

A
d

am
 R

izv
i T

h
ah

ir

GRAPH THEORY BASED TRAFFIC

LIGHT MANAGEMENT

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND

COMPUTER ENGINEERING

AND THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE

OF ABDULLAH GUL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

Adam Rizvi Thahir

June 2022

A
 M

aster's T
h
esis

A
G

U
 2

0
2
2

GRAPH THEORY BASED TRAFFIC LIGHT

MANAGEMENT

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND COMPUTER

ENGINEERING

AND THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE OF

ABDULLAH GUL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

Adam Rizvi Thahir

June 2022

SCIENTIFIC ETHICS COMPLIANCE

I hereby declare that all information in this document has been obtained in accordance

with academic rules and ethical conduct. I also declare that, as required by these rules and

conduct, I have fully cited and referenced all materials and results that are not original to

this work.

Name-Surname: Adam Rizvi Thahir

Signature :

REGULATORY COMPLIANCE

M.Sc. thesis titled Graph Theory Based Traffic Light Mangement has been prepared in

accordance with the Thesis Writing Guidelines of the Abdullah Gül University, Graduate

School of Engineering & Science.

Prepared By Co-Advisor Advisor

Adam Rizvi Thahir Asst. Prof. Dr. Mustafa

Coşkun

Prof. Dr. Vehbi Çağrı

Güngör

Head of the Electrical and Computer Engineering Program

Assoc. Prof. Dr. Kutay İçöz

ACCEPTANCE AND APPROVAL

M.Sc. thesis titled Graph Theory Based Traffic Light Management and prepared by Adam

Rizvi Thahir has been accepted by the jury in the Electrical and Computer Engineering

Graduate Program at Abdullah Gül University, Graduate School of Engineering &

Science.

30 /05/ 2022

 (Thesis Defense Exam Date)

JURY:

Advisor : Prof. Dr. Vehbi Çağrı Güngör

Member : Asst. Prof. Burcu Güngör

Member : Asst. Prof. Fehim Köylü

APPROVAL:

The acceptance of this M.Sc. thesis has been approved by the decision of the Abdullah

Gül University, Graduate School of Engineering & Science, Executive Board dated …..

/….. / ……….. and numbered .…………..……. .

……….. /……….. / ………..

(Date)

Graduate School Dean

Prof. Dr. İrfan Alan

i

ABSTRACT

GRAPH THEORY BASED TRAFFIC LIGHT MANAGEMENT

Adam Rizvi Thahir

MSc. in Electrical and Computer Engineering

Advisor: Prof. Dr. Vehbi Çağrı Güngör

Co-advisor: Asst. Prof. Dr. Mustafa Coşkun

June 2022

Traffic congestion and delays caused in traffic light intersections can adversely affect

countries in terms of money, time, and air pollution. With the advancement of

computational power as well as artificial intelligent algorithms, researchers seek novel

and optimized solutions to the traffic congestion problem. Most modern traffic light

systems use manually designed traffic phase plans at intersections, and although this has

proven to be relatively sufficient for today’s traffic management systems, implementing

a smarter traffic phase selection system is deemed to be more effective. Traditional

approaches rely heavily on traffic history (static information), whereas Reinforcement

Learning (RL) algorithms, which offer an “adoptable"/dynamic traffic management

system, are gaining increased research interest. Despite the usefulness of these RL based

deep learning techniques, they inherently suffer from training time to apply them in real-

world traffic management systems. This study aims to alleviate the training time problem

of deep learning-based techniques, The research brings forth a novel graph-based

approach that is able to use known occupancies of roads to predict which other roads in a

given network would become congested in the future. Based on the predictions obtained,

we are able to dynamically set traffic light times in all intersections within a connected

network, starting from roads with known occupancies, and moving along connected roads

that are anticipated to be congested. Predications are done using edge-based semi-

supervised graph algorithms. Conducted simulations show that our approach can yield

comparable average wait time to that of deep-learning based approach in minutes,

compared to the much longer training time required by the deep-learning models.

Keywords: Deep Learning, Reinforcement Learning, Traffic Flow, Congestion

ii

ÖZET

GEAFİK TEORİSİ TABANLI TRAFİK IÇIĞI YÖNTEMİ

Adam Rizvi Thahir

 Elektrik ve Bilgisayar Mühendisliği Anabilim Dalı Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Vehbi Çağrı Güngör

Eş-Danışman: Dr. Mustafa Coşkun

Haziran 2022

Trafik ışıklı kavşaklarda meydana gelen trafik sıkışıklığı ve gecikmeler ülkeleri para,

zaman ve hava kirliliği açısından olumsuz etkileyebilmektedir. Yapay zeka

algoritmalarının yanı sıra hesaplama gücünün ilerlemesiyle birlikte, araştırmacılar trafik

sıkışıklığı sorununa yeni ve optimize edilmiş bir çözümler aramaktadırlar. Çoğu modern

kavşaklarda, manuel olarak tasarlanmış trafik faz planı kullanılmaktadır. Bunun günümüz

trafik yönetim sistemleri için nispeten yeterli olduğu kanıtlanmış olsa da, akıllı bir trafik

faz planı uygulanmasının daha etkili olduğu düşünülmektedir. Geleneksel yaklaşımlar

büyük ölçüde geçmiş trafik verisine (statik bilgi) dayanırken, dinamik/adaptif bir trafik

yönetim sistemi sunan Pekiştirmeli Öğrenme (RL) algoritmaları giderek daha fazla

araştırmacıların ilgisini kazanmaktadır. Bu RL tabanlı derin öğrenme teknikleri kullanışlı

olmasına rağmen eğitim sürelerinden dolayı gerçek hayattaki trafik yönetim sistemlerine

uygulanması zordur. Bu çalışma, derin öğrenme tabanlı yöntemlerin eğitim süresi

problemini çözmeyi amaçlamaktadır. Araştırma, belirli bir ağdaki diğer yolların

gelecekte hangi durumda tıkanacağını tahmin etmek için bilinen yol doluluk

durumlarından yararlanmayı sağlayan, yeni bir grafik tabanlı yaklaşım getirmektedir.

Elde edilen tahminlere dayanarak, trafik sıkışıklığı bilinen bir yoldan başlayarak bir

sonraki tıkanması beklenen bağlantılı yolları içeren ağdaki tüm kavşakların trafik ışık

sürelerini dinamik olarak ayarlanabilmekteyiz. Tahminlemeler, kenar tabanlı yarı

denetimli grafik algoritmaları kullanılarak yapılmaktadır. Yürütülen simülasyonlar,

yaklaşımımızın derin öğrenme modellerinin gerektirdiği çok daha uzun eğitim süresiyle

karşılaştırıldığında, birkaç dakika içinde derin öğrenme tabanlı yaklaşımla

karşılaştırılabilir ortalama bekleme süresi sağlayabileceğini göstermektedir.

Anahtar kelimeler: Derin Öğrenme, Pekiştirmeli Öğrenme, Trafik Akışı, Tıkanıklık

iii

Acknowledgements

First and foremost, I would like to express my most sincere thanks to my academic

advisor Prof. Dr. Vehbi Çağrı Güngör for guiding and supporting me throughout my time

as a master’s student at Abdullah Gul University. It has been a privilege to collaborate

with him and learn from his many years of experience.

I would also like to thank my academic co-advisor, Dr. Mustafa Çoşkun for all his

profound knowledge and insight regarding Graph Theory, Semi-Supervised learning, and

other topics vital to the research conducted.

Furthermore, I would also like to thank other members of the Computer

Engineering department who have all paved my way leading up to this point. Dr. Zafer

Aydın for initially getting me involved and interested in Machine Learning, Data Science,

and other relevant topics. Dr. Gülay Yalçın for piquing my interest in theoretical

computing topics, Dr. Burcu Bakır-Güngör for being a supporting pillar in other courses

and academic writing, and finally, Dr. M. Şükrü Kuran who first recognized the potential

within me and was a driving force behind my motivation to begin and continue along this

path of my academic life.

My mentor, Süheyl Töken who has enlightened me with his many years of industrial

and technical knowledge and provided me the opportunity to collaborate with him to

develop real world applications relating to traffic lights, an opportunity from which I was

able to gain firsthand experience on a topic relating to my research.

I would also like to thank a fellow master’s student and colleague, Sultan Kübra

Kılıç, whom I have worked with closely with over the past few years. They have been a

great support to my research, having real life knowledge on traffic light management, and

great practical knowledge on a variety of related topics.

My friends, I have made over the years in Turkey; Muhammad Fuad Farooqi, for

helping me always keep my academic goals in focus. Süleyman Çiçek and Hussam

Amoody, for all their support throughout the many years we have known each other.

iv

TABLE OF CONTENTS

1. INTRODUCTION .. 1

1.1 TRAFFIC LIGHT INTERSECTIONS ... 2

1.2 VEHICLE OCCUPANCIES AND QUEUES ... 3

1.3 TRAFFIC FLOW ... 3

2. SIMULATION TOOL .. 4

2.1 NETEDIT .. 4

2.2 VEHICLE ROUTING ... 5

2.3 SUMO ... 6

2.4 TRACI .. 6

3. TRAFFIC MANAGEMENT SYSTEMS .. 7

3.1 DATA COLLECTION .. 7

3.2 DATA PROCESSING/CLEANING .. 7

3.3 TRAFFIC PHASE CALCULATION/OPTIMIZATION .. 8

3.3.1 Conventional Traffic Control Systems. .. 8

3.3.2 Reinforcement Learning for traffic control systems. 8

3.3.3 Traffic Flow Prediction Based Traffic Control Systems 10

4. METHODOLOGY ... 12

4.1 PROBLEM DEFINITION .. 12

4.2 STATE-OF-THE-ART APPROACHES .. 12

4.2.1 Occupancy based algorithm .. 12

4.2.2 Scoring Algorithm .. 13

4.2.3 Reinforcement Learning Algorithms .. 14

4.2.3.1 Proximal Policy Optimization (PPO) ... 14

4.2.3.2 Advantage Actor Critic (A2C) .. 14

4.3 PROPOSED: GRAPH-SEMI SUPERVISED LEARNING BASED APPROACH 15

4.3.1 Graph based Semi-Supervised Learning for vertices 16

4.3.2 Graph based Semi-Supervised Learning for edge flows 17

5. RESULTS .. 19

v

5.1 PREDICTION PERFORMANCE RESULTS .. 21

5.2 SIMULATION PARAMETERS .. 22

5.2.1 Number of steps ... 22

5.2.2 Number of simulations ... 22

5.2.3 Traffic Phases .. 22

5.3 PERFORMANCE EVALUATION ... 22

6. CONCLUSIONS AND FUTURE PROSPECTS ... 29

6.1 SOCIETAL IMPACTS AND CONTRIBUTION TO GLOBAL SUSTAINABILITY 29

6.2 CONCLUSIONS .. 30

6.3 FUTURE PROSPECTS ... 31

7. APPENDIX .. 36

Appendix A: Python Code used to run a SUMO simulation using TraCI 36

vi

LIST OF FIGURES

Figure 1.1 Four-way traffic light intersection ... 2

Figure 2.1 Network design for a simulation environment with 20 traffic light

intersections. ... 5
Figure 3.1 Visualization on how a generic Reinforcement Learning algorithm would

work on a traffic light environment .. 9
Figure 4.1 Network design for simulation environment with 17 traffic light intersections

 .. 16
Figure 5.1 Flowchart representation breaking down the steps on how the proposed 20

Figure 5.2 Graph based SSL for synthetic flows from the simulation on 5, 17 and 20

intersection models. .. 21

Figure 5.3 Average waiting time for a single vehicle in the network 23

Figure 5.4 Average total waiting time for all vehicles in the network 24

Figure 5.5 Average waiting time for all vehicles in an intersection 25

Figure 5.6 Average maximum maximum waiting time for a single vehicle 26

Figure 5.7 Average wait time per vehicle per simulation step – 17 Intersections 27

Figure 5.8 Average wait time per simulation step - 20 intersections 27

Figure 5.9 Average running times for each simulation .. 28

vii

LIST OF TABLES

Table 3.1 Comparison table between the proposed approach against other state-of-the-

art approaches ... 11

viii

LIST OF ABBREVIATIONS

A2C Advantage Actor Critic

AI Artificial Intelligence

NP Non-deterministic Polynomial-time

PPO Proximal Policy Optimization

RL Reinforcement Learning

RRQR Rank-revealing QR

SUMO Simulation of Urban MObility

TL Traffic Light

TMS Traffic Management Systems

TraCI Traffic Control Interface

To my parents,

M. Rizvi Thahir and Zeenathul Fathima

1

Chapter 1

Introduction

With the advancement of modern cities, growing population, and the increase in the

number of vehicles owned by people within a city, traffic congestion has become a

growing problem over the years. Along with traffic congestion comes time consumption,

air pollution, and economic burdens. As per a study conducted by Inrix in 2019, an

average driver in the United States has lost 99 hours in traffic congestion, with an

estimated cost of $1,337 [1]. Naturally, in larger cities, the associated time consumption

and cost are much more severe, such as in Boston, MA, where the number of hours lost

was recorded to be up to 149, and the estimated cost per person was $2,205 [1]. Thus,

utilizing an “adaptable” traffic management system has been one of the central research

interests.

Many modern cities today operate their traffic systems using predefined fixed times

which are often based on manually hand-crafted traffic rules by people observing traffic

in real time [2]–[4]. However, predefined rule-based traffic management systems are

vulnerable to changes that are inevitable due to expanding cities and increase in the

number of vehicles on the road, as such, these predefined systems are often deemed to be

limited [5]. Inspired by the fascinating developments on Artificial Intelligence (AI)

algorithms, more recent research attempts based on AI approaches aim at solving traffic

light configurations for intersections. Earlier studies, such as those conducted in [6]–[8]

propose that reinforcement learning algorithms provide a more efficient traffic

management model. This study proposes the use of graph based semi-supervised learning

for edge label prediction, which aims to alleviate the shortcomings of RL based systems

while also providing an efficient traffic management model.

In order to assess the performance of our proposed approach against state-of-the-art

deep approaches as well as heuristic-based approaches and fixed time approaches, we

conduct experiments on a microscopic traffic simulation tool: Simulation of Urban

MObility (SUMO) [9]. This tool is further discussed in Section 2.

2

Figure 1.1 Four-way traffic light intersection

1.1 Traffic Light Intersections

Traffic light intersections are interest points within a road network in which

multiple roads (edges) intersect with each other and are controlled by a traffic light

system. These systems allow vehicles to pass at specific lanes at a given time, causing

vehicles at other intersections to stay at an idle stage until they are allowed their turn.

A standard four-way intersection is depicted in Figure 1.1; As per the displayed

network model, at the given timestamp. From this image, it is observed that the north and

south roadways have been given the green signal, allowing vehicles originating from

either one of these roads to pass through, whereas, vehicles originating from the East and

West roadways are required to wait their turn.

For the scope of this project, we model multiple four-way intersections as seen

above, additionally, we also model several three-way intersections in an attempt to create

a robust traffic network with minimal bias. Model types and network designs are further

discussed in Chapters 2 and 5.

3

1.2 Vehicle Occupancies and Queues

Vehicle occupancies are defined as the number of vehicles on each edge. A given

edge may have a different number of lanes within the edge, the number of lanes within

an edge would affect the total queue size of the edge, but not the vehicle occupancy.

Queue sizes are defined as the length of vehicles waiting in a given edge. The

number of lanes within an edge would greatly affect the queue sizes of that edge.

The size of the queue within an edge would cause delays for the vehicles on that

edge, due to latencies caused by the initial movement of a vehicle from a stopping state.

As per the image shown in Figure 1.1, the maximum vehicle occupancy observed

in the network is 7, whereas the maximum queue size observed in the network is 2.

Despite both values obtained from the same edge, the values are expected to be different

due to the edge having multiple lanes. In the case of an edge having exactly one lane, the

vehicle occupancy and queue size would be the same.

1.3 Traffic Flow

Traffic flow is defined as the continuous flow movement of vehicles within a

network layout. Traffic flow heavily depends on a given network layout as well as vehicle

route demands.

Traffic flow from one intersection to another intersection would vary, depending on

the movement of each vehicle within the flow at a given time. A smooth traffic flow is

described as the continuous movement of traffic between intersections. These flows may

be disrupted by driver behavior, pedestrian movement, and other outside factors as well.

Additionally, following the idle stopped state of vehicles at a red light, delays caused by

vehicles ahead may also negatively affect traffic flow.

4

Chapter 2

Simulation Tool

Simulation environments were designed using a series of tools provided by the

microscopic and continuous multi-modal traffic simulation package; SUMO [10].

SUMO is an open-source traffic simulation suite that allows us to design, model

and simulate traffic networks [9]. During a simulation, SUMO provides necessary tools

to interact with the running simulation, as well as extract required data from within the

network, such as currently running traffic phase information and vehicle occupancies for

a given road.

For the scope of this study, a variety of tools provided by SUMO were used. The

image shown in Figure 1.1 was taken from a close-up view of a running simulation on a

modeled intersection.

2.1 NetEdit

NetEdit is a tool provided within the SUMO suite [11]. This tool is used to create

and model various traffic networks. A traffic network containing 20 different

intersections constructed using NetEdit is represented in Figure 2.1.

Networks are designed by placing nodes (intersections) on a blank canvas, and then

connecting links between two nodes (roads). Properties for a road can be defined using

the ‘Inspect’ panel on the left side of the interface.

We then generate a net file output which would be used with other tools provided

by SUMO suite.

5

Figure 2.1 Network design for a simulation environment with 20 traffic light

intersections.

Having a network layout allows us to proceed with constructing vehicle routes for

the simulation.

2.2 Vehicle Routing

In order to construct a reliable network, randomly generated vehicle routes are vital.

Our study uses the scripts RandomTrips [12] and DuaRouter [13] to generate these routes.

RandomTrips is used to generate random trips vehicles within the network can take, this

defines valid vehicle movement between nodes within the network.

Trips generated by the script are done at random by choosing random source and

destination edges within the network layout file. A random seed can be provided as an

input parameter upon running the script. Traffic volume and arrival rates can also be

adjusted as per our needs, for the scope of this project we leave these settings to default,

for all simulations in order to obtain unbiased results. The trips generated by are stored as

a separate file which is then used as an input for DuaRouter.

Using the file generated by RandomTrips, DuaRouter creates vehicle demand for

the simulation. The vehicle demand is created for the total simulation time provided; trips

obtained from the RandomTrips output are validated such that each vehicle route

approved by DuaRouter is a valid path in which a vehicle can move from source to

destination.

6

Having the output from DuaRouter, and DuaRouter, we are able to start our

simulations using the SUMO tool, which has the option to run with and without a GUI.

2.3 SUMO

SUMO is the tool within the suite that is responsible for the simulation. This tool

allows us to simulate a defined scenario provided by a variety of configuration files,

including a network file, often generated by NetEdit, and a vehicle demand file often

generated by DuaRouter.

The tool comes in two forms, SUMO, and SUMO-GUI. As the name implies,

SUMO-GUI also provides a Graphical User Interface allowing us to view our simulation

as the simulation progresses. Using the GUI is a useful step to provide insight on created

network models and simulation scenarios, however running a series of simulations

continuously may seem slow with the GUI; For this reason, we use SUMO without a GUI

to conduct our simulations once simulation scenarios are validated.

In this study, we use the Python programming language to start and control our

simulations. Sample code to start a given scenario is provided in the appendix section.

2.4 TraCI

TraCI – short for “Traffic Control Interface,” is another tool provided by the

SUMO suite. This tool gives us access to monitor, extract data, and manipulate

simulations running on SUMO. TraCI is able to access SUMO via a client/server

architecture, where SUMO acts as the server listening in for incoming connections, and

TraCI is the client.

TraCI allows us to observe changes within a network and interact with the

simulation accordingly. Some features include monitoring vehicle occupancy within

edges in the network and traffic light phase for any intersection at the current simulation

time.

Using TraCI, we are also able to extract information for each vehicle currently

inside the simulation. This information is used to model traffic flow from one intersection

onto another intersection.

7

Chapter 3

Traffic Management Systems

The work executed by a traffic management system can be broadly categorized into

three distinct categories.

i. Data collection and communication

ii. Data processing/cleaning

iii. Traffic Phase calculation/optimization

3.1 Data Collection

The very first step of the system involves obtaining information from the network.

Most common data collection methods used in Traffic Light systems, involves traffic

phase information, number of edges, number of lanes within each lane, vehicles within

each lane and total number of vehicles within a network. However, the exact information

obtained would vary depending on the system’s requirements.

The data collection process itself may also vary based on a different set of needs.

Common data collection techniques include inductive loops [14], [15] and image

processing [16], [17].

In order to process the data, the collected data must be passed on to other sections

of the system. Some common approaches are to utilize different levels of network-level

protocols to achieve this need. These approaches have been further studied in [18]–[22].

3.2 Data processing/cleaning

In order the ensure that the collected data can be used by the system in a streamlined

manner, it is important for all the incoming data to be further processed and/or cleaned

before the system stores the data. This step is often entwined with the communication

process of the system in order to regulate incoming data. The definite process of data

cleaning heavily relies on how the data is to be used by the TMS. Some studies discussing

data communication also propose viable forms of data processing.

8

3.3 Traffic Phase Calculation/Optimization

The final step of the TMS aims at solving traffic congestion problem by taking the

number of vehicles and queue sized into account whilst calculating new phase times for

each phase within the intersection.

Modern approaches to calculating these phase times can be classified into the

following types.

i. Conventional Traffic Control Systems

ii. Reinforcement Learning for Traffic Control Systems

iii. Traffic Flow predication-based traffic control systems.

3.3.1 Conventional Traffic Control Systems.

Conventional traffic control systems are often used in earlier traffic system models.

In such systems, traffic flows are observed manually, and traffic phase times are then set

according to rules and patterns from these observations. These rules often include a

change in priority based on time of day, construction interference, and other factors that

would affect traffic flow. Such systems have been studied in [2], [3], [23].

Another approach is conducted by using real-time vehicle data for a given duration,

and an optimal phase time is calculated for each of the phases. These systems have been

further studied in [4], [24]. The calculated optimal times would then be set to last within

the intersection until they would be updated again at some point in the future. Despite

offering some merit, over time, the calculated optimal times may become redundant due

to changes in vehicle behavior, and the system not having sufficient insight into any future

data.

3.3.2 Reinforcement Learning for traffic control systems.

Traffic congestion is a dynamic, time-reliant problem. With the advancement of AI

algorithms, modern reinforcement learning, and deep learning approaches have been

employed to dynamically adjust traffic lights by learning traffic behaviors.

The general flow for the usage of an RL model in the scope of traffic lights can be

classified into three sections

9

i. Environment: Composed of traffic light phases and traffic conditions,

including traffic congestion and traffic outward flow.

ii. State: A feature representation of the environment, often a grid

representation of the phase times within the intersection.

iii. Agent: A model which is able to make informed changes onto the

environment based on the information obtained from the State.

Following the decision making of the agent, the environment would return a reward

value back onto to the state which would be used as an additional input parameter to the

agent before it makes its next decision. This reward value would inform the agent how

the environment reacted to its previous decision, allowing a better-informed following

decision to be taken. This flow is depicted in Figure 3.1

Figure 3.1 Visualization on how a generic Reinforcement Learning algorithm

would work on a traffic light environment

Other approaches to model traffic networks into a RL model may use different

definitions for their Environment, State and Agent sets of the model. The studies

conducted in [6], [8], [25]–[27] model their network having the number of vehicles

queued as their state space, similarly studies [28], [29] use traffic flow obtained by placing

sensors at the edge of the traffic light. Certain studies also introduce different action

spaces, such as having all possible signal phases as their action space [28], [30] or only

the green signal phase within the action space [26], [29]. Reward functions for [28], [30]

is set based on the change in delay for the vehicles in the network, whereas [26], [29]

define their reward function based on the change in the number of queued vehicles.

10

Moreover, other studies such as [5] have used traffic flow and traffic delays as their

reward function, implementing Deep Q-learning. Finally, a series of other RL

algorithms such as Asynchronous method for deep reinforcement learning and Proximal

Policy Optimization algorithms were also conducted in [31], [32] by Stable Baselines.

Comparing the conventional methods against the reinforcement learning and deep

learning approaches, it is observed that reinforcement and deep learning approaches are

a more effective solutions to traffic congestion as seen in [5], [33], [34].

However, despite the positive results, the time taken for the training for the neural

network parameters is computationally expensive and often costs more as the number of

intersections increases within the network.

3.3.3 Traffic Flow Prediction Based Traffic Control Systems

 Traffic Flow Prediction Based Traffic Control Systems is the proposed system in

this study. It is an alternative and efficient algorithm by approaching the TMS as a flow

prediction problem. This approach renders predicting the outward flow of vehicles from

a given intersection, onto connected intersections, and enables the TMS system to identify

vehicle congestion that is likely to occur at the following intersections. More specifically,

in a multi-intersection setting, our approach is able to provide information on traffic flow

behavior, by pin-pointing intersections that would become congested within a short

period of time, based on semi-supervised active learning on edges [35].

The main idea of our proposed approach is different from other deep learning and

traditional methods as the flow of traffic can be predicted beforehand, allowing

intersections with predicted congestions to set traffic light phase times according to the

level of predicted congestion.

Furthermore, this approach treats intersections within a network as a node. This

graph-based approach is able to efficiently process large amounts of intersections,

allowing seamless implementation and adaptability to scale at higher levels for systems

designed for larger cities.

A comparison table of different state-of-the-art approaches is depicted in the below

table.

11

Table 3.1 Comparison table between the proposed approach against other state-of-

the-art approaches

 Simulation Predict

Flows

Real-Time

data

Historical

data

Multi-

intersection

INTELLILIGHT

[34]

YES NO YES YES NO

Francois Dion et al

[36]

NO NO NO YES NO

Alan J Miller [2] NO NO NO YES NO

Brian L, Smith [37] NO YES NO YES NO

FRAP[38] YES NO YES NO YES

CoLight [33] YES NO YES NO YES

OUR APPROACH YES YES YES YES YES

12

Chapter 4

Methodology

4.1 Problem Definition

In a traffic management system (TMS), our aim is to find an optimum traffic light

configuration in a multi-intersection network, such that traffic congestion can be

prevented as much as possible.

We define the TMS environment as 𝜀, which consists of multiple intersections.

Each intersection within 𝜀 is set to have an “intelligent” traffic light agent TLi. Each

intersection agent, TLi has three default phase settings.

i. Red: Vehicles cannot pass through the intersection.

ii. Green: Vehicles can pass through the intersection.

iii. Yellow: Phase changes from one phase to another.

Default Yellow time is set to be 7s.

4.2 State-of-the-art approaches

4.2.1 Occupancy based algorithm

The occupancy-based algorithm is a heuristic algorithm that tries to solve the TMS

problem by relying on the basic idea of using predefined historical traffic data in order to

determine the occupancies of the roads. More specifically, in this algorithm the

occupancies of all roads with incoming traffic onto the intersection are used to prioritize

traffic phases, i.e., if a road obtains a higher occupancy, then the green phase time given

for that road is incremented up to a calculated threshold. The prioritization formula is

defined as follows:

𝐷 = 𝑇𝑚𝑎𝑥 ∗ (𝑁 ∗ (
𝑊𝑖

𝑊𝑇
)) (4.1)

13

where D is the duration, which is also set to a certain upper limit to prevent blocking

on other roads, Tmax is the total time, N is the number of incoming roads, Wi is the

occupancy value for the incoming road i, which is heuristically set to a certain value by

observing historical traffic data, and WT is the sum of all the road occupancies coming

into the intersection.

Despite the effectiveness and simpleness of the occupancy algorithm, this algorithm

sets its parameters based on historical data which is prone to change, i.e., some roads may

have had higher occupancy values in the past, however, their occupancy values may

decrease in the future. As a result, this algorithm introduces a certain bias towards the

roads with historically higher occupancy rates.

 4.2.2 Scoring Algorithm

The scoring algorithm is another heuristic algorithm that is proposed by Sébastien

Faye et al [39]. The basic premise behind the scoring algorithm is to score each incoming

road in an intersection and assign the priorities based on the assigned scores. Formally,

the score of each incoming road is defined as:

𝐿𝑆 = (
𝑁(𝑠,𝑑)

∑ 𝑁(𝑎,𝑏)
{𝑎,𝑏} ∈ 𝐷

) + 𝛽 ∙ (
𝑇𝐹
(𝑠,𝑑)

𝜎{𝑎,𝑏} 𝜖 𝐷 𝑇𝐹
(𝑎,𝑏)

)
(4.2)

where 𝛼 and 𝛽 are user-defined weights that are used to optimize average vehicle

time and starvation, we use default values as 1 for both, (s, d) is a possible movement

from source direction s to destination direction d, both of which are within a set of all

possible directions D. N(s,d) is the weighted sum of the number of vehicles present on

the coming lanes that compose movement, and TF
(s,d)

 is the time in seconds since the

incoming road had a green phase. In the case that no vehicles are present on any of the

roads, LS would be set to 0.

Finally, once the scores for all edges are obtained, the system would calculate

priority duration using a variant of the equation seen in Eq 4.1. Replacing occupancy with

the calculated local score redefines the formula as:

𝐷 = 𝑇𝑚𝑎𝑥 ∗ (𝑁 ∗ (
𝑆𝑖
𝑆𝑇
)) (4.3)

14

where D is the duration, Tmax is the total time, N is the number of incoming roads.

Si and ST represent the local score for the incoming road i and the sum of all scored,

respectively.

4.2.3 Reinforcement Learning Algorithms

Using the A2C and PPO algorithms from the Stable Baselines [40] library RL

environments were designed as per the environment definition provided in sub-section

3.3.2 Reinforcement Learning for traffic control systems.

4.2.3.1 Proximal Policy Optimization (PPO) [40]

PPO is a policy gradient method that is able to simplify the Trust Region Policy

Optimization (TRPO) algorithm by using a clipped surrogate objective. The formula used

is defined as:

𝐽𝑇𝑅𝑃𝑂(𝜃) = 𝔼[𝑟(𝜃)Α̂𝜃𝑜𝑙𝑑 (𝑠, 𝑎)] (4.4)

𝐽𝐶𝐿𝐼𝑃′(𝜃) = 𝔼[𝐽𝐶𝐿𝐼𝑃 (𝜃) − 𝑐1(𝑉𝜃(𝑠) − 𝑉𝑡𝑎𝑟𝑔𝑒𝑡)
2

+ 𝑐2𝐻 (𝑠, 𝜋𝜃(.))]

(4.5)

As per the equation defined in Eq 4.4, maximizing TRPO has the possibility of

causing instability due to frequent updates to its parameters. As such, PPO simplifies this

approach by using a clipped surrogate objective, forcing r(𝜃) to fit into a smaller interval

[1 − 𝜖, 1 + 𝜖] using the function clip (r(𝜃), 1 − 𝜖, 1 + 𝜖), as seen in the equation defined

in Eq 4.5.

4.2.3.2 Advantage Actor Critic (A2C) [40]

The A2C approach deals with two distinguishable networks: The ‘actor’ and the

‘critic’. The actor network is trained to update the policy according to the value function

learned by the critic network. The critic network estimates the value function.

The function A2C uses to calculate the advantage for taking a specific action can

be defined as follows:

𝐴𝜋 (𝑠, 𝑎) = 𝑄𝜋 (𝑠, 𝑎) − 𝑉𝜋 (𝑠) (4.6)

The reward is then calculated based on the difference of waiting time for the

vehicles in the network. This function is defined as follows:

15

𝑅 =

{

 −1 ∗ (∑𝑇 +∑𝑉) 𝑁 == 0

−1 ∗ (
(∑𝑇 + ∑𝑉)

𝑁
) 𝑁 >= 1

(4.7)

Where R is the calculated reward, T is an array of waiting times for the different

vehicles, V is the number of new vehicles compared to the previous step iteration, N is

the number of vehicles that moved onto a different road.

4.3 Proposed: Graph-Semi Supervised Learning Based

Approach

The idea behind this approach is to solve the TMS problem by representing the

TMS problem as a graph problem and predicting the edge flow on this graph. More

specifically, in our graph-based modeling of the TMS problem, each intersection within

the network is represented as a node in a graph, and the roads connecting two intersections

are treated as edges connecting the nodes within the graph. If we consider the 17-

intersection network design shown in Figure 4.1, a total number of 29 nodes are observed

in the network. The additional 12 nodes are endpoints of the traffic network from which

vehicle demand enters and exits the network. Thus, our graph-based representation for

this network consists of a graph with a total of 29 nodes, and edges connecting nodes

would relate to the true road connections visible on the network; Any connection between

two distinct nodes within the network is recorded as a valid road connection.

16

Figure 4.1 Network design for simulation environment with 17 traffic light

intersections

Based on this graph model, we use the methodology proposed in [35], edge-based

semi-supervised learning. As a result, we are able to predict the outward flow from one

intersection on to another. The predictions are then normalized and read from the

perspective of the connecting intersections; this is now read as inward traffic flow into

the intersection. This now allows us to optimize phases within the intersection based on

the predicted total inward vehicle flow coming from other intersections.

Mathematically, we have a set of vertices (traffic intersections and exit-points) V,

a set of edges (roads) that connect the vertices 𝜀, and a labeled set of edge flows; known

traffic flows obtained from the network, 𝜀L. The goal of the algorithm is to predict the

unlabeled edge flows 𝜀U. Here it is important to note that our aim is to conduct edge-

based semi-supervised learning, rather than the well-known node-based semi-supervised

learning method.

4.3.1 Graph based Semi-Supervised Learning for vertices

In this approach, a graph is constructed with nodes and edges, where nodes are

specified by labeled VL and unlabeled samples VU. Edges are to be based on the

similarities among the samples V. The goal of this algorithm would be to assign the labels

for the unlabeled samples VU based on the known existing data, such that the assigned

17

labels vary smoothly across neighboring nodes. The notion of smoothness is defined by

the following log function:

‖𝐵𝑇𝑦‖2 = ∑ (𝑦𝑖 − 𝑦𝑗)
2

(𝑖,𝑗) ∈ 𝜀

 (4.8)

where y represents the vector containing vertex labels, and B ∈ Rnxm represents

the incidence matrix of the network. The loss function can be written as ‖𝐵𝑇𝑦‖2 = y2Ly

in terms of the graph Laplacian L = BBT.

Based on this, the labels for the unknown nodes can be found by minimizing the

quadratic form yTLy with respect to y while keeping the set of labeled vertices fixed.

4.3.2 Graph based Semi-Supervised Learning for edge flows

Using this approach, we obtain a graph based on traffic intersections as a set of

vertices V, and have the edges connecting two or more vertices as labeled or unlabeled

sets 𝜀L and 𝜀U.

Following the graph model, we represent the edge flows within the networks as the

vector f. If we are to account only for the netflow along and edge, we obtain fr > 0 when

the flow orientation of the edge along with its reference orientation and fr < 0 in all

other cases. The true edge flow in the network is denoted f̂. The divergence of a vertex

can be found by calculating the sum of outgoing flows minus the incoming flows at that

vertex. This formula is defined as follows:

(𝐵𝑓)𝑖 = ∑ 𝑓𝑟
𝜀𝑟∈𝜀:𝜀𝑟≡(𝑖,𝑗),𝑖< 𝑗

 − ∑ 𝑓𝑟
𝜀𝑟∈𝜀:𝜀𝑟≡(𝑗,𝑖),𝑗< 𝑖

 (4.9)

A loss function for edge flows is also defined in order to enforce a notion of flow

conservation. Having the edge Laplacian matrix defined as 𝐿e = B
TB, the loss function

is defined as:

‖𝐵𝑓‖2 = 𝑓2𝐵𝑇𝐵𝑓 = 𝑓𝑇𝐿𝑒𝑓 (4.10)

Studies in [41], [42] implement Active supervised learning in order to obtain a set

of labeled edges that were most helpful in determining overall edge flows within their

graph model. A similar approach is used with regard to our traffic graph model, giving us

18

insight into more relevant intersections when it comes to decision making. Practically,

this information could be used as an additional parameter, when planning the system, in

order to reduce real-world deployment costs.

The approach used in this study is called Rank-revealing QR (RRQR), a heuristic

method for the optimal column subset selection, an NP hard problem sometimes known

as maximum submatrix volume [43]. RRQR proposes the idea that in order to select the

set of labeled edges, 𝜀L, we need to choose mL rows from V0 that would maximize the

smallest singular value of the resulting submatrix. The RRQR heuristic is defined as:

𝑉𝐶
𝑇∏ = 𝑄[𝑅1𝑅2] (4.11)

where ∏ is a permutation matrix which keeps R1 well-conditioned. Additionally,

the first mL columns of ∏is chosen by the resulting edge set 𝜀L and edge indicated by the

column permutation within ∏.

19

Chapter 5

Results
Various simulations on different network sizes were conducted for each of the

algorithms implemented. The results of these simulations where then evaluated against

each other.

We evaluated our proposed method on synthetically generated network models

created using SUMO NetEdit tool. Vehicle trip data and routes were generated using

RandomTrips and DuaRouter tools, respectively. Each simulation run required a few

parameters as defined in subsection 5.2 Simulation Parameters

A standard four-way intersection is shown in Figure 1.1. These intersections are

joined with other similarly designed intersections along connecting roads, making up a

traffic network with larger amounts of intersections. Figure 2.1 displays a sample of what

the 20-intersection network looks like. Similarly, Figure 4.1 depicts a 17-intersection

network model. Different network models were designed to minimize bias and provide

us with more versatile results. Intersections within a network are different from other

intersections, while many of them are four-way intersections as seen in Figure 1.1, the

length of the edges connecting into and out of the intersection varies in length, this affects

vehicle travel time and would affect overall congestion. Additionally, the networks were

designed to include three-way intersection models as well.

Figure 5.1 depicts a general workflow of how the program runs the proposed

system. The workflow process is the same for other simulations conducted with other

algorithms, however in those algorithms, we only extract information that is required by

the specific algorithms, information such as the adjacency matrix is only required for the

proposed system and does not get extracted when running simulations for other

algorithms.

20

Figure 5.1 Flowchart representation breaking down the steps on how the

proposed

21

5.1 Prediction Performance Results

Results obtained from our RRQR models were compared against ZeroFill baseline,

which assigns 0 edge flows to all unlabeled edges, labeled edges were randomly selected.

Performance was evaluated based on the Pearson correlation between the estimated flow

vector f* and ground truth 𝑓. Figure 5.2 displays the results for the 5, 17 and 20

intersection models, respectively.

Figure 5.2 Graph based SSL for synthetic flows from the simulation on 5, 17 and

20 intersection models.

From Figure 5.2 it can be observed that our RRQR based model works better when

there is a lower number of labeled edges. Additionally, it is also observed that the

performance improves as the number of intersections within a network is increased.

22

5.2 Simulation Parameters

5.2.1 Number of steps

The number of steps determines how long a specific simulation would run. Ideally,

the simulation would run after all the vehicles generated using DuaRouter have entered

the simulation. However, the time at which vehicles enter and leave the simulation would

vary based on vehicle routes and traffic control algorithms.

In the experiments conducted, we set the number of steps to 1600 for all simulations

run.

5.2.2 Number of simulations

The number of simulations determines how many times we run each algorithm. We

run the algorithm multiple times and then take the average results obtained to fairly

evaluate the performance of the algorithms. As such, we repeat the simulations 10 times

for each algorithm and report the mean and standard deviation of the algorithms’

performance.

5.2.3 Traffic Phases

Each intersection in the network has predefined traffic phases. These phases are

generated by the SUMO suite. As a default setting, we use the generated phase times.

Each algorithm manipulates the traffic phase times according to the results obtained from

the algorithm.

5.3 Performance Evaluation

Using three distinct network layouts with 5, 17, and 20 intersections respectively,

and their own vehicle demands randomly generated for each simulation, SUMO along

with TraCI were used to run the simulation and collect relevant data. Data collection and

storage were done by having TraCI run the simulation for X number of steps, then

recording all relevant data, and vehicle movement, and proceeding with the simulation.

This was done in an event-loop manner as seen in Figure 5.1. The value X is defined as

the minimum number of steps until any intersection within the network undergoes a phase

23

change. This logic ensures that all vehicle movements are correctly recorded

synchronously.

Traffic Phase times were calculated as per each of the running algorithms.

Performance evaluation was defined to be the vehicles’ average wait time inside the

network during the simulation. Figure 5.3 - Figure 5.9 presents various average results

taken over several simulations conducted for each network layout. Results labeled as

‘Flow Prediction’ represent the results obtained from the proposed approach described in

subsection 4.3 Proposed: Graph-Semi Supervised Learning Based Approach. The label

‘Occupancy’ represents the results obtained from the simulations using the algorithm

described in subsection 4.2.1 Occupancy based algorithm, and the label ‘Scoring’

represents results obtained from simulations using the algorithm described in subsection

4.2.2 Scoring Algorithm. Certain plots also contain results with labels ‘A2C’ and ‘PPO’,

these are results obtained from simulations using the algorithms described in subsections

4.2.3.2 Advantage Actor Critic (A2C) [40] and 4.2.3.1 Proximal Policy Optimization

(PPO) [40] respectively.

Figure 5.3 Average waiting time for a single vehicle in the network

24

Figure 5.3 represents the average wait time a single vehicle spends idly waiting on

the simulation. It can be observed that the Flow Prediction algorithm outperforms the

occupancy-based algorithm significantly for all network models. Additionally, compared

to the Scoring Algorithm, it is observed that the performance difference of the Flow

Prediction algorithm, compared to the other algorithms, is improved upon increasing the

number of intersections.

Figure 5.4 Average total waiting time for all vehicles in the network

Figure 5.4 represents the average waiting time for all the vehicles in the network.

Observations here are similar to the observations from Figure 5.3. The performance of

the flow prediction algorithm is significantly better than the other algorithms, and the

performance also improves as the number of intersections increases.

25

Figure 5.5 Average waiting time for all vehicles in an intersection

The number of simulations run for the A2C, and PPO algorithms were set to 3, due

to their running times being significantly higher than the other algorithms. For this reason,

standard bar plots were constructed for Figure 5.5 and Figure 5.6.

Figure 5.5 presents the average wait time for all vehicles in the network using a

smaller simulation step value. Here it is observed that the flow prediction algorithm

always outperforms occupancy-based algorithm, scoring algorithms for larger networks,

and RL algorithms in only the smaller network.

26

Figure 5.6 Average maximum maximum waiting time for a single vehicle

Figure 5.6 presents the maximum wait time for a single vehicle in the network.

Similar to the observations in Figure 5.5; We observe the results in Figure 5.6 show that

RL algorithms provide better results in larger networks.

Figure 5.7 and Figure 5.8 presents the average wait time per vehicle per simulation

step for the Occupancy based algorithm, Flow Prediction based algorithm, and the

Scoring algorithm for simulations run on the 17 intersection and 20 intersection network

models respectively. These graphs visualize the decrease in wait time over time for each

of the algorithms. It can also be observed how the Flow prediction algorithm outperforms

the other algorithms at a much faster rate, and a relationship with the Figure 5.3 and Figure

5.4 can be formed.

27

Figure 5.7 Average wait time per vehicle per simulation step – 17 Intersections

Figure 5.8 Average wait time per simulation step - 20 intersections

28

Figure 5.9 Average running times for each simulation

Finally, Figure 5.9 presents the average running time for each of the simulation. In

all simulations conducted, the occupancy-based algorithm performs the fastest, followed

by the flow prediction and scoring algorithms without too much of a time difference.

However, when it comes to the RL based algorithms, the time taken for each of the

simulation models is considerably high, additionally, this time also increases with the

number of intersections being increased.

29

Chapter 6

Conclusions and Future Prospects

6.1 Societal Impacts and Contribution to Global

Sustainability

As per the studies shown and descriptions provided throughout section 1, it is

observed that traffic congestion and delay often impact our society in terms of

environmental damage, as well as the monetary cost to individuals and governments in

the form of time. Additionally, due to the evergrowing size of cities, population, and the

need for vehicles increasing, congestions are bound to occur more frequently. Therefore

it is imperative that congestion and delays are minimized.

The research conducted in this study aims to address these issues, by smoothening

traffic flow between intersections. This is achieved by modeling multi-intersection

network models into a graph-like model, and then predicting traffic flow between the

nodes within the model, followed by making informed decisions on connecting

intersection phase durations. Additionally, as proposed in Section 4.3.2, our model is also

able to identify intersections that are more impactful in reducing congestion, allowing us

to focus on them in greater detail. A significant advantage of focusing on the more

impactful intersections is cost, as in a real-world scenario, we could dramatically reduce

the cost of such a system by having the sensors placed in the more impactful junctions

and have the semi-supervised learning features of the study work with unlabelled data on

the less impactful junctions. The results displayed in Figure 5.2 demonstrate that this

approach provides improving results based on an increasing number of intersections.

Having connecting intersections make informed decisions based on predicted traffic

flow reduces the vehicle delay within an intersection significantly, as seen from the results

obtained on the various simulations done in different network models. In return, the

economical and environmental costs caused by being at an idle state within intersections

30

are negated. Further research could also contribute to better decision-making systems,

which may provide more optimal calculations for predicted traffic flow, and have optimal

traffic movement.

To summarize, the conducted study contributes mainly toward economic growth

and sustainable cities. These goals are achieved by having improved traffic flow

throughout the city. Costs incurred due to traffic-related delays would be significantly

reduced, additionally, the proposition of focusing on the more important intersections

allows equally effective and cost-efficient implementations of the proposed system.

6.2 Conclusions

This study proposes a novel adaptive traffic light management system that is able

to predict traffic flow from one intersection onto another. The principal algorithm behind

the proposed system is graph-based semi-supervised learning for edge flows, where each

traffic light intersection and vehicle entry/exit points are treated as a vertex node, the

roads connecting any two vertices are taken as connecting edges. Magnitudes of edge

connections are then calculated using the proposed RRQR method. The obtained

information is then used to select and optimize the predefined traffic phases.

Comparative performance evaluations on various traffic intersection configurations

show that our approach can produce comparable average vehicle waiting time and

drastically reduce the training/learning time of learning an adequate traffic light

configurations for all intersections within a short period of time, whereas training deep

learning based approaches can consume over a few hours.

Main conclusions are as follows:

i. The proposed approach is able to predict traffic outflow from a given junction.

This outflow can be used on connected junctions to predict congestion and

optimize phase durations.

ii. Using the proposed RRQR heuristic for the prediction allows us to optimize

the average waiting times in a traffic environment as well as pay more

attention to more impactful junctions.

iii. Larger network models lead to higher accuracy in predictions, as well as better

performance of the model.

31

iv. To the best of our knowledge, the proposed approach is a novel concept. No

other study uses edge-based semi-supervised learning to predict vehicle flows

between traffic networks.

6.3 Future Prospects

Future efforts in this direction would include further optimization of the traffic

decision-making process, based on predicted traffic flows; This may include additional

concepts such as fixed or dynamic cycle-times and phase orders. Additionally, it would

also be beneficial to improve the running time of the flow prediction-based algorithm,

faster algorithm runtime would lead to seamless integration with real-world applications.

32

BIBLIOGRAPHY

[1] “Leading Transportation Analytics Solutions | INRIX.” https://inrix.com/

(accessed Apr. 26, 2022).

[2] A. J. Miller, “Settings for Fixed-Cycle Traffic Signals,” Journal of the Operational

Research Society, vol. 14, no. 4, pp. 373–386, Dec. 1963, doi:

10.1057/JORS.1963.61.

[3] F. Webster, “Traffic signal settings,” 1958, Accessed: Apr. 26, 2022. [Online].

Available: https://trid.trb.org/view/113579

[4] S. B. Cools, C. Gershenson, and B. D’Hooghe, “Self-organizing traffic lights: A

realistic simulation,” Advanced Information and Knowledge Processing, no.

9781447151128, pp. 45–55, 2013, doi: 10.1007/978-1-4471-5113-5_3.

[5] M. Coşkun, A. Baggag, S. C.-2018 I. International, and undefined 2018, “Deep

reinforcement learning for traffic light optimization,” ieeexplore.ieee.org,

Accessed: Apr. 26, 2022. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/8637414/?casa_token=xcQHEqR9

R68AAAAA:q9tqSuM-WMtzl-

CksB9VZbbTP2jv53_Rs2xKx10ffa_3dhKacWSL9sr9G6PFddWUxghMBTqaQd

1L

[6] L. Kuyer, S. Whiteson, B. Bakker, and N. Vlassis, “Multiagent reinforcement

learning for Urban traffic control using coordination graphs,” Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), vol. 5211 LNAI, no. PART 1, pp. 656–671,

2008, doi: 10.1007/978-3-540-87479-9_61.

[7] E. van der Pol, F. O. learning, inference and control of, and undefined 2016,

“Coordinated deep reinforcement learners for traffic light control,”

elisevanderpol.nl, Accessed: Apr. 26, 2022. [Online]. Available:

https://www.elisevanderpol.nl/papers/vanderpolNIPSMALIC2016.pdf

[8] M. W.-M. L. P. of the Seventeenth and undefined 2000, “Multi-agent

reinforcement learning for traffic light control,” dcsc.tudelft.nl, Accessed: Apr. 26,

2022. [Online]. Available:

http://www.dcsc.tudelft.nl/~sc4081/2018/assign/pap/Reinforcement_Learning.pd

f

[9] P. Lopez, M. Behrisch, … L. B.-W.-2018 21st, and undefined 2018, “Microscopic

traffic simulation using sumo,” ieeexplore.ieee.org, Accessed: Apr. 26, 2022.

[Online]. Available:

https://ieeexplore.ieee.org/abstract/document/8569938/?casa_token=kU8yoFC35

CEAAAAA:c-oxQPWhT9apGfe9qLy-

cb3ANkLXHmVcqGHebRNTyfL_54hnyhVj2yWCdqDCWHUtVasGjvr5XA_5

[10] “Eclipse SUMO - Simulation of Urban MObility.” https://www.eclipse.org/sumo/

(accessed Apr. 27, 2022).

[11] “netedit - SUMO Documentation.” https://sumo.dlr.de/docs/Netedit/index.html

(accessed Apr. 27, 2022).

[12] “Trip - SUMO Documentation.” https://sumo.dlr.de/docs/Tools/Trip.html

(accessed Apr. 27, 2022).

[13] “duarouter - SUMO Documentation.” https://sumo.dlr.de/docs/duarouter.html

(accessed Apr. 27, 2022).

[14] S. Ali, B. George, … L. V.-I. T. on, and undefined 2011, “A multiple inductive

loop vehicle detection system for heterogeneous and lane-less traffic,”

33

ieeexplore.ieee.org, Accessed: Apr. 26, 2022. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/6095626/?casa_token=Kffy7QWvT

aMAAAAA:pbA6_m0YEKG3BiEUjB6xw8bEJaW0IU46dj2fh8qp1Ljxno5fRIA

UWezeBLqK-w-S9hcE9vx6hl0k

[15] N. Lanke, S. K.-I. J. of C. Applications, and undefined 2013, “Smart traffic

management system,” researchgate.net, vol. 75, no. 7, pp. 975–8887, 2013, doi:

10.5120/13123-0473.

[16] W. Hooda, P. Yadav, … A. B.-P. of the S., and undefined 2016, “An Image

Processing Approach to Intelligent Traffic Management System,” dl.acm.org, vol.

04-05-March-2016, Mar. 2016, doi: 10.1145/2905055.2905091.

[17] Y. I.-P. of C. on Intelligent and undefined 1997, “An image processing system to

measure vehicular queues and an adaptive traffic signal control by using the

information of the queues,” ieeexplore.ieee.org, Accessed: Apr. 26, 2022.

[Online]. Available: https://ieeexplore.ieee.org/abstract/document/660474/

[18] F. Barrero, J. Guevara, E. Vargas, … S. T.-C. S. &, and undefined 2014,

“Networked transducers in intelligent transportation systems based on the IEEE

1451 standard,” Elsevier, Accessed: Apr. 26, 2022. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0920548912000633?casa_tok

en=TJXiHvDNavcAAAAA:gT3ETkfnZYtyhh92Piy0kI3TkYiyDaWemrMTGFf0

xurrBD1-5racSjTWMJdjt1QCUrIXD_NZYHU

[19] D. Gregor, S. Toral, T. Ariza, F. Barrero, … R. G.-C. S. &, and undefined 2016,

“A methodology for structured ontology construction applied to intelligent

transportation systems,” Elsevier, Accessed: Apr. 26, 2022. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0920548915001178?casa_tok

en=TTnXKgYHTmcAAAAA:wj_cRVzYF8PvvVbrqhrQ0Re2FcrXzsz2BZfihe4

ya-NFaUj9KFY6waNVNtrVoa1JFz91aaP-rWk

[20] H. Pan, S. Wang, K. Y.-C. S. & Interfaces, and undefined 2014, “An integrated

data exchange platform for Intelligent Transportation Systems,” Elsevier,

Accessed: Apr. 26, 2022. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0920548913000949?casa_tok

en=53hZpyTLXHkAAAAA:8MVMZCjlqQJPhNSgL7GHcRR8FVAS6NMXGm

aP9hhZ-XBl_99JtXw97HHFxqy8r2res3hic-b7GBU

[21] I. Román, G. Madinabeitia, L. Jimenez, … G. M.-C. S. &, and undefined 2013,

“Experiences applying RM-ODP principles and techniques to intelligent

transportation system architectures,” Elsevier, Accessed: Apr. 26, 2022. [Online].

Available:

https://www.sciencedirect.com/science/article/pii/S092054891100136X?casa_tok

en=Uk7FbPjczboAAAAA:U4l_t9kA4nqdJDbbsJ4uEVsp9OvqGQ3rK4G5RzeXg

rZNcPifa0j3uRW12Kq08pPq2062WX5jRew

[22] S. Toral, F. Barrero, F. Cortés, D. G.-C. S. & Interfaces, and undefined 2013,

“Analysis of embedded CORBA middleware performance on urban distributed

transportation equipments,” Elsevier, Accessed: Apr. 26, 2022. [Online].

Available:

https://www.sciencedirect.com/science/article/pii/S0920548912000815?casa_tok

en=Iuqw3KLHBlkAAAAA:pyphx31NHmvoMS16OkcBEmxomL7c7rfBqP_mN

nOb0j2ni5fEPLYwpo_oyxWaGNaftZ15CmFgZUk

[23] F. Dion, H. Rakha, Y. K.-T. R. P. B, and undefined 2004, “Comparison of delay

estimates at under-saturated and over-saturated pre-timed signalized

intersections,” Elsevier, Accessed: Apr. 26, 2022. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0191261503000031?casa_tok

34

en=j5ClsHrFQkMAAAAA:usevIMm0OIuonFFQ4rYJGIOXKCV_MKTkxxxOB

2QWGjFMeA5Q5VBnMo-xp185VoXEtk_MFbazxu4

[24] I. Porche and S. Lafortune, “Adaptive look-ahead optimization of traffic signals,”

ITS Journal, vol. 4, no. 3, pp. 209–254, 1999, doi: 10.1080/10248079908903749.

[25] B. Abdulhai, R. Pringle, and G. J. Karakoulas, “Reinforcement Learning for True

Adaptive Traffic Signal Control”, doi: 10.1061/(ASCE)0733-947X(2003)129.

[26] N. Bolong, S. S. Yang, Y. Kwong Chin, A. Kiring, K. Tze, and K. Teo, “Q-learning

based traffic optimization in management of signal timing plan,” researchgate.net,

2011, doi: 10.5013/IJSSST.a.12.03.05.

[27] P. Mannion, J. Duggan, and E. Howley, “An Experimental Review of

Reinforcement Learning Algorithms for Adaptive Traffic Signal Control,”

Autonomic Road Transport Support Systems, pp. 47–66, 2016, doi: 10.1007/978-

3-319-25808-9_4.

[28] I. Arel, C. Liu, T. Urbanik, and A. G. Kohls, “Reinforcement learning-based multi-

agent system for network traffic signal control,” IET Intelligent Transport Systems,

vol. 4, no. 2, pp. 128–135, 2010.

[29] P. Balaji, … X. G.-I. I. T., and undefined 2010, “Urban traffic signal control using

reinforcement learning agents,” ieeexplore.ieee.org, 2010, doi: 10.1049/iet-

its.2009.0096.

[30] S. El-Tantawy, … B. A.-I. T. on, and undefined 2013, “Multiagent reinforcement

learning for integrated network of adaptive traffic signal controllers (MARLIN-

ATSC): methodology and large-scale application on downtown,”

ieeexplore.ieee.org, Accessed: Apr. 26, 2022. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/6502719/?casa_token=auJaJ-

DP84AAAAAA:8itU4G6RzIPzVKxb4oMpdLTv1b3bkILUZABQLdstDqwr7dY

RFPjYm2WgxYQ8juMmudn2FDYBOKOx

[31] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,”

proceedings.mlr.press, 2016, Accessed: Apr. 26, 2022. [Online]. Available:

http://proceedings.mlr.press/v48/mniha16.html?ref=https://githubhelp.com

[32] J. Schulman, F. Wolski, P. Dhariwal, … A. R. preprint arXiv, and undefined 2017,

“Proximal policy optimization algorithms,” arxiv.org, Accessed: Apr. 26, 2022.

[Online]. Available: https://arxiv.org/abs/1707.06347

[33] H. Wei et al., “Colight: Learning network-level cooperation for traffic signal

control,” dl.acm.org, pp. 1913–1922, Nov. 2019, doi: 10.1145/3357384.3357902.

[34] H. Wei, G. Zheng, H. Yao, and Z. Li, “Intellilight: A reinforcement learning

approach for intelligent traffic light control,” in Proceedings of the 24th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining,

2018, pp. 2496–2505.

[35] J. Jia, M. Schaub, S. Segarra, A. B.-P. of the 25th ACM, and undefined 2019,

“Graph-based semi-supervised & active learning for edge flows,” dl.acm.org, pp.

761–771, Jul. 2019, doi: 10.1145/3292500.3330872.

[36] F. Dion, H. Rakha, and Y.-S. Kang, “Comparison of delay estimates at under-

saturated and over-saturated pre-timed signalized intersections,” Transportation

Research Part B: Methodological, vol. 38, no. 2, pp. 99–122, 2004.

[37] B. Smith, M. D.-P. of I. international, and undefined 1994, “Short-term traffic flow

prediction models-a comparison of neural network and nonparametric regression

approaches,” ieeexplore.ieee.org, Accessed: Apr. 26, 2022. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/400094/?casa_token=z7eH56jjQA

MAAAAA:WxVaVYZx1rXyN6nQdoz2WgADNXLdHjcq2WiCyzYDerFc03pd

9lh9ZB1Ss3r1UBMHfcYiWLd54LN7

35

[38] G. Zheng et al., “Learning phase competition for traffic signal control,”

dl.acm.org, p. 10, Nov. 2019, doi: 10.1145/3357384.3357900.

[39] S. Faye, C. Chaudet, and I. Demeure, “A distributed algorithm for multiple

intersections adaptive traffic lights control using a wireless sensor networks,”

CoNEXT UrbaNe 2012 - Proceedings of the ACM Conference on the 1st Workshop

on Urban Networking, pp. 13–18, 2012, doi: 10.1145/2413236.2413240.

[40] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann,

“Stable-Baselines3: Reliable Reinforcement Learning Implementations,” jmlr.org,

vol. 22, pp. 1–8, 2021, Accessed: Apr. 26, 2022. [Online]. Available:

https://www.jmlr.org/papers/volume22/20-1364/20-1364.pdf

[41] A. Gadde, A. Anis, … A. O.-20th A. S. international conference, and undefined

2014, “Active semi-supervised learning using sampling theory for graph signals,”

dl.acm.org, pp. 492–501, 2014, doi: 10.1145/2623330.2623760.

[42] A. Guillory, J. B.-I. P. Systems, and undefined 2009, “Label selection on graphs,”

proceedings.neurips.cc, Accessed: Apr. 26, 2022. [Online]. Available:

https://proceedings.neurips.cc/paper/2009/hash/90794e3b050f815354e3e29e977a

88ab-Abstract.html

[43] A. Civril, M. M.-I.-T. C. Science, and undefined 2009, “On selecting a maximum

volume sub-matrix of a matrix and related problems,” Elsevier, Accessed: Apr. 26,

2022. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0304397509004101

36

APPENDIX

Appendix A: Python Code used to run a SUMO simulation using

TraCI

Import system packages to add SUMO files to python path

import os, sys

Import traci package. Can be installed using `python -m pip install

traci`

import traci

Defines some of the variables used when running on IDLE or as a script

file.

LOCAL_SUMO_FOLDER = 'sumo_tools'

SUMO_BINARY = None

N_STEPS = 1600

tools = None

if 'SUMO_HOME' in os.environ:

 tools = os.path.join(os.environ['SUMO_HOME'], 'tools')

 sys.path.append(tools)

elif os.path.isdir(LOCAL_SUMO_FOLDER):

 tools = os.path.join(os.getcwd(), f'{LOCAL_SUMO_FOLDER}/tools')

 sys.path.append(tools)

else:

 localPath = os.path.join(os.getcwd(), f'{LOCAL_SUMO_FOLDER}')

 print (f'[ERR] SUMO_HOME environment variable not defined.')

 print (f'If you are using local files, ensure the path is correct.

[{localPath}]')

 sys.exit(1)

Ensure that valid tools folder was found. Required to define

SUMO_BINRAY and SUMO_COMMAND

assert not type(tools) == type (None), 'No tools folder found.'

SUMO_BINARY = f'{tools}/sumo-gui'

SUMO_COMMAND = [SUMO_BINARY, '-c',

'sample_network_configuration.sumocfg']

if __name__ == "__main__":

 # Start the simulation

 traci.start (SUMO_COMMAND)

 # Run the simulation for N_STEPS number of steps

 localStep = 0

37

 while localStep < N_STEPS:

 traci.simulationStep()

 # Close the connection

 traci.close(False)

 print (f'Simulation Completed :)')

38

CURRICULUM VITAE

EXPERIENCE

2018 Summer Intern, Attune Consulting

Colombo, SRI LANKA

2020 – Present Computer Engineer, Kayseri Ulaşim

Kayseri, TURKEY

EDUCATION

2017 – 2019 B.Sc., Computer Engineering, Abdullah Gul University

Kayseri, TURKEY

2019 – Present M.Sc., Electrical and Computer Engineering, Abdullah Gul

University

Kayseri, TURKEY

PUBLICATIONS

J1) Dundar, Munis, et al. "Clinical and molecular evaluation of MEFV gene variants in

the Turkish population: a study by the National Genetics Consortium." Functional &

Integrative Genomics (2022): 1-25.

J2) Adam R. Thahir, et al. "Intelligent Traffic Light Systems using Edge Flow

Predictions" (under review).

