
Applied Energy 135 (2014) 71–80
Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier .com/locate /apenergy
Economic optimal operation of Community Energy Storage systems
in competitive energy markets
http://dx.doi.org/10.1016/j.apenergy.2014.08.066
0306-2619/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Address: 2089 Addison St., 2nd Floor, Berkeley, CA
94704, USA. Tel.: +1 949 943 5600.

E-mail address: arghandeh@berkeley.edu (R. Arghandeh).
Reza Arghandeh a,⇑, Jeremy Woyak c, Ahmet Onen b, Jaesung Jung d, Robert P. Broadwater b

a California Institute for Energy and Environment, University of California-Berkeley, Berkeley, CA, USA
b Electrical and Electronics Engineering Department, Abdullah Gul University, Kayseri, Turkey
c Electrical Distribution Design, Inc., Blacksburg, VA, USA
d Brookhaven National Laboratory, Upton, NY, USA

h i g h l i g h t s

� The Community Energy Storage (CES) system control architecture is introduced.
� The market based optimization algorithm for energy storage scheduling is proposed.
� The proposed algorithm provides real time and day ahead optimal schedule for batteries.
� The multi-objective Gradient-based Heuristic Optimization method (GHO) is applied.
� Aggregated impact of all CES units on the distribution network is presented.
a r t i c l e i n f o

Article history:
Received 17 May 2013
Received in revised form 14 August 2014
Accepted 15 August 2014
Available online 13 September 2014

Keywords:
Community Energy Storage
Electricity market price
Battery scheduling
Battery optimal control
Distributed Energy Resources
a b s t r a c t

Distributed, controllable energy storage devices offer several benefits to electric power system operation.
Three such benefits include reducing peak load, providing standby power, and enhancing power quality.
These benefits, however, are only realized during peak load or during an outage, events that are infre-
quent. This paper presents a means of realizing additional benefits by taking advantage of the fluctuating
costs of energy in competitive energy markets. An algorithm for optimal charge/discharge scheduling of
Community Energy Storage (CES) devices as well as an analysis of several of the key drivers of the
optimization are discussed.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction This paper presents a means of realizing additional benefits
Distributed energy storage devices may improve reliability by
providing standby power when equipment outages would other-
wise force customer interruptions. Additionally, energy storage
devices can reduce equipment loading during peak hours, thereby
decreasing pre-mature aging in network components [1]. They can
also help with renewable energy resource integration into distribu-
tion networks. Volt–Var optimization, power quality, frequency
regulation, reliability, efficiency, and demand response can all ben-
efit from distributed energy systems [2–5]. These benefits are so
great that they sometimes outweigh the high cost of installing
the energy storage devices and the communication infrastructure
to support them [6].
from energy storage devices by taking advantage of the fluctuating
costs of electricity in competitive energy markets. By combining
electricity market information with real-time control of energy
storage devices, utilities may enjoy year-round economic benefits
from the storage devices, in addition to the occasional benefits
mentioned above.

The increasing adoption of intermittent Distributed Energy
Resources (DER) into the power grid and technological merit for
batteries in recent years brings more attention to Energy Storage
Systems (ESS) as viable solutions. Energy storage system integra-
tion with renewable sources are discussed in many publications
[7–9]. In [7], the authors used a clustering optimization approach
to maximize the renewable energy utilization integrated with a
pumped storage unit. Authors in [8] explored a large scale battery
application for ancillary services in an electricity market. Ref. [10]
provides a load leveling algorithm with solar power generation and
energy storage under a Time of Use (TOU) price scheme. However,
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Nomenclatures

Symbols
at, bt, ct interpolation coefficients
Ch/Dch Pairprofitt CES charging and discharging pairs at time t
Cmax maximum CES capacity (kW h)
Cmin minimum CES capacity (kW h)
CRsv t CES reserve capacity at hour t (kW h)
Ct CES capacity in time t (kW h)
HR outage support duration (h)
Kconfig battery cell configuration coefficient
L transformer loading
LMPt Locational Marginal Price in hour t
NT number of time points
Pmax

Ch maximum charge rate (kW)
Pmax

DCh maximum discharge rate (kW)
PMaxPri maximum CES power for primary issues (kW)
Pmax

Trans_j kVA rating of the transformer j
PMinPri minimum CES power for primary issues (kW)
Pt

CESLoss CES loss function (kW)
Pt

CESout output power of the CES in hour t (kW)
Pt

FeedLossRed reduction in feeder losses in hour t (kW)
Pt

Load load in hour t (kW)
Rcell battery cell internal resistance
Rt

Ch charging revenue (cost) in hour t
Rt

Dch discharging revenue (cost) in hour t
Schprofit CES scheduling profit ($)

Schprofit
opt CES optimal scheduling profit ($)

SSMax maximum iteration step size (kW)
DCt change in stored energy in hour t (kW h)
DCt

(i) change in DCt decided upon in iteration i

Acronyms
AMI Advanced Measurement Infrastructure
CCU CES Control Unit
CES Community Energy Storage system
DCC Distribution Network Control Center
DER Distributed Energy Resources
DESS Distributed Energy Storage Systems
DEW Distributed Engineering Workstation
DMS Distribution Management System
DR Demand Response
ESS Energy Storage Systems
GCU Group CES Control Unit
GHO Gradient-based Heuristic Optimization meth-

od
ISM Integrated System Model
LMP Locational Marginal Price
PEV Plug-in Electric Vehicle
PBR Performance Based Rates
TOU Time of Use
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the real-time electricity market and the effect of time varying loads
were not considered in the demand control algorithm.

Much literature has focused on utility scale energy storage
applications (battery capacities more than 1 MW) [11], but few
have attempted to realize system wide operational benefits of dis-
tributed energy storage systems with battery units with 50 kW and
or less capacity. Distributed Energy Storage Systems (DESS) can
provide different services for distribution network operators rang-
ing from demand response to power quality issues to peak shaving
and renewable resource firming. Moreover, the emergence of
microgrids as a special case of network architecture increases the
need for DESS [12]. The authors of [13–15] looked at the DESS from
the perspective of controlling customer-owned storage devices
that integrate with other generation sources. Authors in [16]
focused on the DESS application for voltage regulation in the pres-
ence of high penetration photovoltaic panels. The customer side of
DESS provided voltage regulation in exchange for subsidies from
utilities to cover battery costs.

Ref. [17] presented a load management approach with substa-
tion level energy storage systems for a large load aggregator to
determine the electricity price for participation in the day ahead
market. A lumped load was considered while distribution grid
topology and operational constraints were not considered. In [18]
a DESS is used to minimize the forecasting errors associated with
DER generation. In [19], the authors integrated DESS into the Dis-
tribution Management System (DMS) controller. However, the
DESS is a centralized battery unit to serve the whole substation ter-
ritory. Refs. [18,19] and most of the literature related to DMS and
distribution network control have proposed a top-down strategy
for feeder control starting from the substation. These centralized
control approaches need accurate network models and detailed
operational constraints for network components to achieve opti-
mal control functionality which is a difficult task [12]. Moreover,
energy storage units in those studies are mostly located at the
substation.
In distribution networks with DER and DESS sources, the
boundaries and operational conditions for each distributed source
and the network constraints related to each source need to be
included in the control framework. This leads to a distributed con-
trol strategy starting from DER and DESS up to the substation. In
recent literature, the distributed control approach for DERs is
addressed. Refs. [20,21] present a distributed control system for
DESS in distribution networks. However, the DESS control objec-
tive is only the feeder loss reduction. The authors in [22] proposed
a load management system for residential customers with com-
bined DER and DESS. However, the proposed approach is a single
objective optimization to minimize the electricity cost without
considering the system’s day ahead behavior.

The other school of thought in distributed control strategies for
distribution networks is based on Demand Response (DR) pro-
grams [23,24]. DR can play a crucial role in peak shedding and reli-
ability, but there are embedded uncertainties due to DR
dependency on customer participation, customer life style, and
implementation of Advanced Measurement Infrastructure (AMI)
[25].

This paper focuses on the utility owned DESS units installed on
residential distribution networks and referred to as a Community
Energy Storage (CES) system [26]. The CES term is also addressed
in the Department of Energy Smart Grid Recovery Act [27]. The
authors of this paper were involved in the CES demonstration pro-
ject for the State of Michigan, funded by the U.S. Department of
Energy [28]. The study presented here is based on the actual CES
control system design and implementation. The CES unit in this
paper is a 25 kW Lithium-Ion battery. This paper is not focused
on the detailed model of the chemical reactions inside the battery.
However, the operational limitations of each CES unit are
considered.

From the mathematical point of view, the distributed control
approaches have some difficulties with system wide optimal DER
operation [29]. This paper proposes a hierarchical control approach



Fig. 1. CES system control layout.
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for CES scheduling which is a combination of centralized and dis-
tributed control approaches.

The other novelty of this paper is in investigating the operation
of a utility owned CES fleet in the competitive electricity market, in
conjunction with the Locational Marginal Price (LMP). Moreover,
the community level energy storage systems placed on the second-
ary of distribution transformers have not been thoroughly
investigated.

Another novelty of this paper is presenting a real-time control
scheme that maximizes the revenue attainable with energy storage
systems without sacrificing the occasional benefits related to
improvements in reliability, efficiency and reduction in peak feeder
loading. The proposed multi-objective optimization framework for
distributed energy storage is not addressed in available literature.
The problem is solved by the Gradient-based Heuristic Optimiza-
tion method (GHO). The GHO solution uses a combination of
trade-offs related to transformer loading, feeder loss, and Loca-
tional Marginal Price (LMP) price prediction. The optimal CES sche-
dule in this paper also has real-time and day ahead dimensions,
considering the day ahead load forecast and day ahead market
price in addition to the real-time circuit measurements and real-
time market price.

As previously mentioned, this paper proposes a hierarchical
control architecture to carry out the CES optimal control at two
levels: the substation level (group CES controller) and the CES unit
level. At the substation level, the group CES controller makes opti-
mal decisions and gives optimal commands to the CES units in the
distribution network. At the CES level, each CES controller sched-
ules its battery within its local scope and reports its operating con-
ditions and capability to the group CES controller at the substation.
The approach for CES scheduling is modular and can be extended
to any number of CES units under a substation.

Finally, there has been a lack of physical-based, detailed models
in Distributed Energy Resource control and optimization in the lit-
erature. The optimization presented in this paper benefits from a
detailed distribution network model. The model employed has
large numbers of single phase, multi-phase, and unbalanced loads.

The paper is organized as follows: Section 2 is a discussion con-
cerning CES infrastructure. Section 3 describes the CES reserve
capacity requirements. Section 4 presents the control and optimi-
zation problem description. Section 5 addresses assumptions used
in the optimization. In Sections 6 and 7, case studies and simula-
tion results are discussed.
2. Overview of the Community Energy Storage (CES) system

CES units are more flexible than large substation batteries [30].
While the smaller size that is appropriate for secondary distribu-
tion does not take advantage of economies of scale, researchers
have proposed means of reducing production costs [31–33]. The
CES units are connected to the secondary side of distribution trans-
formers to support 120/240 volt circuits. Each transformer serves a
small group of houses. Refs. [27,32] presented guidelines to design
Community Energy Storage systems. More important than cost,
such placement provides more reliable and secure service to cus-
tomers. The primary system may be compromised, even to the
point of distribution transformer failure. However, the energy stor-
age system may still serve the customer.

Examples of Community Energy Storage system applications for
electric vehicles adoption and rooftop solar energy resource pene-
tration are presented in [34,35]. This paper supposes that the CES
units are owned and operated by an electric utility company and
thus may be aggregated for system wide optimal operation.

The CES units operate under a hierarchical control system, as
illustrated in Fig. 1. Each individual unit is controlled by a local
controller, called the CES Control Unit (CCU), which maintains sec-
ondary voltage, serves the loads, and handles local issues at each
CES unit. The CCU controls the CES unit to charge or discharge
based on commands sent from the Group CES Control Unit
(GCU), whose set point is given by a control calculation located
in the Distribution Control Center (DCC) [34]. In case of islanding
or lack of communication, the CCU will control the CES unit with-
out GCU commands.

The GCU algorithm presented here lives in the DCC, where the
Locational Marginal Price (LMP) data, forecasted load, and opera-
tional alerts, such as storm predictions, are available. Each CCU
sends local information, such as the stored energy and transformer
loading, back to the GCU.

Since the CES units are located on the secondary side of distri-
bution transformers, load management involves, at the secondary
level, preventing transformer overloads and low voltages. At the
feeder level, it is preventing primary overloads and low voltages.
The secondary level constraints (particularly transformer loading)
are integrated into the economic scheduling for each CES unit,
while the primary level constraints are handled at the feeder level.
This involves operating many CES units in a coordinated or aggre-
gated manner. Such constraints are described in more detail in
Section 4.

The physical-based detailed network model is built in the Dis-
tributed Engineering Workstation (DEW) software environment,
and is referred to as DEW Integrated System Model (DEW-ISM).
Geographical information, component characteristics, load mea-
surements, and supply measurements are included in the model.
An ISM offers a graph-based topology iterator framework that
facilitates fast computation times for power flow and other calcu-
lations on the large scale distribution networks. Refs. [36,37] pro-
vide further explanation about DEW-ISM modeling. In Section 6,
additional details of the model are presented.
3. CES reserve capacity requirements

In the CES control, the reliability benefits take precedence over
the energy cost savings. I order to sustain the maximum possible
outage durations, the utility can decide to keep the CES units at
maximum storage, or above some fixed storage level (static reserve
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capacity). Such lengthy outages may be extremely uncommon, thus
resulting in under-utilization of the CES units.

Rather than using a static reserve capacity, the CES units can be
managed with a dynamic reserve capacity, meaning that the stored
energy is kept at a sufficient level to serve an outage for a given
duration (HR). For example, suppose that customers on a given fee-
der may be restored through manual switching efforts which
require 2 h (HR = 2) to complete. In this case the CES unit only
needs to keep enough energy to serve an outage at that trans-
former for 2 h. During peak load conditions the full capacity of
the battery may be needed to provide energy for 2 h, but during
light load conditions the battery may require only a fraction of
its maximum capacity to serve the load.

If storm information is available to the GCU, the reserve capac-
ity may be modified in anticipation of longer restoration times. The
modeling of the dynamic reserve capacity will be discussed in
detail in Section 4. The load management constraints and the
reserve capacity constraints may be in conflict. Preventing an over-
load may require violating the dynamic reserve requirement. Here,
it is considered better to prevent outages at the present time than
to prepare for potential future outages.
4. CES control and optimization problem description

4.1. Objective function for the optimal CES scheduling

The objective of the control algorithm is to optimize energy cost
savings over time. However, the reliability requirements and com-
ponent capacities provide constraints for the optimization. When a
CES unit charges, the utility incurs the cost of the energy entering
into the unit (Rt

Ch < $0). When the CES unit discharges, the utility
saves the cost of the energy supplied by the unit (Rt

Dch > $0). The
utility is thus accounting for the difference in energy costs in its
own balance sheet as a savings.

In addition to the energy going into or out of the CES units, the
utility may also count the change in feeder losses in its cost savings
calculation. That is, when the CES unit is charging, the load has
increased, and there will be greater losses in the feeder due to
the increased current. Similarly, when the CES unit discharges,
the losses on the feeder decrease and the CES control may take
‘‘credit’’ for such cost savings. Combined with the cost savings
due directly to the CES output energy, this net cost savings will
be termed ‘‘revenue’’ when taken separately (Rt

Ch, Rt
Dch), and ‘‘oper-

ating profit’’ or ‘‘profit’’ when combined (Ch/Dch Pairprofit, Schprofit).
Since the goal is to maximize profit by taking advantage of CES

stored energy, the two primary drivers of the optimization algo-
rithm are the LMP prediction (cost of energy) and the load forecast.

In regulated electric energy markets, the Locational Marginal
Price (LMP) is computed in real-time based on bids from energy
producers, losses and line congestion. These prices are called the
real-time LMPs and represent the incremental cost to supply load
to a given region at a given time [38]. In addition to the real-time
LMP market, there is a day-ahead LMP market, wherein energy
producers bid their expected costs 1 day ahead [39]. In order to
determine the optimal charging and discharging schedule for the
CES units, the price of energy at future hours is needed. Since the
real-time LMP price is not known in advance, the utility may use
either the day-ahead LMP or, if it has a better prediction of its
own costs based on its generators, it may use its own LMP forecast.
The simulation reported here uses the day-ahead LMP price and
compares the profit with that attainable from an ideal prediction
(ie, a prediction that exactly matches the LMP prices that occur
over the next 24 h).

The distribution network load forecast is the other primary dri-
ver of the economic optimization. The load forecasting provides
the time-varying load estimate for each distribution transformer
for the next 24 h. The distribution transformer loading is necessary
for each battery’s day ahead schedule. The 24-h load forecast for
each transformer is based on a ‘‘load research statistics’’ load esti-
mation method that is developed in [40,41]. The real-time demand
at each distribution transformer with a CES unit is metered locally
and provided to the GCU for use in the optimization algorithm to
refine the load forecast. Weather data may also be used to refine
the load forecast [42].

In the real-time application, the optimization algorithm first
calculates the optimal charge/discharge schedule for each CES unit
for the next 24 h, and then issues the commands through the GCU
for the first hour’s optimum operation. Each CES unit is scheduled
independently using the same formulation, but the constraints will
be set up differently as the corresponding measurements differ.
Mathematically, the objective function then has 24 independent
variables—the kW output at each hour—and one dependent vari-
able (the total profit).

The objective function to be optimized is given in (1):

Schprofit ¼ max
X23

t¼0

LMPt � PCESout
t þ PFeedLossRed

t

� �
ð1Þ

where Pt
CESout is the CES power output between the tth and tth – 1

hours. The sign convention used here associates a positive Pt
CESout

with discharging and a negative Pt
CESout with charging. Similarly,

Pt
FeedLossRed is negative when the losses increase.

As noted, the total feeder losses do not need to be calculated for
each output; rather, only the change in feeder losses needs to be
calculated. Since feeder losses are quadratic for radial distribution
systems, the change in losses due to any given CES unit’s output
are computed by interpolating a quadratic polynomial defined by
three points relating CES output to feeder losses.

PFeedLossRed
t ¼ at � PCESout

t

� �2
þ bt � PCESout

t þ ct ð2Þ

The coefficients at, bt, and ct are calculated in advance using power
flow calculations on the feeder for three different output levels.
Thus, rather than running a power flow computation on the entire
feeder at every iteration in the scheduling algorithm, only three
power flow runs per battery are required.

4.2. Equality and inequality constraints for the optimal CES scheduling

In the optimization problem system, constraints are related to
the CES unit properties and the distribution network operational
properties. CES properties include efficiency, capacity, state of
charge, charging rate, discharging rate, and maximum capacity.
The distribution network operation properties include the voltage
level, transformer capacity, and the reliability requirement.

Since the CES outputs are assumed to be constant for the entire
hour, the conversion of output power (kW) to stored energy (kW h)
involves only the identity function. However, the CES units do not
operate at perfect efficiency and the losses incurred during both
charging and discharging must be considered. Eq. (3) relates the
actual CES output power to the change in stored energy DCt, where
the internal losses Pt

CESLoss are a function of the CES internal resis-
tance which is provided by the battery manufacturer.

jDCt j ¼ PCESout
t þ PCESLoss

t PCESout
t

� ����
��� ð3Þ

The model used to compute the CES internal losses consists of a
constant voltage source in series with a resistor, as given by

PCESLoss
t ¼ RCESðtempÞ

Vcellð Þ2
� PCESout

t

� �2
ð4Þ
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Vcell is the battery cell output voltage. RCES(temp) is the resistance of
a CES unit, and is a function of the unit temperature, battery cell
number, and the battery cell configuration in the CES unit.

As mentioned in Section 3, the operation of the CES units
includes both secondary (local) and primary (fleet) constraints.
Each CES unit has to first satisfy local constraints, such as prevent-
ing a distribution transformer overload, while serving with other
CES units in the fleet to meet primary constraints, such as prevent-
ing an overload at the substation exit cable. Even before the sec-
ondary power system constraints are imposed upon the schedule,
the physical constraints of the CES units must be met, per the man-
ufacturer’s specifications. These constraints include power output
(kW) and stored energy (kW h).

The output power constraint in each hour is given in (5), where
Pmax

Ch and Pmax
DCh are maximum charging and discharging rates,

respectively. The negative sign in front of Pmax
Ch reflects the sign con-

vention used here, where charging is ‘‘negative output.’’

�PCh
max 6 PCESout

t 6 PDCh
max 80 6 t 6 23 ð5Þ

The CES stored energy constraints are modeled in (6), where
Cmin and Cmax are the minimum and maximum levels of energy that
can be stored by the CES unit, respectively, per the manufacturer’s
operating recommendations. Ct is the battery capacity at time t.
The Cmin limit prevents the battery from being fully discharged.

Cmin 6 jCt j 6 Cmax 80 6 t 6 23 ð6Þ

Once the physical CES constraints have been computed, the
power system primary and secondary constraints are computed.
The local loading measurements and load forecast are first used
to set bounds on the CES unit outputs so as to prevent transformer
overloads. These constraints take the form shown in (7).

PLoad
t � PCESout

t

���
��� 6 PTrans j

max ð7Þ

where Pt
Load is load (kW) at time t under the transformer j. Pmax

Trans_j

may be set equal to the kVA rating of the transformer. Although
the reactive component of the load will add to the total kVA loading
on the transformer, the CES unit may supply power to the system
through an inverter, which may supply VARs up to a certain limit.
Since transformer ratings are not firm ratings (a transformer may
be slightly overloaded with minimal impact on reliability and trans-
former life), this approximation was deemed appropriate.

Together with the availability of stored energy in the CES unit,
the transformer loading constraint is used to calculate the CES
availability for primary-level control. Power flow analysis is then
used to check for primary-level overloads and low voltages. If such
primary-level problems exist, the CES fleet will be used to attempt
to alleviate those problems. These changes create additional con-
straints, as described in (8), that are placed upon the economic
optimization.

PMinPri 6 PCESout
t 6 PMaxPri 80 6 t 6 23 ð8Þ

where PMinPri and PMaxPri are minimum and maximum CES power for
primary level issues. While the formulation of this algorithm
focuses on individual CES units independent of other CES units,
additional CES units may greatly affect the participation each unit
plays in resolving primary-level constraints. Each CES schedule is
different because each transformer has a different loading pattern.

As mentioned in Section 3, the reserve capacity (kW h) may be
either static or dynamic. If static, the user specifies CRsv t0 directly. If
dynamic, then the reserve capacity may be calculated by

CRsv t0 ¼
Z t0þHR

t0

LdðtÞdt ð9Þ
where HR is the number of outage support hours as explained in
Section 3. The loading on the transformer Ld(t) is based on typical
customer load curves [40] modified based on recent measurements
and available load forecast information at that location.

The reserve energy is therefore constrained by

�CRsv t 6 DCt 6 Cmax 80 6 t 6 23 ð10Þ
4.3. Gradient-based Heuristic Optimization solution

The optimization solution for Eq. (1) first identifies the schedule
with minimum charging and discharging that satisfies the various
constraints at each hour. If there are any infeasible constraints the
reserve capacity constraint will be violated before the transformer
loading constraint is violated. Then, starting from the initial sche-
dule, the algorithm proceeds to add equal amounts (kW h) of
charging and discharging at each iteration, moving toward an opti-
mal schedule.

Mathematically the Gradient-based Heuristic Optimization
(GHO) algorithm is viewed as a heuristic version of the gradient
method for solving optimization problems. The ‘‘gradient’’ is the
marginal cost of increasing a unit of energy stored or released dur-
ing a given hour. This unit of energy DCt

(i) is called the step size.
The maximum step size SSMax for iterative optimization solution
is chosen by the user, based on the level of accuracy required
and the amount of execution time available where

DCðiÞt < SSMax 80 < t < 23 ð11Þ

The revenue Rt corresponding to a given unit of energy at time t
is expressed in (12). Note that Rt will be negative when charging
and positive when discharging.

Rt ¼ LMPt � PCESout
t þ PFeedLossRed

t

� �
ð12Þ

At each iteration charging is added to only 1 h and discharging
is added to another hour, based on the charge/discharge pair with
the maximum profit as given by

Ch=Dch Pairprofit ¼ max RCh
t þ RDCh

t

� �
80 6 t 6 23 ð13Þ

In (13) charging and discharging do not happen at the same
step. The charging or discharging at each iteration maintain a con-
sistent time-integrated amount of energy stored inside the CES
unit. Due to internal losses in the battery and inverter, the power
output and input seen external to the CES unit will be slightly
different.

When a constraint is reached in (10), the actual step size at that
time slot DCt may be smaller than SSMax, but that time slot is then
no longer considered in future iterations. Because of the ‘‘greedy’’
characteristic of the GHO algorithm, the maximum number of
steps required to find the optimal schedule for each CES unit can
be calculated by

MaxSteps ¼
max PCh

max; P
DCh
max

� �
ðSSMaxÞ � ðNTÞ ð14Þ

where NT is the number of time points. As long as both loss func-
tions, the CES internal loss and the feeder loss, are convex in all
dimensions (as, for example, when the CES losses are modeled by
a quadratic function dependent on a modeled internal resistance),
the objective function as a whole is convex. Therefore, the algorithm
converges to the optimal solution as the step size is reduced, where
reasoning similar to the proof in [43] may be used.

lim
SSmax!0

SchOpt
profit � Schprofit

� �
¼ 0 ð15Þ
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Finally, the algorithm will only schedule charging and discharg-
ing when it can make greater than a certain minimum profit per
kW h, specified as Minprofit, on the charge/discharge cycle as

Ch=Dch Pairprofitt

2 � DCt
> Minprofit 80 < t < 23 ð16Þ

Since charging and discharging activity reduces the battery’s
life, the utility will set the minimum profit margin based on the
CES unit’s cost and life cycle information from the battery manu-
facturer. Thus, the algorithm will either stop when all time slots
have been scheduled or when the maximum charge/discharge pair
profit is less than or equal to the minimum profit (based on battery
life cycle data from the manufacturer). Fig. 2 depicts the GHO
algorithm for the CES economic optimal scheduling problem. The
equations that are solved in each step are indicated in Fig. 2.

5. Assumptions for the optimization solution

The optimization algorithm should be run as frequently as the
LMP prices or demand measurements change. Essentially, the 24-
h schedule is only used to decide what to do at the present time.
The algorithm may be run again in another 5 or 10 min to revise
the current operation as the loading and energy costs have
changed. It is worthwhile to mention that the algorithm average
computational time in the DEW software environment is less than
5 min, which is based on numerous simulations. Because of how
Initialize 
Parameters and 

Constraints
(Eq 2,9)

Initialize 
Parameters and 

Constraints
(Eq 2,9)

Ch/Dch 
Pair Profit

>
MaxPairProfit ?

(Eq 12,13)

Ch/Dch 
Pair Profit
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MaxPairProfit ?

(Eq 12,13)
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Save Optimal Ch/Dch 
Pair and new 

MaxProfi

Save Optimal Ch/Dch 
Pair and new 

MaxProfi
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Ch/Dch 
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(Eq 3,4,6,10)
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MaxPairProfit = 0

Reset Ch/Dch Pair 
search

MaxPairProfit = 0
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Find Next Potential Ch/Dch 
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Non
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Fig. 2. Gradient-based Heuristic Optimization
quickly load and LMP prices change, it is not feasible to operate
the CES units based on information that is almost 24 h old. It is also
not feasible to operate based on information that is only 15 min
old, as the LMP price is subject to occasional spikes. It is a contin-
uous process, and when the ‘‘end of the day’’ arrives, the algorithm
is already looking ahead to the end of the next day and adjusting
the schedule accordingly.

Not only does the LMP price change rapidly, but also the load
forecasting may be inaccurate. Again, by re-running the CES con-
trol algorithm every 5–10 min with an updated load forecast, the
CES units will be able to respond more quickly to changes in load.

While the algorithm described in Section 4 may be used with
many varieties of storage technologies, rated outputs, storage
capacities, and losses, the simulation presented here considers
CES units with Lithium-Ion cells as recommended in [44]. They
are 50 kW h energy storage and have the maximum discharge rate
of 25 kW. Lithium-Ion battery self-discharge is neglected in this
paper. Lithium-Ion batteries are a commonly used technology in
commercial distributed energy storage solutions because of their
high energy and power density, long life cycle and safety issues
[45,46].

The load research data, customer billing information, and pri-
mary system measurements are applied to model time varying
conditions [47].

The ‘‘profit’’ term in the following sections refers to the CES
unit’s operational cost savings. The results presented focus on the
Done
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algorithm for the CES optimal scheduling.
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CES optimal economic operation, where the capital cost and instal-
lation cost are not considered in operational profit.
Fig. 3. CES operation profit vs. distribution transformer loading.

Fig. 4. CES operational profit vs. number of hours for supporting loads following an
outage.
6. Simulation results and trade-off analysis

6.1. LMP prediction accuracy

Not surprisingly, the accuracy of the price forecast has a signif-
icant impact on the cost savings potential. The real-time price will
often deviate from the day-ahead bids. In such cases, if the CES unit
is charged when the price dips or discharged when the price rises,
it will be unable to take advantage of these price fluctuations.
Table 1 shows the total profit for 1 month’s operation of one CES
unit calculated using the day-ahead prices as well as the total
profit that could have been achieved if the real-time prices were
known 24-h in advance (an ‘‘ideal prediction’’). Thus, there is an
economic incentive for utilities to revise the LMP forecast [48]
when possible. It is worth mentioning that the day ahead and
the real time LMP prices are dictated by Independent System Oper-
ators (ISO) to utilities. Utilities do not determine the LMP prices.
The difference between day ahead and real time LMP is due to
unforeseen changes in generation capacity, transmission con-
straints, or load. The impact of the load profile change on the
LMP price is ignored in the scope of this work because the capacity
of the batteries is extremely small when compared with the total
load for the locational node in the electricity market.

The energy cost for a representative distribution transformer
without a CES unit was calculated to be $284 based on a 0.12 $/
kW h electricity tariff in the Detroit, MI area. If a CES unit is added
downstream of the representative distribution transformer, the
optimal CES operation profit was calculated to be 35% and 65%,
respectively, for day-ahead LMP forecast and ideal LMP forecast
cases. See Table 1.

6.2. Transformer loading and reserve capacity

When the load is higher, more energy must be saved in case of
an outage, so there is lower availability for participation in the
energy market. It is resulting in smaller profits. On the other hand,
when the system load is higher, the energy prices tend to be
higher, resulting in higher profits. The simulation presented here
uses the month of July, when both the load and the prices tend
to be highest.

Since a higher load means less energy is available for market
participation, a greater profit can be realized by placing the CES
units on more lightly loaded transformers. Fig. 3 illustrates this
tradeoff, plotting the profit (cost savings) against the transformer
loading. However, the CES placement does not only depend on
the transformer loading. Sometimes utilities place CES in areas
with more outages. With a heavily loaded transformer, the utility
is trading off operating profit for improved reliability.

The dynamic reserve capacity is dependent not only on the load
but also on the number of hours’ worth of load that the CES unit is
expected to be able to serve in case of an outage. Fig. 4 illustrates
the tradeoff between the profit potential of the CES unit and the
number of hours of reserve capacity. Utilities must decide how
Table 1
LMP accuracy analysis for monthly profit of each CES unit.

CES operation profit CES profit/retail pricea

Day-ahead LMP $101 0.355
Ideal prediction $185 0.651

a Electricity retail price for the case study transformer without CES during a
month is $284 based on 0.12 $/kW h residential tariff.
much reliability they are willing to risk to realize increased sav-
ings. Utilities with Performance Based Rates (PBR) could use a plot,
like the one in Fig. 4, to identify where the tradeoff between profit
and reliability matches their PBR [49].

For comparison, a static reserve margin is also assessed. Fig. 5
compares the use of a static reserve capacity with a dynamic
reserve capacity. The static reserve capacity is fixed at the maxi-
mum capacity used by the dynamic reserve capacity.

The static reserve capacity benefit is 39% less than the dynamic
reserve capacity method at 80% transformer loading. In this curve a
residential load is used. Customers with different load shapes
would see different variations between dynamic and static reserve
capacity.
Fig. 5. CES dynamic and static reserve operational benefits.



Fig. 6. CES operational profit vs. different fixed reserved capacity of a CES.

Table 2
Monthly operational profit for a CES unit.

Objective function Profit ($) Computational time (s)

LMP price + loss function 185 337
LMP price 182 90

Table 3
CES optimization step size.

Step size (% of max battery
capacity)

Computational time for one
month (s)

Profit for one
month ($)

2 90 101
5 65 101

10 57 101
20 55 100
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Fig. 6 shows the tradeoff between profit and fixed (static)
reserve capacity. While a dynamic reserve margin offers a greater
potential cost savings, computing the dynamic reserve margin
depends heavily on accurate load forecasting. A utility with a poor
load forecasting capability may be limited to using a static reserve
capacity. Similarly, a customer with a constant load profile has a
static reserve capacity.

Alternatively, Fig. 6 can be understood as depicting the tradeoff
between energy storage size and cost savings, as opposed to reli-
ability and cost savings.

The cost savings potential is not only limited by the reserve
capacity (stored energy), but also by the output power required
to prevent overloads on a transformer.

Fig. 7 depicts the effects of the transformer loading constraint
on the CES charging/discharging schedule. In Fig. 7 adoption of
Plug-in Electric Vehicle (PEV) loads at 30% of the average trans-
former load creates an overload between 5 PM and 9 PM on the
distribution transformer. The cost savings potential is not only lim-
ited by the reserve capacity (stored energy), but also by the output
power required to prevent overloads on a transformer. The dotted
line in Fig. 7 is the distribution transformer nominal capacity
(50 kW), the dashed line is load with 30% PEV adoption, and the
solid line is the load with 30% PEV adoption and CES.

The CES constraints ensure that the battery retains sufficient
charge to prevent a transformer overload during the entire 4-h per-
iod in which the PEVs are being charged [34].

6.3. Impact of the feeder losses

The significance of feeder losses is presented in Table 2. The
profit is calculated for a single month for a single CES unit that is
far from the substation on a moderately loaded feeder. Two
Fig. 7. Load profiles considering 30% PEV adoption with and without CES.
approaches are used to schedule the CES charging/discharging.
The first approach includes feeder loss reduction as a part of the
objective function (see Eq. (1)), as well as the internal battery
losses. The second approach ignores the feeder losses in optimiza-
tion, but still incorporates internal battery losses. Note that an
ideal LMP ‘‘prediction’’ was used in calculating the results shown
in Table 2.

Table 2 shows that the feeder losses have a very small impact
on the total cost savings attainable by the optimization. The com-
putational time to calculate feeder losses is almost three times the
total computational time for maximizing the objective function.
The quality of the price forecast and the internal battery losses
both outweigh the feeder losses in determining the optimal
schedule.
6.4. Impact of the optimization step size

Table 3 shows the effects of changing the optimization step size
on the profit achieved by the optimization algorithm in Section 4
(see Eq. (11)), where the optimization is performed for an entire
month for the LMP price case (second case in Table 2). Since most
of the cost savings comes from hours with unusually high or low
LMP prices, changing the step size has relatively little impact on
the cost savings realized by the algorithm. But, it has a significant
impact on the computational time. Note that the actual step size
used in each iteration depends also on the constraints – even if
the step size is 5 kW h. If the battery only has 2 kW h of remaining
Fig. 8. Case study circuit schematic.



Fig. 9. Feeder load profile for aggregated 20 CES units.
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stored energy in a given hour, the step size effectively becomes
2 kW h for that iteration.
6.5. Aggregated response of the CES fleet

The DEW-ISM model used for the case study represents an
actual 13.2 kV residential feeder in the Michigan with a
1769 kVA annual peak load. It has single phase and multiphase
unbalanced loads. 20 CES units are located in the distribution net-
work with a total capacity of 1 MW h (the size of each CES unit is
50 kW h). Locations of the CES units in the circuit are shown in
Fig. 8. To provide more potential profit, the CES units are located
with the lightest loaded transformers.

Fig. 9 depicts the impact of the aggregated 20 CES units on the
feeder loading for a sample day in July. It shows the consistency of
CES scheduling with the real time LMP price. During low LMP price
hours (6–9 AM), CES units charge to store energy. At the peak hour
with expensive LMP prices, CES units discharge to make a profit
and decrease the peak load.
7. Conclusions

A real-time control strategy that maximizes the revenue attain-
able by Community Energy Storage (CES) systems without sacrific-
ing the occasional benefits related to improvements in reliability,
efficiency and reduction in peak feeder loading has been presented.
The Gradient-based, Heuristic Optimization algorithm is used for
calculating the optimal charge/discharge schedule. Analysis of
some of the parameters and tradeoffs involved in operating distrib-
uted energy storage devices is presented. It provides insight into
such considerations as inaccuracies in LMP price forecasts, trans-
former loading, reserve capacity, and feeder losses. The analysis
shows that economic benefits are highly dependent on the accu-
racy of the LMP and load forecasts. In the trade-off between accu-
racy and computational time, incorporating the feeder losses in the
objective function has a rather small impact on the total profit, but
a rather large impact on the computational time.

Community Energy Storage (CES) systems offer several benefits
to electric power system operation, including load support during
outages, improved reliability, service availability, renewable
energy dispatchability, and peak shaving. While CES installations
help meet power system reliability and capacity requirements,
the proposed optimal operating strategy further increases the
value of the CES.
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