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The recent developments in electric vehicles (EVs) causes several issues that

have not been satisfactorily addressed. One of the foremost problems is the

charging–discharging processes of EV batteries with diverse characteristics.

Although a charging station is the first choice in this regard, a battery swap

station (BSS) is also a suitable alternative solution as it eliminates long waiting

periods and battery degradation due to fast charging. BSS has the capability to

ensure prompt and efficient service for electric vehicles. Since BSS has a large

number of battery systems, optimum planning of the charging–discharging

operations of the batteries is critical for both BSS and the grid. This study

presents an optimal charging–discharging schedule for multiple BSSs based on

the swap demand of privately owned EVs and electric bus (EB) public

transportation system. In addition, BSSs reinforce the power grid by

providing ancillary services such as peak shaving and valley filling with

demand response programs. In order to increase the flexibility of the

operation, the mobile swapping station (MSS) concept, an innovative and

dynamic service, is introduced to the literature and added to the model. The

results indicate that BSS is an essential agent in the ancillary services market and

the MSS concept is a yielding solution for both BSSs and power networks. Last,

the data utilized in the study for swap demand calculation and power grid

analysis are real-world data from Berlin, Germany.
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1 Introduction

The impact of climate change creates many problems all over the world. Efforts to

prevent disasters caused by global warming ensure that improved solutions are preferred

more. Among these solutions, EVs are the most effective and popular technology.

However, there are significant problems that hinder the preferability of EVs, such as

battery life and range anxiety (Zhang et al., 2021). Also, long charging times lead to a waste
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of time in the daily lives of EV owners. Although fast-charging

stations have certain advantages for this challenge, the chemical

structure of the batteries being damaged during fast charging

brings an extra burden to EV owners (Dan et al., 2022). The BSS

concept, which is a new approach, has the potential to offer

solutions to many issues related to EVs.

BSS is a system that allows a discharged battery to be replaced

with a fully charged one in less than a minute. With its great

advantage in saving time, BSS can easily compete with gas stations

compared to charging stations (Ahmad et al., 2020;Wu, 2021). BSS

has a large number of batteries and can manage these battery

systems with a central decision mechanism. This shows that BSS is

an extremely useful technology in meeting the needs of the power

grid through vehicle-to-grid services. Moreover, it can flexibly

organize the charging schedule and does not create additional

pressure on the network in high consumption periods. In this way,

an innovative approach is developed in which operating costs are

reduced for both the BSS and the power system (Kocer et al., 2019;

Revankar and Kalkhambkar, 2021). Vehicle-to-grid is particularly

suitable for networks with high and intermittent renewable-based

generation. However, the stochastic characteristics of both

renewables and EVs reduce the success rate of decision

mechanisms. This causes various problems in voltage and

frequency stability due to the uncertainty of demand and

generation. Moreover, vehicle-to-grid systems are controlled in

a decentralized way. Therefore, a mid-contractor is needed

between the EV owners and the grid operator. This is a reason

that reduces profit and efficiency. Since BSS is the sole authority on

all batteries, there is no need for an intermediary for the provided

vehicle-to-grid services (Kocer et al., 2018; Kocer et al., 2021).

In addition to charging stations and BSS, another concept that

has emerged recently is mobile stations. With the help of these

services, EVs achieve the energy that provides extra range without

coming tomain stations. The first application of these technologies

is the mobile charging station (Afshar et al., 2021). In the future,

MSS will gain popularity with the spread of BSSs and EVs with

appropriate technical designs for swapping operations. As these

systems reduce the swap demand reaching the station, BSSs can

allocate more capacity for ancillary services. Therefore, assistive

technologies such as MSS are factors that increase the profitability

of BSS and similar systems.

The MSS concept has not been studied much in the

literature. Only Shao et al. (2017) can be presented as a

general study on this subject. In this study, a van providing

MSS service is designed, and its service process and economic

analyses are mentioned. Studies on mobile services mostly

focus on mobile charging station technology. In Atmaja and

Amin (2015), the authors determined the most suitable Li-

ion battery and ultracapacitor type for mobile stations to

provide a fast-charging service. The interior design of

stations is also mentioned. Fodorean et al. (2019) and

Zhang et al. (2020) offer a mobile solution for urban and

resort areas. The authors of Raboaca et al. (2020) developed

an optimal scheduling algorithm for charging stations

serving temporarily in different regions.

One of the pioneering studies on BSS is Sarker et al. (2015).

The authors created a cost optimization problem by

considering the indecision in the swap demand and day-

ahead planning. In Rao et al. (2015), the swap demand is

estimated by conducting a survey of EV driver

characteristics, and the operation is optimized. Liu et al.

(2015) present an optimal charging plan for BSS operating

as a photovoltaic-based prosumer. Also, one of the systems that

BSS can contribute efficiently to is public transport bus services

(PTBS) due to its stable operation plan. Kocer et al. (2021) and

You et al. (2016) give a daily optimal schedule for BSS, which

provides swap services to EBs working for PTBS. BSS, which

shapes the charging schedule according to different demand

response (DR) programs, is studied in Ke et al. (2020). With the

help of the electric taxi data in Beijing, the BSS system is

planned and the daily profit is maximized by linear

programming by the researchers of Liang et al. (2017). A

simulation-based analysis of BSS’s economic operations is

examined in Wu (2022) by analyzing the real data of eight

different BSSs located in Guangzhou, China.

There are several important studies examining the effect of

BSS on the grid. In Kang et al. (2016), while reducing the daily

cost of a station providing charging–swapping services, the

voltage stability and power loss of the power grid are also

taken into account. Esmaeili et al. (2019) create an optimal

strategy for BSS and microgrid operations. Zhang et al. (2021)

analyze the contribution of BSSs to frequency regulation services

by constructing a two-stage model. The authors of Yang et al.

(2021) investigate the impact of multiple BSS on ancillary

services such as peak shaving and valley filling with the self-

adaptive dispatching strategy.

This article presents the following contributions:

1) In this study, besides introducing the concept of MSS to the

literature, economic analyses of BSS working with MSS are

also performed. For this analysis, the optimal operation of

BSS and the influence of extra capacity provided by MSS on

ancillary services are examined.

2) The benefits of MSS for BSS and grid are investigated not

only from an economic but also from a technical

perspective. Hence, the impact of MSS is carried out in

comparison with demand response programs, and the

results are presented to the reader.

3) Data used for swap demand calculation and power grid

analysis are real data coming from the region of Berlin,

Germany.

The remainder of the article is organized as follows. Section 2

presents the system model of BSS and MSS. Section 3 proposes

problem formulation, which includes swap demand and

optimization models. In Section 4, the results of case studies
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are given to prove the effectiveness of the developed model.

Lastly, Section 5 concludes the article.

2 System model

In this part, information about the working principles of BSS

is given. The batteries in the station are in either charging,

discharging, swapping, or standby modes. BSS comprises

control, communication, power, forecast, and decision sections

as shown in Figure 1. MSS, on the other hand, consists of control,

communication, and decision units only. MSS charges empty

batteries in BSS and loads them into the vehicle. Therefore, it

does not need a power unit. The forecast section obtains

information about the grid data and distribution of battery

swap demand during the day and reports it to the decision

FIGURE 1
General structure of BSS.

FIGURE 2
Interactions of BSSs with the grid.
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center. The communication section connects with customers,

MSS, and the grid operator. The power unit has the necessary

equipment for charging and discharging processes. The decision

center gives an order to the control section according to the

energy capacity and demand data of the BSS. The control section

follows the instructions of the decision center and manages the

operational status of the batteries. In addition, when BSS needs

extra capacity, it contacts MSS via the communication unit and

calls MSS to BSS.

The BSS serves not only EVs and EBs but also the power grid.

In Figure 2, the interactions of BSSs with the grid are shown. The

system consists of the power network, grid operator, and BSSs.

The operator determines the needs of the power grid and

connects with the communication units of the BSSs. Peak

shaving and valley filling through demand response programs

are some of these needs. BSSs optimize operations according to

day-ahead energy prices and notify the operator about the hours

reserved for charging and regulation services. Thus, BSSs support

the network by means of the vehicle-to-grid infrastructure.

However, the main task of BSSs is to meet the swap demand,

and in this process, BSSs need to provide a sustainable service to

their customers.

3 Problem formulation

3.1 Battery swap demand models

In the study, two BSSs are examined. The first BSS (BSS1)

serves EBs working at Berlin PTBS, while the second BSS (BSS2)

serves EVs. Since PTBS has a regular operation schedule of 24 h,

the swap demand characteristics of BSS1 are different from those

of BSS2. There is also a difference between swap demands

because the battery capacities of EBs are larger than those of

EVs and the number of vehicles arriving at the station is not

the same.

3.1.1 The first battery swap station demand
model

In this part, the model utilized in the battery swap demand

calculation of BSS1 is presented. It is worth mentioning again

that BSS1 offers services to the EBs running in Berlin public

transport system. Thus, computations are based on real-world

data from the PTBS in Berlin, Germany.

In order to achieve the swap demand, the energy

consumption of each EB during the trip from terminus to

terminus is calculated. First, the energy used between two

consecutive stops is calculated using an analytical-based

model. Second, using the number of stops on every bus

line and the number of daily trips of EBs, the battery

swap demand of BSS1 for a 24 h period is obtained.

An analytical-based model for battery energy consumption is

used to calculate the utilized energy “terminus-to-terminus” on a

bus route by calculating the energy consumed between two

consecutive bus stops. This model is based on a prevalent

longitudinal dynamics model (Shekhar et al., 2016; Gallet

et al., 2018; Kocer et al., 2021).

The tractive force Ftr is computed by the following equation:

Ftr � Fdrag + Froll + Fclimb + Finertia. (1)

The term Fdrag � Kdv2 gives the aerodynamic drag force where

Kd � 0.5ρCdA. The density of air is denoted by the unit kg/m3. The

termCd is the drag coefficient, andA is the frontal area of the vehicle

in m2 and the speed of the vehicle in m/s. Froll � Mgfcos(α)
presents the rolling friction, and f is the rolling resistance

FIGURE 3
The trip profile between two consecutive stops.

TABLE 1 Parameters in swap demand calculation of BSS1.

Parameter Value Unit

Cd 0.7 —

ρ 1.18 kg/m3

f 0.008 —

ηt 0.97 —

ηPE 0.95 —

ηm 0.91 —

δ 1.1 —

rreg 0.6 —

mpax 75 kg

a+ 1 m/s2

a− −1.5 m/s2

npax 10 —

Mcurb 12.5 t

A 8.3 m2

D 400 m

ν 16.7 km/h

ηh 1 —
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coefficient. Fclimb � Mgsin(α) denotes the grade force.M is mass of

the vehicle in kg, g indicates the acceleration due to gravity (9.81m/

s2), and α is the gradient of the road. The force of inertia is presented

by Finertia � δMa, which is the result of changes in stored kinetic

energy due to acceleration and deceleration. The term a is the

acceleration of vehicle, and δ is an element that models the inertia

of rotating components in the drivetrain.

If data on the number of in-vehicle passengers are available,

the total mass of the vehicle can be determined as M � Mcurb +
npax mpax.

The expression Mcurb represents the curb weight of the

vehicle; npax, the number of passengers; and mpax, the weight

of a passenger. Etr is the energy demand due to the tractive force

between two consecutive bus stops, which is evaluated as

Etr � ∫ η(Kdv(t)2 +Mgfcos(α) +Mgsin(α) + δMa(t))v(t)dt (2)

The expression η is an efficiency factor used for the losses in

the inverter, motor, and drivetrain. While the vehicle is braking

(a(t)< 0), the tractive force gives a negative value. During

braking, the EV stores kinetic energy by regenerative braking.

Thus, η is calculated based on the sign of the tractive force:

η �
⎧⎪⎪⎨⎪⎪⎩

1
ηtηPEηm

, Ftr(t)≥ 0

rregηtηPEηm, Ftr(t)< 0

(3)

ηt denotes the drivetrain and gearbox efficiency; ηPE, the

inverter efficiency; ηm, the motor efficiency; and rreg, the

regeneration factor.

In order to assess the energy consumption of the EB,

developing a driving profile between consecutive stops is a

must. Hence, the model in Gallet, Massier,and Hamacher

(2018) is wielded to constitute the driving characteristics.

A trip between two consecutive stops involves ηh + 1 phases

of length D′ � D/(ηh + 1). ηh denotes the number of

intermediate halts between two bus stops, for example,

stopping at a traffic light. The trip starts with a constant

acceleration a+ over a distance d0, followed by constant

coasting speed v1 over a distance d1 and ends with constant

deceleration a− over a distance d2, yielding the relation

d0 + d1 + d2 � D′. Figure 3 presents the trip profile between

two consecutive stops (Gallet et al., 2018).

For simplicity, it is assumed that there is only one

intermediate halt point between two stops, that is, ηh � 1, and

the coasting speed between two stops is equal to v1 � 1.5vavg. The

velocity profile eliminates the time component in Eq. 2. Thus, Etr

is only subject to known parameters for each phase, presented by

Etr � (ηh + 1)Etr
′ � (ηh + 1) (E′

tr,a(t)�a+ + E′
tr,a(t)�0 + E′

tr,a(t)�a−)
(4)

E′
tr,a(t)�a+ � ηd0(Mgfcos(α) +Mgsin(α) +Kda+d0 + δMa+)

(5a)

E′
tr,a(t)�0 � ηd1(Mgfcos(α) +Mgsin(α) +Kdv

2
1) (5b)

E′
tr,a(t)�a− � ηd2(Mgfcos(α) +Mgsin(α) −Kda−d2 + δMa−)

(5c)
d0 � v21

2a+
(6a)

d1 � D′ − (d0 + d2) � D′ − v21
2
( 1
a+

− 1
a−
) (6b)

d2 � D′ a+
a+ − a−

(6c)

The energy consumption between consecutive bus stops

(Etrip
total) is stated as

Etrip
total � Etr (7)

The terminus-to-terminus energy consumption (Ejourney
total )

is the sum of the energy used in the journey from

one stop to the another stop, which is expressed by the

relation.

Ejourney
total � ∑

trip

Etrip
total (8)

The values of the parameters introduced in this section are

given in Table 1.

3.1.2 The second battery swap station demand
model

The BSS2 serves EVs rather than large-sized vehicles like

EBs. Therefore, there is a difference in the demand

characteristics. An analytical-based method is used for the

swap demand of BSS1. Another approach is followed for

BSS2, and a data-driven model based on real-world

measurements is used. GasBuddy (GasBuddy, 2018)

conducted research on more than 30 million customers’

gas station visits in 2018. As a result of the study, data on

gas station hourly visit percentages are obtained.

Thus, BSS2’s swap demand is created based on percentage

data by determining a suitable number of vehicles in case

studies.

3.2 Optimization model

3.2.1 Objective function
The aim of BSSs in the study is to maximize their income. To

achieve this, BSSs must perform their 24 h operations optimally. An

objective function based on mixed-integer linear programming has

been created for BSSs. It is shown in Eq. 9 and consists of two

components; charging costs and regulation income.

maxF1 � ∑T
t�1

αPB,dc,t λ −∑T
t�1

αPB,ch,t λ − ∑T�t2
t�t1

PM,tλ (9)
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λ denotes the electricity prices for charging and discharging.

PB,dc,t represents the power discharged to the grid for

the regulation services in the time period t. PB,ch,t is the

power utilized for charging in time period t. is the

coefficient for the demand response, peak shaving, and

valley filling services. PM,t is MSS-based power used to

meet swap demand. t1 and t2 are the time intervals in

which MSS is allowed to be used. T is the total number of

hours in a scheduling horizon, and t is the time component in

hours.

3.2.2 Constraints
The constraints are set for both BSSs and MSS.

CB,t+1 � CB,t + ηB,ch PB,ch,t Δt + P(M,t) Δt − PB,dc,t

ηB,dc
Δt∀t (10)

Equation 10 gives the impact of operations performed in time

t on the available capacity at time t+1. CB,t and CB,t+1 shows the
available capacity of the BSS at t and t+1, respectively. Δt is the
time duration. In addition, charging and discharging efficiencies

are represented with ηB,ch and ηB,dc.

0≤PB,ch,t ≤PB,ch,max∀t (11)
0≤PB,dc,t ≤PB,dc,max∀t (12)
0≤PM,t ≤PM,max∀t ϵTM (13)

Charging and discharging powers must be within a certain

range. This is important for the grid and battery. Equations 11

and 12 keep BSS’s charging–discharging power in this range.

PB,ch, max and PB,dc,max symbolizes charging and discharging

limits, respectively. PM,max refers to the maximum power MSS

provides. TM is all time periods that MSS is allowed to be used in.

CB,min ≤CB,t + ηB,ch PB,ch,t + P(M,t) − PB,dc,t

ηB,dc
≤CB,max (14)

The total capacity of the BSS has to be limited. Eq. 14 presents

CB,min and CB,max. They are minimum and maximum capacity

limit of BSS at t, respectively.

CB,min ≤∑T
t�1
(ηB,ch PB,ch,t + P(M,t) − PB,dc,t

ηB,dc
⎞⎠ + CB,0 ≤CB,max. (15)

Eq. 15 secures that BSS continues operation within the

specified limits in the entire scheduling horizon while

considering the initial capacity. CB,0 is the initial capacity of

BSS at the beginning of the scheduling horizon.

DB,t+1 ≤CB,t + ηB,ch PB,ch,t + P(M,t) − PB,dc,t

ηB,dc
. (16)

In addition, BSS’s main responsibility is to make swap

operations sustainable. BSS’s available capacity has to meet

the next hour’s demand. Eq. 16 ensures that, and DB,t+1

denotes the next hour swap demand.

0≤NM,B ≤NM,B,max. (17)
0≤PM,B ≤PM,B,max. (18)

The number of batteries in MSS is limited to how many

batteries the vehicle can take. NM,B and NM,B,max represent the

number of batteries in MSS and the maximum number of

batteries it can have, respectively. PM,B indicates the total

power of the batteries in the vehicle, and PM,B,max denotes the

maximum power of these batteries.

0≤PB,reg,t ≤CB,t −DB,t+1 ∀t ϵTreg. (19)

The capacity allocated by BSS for regulation is not more than

the available capacity, and it does not create a problem with

meeting the swap demand. PB,reg,t symbolizes the regulation

capacity at time t. Treg is the total time period that BSS

allocates for ancillary services.

FIGURE 4
Battery swap demand for BSS1.

FIGURE 5
Battery swap demand for BSS2.
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4 Results

Two BSSs with different characteristics are chosen for the

application of the methodology clarified in the previous sections.

The first BSS (BSS1) is designed for EBs running for the PTBS in

Berlin. BSS1 optimizes the charging–discharging operation

according to the swap demand profile obtained using data from

the daily PTBS in Berlin, Germany. The data belong to 50 different

public transport bus lines (Berliner Verkehrsbetriebe BVG, 2022).

Hence, the routes of each EB are unique. The second BSS (BSS2)

serves EVs. BSS2 provides a typical gas station service and has

similar characteristics. Since BSS1 serves EBs, the capacity of each

battery it has is higher than that of BSS2’s. Therefore, the total energy

capacity is higher than that of BSS2. Both stations have 150 kW

charging power and 50 charging units. The battery capacity of each

EB and EV is assumed to be 337 kW and 100 kWh, respectively.

BSSs have their own MSS services. If necessary, BSSs receive

assistance from these MSSs to reduce the swap demand. There

are 5 kWh × 337 kWh batteries in each MSS of BSS1 and 5 kWh ×

100 kWh batteries in each MSS of BSS2. The total number of MSS

varies according to the needs of BSSs.

Peak shaving and valley filling services provided by BSSs are

shown on real daily load data from Berlin (Stromnetz Berlin -

Grid user, 2022). In the study, two different load profiles

belonging to residential and industrial areas in Berlin are

used. The scheduling horizon of the case study is 24 h from

midnight to midnight, and the resolution is 1 h. Also, initially,

BSSs start with empty batteries.

4.1 Battery swap demand

As stated before, BSS1 meets the battery swap demand of

50 different EBs running for PTBS. The method used to calculate

the swap demand is already given in Section 2. Each EB creates a

swap demand when the battery SoC level falls in the 5–10%

range. The swap demand capacity that BSS needs to meet

throughout the day is given in Figure 4. There is no swap

demand until 4 h as all EBs start with a fully charged battery.

Then, the peak value is reached due to the accumulated swap

demand. As seen in Figure 4, the demand characteristic created

by EBs is very different from the those of charging station and gas

station profiles. Until the end of the day, the profile between

5 and 2 MW continues with ups and downs. This is an expected

result as each bus has a distinctive route, timetable, number of

stops, and trip duration. As the PTBS operations decrease at

FIGURE 6
The optimal charging-discharging schedule for BSS1.
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night, the battery swap demand diminishes at the end of the day.

During the whole day, BSS1 has over 300 swap requests from

50 EBs, and the total charge capacity is 71.5 MW.

The daily swap demand profile requested from BSS2 is given

in Figure 5. The demand characteristic is very different from

BSS1. BSS1 demand is dependent on PTBS plans, while swap

FIGURE 7
The optimal charging-discharging schedule for BSS2.

FIGURE 8
Swap demand reduction for BSSs by using MSS support.
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demand for BSS2 is specific to individual EVs and traffic flow

characteristics. BSS2 serves a total of 300 EVs during the day. The

battery capacity of each is 100 kWh. Since BSS starts the process

with empty batteries, the swap demand at 1 h is eliminated. The

average hourly demand is 1.25 MW. Swap demand is low until

the early hours of the morning. A gradual increase is observed up

to 18 h, and the peak value of 2.6 MW is achieved. After this

point, there is a rapid decrease, and at the end of the day, the

demand falls below 0.5 MW.

4.2 Case studies

4.2.1 Case 1: Battery swap station with mobile
support

One of the main focuses of the study is to analyze the

contributions of MSSs to BSSs. MSSs are expected to take a

much more active role in the future. It is an option that ensures

flexibility for BSSs and the power grid, especially with the extra

capacity it provides in emergency situations. In Figures 6, 7, the

optimal charging–discharging (regulation) operation schedule

for BSSs is presented in two different ways, with and without

MSS support. BSSs are allowed to use MSS support after the

time when the swap demand exceeds the average demand until

the demand starts to decrease significantly. After the MSS is

used, the batteries need to be recharged and the use of MSSs is

also reflected as a cost. Therefore, BSSs pay attention to

electricity prices and swap demand and use MSSs as extra

capacity. BSS1 and BSS2 seek help from different MSS types

as their battery capacities are 337 and 100 kWh, respectively.

BothMSS types contain five batteries, each ready to be swapped.

BSSs can only use one MSS in a time frame. This corresponds to

1,685 and 500 kWh extra capacity for BSS1 and BSS2,

respectively, in a single time period.

It should be remembered that although the charging

capacities of BSSs are the same, there is a great difference in

swap demands. Therefore, the impact of MSSs on the operation

schedule of BSSs is not the same. Also, Figures 6, 7 only give the

power consumption and regulation capacity of the BSSs. Since

MSS is used to reduce the swap demand in the specified time

period, the charging load of MSS is not shown in the figures.

When the daily optimum profile of BSS1 is examined, a total

20 MW charging power difference is seen between with and

without MSS options in Figure 6. In line with these data, it can be

TABLE 2 The daily operational cost of BSSs in EUR by MSS option.

With MSS Without MSS

BSS1 €1,342 €2,233

BSS2 €264 €393

FIGURE 9
Peak shaving and valley filling services provided by BSSs in a residential area with different DR programs.
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said that MSS is an important resource in terms of providing

flexibility. The biggest difference during the day occurred at 6 h.

BSS1, which reduced swap demands by using MSS until this time

and has reserved a 4.1 MW regulation capacity instead of

consuming 7.5 MW charging power.

MSSs for BSS2 do not make as much difference as for BSS1.

This is because the charging capacity of BSS2 is large enough to

easily meet the swap demand. It does not need the extra capacity

MSS can provide. The biggest difference in operation schedule

occurs at 16 h. The magnitude of this difference is 3 MW, and

this is also the total difference for a 24 h scheduling horizon.

While BSS2 charges aggressively during periods when the

electricity price is low, it contributes to regulating services in

periods where it can generate a high profit.

BSSs can only use one MSS per time period. BSSs prefer this

support to reduce the swap demand in the specified time frame.

Swap demands met by BSSs before and after receiving MSS

support are given in Figure 8. In Figure 8, it can be seen when

BSS1 uses MSSs. By using MSSs, BSS1 ensures a significant

decrease in swap demands, particularly between 4 and 16 h.

By using the extra capacity of MSSs, BSS1 achieves a 0.85-MW

decrease in daily average swap demand. BSS2 needs fewer MSSs

as its charging capacity is much higher than that of swap demand.

As can be seen, BSS2 only used MSSs in the 10–15 h time interval

when the demand increased. Even if the swap demand reaches its

peak in the following periods, BSS2 does not need the support of

MSS as it has sufficient energy capacity. The average swap

demand of BSS2 declines by only 0.12 MW.

The impact of the MSS option on the daily operational cost

of BSSs is given in Table 2. These data are achieved by

subtracting the revenue of the regulation services from the

charging costs. MSS ensures a 40% cost reduction for

BSS1. The daily cost reduction for BSS2 is 32% as it uses

less MSS.

4.2.2 Case 2: Contribution of battery swap
stations to peak shaving and valley filling by
leveraging demand response and mobile
swapping station

BSSs have the potential to consume high levels of energy.

Therefore, such restrictions may be required during the

FIGURE 10
Peak shaving and valley filling services provided by BSSs in an industrial area with different DR programs.

TABLE 3 The daily operational cost of BSSs with DR programs in
residential and industrial areas.

BSS1 BSS2

Residential 20% €2,693 €605

Residential 40% €2,286 €429

Industrial 50% €2,959 €892
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charging–discharging schedules of these stations. With the help

of demand response programs, BSSs can provide various

advantages instead of creating a negative effect on the grid, as

they are more flexible about charging times. Peak shaving and

valley filling are the most suitable ancillary services for BSSs. For

the second case study, the operation schedule of the BSSs without

MSS support is planned according to the demand response levels

of 20%, 40%, and 50%. More specifically, BSSs are not allowed to

charge when the load level is more than +20%, +40%, or +50% of

the average load so as not to increase the stress on the grid. The

peak shaving and valley filling services provided by BSSs, as a

result of the optimized daily schedule according to the DR

programs applied to residential and industrial load profiles,

are shown in Figures 9, 10.

In Figure 9, BSSs are assumed to be in a residential area.

DR programs determined for residential load are 20% and

40%. Accordingly, in times when the load level exceeds +20%

and +40% of the average daily load, BSSs are prevented from

increasing the load on the grid by charging batteries. For the

20% DR case, the load level that must not be exceeded is

155 MW. Therefore, BSSs are not allowed to charge the

batteries when the load level is higher than 155 MW. In

this case, BSSs allocate these time slots to regulation services

instead of charging. In this way, a decrease in peak load levels

is observed. Particularly, the peak at 20 h is successfully

reduced. BSSs charge batteries aggressively when the load

level and electricity prices are low in order to provide

regulation service in the determined time frames. In this

way, the difference between the highest and lowest load levels

is reduced. It is observed that a successful valley filling

service is provided by BSSs, especially when the first hours

of the day are considered. Since the 20% DR program is more

restrictive than the 40% one, the peak shaving and valley

filling processes obtained in this program are more

noteworthy. The daily operating costs of BSSs under DR

programs are given in Table 3. These costs are obtained by

subtracting the income of the regulation services from the

charging costs. As can be seen from Table 3, DR programs

create a 15% cost difference for BSS1. This value increases to

30% for BSS2.

Since the load levels in the industrial region are very high

within working hours, the DR program is planned more flexibly

considering the characteristics of this region, and +50% of the

average load is deemed appropriate. Figure 10 shows the valley

filling and peak shaving processes in the industrial area. Peak

levels in electricity consumption are reached at noon. Hence,

BSSs reduce the stress of the network with the regulation services

they provide in this time period, and peak levels are reduced in

the time frame between 10 and 13 h. In addition, the batteries are

charged in the first part of the scheduling horizon, contributing

FIGURE 11
Peak shaving and valley filling services provided by BSSs in a residential area with MSS support.
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to the valley filling services. The costs of BSSs for the industrial

area are shown in Table 3. Although the DR program in the

industrial area is more flexible, the daily cost of the BSSs is higher

than that in the residential area.

The extra capacity MSS provides allow BSSs to avoid high-

demand periods. ThismakesMSSmore advantageous than charging

stations. In this way, the pressure on the grid can be reduced.

Figure 11 shows the impact of BSSs using MSSs on residential load.

MSSs have to be recharged after use. Therefore, charging loads are

reflected in the time period when MSSs are used. The extra capacity

MSS offered in the residential region has successfully performed

during peak shaving and valley filling operations. This impact

becomes greater as the number of MSS increases.

Figure 12 gives the influence of MSSs on peak shaving and

valley filling in an industrial area. Although the valley filling

process is successful up to 6 h, an increase is observed in the

peak levels at noon. This is because BSSs allocate noon hours for

charging operations. It is an inevitable condition to meet the

swap demands and to avoid charging in the morning and

evening hours. However, there is a significant decrease in the

peak level at 18 h. Thus, by increasing the number of MSSs for

industrial areas, peak shaving operations can be performed

more successfully.

5 Conclusion

The BSS concept creates innovative opportunities for EVs and

power systems. In this study, a daily optimum charging–discharging

schedule is modeled for two BSSs with different characteristics. A

detailed analytical approach and data-drivenmodels are used for the

swap demand of BSSs. In addition, MSS, a new and innovative

concept, is introduced to the literature and added to the problem

formulation to generate flexibility in BSS operations. As a case study,

peak shaving and valley filling services by BSSs are ensured with the

help of demand response programs and MSS options are examined.

According to the results, BSS1 creates a 20-MW difference in

daily charge–discharge cycles by using the extra capacity provided

by MSSs. Since the capacity of BSS2 is sufficient for the demand of

vehicles it serves, MSS support makes a difference of only 3 MW in

the 24 h horizon. In addition, the MSS option creates a difference

of 40% for BSS1 and 33% for BSS2 in daily operational costs.

In the study, the impact of different DR programs on BSS

operation costs and grid loads is also given. The results show that

DR programs make a difference of 13% for BSS1 and 30% for

BSS2 in daily operating costs. In addition, with the help of

support provided by MSSs, BSSs can provide peak shaving

and valley filling services similar to DR programs.

FIGURE 12
Peak shaving and valley filling services provided by BSSs in industrial area with MSS support.
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This study shows that BSSs successfully support the network in

analyses carried out for residential and industrial load regions, and

BSS has significant potential for ancillary services markets. MSSs

provide extra battery capacity, which causes a significant decrease in

the operational costs of BSSs. BSSs with MSS support ensure a salient

improvement in the load levels, without the application of demand

response programs. The data used in the study belong to Berlin,

Germany. Finally, the outcomes show that BSS is a suitable solution

for electrification of the public transportation system.
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