveyörlerin kurulu gücü (Pinst, 

Kw) iki yapay zeka yöntemi (Genetik programlama (GEP) ve yapay sinir ağları (ANN) ile araştırılmıştır. 

Bu amaçla, 42 bant konveyöre ait en önemli bant (bant boyu, (L), bant genişliği (W), bant eğimi (α)), işletme 

(bant hızı, (Vb) ve taşıma kapasitesi (Q)) ve alt yapı (Bant ağırlığı (Wb), bant akış kasnak ağırlığı (Wid)) 

özelliklerine ait veriler toplanmıştır. Toplanan veriler yapay zeka analizleri için bir veri seti haline 

dönüştürülmüş olup, GEP ve ANN yöntemlerini temel alan ve Pinst değerini tahmin edebilen iki kuvvetli 

tahmin modeli önerilmiştir. Önerilen modellerin performansları bazı istatistiksel göstergerler kullanılarak 

değerlendirilmiş olup, istatisiksel değerlendirmeler modellerin belirleme katsayısı (R2) değerlerinin 

0.95’ten yüksek olduğunu göstermiştir. Bununla birlikte, ANN yöntemini temel alan modelin Pinst 

değerlerini tahmin etmede hafif bir üstünlüğü mevcuttur. Sonuç olarak, önerilen modeller güvenilir bir 

biçimde Pinst değerlerini tahmin etmede kullanılabilir. Ayrıca çalışmada ifade edilen modellere ait 

matematiksel ifadeler kullanıcıların modelleri daha etkin bir şekilde kullanmaları adına bu çalışmada 

sunulmuştur.  
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1. INTRODUCTION 

Belt conveyors are materials handling equipment that is widely used in several industries. They 

transport bulk materials from one side to another one in a plant or an industrial environment. Therefore, 

belt conveyors should continuously operate during their service life with optimum energy consumption. 

To achieve the maximum outputs from a belt conveyor, it is essential to note that variables such as 

throughput, operating time, motor horsepower, and the efficiency of components embedded in the belt 

conveyor system should be paid attention to sustainable material transportation. 

A typical belt conveyor is illustrated in Figure 1. Of the variables described in Figure 1, the head pulley 

with gearbox and the electrical motor are one of the most critical variables for belt conveyor sustainability. 

Since the power consumption of belt conveyors plays a crucial role in engineering economics, it has been 

investigated in terms of equipment, operation, technology, and performance indicators, each of which has 

typical qualifications (Middelberg et al. 2009; Xia and Zhang 2010; Mhlongo et al. 2020). 

 

 
Figure 1. Simplified illustration of a typically inclined belt conveyor (Marx 2005). 

 

Based on modern material transportation science and technology, the installed power of belt 

conveyors (Pinst, kW) has been studied through some methodologies. Therefore, fundamental factors 

acting directly on the power consumption of a belt conveyor have been widely documented. For instance, 

belt properties such as belt length (L), belt width (W), belt inclination (α), and belt speed (Vb) are directly 

associated with the Pinst.  

Apart from these, belt weight (Wb), idler weight (Wid), and throughput (Q) can be declared as other 

independent parameters for evaluating power consumption (DIN 22101 2002; Dunlop-Fenner 2009; 

CEMA 2014). 

Compared to the conventional ones, energy-saving belt conveyors equipped with multi drivers and 

soft starters have been designed to let the materials be transported over longer distances (Masaki et al., 

2017). From this point of view, belt conveyor systems considering their infrastructures, are inevitable 

parts, especially in the mining industry. 

For instance, Król et al. (2016) proposed a measurement methodology using strain gauges to 

determine the total mechanical power in underground and surface mining applications. Apart from these, 

soft computing algorithms were utilized to optimize or regulate the speed control of belt conveyors, which 

can reduce the total energy consumption (Espinosa et al., 2005; Leposava et al. 2012; Ali 2018). 

Belt conveyors are typically made up of a viscoelastic material, which extends under tension. While 

running in different segments, the belt has to overcome various resistances, causing its tension to increase 

continuously. Correspondingly, the belt extends during service life, and its speed increases gradually (Yao 

and Zhang, 2020). Therefore, the maintenance interval of belt conveyors becomes important for 

sustainable material transportation.  
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In that context, the proper selection of electric motor propelling the whole belt conveyor system is of 

prime importance. For this purpose, conventional methods such as DIN 22101 (2002), Dunlop – Fenner 

(2009), and CEMA (2014) have been widely adopted to estimate Pinst for belt conveyors. However, these 

methods have time-consuming calculation steps (Köken et al., 2022). Therefore, instead of adopting 

conventional methods to estimate the Pinst, such attempts based on soft computing algorithms would be 

much more practical and straightforward. 

For a practical evaluation of estimating the Pinst for the Turkish Mining Industry (TMI), two soft 

computing methods (i.e., genetic algorithm and artificial neural networks) were attempted in this study. 

For this purpose, a total of 42 inclined belt conveyors used in mining companies in Turkey were 

considered. The geometrical, conditional, and operational features were collected from each belt conveyor, 

and the collected data was transformed into a database for soft computing analyses. 

Adopting the constructed database, two soft computing-based predictive models were proposed. The 

performance of the proposed models was compared using several statistical indicators, and it was 

concluded that the two proposed methods could be reliably used to evaluate the Pinst for the investigated 

belt conveyors.  

2. DATA COLLECTION METHOD 

In this study, a comprehensive data collection method was carried out. More profoundly, the most 

important geometrical (i.e., L, W, α), operational (i.e., Q and Vb), and infrastructural (i.e., Wb, Wid) features 

were collected from each investigated belt conveyor. Under all these circumstances, the motor horsepower 

propelling each belt conveyor system was acquired, inspecting the identity card of each electric motor 

propelling belt conveyor system. The throughput (Q) of each belt conveyor was determined by Eq 1 as 

follows; 

 

3.6 mf bQ A V                   (1) 

 

where Amf is the cross-section area of material flow (m2) (DIN 22101 2002; CEMA 2014), ρ is the bulk 

density of the transported material (kg/m3), and Q is ton/h in unit. 

For determining Amf in Eq 1, the methods proposed by DIN 22101 (2002) and CEMA (2014) were 

considered together, and average values obtained from these two methods were adopted as the Amf for 

generalized material flow during material transportation. In addition, the Vb was measured using a 

stopwatch, observing the belt’s material flow of one complete material transportation. Typically inclined 

belt conveyors considered in this study are given in Figure 2.  

Based on the above-mentioned explanations, a comprehensive database was obtained to establish 

such predictive models for the evaluation of Pinst. Case studies and descriptive statistics of the variables 

considered in this study are listed in Table 1 and Table 2, respectively. From the descriptive statistics, one 

could notice that the investigated belt conveyors have a wide range of operational features that enable 

successful soft computing analyses, which are given in the following section. 

3. SOFT COMPUTING ANALYSES 

3.1. Gene expression programming (GEP) 

The GEP is an evolutionary-based algorithm that produces an explicit mathematical formula between 

dependent and independent variables. The GEP was first developed by Ferreira (2001) and for the past 

two decades, the GEP has gained popularity among researchers in various engineering fields. In this 

section, novel applications of GEP were introduced to establish strong predictive models for the 

evaluation of Pinst. For this purpose, the GeneXpro software was used to implement various GEP models. 

In these models, the number of chromosomes, head sizes, and gene sizes were set to 30, 7, and 3, 

respectively.  
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The linking function was the addition, and root means squared error (RMSE) was regarded as the 

fitness function. As a result of the GEP analyses, the sub-expression trees obtained from the GEP analyses 

are given in Figure 3. 

 

 
 

Figure 2. Typical inclined belt conveyors considered in this study. 

 

3.2. Artificial neural networks (ANN) 

The artificial neural network (ANN) has been widely adopted to predict dependent variables based 

on complex datasets. It is a well-accepted method in most engineering-related problems. In this study, the 

neural network toolbox (nntool) was utilized to establish several neural networks in the MATLAB 

environment. The dataset was randomly divided into training (70/100) and testing/validating (30/100) 

parts. Various possible network architectures with variable hidden layers and neurons were attempted to 

determine the most reliable structural combination. For estimating the Pinst, the most convenient ANN 

architecture was found to be 7–5–1. (Figure 4). To increase training efficiency, the dataset (Table 1) was 

normalized using the following equation (Singh et al. 2012; Lawal and Idris 2020). 
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where xi is the relevant parameter to be normalized, xmin, and xmax are the minimum and maximum 

values in the dataset (Table 2). 

The explicit mathematic formulae of the sub-expression trees are also presented in Eqs 2 – 4. 
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Table 1. Case studies considered in this study. 

Case 
Belt length.  

L (m) 

Belt  

slope. α (°) 

Throughput.  

Q (t/h) 

Belt width.  

W (mm) 

Belt speed.  

Vb (m/s) 

Belt weight.  

Wb (kg/m) 

Idler weight.  

Wid (kg/m) 

Installed  

power.  

Pinst (kW) 

1 65 15 284 900 1.32 16.8 5.7 22.0 

2 47 8 304 1000 1.74 18.3 6.2 15.0 

3 53 10 472 900 2.10 16.5 5.7 22.0 

4 33 7 525 1200 2.42 22.0 7.7 15.0 

5 51 10 614 900 1.91 16.7 6.6 30.0 

6 40 17 383 1000 0.98 18.6 7.1 22.0 

7 40 10 279 900 1.55 16.5 5.7 11.0 

8 54 11 383 1000 1.62 18.3 6.2 22.0 

9 49 8 183 1200 2.03 22.0 7.7 11.0 

10 52 9 345 900 1.57 16.5 5.7 15.0 

11 33 16 441 1000 1.51 18.3 6.2 18.5 

12 47 13 319 1000 2.55 18.3 6.2 18.5 

13 65 11 353 1000 1.62 18.3 6.2 22.0 

14 36 15 354 1000 2.09 18.3 6.2 22.0 

15 52 13 293 1000 2.47 18.3 6.2 18.5 

16 48 10 399 1000 2.09 18.3 6.2 18.5 

17 47 8 157 1000 0.91 18.3 6.2 7.5 

18 34 10 278 900 1.24 16.5 5.7 9.2 

19 55 10 340 1200 2.58 22.0 7.8 18.5 

20 43 9 313 900 1.53 16.5 5.7 15.0 

21 49 13 290 1000 2.24 18.3 6.2 18.5 

22 58 11 320 1200 2.06 22.0 7.8 22.0 

23 58 11 383 1000 2.83 18.3 6.2 30.0 

24 32 9 256 1000 2.00 18.3 6.2 9.2 

25 59 11 439 1000 1.01 21.3 7.1 22.0 

26 53 15 429 1000 2.44 18.3 6.6 30.0 

27 33 8 523 900 1.69 16.5 6.6 15.0 

28 41 19 148 1000 0.39 18.6 7.7 9.2 

29 58 13 96 1200 0.31 19.8 7.8 7.5 

30 42 12 416 1200 1.53 22.0 7.8 18.5 

31 50 11 397 1000 2.66 18.3 6.2 22.0 

32 40 14 375 1000 1.96 18.3 6.2 18.5 

33 52 6 160 900 0.59 16.5 6.1 5.5 

34 43 8 311 1000 1.54 18.3 6.2 11.0 

35 45 8 189 1000 1.32 18.3 6.2 7.5 

36 41 13 79 1000 0.32 16.5 6.2 4.0 

37 48 9 801 1200 2.30 22.0 7.8 37.0 

38 52 12 458 1000 2.35 18.3 6.2 30.0 

39 41 22 327 900 2.17 16.5 5.7 22.0 

40 53 15 311 1000 1.02 18.7 6.7 18.5 

41 71 15 504 1000 2.50 18.3 6.2 45.0 

42 55 10 338 1000 2.18 18.3 6.2 18.5 
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Based on the subexpression formulations given herein, the Pinst can be predicted by Eq 5. 
3

( )

1

1.0377 0.2148inst GEP i

i

P S


              (5) 

Based on the above-mentioned ANN architecture, the Pinst can be estimated using Eq 7. The 

subequations of the proposed ANN model are listed in Table 3. 

 
5

( )

1

20.5 tanh 0.10968 24.5inst ANN i

i

P A


 
   

 
           (7) 

 

Table 2. Descriptive statistics of the variables considered in this study. 

Variable Unit Minimum Mean Maximum Std. 

deviation 

Number of 

observation 

L M 32.00 48.05 71.00 9.27 42 

α ° 6.00 11.54 22.00 3.35 42 

Q t/h 79.00 346.9 801.00 136.5 42 

W mm 900.00 1009.50 1200.00 95.8 42 

Vb m/s 0.310 1.744 2.830 0.660 42 

Wb kg/m 16.50 18.50 22.00 0.27 42 

Wid kg/m 5.70 6.49 7.80 0.69 42 

Pinst kW 4.00 18.44 45.00 8.45 42 

 

 
 

Figure 3. Sub expression trees for the developed GEP model. 
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Figure 4. ANN architecture adopted in this study. 

 

 

Table 3. Sub-equations for the developed ANN model 

1 0.66923tanh(1.2678 0.97159 2.2611 0.44283 0.12 0.43722 0.1698 0.44501)n n n n n n n

b b idA L Q W V W W         

2 0.33578tanh(1.4031 1.2798 0.2072 2.2191 1.20 1.6728 0.5712 0.21013)n n n n n n n

b b idA L Q W V W W          

3 0.044501tanh(0.75634 0.88286 0.49325 1.1719 1.94 0.87464 0.92297 1.6244)n n n n n n n

b b idA L Q W V W W         

4 1.1508tanh(0.3072 0.44506 0.6536 0.35161 0.14 1.0646 0.26455 1.0625)n n n n n n n

b b idA L Q W V W W         

5 0.71tanh(0.28099 0.87214 0.90376 0.58785 0.30 0.81128 0.1762 2.7264)n n n n n n n

b b idA L Q W V W W          

Normalization functions 

0.051 2.615nL L  0.1268 1.7901n   0.0028 1.2191nQ Q  0.0067 7nW W   

0.7946 1.2463n

b bV V  0.3636 7n

b bW W  0.9524 6.4286n

id idW W   

 

4. PERFORMANCE OF THE PROPOSED MODELS 

The comparison of the predictive models was made using a simple computational code generated 

through Matlab 2020b (Appendix A). Accordingly, the predicted and measured Pinst values are plotted in 

Figure 5. The proposed GEP and ANN-based predictive models yielded a correlation of determination 

value (R2) greater than 0.95. 

Consequently, it is clear that the predicted Pinst values are in high conformity with the actual 

(operating) Pinst values. In the proposed GEP and ANN models, the most important independent variables 

(i.e., L, α, Q, W, Vb, Wb, and Wid) acting on the Pinst were considered (Figure 4). These independent variables 

were previously adopted by the conventional methods suggested by DIN 22101 (2002) and CEMA (2014). 

The performance of the models was also evaluated using various statistical indices such as root means 

squared error (RMSE), mean absolute percentage error (MAPE), and the variance accounted for (VAF). 

The equations to calculate these indices are given in Eqs. 8 – 10. 
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 var
1 100

var( )

i i

i

o e
VAF

o

 
   
 

          (10) 

where oi is the observed data, ei is the estimated data, and n is the number of observations. 

 

 
Figure 5. Comparison of the predicted and Measured Pinst values 

 

The performance evaluation of the proposed models is given in Table 4. Higher VAF and lower RMSE 

and MAPE values indicate relatively more successful models. In this direction, when comparing the 

proposed predictive models to one another, it is logical to suppose that there is no remarkable superiority 

over the established models. Nevertheless, the ANN-based model (Eq 7) has a slight advantage in 

predicting the Pinst (Table 4). In any case, it is recommended to use the proposed predictive models together 

for the evaluation of Pinst since the conventional methods to estimate the Pinst is time-consuming. 

 

Table 4. Performance evaluation of the predictive models 

Predictive 

model 

R2 RMSE MAPE VAF 

GEP 0.9514 1.8416 1.5526 95.1341 

ANN 0.9644 1.5812 1.2632 96.4360 
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Last but not least, the investigated belt conveyors have no energy-saving equipment such as soft 

starters, frequency converters, belt cleaners, or dust emission equipment, so the proposed models can only 

be valid for the evaluation of belt conveyors without having such equipment. Therefore there is still a need 

to analyze belt conveyors equipped with the above-mentioned equipment. It was reported by Jeftenic et 

al. (2009) and Mushiri (2016) that energy-saving equipment embedded into the belt conveyor systems had 

prolonged the maintenance interval of the whole belt conveyor system. Therefore, one can claim that the 

proper selection of motor horsepower could be overestimated when ignoring such equipment. 

5. CONCLUSION 

In this study, soft computing algorithms were attempted to estimate the Pinst of belt conveyors used in 

the TMI. For this purpose, a total of 42 belt conveyors were considered to establish a comprehensive 

database for soft computing analyses. Most important geometrical, operational and infrastructural 

features were collected from each investigated belt conveyor. Based on the GEP and ANN analyses, two 

robust predictive models were proposed. The proposed models yielded an R2 greater than 0.95. The 

performance of the models was also compared with each other, and it was concluded that, there is no clear 

superiority over the proposed models for the evaluation of Pinst. However, the ANN-based model slightly 

overperformed the other model. Therefore, these two methods can be reliably used to estimate the Pinst 

values for the investigated belt conveyors. It is thought that the proposed models can save time and 

provide adequate and practical information for estimating the Pinst of inclined belt conveyors in the TMI. 

Since the conventional methods to estimate the Pinst is time-consuming, the explicit mathematical 

formulations of the proposed models were coded in the Matlab environment that can be easily 

implemented for practical evaluations in this study. From this approach, the present study can be declared 

a case study showing the applicability of soft computing tools for inclined belt conveyors used in the TMI. 
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Appendix A 

Matlab codes for the evaluation of Pinst. 

%Input parameters 

Q=input('throughput (t/h):'); 

Slp=input('slope (degree):'); 

W=input('belt width (mm):'); 

L=input('belt length (m):'); 

Vb=input('Belt speed (m/s):'); 

Wb=input('Belt weight per unit (kg/m):'); 

Wid=input('Idler weight per unit (kg/m):'); 
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%ANN Model 

% Normalization functions for the ANN model 

nL=0.051*L-2.615; 

nSlp=0.1268*Slp-1.7901; 

nQ=0.0028*Q-1.2191; 

nW=0.0067*W-7; 

nVb=0.7946*Vb-1.2463; 

nWb=0.3636*Wb-7; 

nWid=0.9524*Wid-6.4286; 

  

%Sub equation systems for the ANN model 

A1=0.66923*tanh(1.2678*nL+0.97159*nSlp+2.2611*nQ+0.44283*nW+0.12*nVb+0.43722*nWb-0.1698*nWid-

0.44501); 

A2=-0.33578*tanh(1.4031*nL-1.2798*nSlp-0.2072*nQ+2.2191*nW-1.20*nVb+1.6728*nWb+0.5712*nWid-

0.21013); 

A3=0.044501*tanh(0.75634*nL-0.88286*nSlp-

0.49325*nQ+1.1719*nW+1.94*nVb+0.87464*nWb+0.92297*nWid-1.6244); 

A4=1.1508*tanh(0.3072*nL+0.44506*nSlp+0.6536*nQ-0.35161*nW+0.14*nVb+1.0646*nWb-

0.26455*nWid+1.0625); 

A5=-0.71*tanh(0.28099*nL+0.87214*nSlp-

0.90376*nQ+0.58785*nW+0.30*nVb+0.81128*nWb+0.1762*nWid+2.7264); 

Pann=20.5*tanh(A1+A2+A3+A4+A5+0.10968)+24.5 

  

%GEP model  

% Sub equation systems for the GEP model 

S1=((-9.1*10^-3*Q+2.0745)*Slp/-5.2630)*Vb; 

S2=-7.9893+log(Vb)+0.3356*L; 

S3=((log(Vb.^2))-W/(Q-Slp)+Slp)/2; 

Pgep=1.0377*(S1+S2+S3)-0.2148 
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