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Abstract: In this paper, we study the existence of positive solutions of a nonlinear m -point p -Laplacian dynamic

equation

(ϕp(x
∆(t)))∇ + w(t)f(t, x(t), x∆(t)) = 0, t1 < t < tm,

subject to one of the following boundary conditions

x(t1)−B0

(m−1∑
i=2

aix
∆(ti)

)
= 0, x∆(tm) = 0,

or

x∆(t1) = 0, x(tm) +B1

(m−1∑
i=2

bix
∆(ti)

)
= 0,

where ϕp(s) =| s |p−2 s, p > 1. Sufficient conditions for the existence of at least three positive solutions of the problem

are obtained by using a fixed point theorem. The interesting point is the nonlinear term f is involved with the first

order derivative explicitly. As an application, an example is given to illustrate the result.

Key words: Time scales, boundary value problem, p -Laplacian, positive solutions, fixed point theorem

1. Introduction

The theory of dynamic equations on time scales was introduced by Stefan Hilger [14] in his PhD thesis in 1988.

It has been created in order to unify continuous and discrete analysis, and it allows simultaneous treatment

of differential and difference equations, extending those theories to so-called dynamic equations. Moreover,

the study of time scales has led to a number of significant applications, e.g., in the study of insect population

models, heat transfer, neural networks, phytoremediation of metals, wound healing, and epidemic models.

In [18], Su and Li studied the existence of positive solutions of p -Laplacian dynamic equation

(φp(u
∆(t)))∇ + a1(t)f(u(t)) = 0 t ∈ [0, T ]T,
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subject to boundary conditions

u(0)−B0

(m−2∑
i=1

aiu
∆(ξi)

)
= 0, u∆(T ) = 0,

or

u∆(0) = 0, x(T ) +B1

(m−2∑
i=1

biu
∆(ξi)

)
= 0,

where φp(v) = |v|p−2v with p > 1. They showed that the boundary value problem has at least three positive

solutions by using the five functional fixed-point theorem.

In [19], Sun and Li studied the following p -Laplacian m - point boundary value problem on time scales

(φp(u
∆(t)))∇ + a(t)f(t, u(t)) = 0, t ∈ (0, T ),

u(0) = 0, φp(u
∆(T )) =

m−2∑
i=1

aiφp(u
∆(ξi)),

where a ∈ Cld ((0, T ), [0,∞)) and f ∈ Cld ((0, T ) × [0,∞), [0,∞)). They found some new results for the

existence of at least twin or triple positive solutions of the problem by applying Avery–Henderson and Leggett–

Williams fixed point theorems, respectively.

In [20] the authors considered the following p -Laplacian multipoint boundary value problem on time

scales:

(ϕp(u
∆(t)))∇ + a(t)f(t, u(t)) = 0, t ∈ [0, T ]T,

ϕp(u
∆(0)) =

n−2∑
i=1

aiϕp(u
∆(ξi)), u(T ) =

n−2∑
i=1

biϕpu(ξi),

where ϕp(s) = |s|p−2s with p > 1, ξi ∈ [0, T ]T, 0 < ξ1 < ξ2 < . . . < ξn−2 < ρ(T ). They provided some sufficient

conditions for the existence of multiple positive solutions to the problem by using a fixed point index.

Recently, much attention has been paid to the existence of positive solutions of boundary value problems

(BVPs) on time scales; see [1, 6, 9, 10, 13, 15–20]. However, to the best of our knowledge, there are not many

results concerning p -Laplacian dynamic equations with nonlinearity depending on the first order derivative for

BVPs on time scales [7, 8, 11].

Motivated by the above works, in this paper, we consider the existence of at least three positive solutions

for a p -Laplacian dynamic equation on time scales,

(ϕp(x
∆(t)))∇ + w(t)f(t, x(t), x∆(t)) = 0, t1 < t < tm, (1.1)

subject to one of the following boundary conditions:

x(t1)−B0

(m−1∑
i=2

aix
∆(ti)

)
= 0, x∆(tm) = 0, (1.2)

or

x∆(t1) = 0, x(tm) +B1

(m−1∑
i=2

bix
∆(ti)

)
= 0, (1.3)
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where ϕp(u) is a p -Laplacian operator, i.e. ϕp(s) =| s |p−2 s, for p > 1, with (ϕp)
−1 = ϕq and

1
p+

1
q = 1, and

the points ti ∈ Tk
k for i ∈ {1, 2, . . . ,m} with 0 = t1 < t2 < . . . < tm = 1. The usual notation and terminology

for time scales as can be found in [3, 4] will be used here. The interesting point is that the nonlinear term f

is associated with the first order derivative explicitly and the main tool is a fixed point theorem due to Avery

and Peterson. The results are even new for the special cases of difference equations and differential equations,

as well as in the general time scale setting.

Throughout the paper, we will suppose that the following conditions are satisfied:

(H1) ai, bi ∈ [0,∞), i ∈ {2, 3, . . . ,m− 1} with 0 <
∑m−1

i=2 ai < 1, and
∑m−1

i=2 bi < 1

(H2) w(t) ∈ Cld([t1, tm], [0,+∞)) and does not vanish identically on any closed subinterval of [t1, tm] , where

Cld([t1, tm], [0,+∞)) denotes the set of left dense continuous from T to [0,+∞)

(H3) f : [t1, tm]× [0,+∞)× R −→ [0,+∞) is continuous;

(H4) B0 and B1 satisfy Bv ≤ Bi(v) ≤ Av, v ∈ R, i = 0, 1, here B and A are nonnegative numbers.

2. Preliminaries

In this section, we provide some background materials from theory of cones in Banach spaces. The following

definitions can be found in the book by Deimling [5] as well as in the book by Guo and Lakshmikantham [12].

Definition 2.1 Let E be a real Banach space over R . A nonempty closed set P ⊂ E is said to be a cone if

it satisfies the following two conditions:

(i) au+ bv ∈ P for all u, v ∈ P and all a, b ≥ 0;

(ii) u,−u ∈ P implies u = 0.

Every cone P ⊂ E induces an ordering in E given by x ≤ y if and only if y − x ∈ P.

Definition 2.2 An operator is called completely continuous if it is continuous and maps bounded sets into

precompact sets.

Definition 2.3 A map α is said to be a nonnegative continuous concave functional on a cone P of a real

Banach space E if α :−→ [0,∞) is continuous and

α(tx+ (1− t)y) ≥ tα(x) + (1− t)α(y)

for all x, y ∈ P and t ∈ [0, 1].

Similarly, we say the map γ is a nonnegative continuous convex functional on a cone P of a real Banach space

E if γ : P −→ [0,∞) is continuous and

γ(tx+ (1− t)y) ≤ tγ(x) + (1− t)γ(y)

for all x, y ∈ P and t ∈ [0, 1].

943
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Let γ and θ be nonnegative continuous convex functionals on P, α be a nonnegative continuous concave

functional on P, and ψ be a nonnegative continuous functional on P. Then for positive real numbers a, b, c ,

and d, we define the following sets:

P (γ, d) = {x ∈ P : γ(x) < d},

P (γ, α, b, d) = {x ∈ P : b ≤ α(x), γ(x) ≤ d},

P (γ, θ, α, b, c, d) = {x ∈ P : b ≤ α(x), θ(x) ≤ c, γ(x) ≤ d},

R(γ, ψ, a, d) = {x ∈ P : a ≤ ψ(x), γ(x) ≤ d}.

To prove our results, we need the following fixed point theorem due to Avery and Peterson.

Theorem 2.4 ([2, Theorem 10]). Let P be a cone in a real Banach space E. Let γ and θ be nonnegative

continuous convex functionals on P, α be a nonnegative continuous concave functional on P, and ψ be a

nonnegative continuous functional on P satisfying ψ(λx) ≤ λψ(x) for 0 ≤ λ ≤ 1, such that for some positive

numbers M and d,

α(x) ≤ ψ(x) and ∥x∥ ≤Mγ(x) (2.1)

for all x ∈ P (γ, d). Suppose T : P (γ, d) → P (γ, d) is completely continuous and there exist positive numbers

a, b , and c with a < b such that

(i) {x ∈ P (γ, θ, α, b, c, d) : α(x) > b} ≠ ∅, and α(Tx) > b for x ∈ P (γ, θ, α, b, c, d);

(ii) α(Tx) > b, for x ∈ P (γ, α, b, d) with θ(Tx) > c;

(iii) 0 /∈ R(γ, ψ, a, d) and ψ(Tx) < a for x ∈ R(γ, ψ, a, d) with ψ(x) = a.

Then T has at least three fixed points x1, x2, x3 ∈ P (γ, d) such that

γ(xi) ≤ d for i = 1, 2, 3, b < α(x1), a < ψ(x2), with α(x2) < b, ψ(x3) < a.

3. Existence of multiple positive solutions to (1.1) and (1.2)

In this section, we shall obtain existence results for the problems (1.1) and (1.2) by using the Avery–Peterson

fixed point theorem.

We define the real Banach space E = C∆[t1, σ(tm)] to be the set of all delta-differential functions with

continuous delta-derivative on [t1, σ(tm)] with the norm

∥x∥1,T = max{∥x∥0,T, ∥x∆∥0,Tk}, x ∈ E,

where

∥x∥0,T := sup{|x(t)| : t ∈ [t1, tm]}, ∥x∆∥0,Tk := sup{|x∆(t)| : t ∈ [t1, tm]Tk}, x ∈ E.

From the fact

(ϕp(x
∆(t)))∇ = −w(t)f(t, x(t), x∆(t)) ≤ 0 for t ∈ [t1, tm]Tk

k
,
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we know that x is concave on [t1, tm]. Therefore, define a cone P1 ⊂ E by

P1 =

{
x ∈ E : x(t) ≥ 0, x(t1)−B0

(
m−1∑
i=2

aix
∆(ti)

)
= 0, x is concave on [t1, tm]

}
⊂ E.

Let the nonnegative continuous concave functional α1, the nonnegative continuous convex functional

θ1, γ1, and the nonnegative continuous functional ψ1 be defined on the cone P1 by

α1(x) = min
t∈[ 1n ,n−1

n ]T

|x(t)|, γ1(x) = max
t∈[t1,tm]Tk

| x∆(t) |,

ψ1(x) = θ1(x) = max
t∈[t1,tm]

| x(t) |, x ∈ P1,

where 0 = t1 <
1

n
< t2 < . . . < tm−1 = tm − 2

n
< tm = 1, n > max

{ 1

t2
,

2

tm − tm−1

}
.

Lemma 3.1 Let 0 = t1 <
1

n
< t2 < . . . < tm−1 = tm − 2

n
< tm = 1. If (H1) holds, then for x ∈ P1, there

exists a constant M > 0 such that

max
t∈[t1,tm]

| x(t) |≤M max
t∈[t1,tm]Tk

| x∆(t) |,

where

M = A

m−1∑
i=2

ai + tm − t1.

Proof Since

x(t) = x(t1) +

∫ t

t1

x∆(s)∆s,

so we have

max
t∈[t1,tm]

| x(t) | ≤ | x(t1) | +(tm − t1) max
t∈[t1,tm]Tk

| x∆(t) |

=
∣∣∣B0

m−1∑
i=2

aix
∆(ti)

∣∣∣+ (tm − t1) max
t∈[t1,tm]Tk

| x∆(t) |

≤

(
A

m−1∑
i=2

ai + tm − t1

)
max

t∈[t1,tm]Tk
| x∆(t) | .

2

By Lemma 3.1 and the concavity of x, for all x ∈ P1, the functionals defined above hold for the relations

1

n
θ1(x) ≤ α1(x) ≤ θ1(x), ∥x∥1,T = max{θ1(x), γ1(x)} ≤Mγ1(x). (3.1)

Thus, the condition (2.1) of Theorem 2.4 is satisfied.
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Lemma 3.2 If y ∈ Cld[t1, tm], then

(ϕp(x
∆(t)))∇ + y(t) = 0, t1 < t < tm, (3.2)

x(t1)−B0

(m−1∑
i=2

aix
∆(ti)

)
= 0, x∆(tm) = 0, (3.3)

has a unique solution

x(t) = B0

(
m−1∑
i=2

aiϕq

(∫ tm

ti

y(r)∇r

))
+

∫ t

t1

ϕq

(∫ tm

s

y(r)∇r

)
∆s. (3.4)

Proof From (3.2), we have

(ϕp(x
∆(t)))∇ = −y(t)

Integrating from t to tm, we get

ϕp(x
∆(t)) =

∫ tm

t

y(r)∇r i.e., x∆(t) = ϕq

(∫ tm

t

y(r)∇r

)
. (3.5)

Integration from t1 to t yields

x(t)− x(t1) =

∫ t

t1

ϕq

(∫ tm

s

y(r)∇r

)
∆s;

i.e.

x(t) = x(t1) +

∫ t

t1

ϕq

(∫ tm

s

y(r)∇r

)
∆s.

From (3.5), we get

x∆(ti) = ϕq

(∫ tm

ti

y(r)∇r

)
.

From (3.3), we have

x(t1)−B0

(
m−1∑
i=2

aiϕq

(∫ tm

ti

y(r)∇r

))
= 0.

Thus,

x(t1) = B0

(
m−1∑
i=2

aiϕq

(∫ tm

ti

y(r)∇r

))
.

Therefore, (3.2) and (3.3) have a unique solution

x(t) = B0

(
m−1∑
i=2

aiϕq

(∫ tm

ti

y(r)∇r

))
+

∫ t

t1

ϕq

(∫ tm

s

y(r)∇r

)
∆s.

2
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Lemma 3.3 Assume Lemma 3.2 holds. If y ∈ Cld[t1, tm] and y ≥ 0, then the solution of BVPs (3.2) and

(3.3) satisfies x(t) ≥ 0.

Proof By Lemma 3.2, we find

x(t1) = B0

(
m−1∑
i=2

aiϕq

(∫ tm

ti

y(r)∇r

))
≥ 0,

x(tm) = B0

(
m−1∑
i=2

aiϕq

(∫ tm

ti

y(r)∇r

))

+

∫ tm

t1

ϕq

(∫ tm

s

y(r)∇r

)
∆s ≥ 0.

If t ∈ (t1, tm), we have

x(t) = B0

(
m−1∑
i=2

aiϕq

(∫ tm

ti

y(r)∇r

))

+

∫ t

t1

ϕq

(∫ tm

s

y(r)∇r

)
∆s ≥ 0.

Therefore, x(t) ≥ 0 for t ∈ [t1, tm]. 2

From Lemma 3.2, it is easy to see that BVPs (1.1) and (1.2) have a solution x = x(t) if and only if x

solves the equation

x(t) = B0

(
m−1∑
i=2

aiϕq

(∫ tm

ti

w(r)f(r, x(r), x∆(r))∇r

))

+

∫ t

t1

ϕq

(∫ tm

s

w(r)f(r, x(r), x∆(r))∇r

)
∆s.

We define the operator F : P1 → P1 as follows

(Fx)(t) := B0

(∑m−1
i=2 aiϕq

(∫ tm
ti

w(r)f(r, x(r), x∆(r))∇r

))

+
∫ t

t1
ϕq

(∫ tm
s

w(r)f(r, x(r), x∆(r))∇r

)
∆s.

(3.6)

Taking the delta derivative of (Fx)(t), we have

(Fx)∆(t) := ϕq

(∫ tm

t

w(r)f(r, x(r), x∆(r)) ∇r

)
, for x ∈ P1, t ∈ [t1, tm]Tk . (3.7)

Lemma 3.4 Let (H1)–(H4) hold. If conditions 1–3 are satisfied, then FP1 ⊂ P1 and F : P1 → P1 is completely

continuous.
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Proof

For x ∈ P1, from the definition of the operator F, we deduce that there is Fx ∈ C∆[t1, σ(tm)] , which is

nonnegative and (Fx)(t1)−B0

(∑m−1
i=2 aix

∆(ti)
)
= 0.

On the other hand, we have

(ϕp(x
∆(t)))∇ = −w(t)f(t, x(t), x∆(t)) ≤ 0 for t ∈ [t1, tm]Tk

k
,

which implies that Fx is concave on [t1, tm] . Therefore, F (P1) ⊂ P1.

Next we shall prove that operator F is completely continuous.

(1) Operator F is continuous. Because the function f is continuous, this conclusion can be easily found.

(2) For each constant l > 0, let Bl = {x ∈ P1 : ∥x∥1,T ≤ l}. Then Bl is a bounded closed convex set in P1.

∀x ∈ Bl, from (3.6) and (3.7), we have

∥(Fx)(t)∥0,T ≤ A
m−1∑
i=2

ai(MN)q−1 + (MD)q−1(t− t1)

≤ A
m−1∑
i=2

ai(MN)q−1 + (MD)q−1

and

∥(Fx)∆(t)∥0,Tk ≤ (MC)q−1

where

M = sup
r∈[s,tm]T,∥x∥1,T≤l

f(t, x(t), x∆(t)), N =

∫ tm

ti

w(r)∇r,

C =

∫ tm

t

w(r)∇r, D =

∫ tm

s

w(r)∇r, s ∈ [t1, tm], t ∈ [t1, tm]Tk .

Therefore, F (Bl) is uniformly bounded.

(3) The family {Fx : x ∈ Bl} is a family of equicontinuous functions. Let t̄, t⋆ ∈ [t1, tm]Tk , t̄ < t⋆ and

Bl = {x ∈ P1 : ∥x∥1,T ≤ l} be a bounded set of P1.
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Hence

|(Fx)(t̄)− (Fx)(t⋆)| =

∣∣∣∣∣
∫ t̄

t1

ϕq

(∫ tm

s

w(r)f(r, x(r), x∆(r))∇r

)
∆s

−
∫ t⋆

t1

ϕq

(∫ tm

s

w(r)f(r, x(r), x∆(r))∇r

)
∆s

∣∣∣∣∣
=

∣∣∣∣∣
∫ t̄

t1

ϕq

(∫ tm

s

w(r)f(r, x(r), x∆(r))∇r

)
∆s

−
∫ t̄

t1

ϕq

(∫ tm

s

w(r)f(r, x(r), x∆(r))∇r

)
∆s

−
∫ t⋆

t̄

ϕq

(∫ tm

s

w(r)f(r, x(r), x∆(r))∇r

)
∆s

∣∣∣∣∣.
As t̄→ t⋆, the right-hand side of the above inequality is independent of y ∈ Bl and tends to zero.

Similarly, we get

|(Fx)∆(t̄)− (Fx)∆(t⋆)| =

∣∣∣∣∣ϕq
(∫ tm

t̄

w(r)f(r, x(r), x∆(r))∇r

)

− ϕq

(∫ tm

t⋆
w(r)f(r, x(r), x∆(r))∇r

)∣∣∣∣∣
=

∣∣∣∣∣ϕq
(∫ t⋆

t̄

w(r)f(r, x(r), x∆(r))∇r

+

∫ tm

t⋆
w(r)f(r, x(r), x∆(r))∇r

)

− ϕq

(∫ tm

t⋆
w(r)f(r, x(r), x∆(r))∇r

)∣∣∣∣∣→ 0,

as t̄→ t⋆. Thus, the set {Fx : x ∈ Bl} is equicontinuous.

As a consequence of (1)–(3) together with the Ascoli–Arzela theorem we can prove F : P1 → P1 is

completely continuous. 2

Moreover, we can prove the following result:

min
t∈[ 1n ,n−1

n ]T

(Fx)(t) ≥ 1

n
∥Fx∥0,T =

1

n
(Fx)(tm). (3.8)

In fact, the concavity of (Fx) on [t1, tm], tm = 1 and (3.6) imply

(Fx)(t)

t
≥ (Fx)(tm)

tm
= ∥Fx∥0,T, for t ∈

[
1

n
,
n− 1

n

]
T
,

which implies that (3.8) holds.
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Remark: For convenience, we introduce the following notations. Let

η = ϕq

(∫ tm

t1

w(r)∇r
)
, λi = B

(
m−1∑
i=2

aiϕq

(∫ t⋆i

ti

w(r)∇r

))
,

λ = min
i∈[t1,tm−1]

{λi}, t⋆i =
ti + ti+1

2
(i = 1, 2, . . . ,m− 1),

Si = A

(
m−1∑
i=2

aiϕq

(∫ tm

ti

w(r)∇r

))
+

∫ tm

t1

ϕq

(∫ tm

s

w(r)∇r

)
∆s, S = max

i∈[t1,tm−1]
{Si},

L =
n

2

[
1 +

(
1−

m−1∑
i=2

ai

)]
, 0 = t1 <

1

n
< t2 < . . . < tm−1 = tm − 2

n
< tm = 1.

Now we state and prove our main result.

Theorem 3.5 Suppose that (H1)–(H4) hold. Let 0 < a < b ≤ 2Md
L , and assume that f satisfies the following

conditions:

(H5) f(t, u, v) ≤ ϕp(d/η), for (t, u, v) ∈ [t1, tm]× [0,Md]× [−d, d];

(H6) f(t, u, v) > ϕp(nb/λ), for (t, u, v) ∈ [ 1n ,
n−1
n ]T × [b, Lb]× [−d, d];

(H7) f(t, u, v) < ϕp(a/S), for (t, u, v) ∈ [t1, tm]× [0, a]× [−d, d].

Theorem 2.4 holds. Then the BVPs (1.1) and (1.2) have at least three positive solutions x1, x2, and x3 such

that

max
t∈[t1,tm]Tk

| x∆i (t) |≤ d, i = 1, 2, 3;

b < min
t∈[ 1n ,n−1

n ]T

| x1(t) |, max
t∈[t1,tm]

| x1(t) |≤Md,

a < max
t∈[t1,tm]

| x2(t) |, with min
t∈[ 1n ,n−1

n ]T

| x2(t) |< b,

max
t∈[t1,tm]

| x3(t) |< a.

Proof We set out to verify that operator F satisfies the Avery–Peterson fixed point theorem, which will prove

the existence of three fixed points of F that satisfy the conclusion of the theorem.

For x ∈ P1(γ1, d), there is γ1 = maxt∈[t1,tm] | x∆(t) |≤ d. For t ∈ [t1, tm]Tk , by Lemma 3.1, there is

maxt∈[t1,tm] | x(t) |≤Md; then the condition (H5) implies that f(t, x(t), x∆(t)) ≤ ϕp(d/η). On the other hand,
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for x ∈ P1, there is Fx ∈ P1; then Fx is concave on [t1, tm] and maxt∈[t1,tm]Tk
| (Fx)∆(t) |= (Fx)∆(t1).

Therefore,

γ1(Fx) = max
t∈[t1,tm]Tk

| (Fx)∆(t) |= (Fx)∆(t1)

= ϕq

(∫ tm

t1

w(r)f(r, x(r), x∆(r))∇r

)

≤ d

η
ϕq

(∫ tm

t1

w(r)∇r

)
=
d

η
η = d.

Hence, F : P1(γ1, d) → P1(γ1, d).

To check condition (ii) of Theorem 2.4, we choose x0(t) = Lbt, t ∈ [t1, tm]. It is easy to see that

x0 ∈ P1(γ1, θ1, α1, b, Lb, d) and α1(x0) > b, and so

{x ∈ P1(γ1, θ1, α1, b, Lb, d) : α1(x) > b} ≠ ∅.

Hence, for t ∈ [ 1n ,
n−1
n ]T, x(t) ∈ P1(γ1, θ1, α1, b, Lb, d), there is

b ≤ x(t) ≤ Lb, | x∆(t) |≤ d.

Thus, for t ∈ [ 1n ,
n−1
n ]T, by condition (H6) of this theorem, we have

f(t, u, v) > ϕp(nb/λ),

and combining the condition of α1 and P1, we have by (3.8)

α1(Fx) = min
t∈[ 1n ,n−1

n ]T

| (Fx)(t) |≥ 1

n
∥Fx∥0,T =

1

n
(Fx)(tm)

=
1

n

[
B0

(
m−1∑
i=2

aiϕq

(∫ tm

ti

w(r)f(r, x(r), x∆(r))∇r

))

+

∫ tm

t1

ϕq

(∫ tm

s

w(r)f(r, x(r), x∆(r))∇r

)
∆s

]

>
1

n

[
B

(
m−1∑
i=2

aiϕq

(∫ t⋆i

ti

w(r)∇r

))]
nb

λ

≥ b,

i.e.
α1(Fx) > b for all x ∈ P1(γ1, θ1, α1, b, Lb, d).

Therefore, condition (i) of Theorem 2.4 is satisfied.

Secondly, by (3.1), we have x ∈ P1(γ1, α1, b, d) with θ1(Fx) > nb

α1(Fx) ≥
1

n
θ1(Fx) >

1

n
nb = b.
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Hence, condition (ii) of Theorem 2.4 is satisfied.

Now we prove that condition (iii) of Theorem 2.4 also holds. Obviously, as ψ1(0) = 0 < a, there holds

0 /∈ R(γ1, ψ1, a, d). Assume that x ∈ R(γ1, ψ1, a, d) with ψ1(x) = a. Then, from (H7) of this theorem, we find

ψ1(Fx) = max
t∈[t1,tm]

| (Fx)(t) |= ∥Fx∥0,T = (Fx)(tm)

= B0

(
m−1∑
i=2

aiϕq

(∫ tm

ti

w(r)f(r, x(r), x∆(r))∇r

))

+

∫ tm

t1

ϕq

(∫ tm

s

w(r)f(r, x(r), x∆(r))∇r

)
∆s

<
a

S

[
A

(
m−1∑
i=2

aiϕq

(∫ tm

ti

w(r)∇r

))

+

∫ tm

t1

ϕq

(∫ tm

s

w(r)∇r

)
∆s

]
≤ a.

Hence, from here, we get

ψ1(Fx) = max
t∈[t1,tm]

| (Fx)(t) |< a,

which shows that condition (iii) of Theorem 2.4 is satisfied. On the other hand, for x ∈ P1, (3.1) holds.

Thus, all the conditions in Theorem 2.4 are met, and so the BVPs (1.1) and (1.2) have at least three

positive solutions x1, x2, and x3 such that

max
t∈[t1,tm]Tk

| x∆i (t) |≤ d, i = 1, 2, 3;

b < min
t∈[ 1n ,n−1

n ]T

| x1(t) |, max
t∈[t1,tm]

| x1(t) |≤Md,

a < max
t∈[t1,tm]

| x2(t) |, with min
t∈[ 1n ,n−1

n ]T

| x2(t) |< b,

max
t∈[t1,tm]

| x3(t) |< a.

The proof is complete. 2

4. Existence of multiple positive solutions to (1.1) and (1.3)

The method is similar to what we have done in Section 3; therefore, we omit the proof of the main result of

this section.

We consider the Banach space E defined as in Section 3 and define a cone P2 ⊂ E by

P2 =

{
x ∈ E : x(t) ≥ 0, x(tm) +B1

(
m−1∑
i=2

bix
∆(ti)

)
= 0, x is concave on [t1, tm]

}
⊂ E.
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Let the nonnegative continuous concave functional α2, the nonnegative continuous convex functional

θ2, γ2, and the nonnegative continuous functional ψ2 be defined on the cone P2 by

α2(x) = min
t∈[ 1n ,n−1

n ]T

|x(t)|, γ2(x) = max
t∈[t1,tm]Tk

| x∆(t) |,

ψ2(x) = θ2(x) = max
t∈[t1,tm]

| x(t) |, x ∈ P2,

where n is defined in Section 3.

Lemma 4.1 Let 0 = t1 <
1

n
< t2 < . . . < tm−1 = tm − 2

n
< tm = 1. If (H1) holds, then for x ∈ P2, there

exists a constant M > 0 such that

max
t∈[t1,tm]

| x(t) |≤M max
t∈[t1,tm]Tk

| x∆(t) | .

By Lemma 4.1 and the concavity of x, for all x ∈ P2, the functionals defined above hold for the relations

1

n
θ2(x) ≤ α2(x) ≤ θ2(x), ∥x∥1,T = max{θ2(x), γ2(x)} ≤Mγ2(x).

Therefore, condition (2.1) of Theorem 2.4 is satisfied.

Lemma 4.2 If y ∈ Cld[t1, tm], then the problem

(ϕp(x
∆(t)))∇ + y(t) = 0, t1 < t < tm, (4.1)

x∆(t1) = 0, x(tm) +B1

(
m−1∑
i=2

bix
∆(ti)

)
= 0, (4.2)

has a unique solution

x(t) = B1

(
m−1∑
i=2

biϕq

(∫ ti

t1

y(r)∇r

))
+

∫ tm

t

ϕq

(∫ s

t1

y(r)∇r

)
∆s. (4.3)

Lemma 4.3 If y ∈ Cld[t1, tm] and y ≥ 0, then the solution of BVPs (4.1) and (4.2) satisfies x(t) ≥ 0.

From Lemma 4.2, it is easy to see that BVPs (1.1) and (1.3) have a solution x = x(t) if and only if x solves

the equation

x(t) = B1

(
m−1∑
i=2

biϕq

(∫ ti

t1

w(r)f(r, x(r), x∆(r))∇r

))

+

∫ tm

t

ϕq

(∫ s

t1

w(r)f(r, x(r), x∆(r))∇r

)
∆s.
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We define the operator G : P2 → P2 by

(Gx)(t) := B1

(
m−1∑
i=2

biϕq

(∫ ti

t1

w(r)f(r, x(r), x∆(r))∇r

))

+

∫ tm

t

ϕq

(∫ s

t1

w(r)f(r, x(r), x∆(r))∇r

)
∆s.

Taking the delta derivative of (Gx)(t), we have

(Gx)∆(t) := −ϕq

(∫ t

t1

w(r)f(r, x(r), x∆(r))∇r

)
, for x ∈ P2, t ∈ [t1, tm]Tk .

Lemma 4.4 Let (H1)–(H4) hold. If conditions 1–3 in the statement of Lemma 3.4 are satisfied, then FP2 ⊂ P2

and F : P2 → P2 is completely continuous.

Moreover, we can prove the following result:

min
t∈[ 1n ,n−1

n ]T

(Gx)(t) ≥ 1

n
∥Gx∥0,T =

1

n
(Gx)(t1).

Let

η = ϕq

(∫ tm

t1

w(r)∇r
)
, λ̄i = B

(
m−1∑
i=2

biϕq

(∫ t⋆i

ti

w(r)∇r

))
,

λ̄ = min
i∈[t1,tm−1]

{λ̄i}, t⋆i =
ti + ti+1

2
(i = 1, 2, . . . ,m− 1),

S̄i = A

(
m−1∑
i=2

biϕq

(∫ ti

t1

w(r)∇r

))
+

∫ tm

t1

ϕq

(∫ s

t1

w(r)∇r

)
∆s, S̄ = max

i∈[t1,tm−1]
{S̄i},

L =
n

2

[
1 +

(
1−

m−1∑
i=2

ai

)]
, 0 = t1 <

1

n
< t2 < . . . < tm−1 = tm − 2

n
< tm = 1.

We have the following result.

Theorem 4.5 Suppose that (H1)–(H4) hold. Let 0 < a < b ≤ 2Md
L , and assume that f satisfies the following

conditions:

(H8) f(t, u, v) ≤ ϕp(d/η), for (t, u, v) ∈ [t1, tm]× [0,Md]× [−d, d];

(H9) f(t, u, v) > ϕp(nb/λ̄), for (t, u, v) ∈ [ 1n ,
n−1
n ]T × [b, Lb]× [−d, d];

(H10) f(t, u, v) < ϕp(a/S̄), for (t, u, v) ∈ [t1, tm]× [0, a]× [−d, d];

then the BVPs (1.1) and (1.3) have at least three positive solutions x1, x2, and x3 such that
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max
t∈[t1,tm]Tk

| x∆i (t) |≤ d, i = 1, 2, 3;

b < min
t∈[ 1n ,n−1

n ]T

| x1(t) |, max
t∈[t1,tm]

| x1(t) |≤Md,

a < max
t∈[t1,tm]

| x2(t) |, with min
t∈[ 1n ,n−1

n ]T

| x2(t) |< b,

max
t∈[t1,tm]

| x3(t) |< a.

In the following section, we give two examples to explain our results.

5. Examples

Example 5.1. Let T = {0, 45}∪ { 1
5n : n ∈ N0}, where N0 denotes the set of all nonnegative integers numbers

set. If we choose t1 = 0, t2 = 1
2 , tm = 1, p = 3, a2 = 1

2 , A = B = 1
2 , then ϕp(x) = x2. Suppose w(t) ≡ 1 and

consider the following BVP on time scales

(
ϕp(x

∆(t))
)∇

+ f(t, x(t), x∆(t)) = 0, t1 < t < tm, (5.1)

x(0)− 1

2

(1
2
x∆
(1
2

))
= 0, x∆(1) = 0, (5.2)

where

f(t, u, v) =


1
5 t+

6014

736 u
13 + 1

1000

(
736

6015 v
)2
, if u ≤ 1

16 × 74
6
11

60
1
11
,

1
5 t+

6014

736 ×
[

1
16 × 74

6
11

60
1
11

]13
+ 1

1000

(
736

6015 v
)2
, if u > 1

16 × 74
6
11

60
1
11
.

By simple calculations, we have

n = 5 > max

{
1

t2
,

2

1− t2

}
, M =

1

2
a2 + tm − t1 =

5

4
, L =

n

2
[1 + (1− a2)] =

15

4
,

η = ϕq

(∫ 1

0

∇r
)

= 1, λ1 =
1

2

(
a2ϕq

(∫ 1/4

0

∇r

))
, λ2 =

1

2

(
a2ϕq

(∫ 3/4

1/2

∇r

))
,

λ = min{λ1, λ2} =
1

8
, S1 =

1

2

(
a2ϕq

(∫ 1

0

∇r

))
+

∫ 1

0

ϕq

(∫ 1

s

∇r

)
∆s,

955
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S2 =
1

2

(
a2ϕq

(∫ 1

1/2

∇r

))
+

∫ 1

0

ϕq

(∫ 1

s

∇r

)
∆s, S = max{S1, S2} =

11

12
.

If we take

a =
72

6
11

4
1
4 × 60

14
11

, b =
74

6
11

60
12
11

, d =
(15
4

)13
× 74

24
11

60
4
11

,

then it is easy to see that 0 < a < b < 2Md
L , and f satisfies

f(t, u, v) ≤ 1

5
+

6014

736
× 1

16
× 74

6
11

60
1
11

+
1

1000
≈ 2.33341× 1013

< ϕ3

(d
η

)
=

[(15
4

)13
× 74

24
11

60
4
11

]2
≈ 6.14129× 1021,

for (t, u, v) ∈ [0, 1]×

[
0,

5

4
×
(15
4

)13
× 74

24
11

60
4
11

]

×

[
−
(15
4

)13
× 74

24
11

60
4
11

,
(15
4

)13
× 74

24
11

60
4
11

]
;

f(t, u, v) >
1

5
+

6014

736
× 74

78
11

60
156
11

+
1

1000
≈ 56.6056

> ϕ3

(nb
λ

)
=

[
5× 74

6
11

60
12
11

1
8

]2
≈ 23.1036,

for (t, u, v) ∈

[
1

5
,
4

5

]
×

[
74

6
11

60
12
11

,
15

4
× 74

6
11

60
12
11

]

×

[
−
(15
4

)13
× 74

24
11

60
4
11

,
(15
4

)13
× 74

24
11

60
4
11

]
;

f(t, u, v) <
6014

736
× 72

78
11

4
13
4 × 60

182
11

+
1

1000
≈ 0.00103216

< ϕ3

( a
S

)
=

[ 72
6
11

4
1
4 ×60

14
11

11
12

]2
≈ 0.00188159,

for (t, u, v) ∈ [0, 1]×

[
0,

72
6
11

4
1
4 × 60

14
11

]

×

[
−
(15
4

)13
× 74

24
11

60
4
11

,
(15
4

)13
× 74

24
11

60
4
11

]
.
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Therefore, all the conditions of Theorem 3.5 are satisfied. Thus, by Theorem 3.5, the problems (5.1) and (5.2)

have at least three positive solutions x1, x2, and x3 such that

max
t∈[0,1]Tk

| x∆i (t) |≤
(15
4

)13
× 74

24
11

60
4
11

, i = 1, 2, 3;

74
6
11

60
12
11

< min
t∈[ 15 ,

4
5 ]T

| x1(t) |, max
t∈[0,1]

| x1(t) |≤
5

4
×
(15
4

)13
× 74

24
11

60
4
11

,

72
6
11

4
1
4 × 60

14
11

< max
t∈[0,1]

| x2(t) |, with min
t∈[ 15 ,

4
5 ]T

| x2(t) |<
74

6
11

60
12
11

,

max
t∈[0,1]

| x3(t) |<
72

6
11

4
1
4 × 60

14
11

.

Example 5.2. Let T = {1−( 12 )
N0}∪{ 1

3 , 1}; N0 denotes the set of all nonnegative integers. Take a2 = 1
2 , t1 =

0, t2 = 1
2 , tm = 1, A = B = 1

2 , p = q = 2, and w(t) ≡ 1. Consider the following BVP:

(
ϕp(x

∆(t))
)∇

+ f(t, x(t), x∆(t)) = 0, t1 < t < tm, (5.3)

x(0)− 1

2

(1
2
x∆
(1
2

))
= 0, x∆(1) = 0, (5.4)

where

f(t, u, v) =


t

1000 + 4000u3 +
(

v
100000

)3
, u ≤ 1

3 ,

t
1000 + 148 +

(
v

100000

)3
, u > 1

3 .

By simple calculations, we have

n = 5 > max

{
1

t2
,

2

1− t2

}
, M =

1

2
a2 + tm − t1 =

5

4
, L =

n

2
[1 + (1− a2)] =

15

4
,

η = ϕq

(∫ 1

0

∇r
)

= 1, λ1 =
1

2

(
a2ϕq

(∫ 1/4

0

∇r

))
, λ2 =

1

2

(
a2ϕq

(∫ 3/4

1/2

∇r

))
,

λ = min{λ1, λ2} =
1

16
, S1 =

1

2

(
a2ϕq

(∫ 1

0

∇r

))
+

∫ 1

0

ϕq

(∫ 1

s

∇r

)
∆s,
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S2 =
1

2

(
a2ϕq

(∫ 1

1/2

∇r

))
+

∫ 1

0

ϕq

(∫ 1

s

∇r

)
∆s, S = max{S1, S2} =

3

4
.

If we take a = 1
64 , b =

1
6 , d = 200, then it is easy to see that 0 < a < b < 2Md

L , and f satisfies

f(t, u, v) ≤ ϕp

(d
η

)
= 200, for 0 ≤ t ≤ 1, 0 ≤ u ≤ 250, | v |≤ 200;

f(t, u, v) > ϕp

(nb
λ

)
=

40

3
, for

1

5
≤ t ≤ 4

5
,

1

6
≤ u ≤ 5

8
, | v |≤ 200;

f(t, u, v) < ϕp

( a
S

)
≈ 0.0208333, for 0 ≤ t ≤ 1, 0 ≤ u ≤ 1

64
, | v |≤ 200.

Hence, by Theorem 3.5, we have that the BVPs (5.3) and (5.4) have at least three positive solutions x1, x2, x3

such that

max
t∈[0,1]Tk

| x∆i (t) |≤ 200, i = 1, 2, 3;

1

6
< min

t∈[ 15 ,
4
5 ]T

| x1(t) |, max
t∈[0,1]

| x1(t) |≤ 250,

1

64
< max

t∈[0,1]
| x2(t) |, with min

t∈[ 15 ,
4
5 ]T

| x2(t) |<
1

6
,

max
t∈[0,1]

| x3(t) |<
1

64
.

6. Conclusions

1. One may establish new criteria from the proofs of our results for p -Laplacian boundary value problems

(1.1) (1.2) and (1.1) (1.3). The details are left to the reader.

2. The results of our paper are new for the discrete case (T = Z) and the continuous case (T = R). The
formulation of our results for both cases is left to the reader.

Finally, we remark (we leave the details to the reader) that similar ideas could be used to discuss the

more general problem

(ϕp(x
∆(t)))∇ + w(t)f(t, x(t), x∆(t)) = 0, t1 < t < tm,

x(t1)−B0

(m−1∑
i=2

aix
∆(ti)

)
= 0, x∆(tm) =

m−1∑
i=2

bix(ti),

or

x∆(t1) =
m−1∑
i=2

aix(ti), x(tm) +B1

(m−1∑
i=2

bix
∆(ti)

)
= 0.
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