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ABSTRACT 

MACHINE AND DEEP LEARNING BASED ANALYSIS OF   

TUMORS ON FDG-PET IMAGES 
 

Oğuzhan Ayyıldız 

Ph.D. in Electrical and Computer Engineering 

Advisor: Prof. Dr. Bülent Yılmaz 

 

June 2022 
 

Analysis of a tumor is essential in treatment planning and evaluation of treatment 

response. Positron Emission Tomography (PET) is a vital imaging device for clinical 

oncology in understanding the metabolic structure of the tumor. In this thesis, three 

separate studies investigating the application of machine, deep learning and statistical 

approaches on FDG-PET images from patients with non-small cell lung cancer (NSCLC) 

and pancreatic cancer. The first study aimed at performing a survey on subtype 

classification of NSCLC by using different texture features, feature selection methods 

and classifiers. Images from 92 patients and several clinical and metabolic features for 

each case were used in this study along with histopathological validation for the tumor 

subtype labeling. Stacking classifier resulted in 76% accuracy. The aim of our second 

study was to adapt an atrous (dilated) convolution-based tumor segmentation approach 

(DeepLabV3) on FDG-PET slices with maximum standard uptake value (SUVmax). 

MobileNet-v2 pretrained on ImageNet served as the backbone to DeepLabV3. The 

classification layer was interchanged with the Tversky loss layer which helped improve 

model's performance while the dataset was imbalanced. Images from 141 patients were 

employed and augmentation was performed in each training phase. Dice similarity index 

was obtained as 0.76 without preprocessing and 0.85 with preprocessing. The last study 

focused on determining the features to be used in the prognosis of pancreatic 

adenocarcinoma on FDG-PET images from 72 patients. Well-known texture, metabolic 

and physical features were extracted from tumor region that was determined with the help 

of random walk segmentation algorithm. On these features time-dependent ROC curve 

analysis was performed for 2-year overall survival (OS) prediction, and, in the univariable 

analyses, tumor size, energy, entropy, and strength were found to be significant predictors 

of OS. 

Keywords: PET/CT, NSCLC, Machine learning, Deep learning, Radiomics, Semantic 

segmentation 
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ÖZET 

FDG-PET GÖRÜNTÜLERİNDEKİ TÜMÖRLERİN MAKİNE 

VE DERİN ÖĞRENME TABANLI ANALİZİ 

Oğuzhan Ayyıldız 

 Elektrik ve Bilgisayar Mühendisliği Anabilim Dalı Doktora 

Tez Yöneticisi: Prof. Dr. Bülent Yılmaz 
 

Haziran-2022 
 

Bir tümörün analizi, tedavi planlamasında ve tedavi yanıtının değerlendirilmesinde 

esastır. Pozitron Emisyon Tomografisi (PET), tümörün metabolik yapısını anlamada 

klinik onkoloji için hayati bir görüntüleme cihazıdır. Bu tezde, küçük hücreli dışı akciğer 

kanseri (KHDAK) ve pankreas kanseri olan hastalardan alınan FDG PET görüntüleri 

üzerinde makine öğrenmesi, derin öğrenme ve istatistiksel yaklaşımların uygulanmasını 

araştıran üç ayrı çalışma yer almaktadır. İlk çalışma, farklı doku özellikleri, öznitelik 

seçim yöntemleri ve sınıflandırıcılar kullanılarak KHDAK'nin alt tip sınıflandırmasına 

odaklanmıştır. Bu çalışmada, tümör alt tipi etiketlemesi için histopatolojik doğrulama ile 

birlikte 92 hastanın görüntüleri ve her vaka için çeşitli klinik ve metabolik özellikler 

kullanılmıştır. İstifleme sınıflandırıcısı %76 doğrulukla sonuçlanmıştır. İkinci 

çalışmamızın amacı, maksimum standart alım değeri (SUVmax) bulunan FDG PET 

dilimlerinde atröz (dilate) evrişim tabanlı tümör segmentasyon yaklaşımını (DeepLabV3) 

uyarlamaktır. DeepLabV3'ün omurgası olarak ImageNet üzerinde önceden eğitilmiş 

MobileNet-v2 kullanılmıştır. Sınıflandırma katmanı, veri kümesi dengesizken modelin 

performansını iyileştirmeye yardımcı olan Tversky kayıp katmanıyla değiştirilmiştir. Her 

eğitim aşamasında 141 hastadan görüntüler ve büyütme kullanılmıştır. Dice benzerlik 

indeksi ön işleme olmadan 0,76 ve ön işleme ile 0,85 olarak elde edilmiştir. Son çalışma, 

72 hastanın FDG PET görüntülerinde pankreas adenokarsinomunun prognozunda 

kullanılacak özelliklerin belirlenmesine odaklanmıştır. Rastgele yürüyüş segmentasyon 

algoritmasından yararlanarak elde edilen tümör bölgesinden, en sık kullanılan tekstür 

özellikleri, metabolk ve fiziksel özellikler çıkarılmış ve bu özellikler üzerinde, 2 yıllık 

genel sağkalım (GS) tahmini için zamana bağlı ROC eğrisi analizi gerçekleştirilmiştir. 

Tek değişkenli analizlerde, tümör boyutu, enerjisi, entropi ve gücü, GS'nin önemli 

belirleyicileri olarak tespit edilmiştir. 

 

Keywords: PET/BT, KHDAK, Makine öğrenmesi, Derin öğrenme, Radyomiks, Semantik 

bölütleme 
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Chapter 1 

Introduction 

1.1 Positron Emission Tomography (PET) Imaging 

1.1.1 Working Principle 

 

          Positron emission tomography (PET) is an imaging method in which we can 

observe cellular and molecular events. To monitor biological changes, we need tracers 

which are radiolabeled molecular probes. These tracers help measure cell proliferation, 

perfusion, oxygen metabolism, tumor-receptor density, and reporter-gene expression [1]. 

Frequently used isotopes are O-15, N-13, C-11, and F-18.  

          The radionuclide is injected into a vein. Then PET scanner moves to the part of the 

body examined. The annihilation of photons creates gamma rays. The PET camera detects 

coincident gamma rays emitted by the patient. Then images are reconstructed based on 

the related location and concentration of the tracer [1].  

 

 

Figure 1. 1 PET ring schematic [2] 
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          In Figure 1.1, showing the example of a PET ring, the image is reconstructed based 

on true coincidence. In the modern PET system, the scattering of photons is detected and 

eliminated before the reconstruction to improve image resolution.  

          The amount of radionuclide affects the brightness of the tissue. For instance, 2-

18F-fluoro-2-deoxy-D-glucose (FDG) accumulates in cancer cells, making cancer cells 

brighter in images than healthy tissue. Figure 1.2 shows an FDG PET image of a lung 

cancer patient from our patient database. 

 

 

Figure 1. 2 Sample FDG PET image from our database 

 

1.1.2 FDG PET/CT in oncology 

          Standardized uptake value (SUV) is a semi-quantitative assessment value used in 

PET images to show the metabolic activity of a tumor. SUV is calculated as a ratio of 

FDG concentration on the region of interest (ROI) to the injected dose normalized to 

patient weight.  

          PET is commonly used with computer tomography (CT) or magnetic resonance 

imaging (MRI) since PET is valuable for functional imaging; on the other hand, CT and 

MRI add value to anatomical reference imaging [3]. CT is also used for attenuation and 

scatter correction in PET/CT studies. 

          Typical clinical applications of FDG PET/CT are benign/malign differentiation, 

staging, monitoring the effect of therapy, posttreatment following, detecting tumor 

recurrence, selecting the region for biopsy, and guiding radiation therapy.      

 



3 

 

 

1.2 Non-Small Cell Lung Cancer (NSCLC) 
 

 

           Lung cancer is one of the most frequently diagnosed cancer types worldwide. 

Because of the lack of clinical symptoms and effective screening, lung cancers are 

diagnosed at an advanced stage. This makes lung cancer the leading cause of cancer-

related death. Staging lung cancer in its initial stages is vital since treatment procedures 

and prognosis evaluation depend on it. The staging system is based on the Tumor-Node-

Metastasis (TNM) classification form, which is announced and updated by the 

International Association for the Study of Lung Cancer committee based on an evaluation 

of the literature and clinical examination worldwide [4].  

           Almost 85% of lung cancers are non-small cell lung cancer (NSCLC) [5], and 

adenocarcinoma (ADC) and squamous cell carcinoma (SqCC) are the two major subtypes 

of NSCLC. ADC and SqCC correspond to about 40% and 25-30% of lung cancers, 

respectively [6].  

           PET is a valuable functional imaging method. Its efficiency for patients with 

cancers of NSCLC to stage tumors, evaluate therapy response, define prognosis, and 

guide radiotherapy and surgery is proven.  

      

1.3 Tumor Heterogeneity 
 

 

           The Assessment of tumor heterogeneity is vital for the therapy. Cancer is a 

progressive disease; through time, cancer turns more heterogeneous. Due to 

heterogeneity, the sensitivity of treatment is differentiated. 

           Cancer transforms nonmalignant tissue into malignant by breaking the key cellular 

processes. The progression of cancer does not follow a linear process; instead, its nature 

is stochastic. Due to the dynamic nature of cancer, molecularly heterogeneous bulk 

tumors include different levels of cells whose reaction to treatment is different [7].  
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1.4 Radiomics    
     

 

The central hypothesis of radiomics is the following: medical images include more 

information than may be obtained by visual analysis [8]. Thanks to the increase in PET 

scanners’ spatial resolution, researchers tend to use image processing tools/approaches to 

PET images. In this perspective, features extracted from PET images may help us describe 

certain tumor properties in vivo at the molecular level.  

Different textural features and automatic classification approaches have been 

utilized in different contexts, such as predicting response to therapy and survival [2,3] 

tumor grade [9]. Texture analysis (a subset of the radiomics) is an approach that includes 

a set of pattern recognition and analysis methods. These methods are used to quantify the 

relationship between the pixels or voxels for better tumor characterization, monitoring, 

and predicting therapy response and prognosis. Computed tomography (CT) images have 

also been used for pulmonary nodule feature optimization [10], reproducibility and 

prognosis [11], and predicting survival [12]. 

Although radiomics in cancer research has been a hot topic in the last decade, 

there are no robust features offered by the scientific community to be used instead of a 

PET parameter called Standardized Uptake Value (SUV) in the clinical routine [4, 6, 8–

19]. This is due to the complexity of cancer biology and inter or intra variability of cancer. 

There are various challenges in tumor characterization using image processing 

approaches. To offer such a radiomics feature, tumor heterogeneity must first be analyzed.  

For this purpose, the first step is noise removal on images. Each imaging modality 

introduces a different noise due to different image acquisition techniques [20–25]. 

Secondly, delineation or segmentation of the tumors in three dimensions is needed. Then, 

from the segmented tumor images using various methods, radiomics features are 

extracted. Finally, using statistical analyses and machine learning techniques features are 

analyzed to obtain more information about the nature of the tumors. Figure 1.3 illustrates 

the general framework of the cancer radiomics study.  
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Figure 1. 3 General workflow of radiomics studies [32] 

The second step of the workflow is the segmentation. Segmentation is the 

separation of a region of interest from the image. The idea behind the segmentation is to 

model the image as a function and solve the equation based on constraints. Various types 

of models exist in the literature  [33]–[36]. However, we will focus on the random walk 

algorithm derived from graph cut theory because it performs well on noisy and fuzzy 

images, although this approach has various challenges. The user must put a seed on the 

image, which might introduce some level of variability. Different seed points may result 

in different segmentation results.  

After segmenting the tumor in all slices, we create a three-dimensional matrix with 

the help of interpolating pixel values in the slices [32]. Later, we need to quantize the 

image, which corresponds to the process of representing a constant value of pixels on the 

image by a set of discrete values.  

             Finally, we will extract various features from three-dimensional segmented and 

quantized tumor matrix. We can categorize features based on frequency, statistical, 

fractals, harmonics, and probabilistic methods [37]. Although there are many 

opportunities for extraction of features, the curse of dimensionality makes things more 

challenging. Before choosing a classifier, we need to normalize data and consider the 

correlation between features. One feature subset selection method is needed, such as 

sequential forward selection. This step affects classifier performance also. That is why 

we will consider selecting feature and classifier together [35–42]. We will apply several 

classifiers and compare the result. 
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Each step in the framework may cause concern about stability and interpretability. 

However, physicians have been using SUVs since verifying image-based features is not 

good enough. In addition, we should note that most studies ignore features' repeatability 

and robustness. There are several factors of consideration.  

 

1.5 Deep Learning 
 

             Figure 1.4 represents the conventional CNN architecture. CNN consists of 

several layers; each layer has a specific task. Common layers of CNN are convolution, 

pooling, activation, and fully connected layer. Each layer gets input from the previous 

layer. The convolutional layer consists of a set of filters that help extract features. 

Convolution is an elementwise sliding window operation of a filter applied on input. The 

output of each filter is called an activation map. Stacking each activation map is the output 

of the convolutional layer. Each filter extracts distinctive features, so each filter activates 

a different image region. Filter size defines a neuron's receptive field, which is vital when 

working with an image. If we take each pixel as an input, neuron computation complexity 

increases exponentially. However, we can down-sample the region using a convolutional 

layer while increasing the output depth. Control of the output convolution layer size has 

parameters such as depth, stride, and pooling. The output size of the convolutional layer 

of an input (Winput×Hinput×Dinput) can be obtained as; 

 

Woutput = ((Winput −F +2P) /S) +1                                                                                    (1.1) 

Houtput = ((Hinput −F +2P) /S) +1  Doutput = K                                                                   (1.2) 

 

               The activation layer applies the chosen activation function (linear or non-linear) 

to the input and does not change the input size. Where F is receptive to field size, S is a 

stride parameter, and P is the pooling parameter. The pooling layer has two crucial 

contributions: first, to reduce spatial resolution, which reduces the parameters of CNN; 

second, to prevent overfitting. A fully connected layer is generally placed at the end of 

the network before the classifier.  
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Figure 1. 4 Conventional CNN architecture [46] 

 

               CNN can be transformed to solve the segmentation problem. Long et al. [47] 

developed fully convolutional network (FCN) using CNN to pixel-wise prediction. For 

pixel mapping, They used higher resolution maps combined with up-sampled version of 

the previous convolution layer. The output of the FCN is the same size as the input, and 

each pixel is assigned to a class. The structure of FCN is given in Figure 1.5. 

 

Figure 1. 5 FCN architecture [48]  
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               Ronneberger et al. [49] developed another approach that is quite popular in 

medical image segmentation. U-Net architecture introduced deconvolution and skip 

connection approach to improve FCN architecture. In Figure 1.6, you can see the U shape 

structure, the first part of the architecture encodes the information, and the next part 

decodes the image with the help of a skip connection. 

 

Figure 1. 6 U-Net architecture [49] 

            

            

 

Figure 1. 7 V-Net architecture [50] 

           The concept of deep learning (DL) aims to create a model that transforms input 

data into output data using layers. Generally, each model has an input layer, hidden layers, 
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and an output layer. The most common approach in image processing is convolutional 

neural networks (CNNs). CNN performed better than hand-crafted features in problems 

related to image and speech fields. The main layers are convolution, pooling, and fully 

connected layers. These layers extract higher-level features from input. At each layer, the 

layer's input convolves with a kernel, adds a bias parameter, and generates a new input 

for the next layer. 

            CNN is a subcategory of deep learning. Although CNN has a long history, going 

back to the 80s, the topic got attention with AlexNet, which won the ImageNet challenge 

in 2012. There are two main reasons; first, GPUs (faster than CPUs) were introduced. 

Secondly, open-source software platforms were created for research and commercial use. 

Because of commercial benefits, Google and Facebook led the artificial intelligence 

research and created libraries and platforms for deep learning. Medical image application 

of the DL can be categorized into classification, detection, segmentation, detection, and 

image generation. Besides the problem of definition of the interested organ, region and 

modality were used to create enormous literature because each problem has its own 

challenge. For instance, PET images have low resolution; on the other hand, CT images 

have higher resolution, and brain tumors and lung tumors have different challenges.  

             Although DL approach has a tremendous effect on natural image processing, 

medical image processing has its own challenges. DL became successful thanks to a 

substantial number of training samples; however, medical field has the problem of limited 

annotated data. Most datasets are not available for public use, and it is hard to find a 

clinician to volunteer to annotate. Even if the dataset is available, different imaging 

modalities and diseases create small data sets compared to natural images. One of the 

viable solutions is data augmentation which increases the performance by increasing the 

number of samples with random transformations. In medical images, augmentation helps 

to improve performance in a limited way compared to natural images. Another solution 

is to apply transfer learning, which learns the architecture parameter in a different dataset 

and then fine-tune the parameter based on a small dataset. Even natural and medical 

images are different; filters and layers can capture key features. Another challenge is the 

class imbalance problem; for instance, in the tumor detection problem and tumor size is 

considered insignificant compared to the background tissue. This fact causes certain 

amount of bias in the model to classify any pixel as background and still get high accuracy 

values. One can use different loss functions to overcome the class imbalance in 

segmentation problems, in which weights of class matter. 
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            Medical image segmentation is a step that extracts the region of interest based on 

problem definitions such as organ, tumor, and lesion detection. It is a vital step for 

dosimetry, therapy planning, and therapy response in oncological PET imaging. 

Automating segmentation is important because manual segmentation is a time-consuming 

and subjective task for the clinician. 

            PET/CT modality can be used in multimodality segmentation. PET and CT 

encode different information, so we can extract features to fuse each modality of 

information. However, these two modalities have different resolutions and spatial size 

and require image registration to match the exact same location. It is not a straightforward 

process since medical images are not suitable for rigid transformation; most of the body 

parts are deformable and do not have exact geometric shapes. Problem definition is 

important for segmentation. For instance, the grade classification multimodality image 

segmentation effect can be observed. Creating an experiment set-up shows each 

modality's statistical power to classify the grade of the tumor. However, developing a 

different model and fair comparison is difficult to develop each modality. In radiomics, 

studies show that segmentation is the first step to extracting features.  

             The formulation of radiomics is well defined, and applying the same formulation 

for different modalities is hard to interpret. For example, the contrast features of PET and 

CT images are different based on classification technique, one of the same feature 

attribute performances. In radiomics performance, evaluation is affected by segmentation 

techniques, pre-processing, feature selection approach, and classification techniques. 

Each step has its own drawback. It makes it hard to interpret the result, which is significant 

in medical research. If we cannot explain to doctors, how can doctors explain to the 

patient how and why it works? In the end, we evaluate the pipeline based on performance. 

Translating research to clinics is a crucial purpose. Society needs more annotated data, 

multi-center cancer images, and medical image challenges to transfer models to clinics.  

In our study, we focused on only PET segmentation and primer tumor. There are two 

reasons: first, cancer is a complex disease, that is why we have to isolate cases to explain 

it clearly, and second, metabolic activity evaluation is critical for oncology.   

              There are many review papers for segmentation in medical images for deep 

learning applications [46], [51]–[53]. Each review focuses on the different advantages of 

techniques. One common point, the encoder-decoder approach, is preferred over LSTMs, 

GANs, and RNNs. There could be several reasons, such as DL research evolves different 

directions and translating computer vison DL research to medical images takes time. 



11 

 

 

Another reason is that limited annotated data make them hard to compare fairly. Lastly, 

encoder-decoder architectures gave satisfactory results, and there is no way to compare 

all possible architectures in the same dataset. Among the encoder-decoder family, the 

most used architectures are U-Net, V-Net, and 3D U-Net. The general approach to the 

problem is several decision steps. First, the researcher must decide to work on volumetric 

or slice-based data.  

               For our case, we chose a slice-based approach that could be better. Because we 

already have one nuclear medicine doctor and we hypothesized manual segmentation is 

error-prone. If we use volumetric data, subjective segmentation affects the result more 

than the slice-based data. Another reason is that the volume of the tumor varies in our 

dataset. To apply the 3D approach, we need to interpolate the size of each patient. This is 

required for the training phase, and each input size should match the other. To clarify this, 

one patient has thirty slices which include a tumor. On the other hand, another patient has 

only six slices. Matching size based on the most significant volume creates an unrealistic 

volume. Then the problem is how to choose the slice for each patient. We chose slice-

based of SUVMax value, which is clinically meaningful. The 2D approach can be 

extended for 3D and even model work, and each slice can be segmented and then could 

be stacked to obtain volumetric data, called the 2.5D segmentation approach.  

                After deciding on the slice-based approach, the next step is architecture family. 

As mentioned earlier, encoder-decoder architectures are popular in the medical field. In 

natural image segmentation, according to the technical contribution, model families can 

be classified up to ten. Among them, we choose dilated convolutional models and 

DeepLab family. The main reason is that DeepLabv3 has achieved an 89% mIoU score 

on the PASCAL VOC challenge.  

 

1.6 Purpose of the Thesis 
 

             

            SUV is a semi-quantitative image biomarker of tumor heterogeneity in FDG 

PET/CT imaging system. Repeatability and reproducibility of image biomarkers are 

essential for patients' clinical management. Repeatability is yielding the same result in 

the same patient being examined on the same system. In contrast, reproducibility is the 

ability to produce the same result in the same patient being examined on a different 
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system. SUV has a problem in terms of standardization since it is affected by 

reconstruction method, scanner parameters, biological factors, and the imaging 

equipment [54]. The European Association of Nuclear Medicine (EANM) published 

guidelines to standardize PET tumor imaging to help physicians standardize diagnostic 

quality and quantitative information in oncology patients [55]. However, the final 

judgment of the procedure is made by medical professionals, and this situation prevents 

SUVs from being robust biomarkers and varying from center to center. Also, it creates 

contradictory heterogeneity, resulting in literate because of reproducibility.  

            Clinicians need more robust features. Our first goal is to extract features from PET 

images to replace or can be used with SUVs. Our second purpose is to develop and test 

machine learning approaches to classify lung cancer subtypes. It is important since the 

golden standard of diagnosing subtypes of lung cancer based on biopsy is an invasive 

technique, and future targeted therapy will be based on subtype-specific. 

            This study investigates tumor heterogeneity with image processing and pattern 

recognition techniques to develop robust features that can be used in clinical routine. In 

the first part of this thesis, radiomics properties, machine learning, and feature selection 

were investigated in the subtype determination of lung cancer. In the second part, the 

tumor segmentation in the expanded patient dataset was examined, and a model with a 

deep learning approach was applied, achieving success close to manual and semi-atomic 

methods. In these two parts, we used images from 154 patients with NSCLC that 

previously underwent 18F-FDG-PET/ CT imaging for cancer staging before surgery, 

chemotherapy, or radiotherapy treatment according to the stage of their disease from 

March 2010 to April 2014 evaluated in Acıbadem Kayseri Hospital. Patients were 

grouped as stage I, II, III, or IV, using conventional CT criteria for tumor size and local 

invasion and PET assessments of nodal and distant metastases by well-trained imaging 

specialists according to the seventh edition of the American Joint Committee on Cancer 

(AJCC) TNM classification guidelines. Malignant disease was confirmed by 

histopathological verification in all patients. In the last part, PET images from 72 patients 

with pancreatic cancer were analyzed to determine whether the tumor characteristics 

effectively determine the life span. 
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Chapter 2 

Adeno and Squamous Cell Lung Cancer 

Differentiation 
 

2.1 Background Information 
 

 

Until recently, therapeutic approaches to NSCLC were guided by tumor stage, and 

there was no difference in treatment for ADC vs. SqCC. The significant advances in 

understanding the effects of cytotoxic and biological agents used in the NSCLC therapy 

suggest that future targeted therapies will be increasingly subtype-specific. Selection of 

patients for appropriate subtype-specific therapies requires precise pathologic 

differentiation of ADC and SqCC [56]. The lung cancer diagnosis is usually performed 

based on small biopsy (bronchoscopic, needle, or core biopsies) and cytology specimens. 

Usually, these two subtypes are distinguished based on standard morphologic criteria by 

routine microscopy. However, distinguishing can be difficult in some poorly 

differentiated tumors, especially small specimens. On the other hand, the characterization 

of the lesion using a small biopsy might have a sampling error, which would not represent 

the actual biological behavior and the intratumoral heterogeneity.  

Positron emission tomography (PET) is a valuable functional imaging method. Its 

efficiency for patients with cancers of NSCLC to stage tumors, evaluate therapy response, 

define prognosis, and guide radiotherapy and surgery is proven. Recently, a concept 

called radiomics has become popular. The central hypothesis of radiomics is that medical 

images include more information than may be obtained by visual analysis [57]. Thanks 

to the increase in PET scanners’ spatial resolution, researchers use image processing 

tools/approaches to PET images. In this perspective, features extracted from PET images 

may help us describe certain tumor properties in vivo at the molecular level. Texture 

analysis is an approach that includes a set of pattern recognition and analysis methods. 

These methods quantify the relationship between the pixels or voxels for better tumor 

characterization, monitoring, and predicting therapy response and prognosis. Different 
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textural features and automatic classification approaches have been utilized in different 

contexts, such as predicting response to therapy and survival [2, 3] and tumor grade [17]. 

Computed tomography (CT) images have also been used for pulmonary nodule feature 

optimization [10], reproducibility and prognosis [8], and predicting survival [60]. In 

addition to medical imaging approaches like PET and CT, for lung cancer diagnoses, 

automated quantitative analysis of histopathology images has been investigated [48, 49].  

Machine learning studies the construction of algorithms that can learn from and 

make predictions on data to make intelligent decisions based on their recognition of 

complex patterns. Machine learning methods are used in oncology in different 

applications such as cancer prognosis and prediction [63], survival analysis [38], drug 

response [64], and gene expression [65]. The focus of this study is medical image analysis 

and computer-aided diagnosis. This classification problem uses PET images to determine 

whether a newly presented patient has a tumor subtype adenocarcinoma or squamous cell 

carcinoma. Thus, the oncological therapy may be guided accordingly. In a similar study 

[66] that aimed to cluster the subtypes using 24 textural features obtained from the PET 

images, the researchers used linear discriminant analysis as the classification approach. 

In this study, we have used 39 textural features frequently preferred by researchers 

to characterize the tumor heterogeneity and analyzed the performances of different 

classification approaches that have not been utilized in the tumor subtype discrimination 

in NSCLC. 

2.2 Materials and Methods 

2.2.1 Patient population and PET/CT imaging 

This study includes 18F FDG PET/CT images of 96 patients with non-small cell 

lung cancer (NSCLC). The imaging of patients was performed from March 2010 to April 

2014 at Acıbadem Kayseri Hospital Nuclear Medicine Department, Kayseri, Turkey, 

using a PET/CT scanner (Siemens Biograph 6, HiRez). The Research Ethics Committee 

of Kayseri Research and Training Hospital (KRTH) approved this study. Out of 96 

patients, 8 were females, and 78 were males, with a mean age of 62.9±4.5 (range: 39-84). 

The tumor subtypes of 36 patients were ADCs, and 60 patients were SqCCs. The 

specimens were obtained using fine-needle or excisional biopsy and were assessed at the 

pathology department of KRTH in terms of tumor subtype. 
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2.2.2 Image processing and texture analysis 

For each patient, PET and CT images were transferred to our computers. This 

study was focused on the PET images, especially slices with tumors. The MATLAB 

(MathWorks MA, USA) program was used in the image processing steps of PET images 

in DICOM format. In the image processing part of the study, first, the tumors were 

segmented in each slice, the image intensity values in the tumors in that slice were binned, 

and finally, texture analysis approaches were applied to extract texture features from each 

three-dimensional tumor obtained by arranging two-dimensional slices in one stack. In 

the segmentation, a popular approach called random walk (RW) [36] was used to 

distinguish the tumor from the background automatically. Different segmentation 

methods like Otsu’s, k-means, active-contour approaches were also tested, and the best 

results were obtained using the RW approach. The binning process corresponds to a linear 

mapping of intensity values on the pixels of the segmented tumor region to be between 1 

and 64. Various binning levels were tested, and 64 was found to be the optimal value, as 

[16] proved that levels more than 64 do not improve classification precision. In the last 

step, four different texture analysis approaches from the binned regions with tumors' 39 

features were extracted. The approaches we used were the gray level co-occurrence 

matrix (GLCM, 8 features), gray level run length matrix (GLRLM, 13 features), gray 

level size zone matrix (GSZM, 13 features), and neighborhood gray-tone difference 

matrix (NGTDM, 5 features). The details of these approaches can be found in [67]. The 

most common quantitative value derived from PET images that shows radiotracer uptake 

is the maximum standardized uptake value (SUVmax) in the tumor area, defined as the 

decay-corrected tumor activity concentration divided by injected activity per unit body 

weight, surface area, or lean body mass. In addition to the textural features, we have also 

included the SUVmax as the 40th feature, whose values ranged from 2.5 to 47.1 

(15.5±7.4). 
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Figure 2.1 Summary of the approaches used in this study 

2.2.3 Data preprocessing and feature selection 

We considered normalizing the texture features to the interval from 0 to 1. Feature 

selection methods are classified into filter, wrapper, and ensemble feature selection. The 

influence of the feature selection method on the performance of the classification method 

was examined before in [65], and it was found that ensemble feature selection does not 

improve accuracy generally on breast cancer prognosis. To reduce the number of 

dimensions, we implemented two feature selection methods in WEKA [68]: (1) CFS 

subset evaluator with BestFirst search strategy and (2) a hybrid strategy that first ranks 

features according to gain ratio and followed by a wrapper method that selects features 

using the k-NN classifier (with k parameter optimized by 10-fold cross-validation). 

             PET system introduces Poisson noise to the resultant image due to the stochastic 

nature of the photon counting process at the detectors, and this noise is signal-dependent. 

For instance, thermal and electronic fluxions of the acquisition system are signal 

independent, and one can assume that additive Gaussian noise. Most relevant work either 

has not implemented any preprocessing approaches or assumed that noise is additive 

Gaussian noise. One of the common methods for preprocessing applied on PET images 

is the “Anscombe’s method,” which is based on variance stabilization. In this approach, 
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signal-dependent Poisson noise can be modeled as independent additive Gaussian noise. 

Studies show that preprocessing increases SNR [26-29] and PSNR [69]. No recent work 

indicates this preprocessing approach's effect in this area. We asked an expert about our 

dataset, and the SNR level is enough to proceed. We did not apply the image denoising 

algorithm to our dataset. 

 

2.2.4 Classification methods 

In the present study, we implemented 11 different classifiers in WEKA software 

to differentiate the ADC and SqCC tumor subtypes: k-nearest-neighbor (k-NN), logistic 

regression, support vector machines (SVM), Bayesian network, decision tree, radial basis 

function (RBF) network, random forest, AdaBoostM1, and three stacking methods. We 

chose these classifiers for the same reason as Parmar et al. [38], due to their popularity in 

the literature. We performed a leave-one-out cross-validation (LOOCV) experiment on 

the dataset to evaluate the prediction accuracy. We also considered optimizing certain 

hyper-parameters of these models by performing 10-fold cross-validation separately on 

each training set.  

 

2.2.4.1 k-nearest neighbor 

 k-nearest neighbor (k-NN) classifiers first find the k training samples closest to 

the test example and combine the class labels of these nearest neighbors by majority 

voting [22]. We employed the IBk method in WEKA to implement the k-NN classifier in 

our experiments. We considered selecting the number of nearest neighbors (i.e., the k 

parameter) as 3 as well as optimizing this parameter by including the –X option in the 

command line choosing the maximum number of nearest neighbors as 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 − 2 and setting the number of cross-validation folds to 10. 

 

2.2.4.2 Logistic regression 

As a special case of generalized linear models, the logistic regression classifier 

computes a weighted linear combination of input features passed through a non-linear 

activation function (e.g., a sigmoid). The class labels are assigned in binary classification 

by comparing the output variable to 0.5. The decision boundaries of a logistic regressor 

are linear hyperplanes [41]. We employed the logistic classifier in WEKA, which 
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implements a multi-nomial logistic regression method with a ridge estimator and Quasi-

Newton optimization procedure. 

 

2.2.4.3 Support vector machines 

A support vector machines (SVMs) classifier aims to solve a quadratic 

optimization problem [40] by mapping the training samples to a higher dimensional space 

and finding a linear separating hyperplane with a maximum margin [45]. We 

implemented two SVMs with a Radial Basis Function (RBF) kernel using the LIBSVM 

package [24] in WEKA. In the first version, we set the C parameter to 1.0 and γ to 

1/number of features, while in the second model, we optimized these hyper-parameters 

by performing a grid search, choosing 𝐶 ∈ (2−5, 2−4, … , 215)  and 𝛾 ∈

(23, 22, … , 2−15). At the end of this procedure, we selected the particular pair that gives 

the best cross-validation accuracy, trained the SVM classifier using these optima and 

performed predictions on the test sample. 

 

2.2.4.4 Decision tree 

A decision tree classifier contains nodes and directed edges (i.e., branches) 

connecting nodes with no cycles allowed. Each internal node represents a test on a feature, 

and each branch is the outcome of the test, which can be true or false. For a given feature 

vector, the tests are applied from the top (root) node down to the leaf nodes, representing 

a class label (i.e. final decision). Hence, each path from the root to a leaf node is a 

classification rule. We employed the J48 algorithm in WEKA (a successor of C4.5) under 

default parameters, in which the confidence threshold for pruning is set to 0.25, and the 

minimum number of instances per leaf is set to 2 [70]. 

 

2.2.4.5 Bayesian network 

Let 𝑋 = [𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑑] be the set of variables, where 𝑥0 = 𝑦 is the output class 

variable and 𝑥1, 𝑥2, … , 𝑥𝑑  represent input features.  A Bayesian network B over variables 

in X is a directed acyclic graph (DAG) and a set of probability tables 𝐵𝑃 =

{𝑝(𝑥|𝑝𝑎(𝑥))|𝑥 ∈ 𝑋} where pa(x) is the set of parents of x. The probability distribution for 

X can be computed as 𝑃(𝑋) = ∏ 𝑝(𝑥|𝑝𝑎(𝑥))𝑥∈𝑋 . The classification problem can be stated 

as inferring the class variable 𝑦 = 𝑥0 given the set of input features 𝐱 = [𝑥1, 𝑥2, … , 𝑥𝑑]. In 

this context, a BayesNet classifier 𝑓 ∶ 𝐱 → 𝑦 is a function that maps an input feature vector 
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x to class type y. The classifier is learned from a dataset containing samples over (x, y), 

and the learning process includes deriving a Bayesian network structure and the mapping 

function f. The classification process selects the particular class type that maximizes the 

a posteriori distribution 𝑃(𝑦 | 𝐱). In the present study, we employed the BayesNet 

classifier in WEKA software, which first discretizes the continuous-valued features by 

employing the filter called weka.filters.unsupervised.attribute.NumericToNominal. We 

selected the search algorithm for learning the network structure as K2, a hill-climbing 

algorithm restricted by the order of the variables, and the estimator as SimpleEstimator, 

which computes the conditional probability tables (CPTs) directly from the data for a 

given network structure [43].  

 

2.2.4.6 Radial basis function (RBF) network 

A radial basis function network first clusters data and then fits a basis function to 

each cluster. In the second stage, the basis function outputs are sent to a linear classifier 

to predict the class type [71]. We employed the RBFNetwork classifier in WEKA, which 

uses the k-means clustering algorithm and fits symmetric multi-variate Gaussians to data 

in each cluster. The output of Gaussians, which constitute the basic functions, are directed 

to a logistic regression classifier to predict the class type. All data are normalized to zero 

mean and unit variance (i.e., Z-score normalization). We implemented two versions of 

the RBFNetwork. The first one uses two clusters, which are equal to the number of class 

types, and the second optimizes the number of clusters by cross-validation considering 

the following values: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25. 

 

2.2.4.7 Random Forest 

A random forest classifier is an ensemble technique that combines multiple 

decision trees by weighted majority voting. Each tree receives a small subset of input 

features constituted by random selection and is trained on a separate training set, which 

is generated by the bootstrap sampling procedure (also known as bagging) [42]. Random 

forest is also robust against outliers and is less prone to overfitting. We implemented two 

versions of the RandomForest classifier in WEKA. The first one uses 100 trees, and the 

second one optimizes the number of trees by performing cross-validation on each training 

set and considering the following alternatives for this parameter: 1, 2, 3, 4, 5, 6, 7, 8, 9, 

10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100.  
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2.2.4.8 AdaBoost 

A boosting ensemble combines multiple classifiers through weighted averaging 

of classifier outputs. Different from bagging, the base learner at a given iteration is 

constructed according to the classification behavior of the previous learner concentrating 

more on the misclassified examples. To construct the training set of the current classifier, 

the probability of selecting misclassified examples is increased, and a bootstrap sampling 

procedure is used [44]. Although boosting can be prone to overfitting, it typically 

improves the overall classification accuracy. We employed the AdaBoostM1 method in 

WEKA by selecting DecisionStump as the base learner and implemented two versions of 

this classifier. The first one selects the number of iterations as 10, which is the default 

value. The second optimizes this parameter by performing cross-validation on each 

training set considering the following values: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 

35, 40, 45, 50, 60, 70, 80, 90, 100. 

 

2.2.4.9 Stacking  

A stacking ensemble combines different types of classifiers, which serve as base 

learners through a meta-learner [72]. Typically, the number of base learners is smaller 

than bagging or boosting. We implemented three stacking ensembles in the present study 

by combining different classifiers. The first ensemble combines the decision tree (i.e., J48 

in WEKA) with AdaBoostM1 (Stacking 1), the second combines the decision tree, 

AdaboostM1, and logistic regression (Stacking 2), and the third combines the decision 

tree, AdaboostM1, logistic regression and BayesNet classifiers (Stacking 3). We 

employed logistic regression as the meta-learner in each method and used 10 iterations 

for AdaBoostM1, the default setting in WEKA.  

 

2.2.4.10 Performance Measures 

We used the following measures to evaluate the performance of the classifiers: 

Sensitivity (or recall), specificity, positive predictive value (PPV), negative predictive 

value (NPV), Matthew’s correlation coefficient (MCC), F-measure, overall accuracy, and 

area under ROC curve (AUC) [21]. These are computed as  

 
 

(2.1) 
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where TP is true positives, FP is false positives, TN is true negatives, and FN is false 

negatives. AUC measure is computed by first ranking the predictions with respect to the 

decision scores and then shifting the decision threshold to compute TP, FP rate values of 

the ROC curve. Each horizontal move (i.e., a false positive) generates a rectangular region 

in ROC, and the cumulative sum of these areas gives our AUC estimate. 

2.3 Results and discussion 

We performed a leave-one-out cross-validation experiment on the main dataset 

and obtained the accuracy measures shown in Tables 2.1 to 2.3. Table 2.1 compares 

different classifiers when no normalization is applied, and the hybrid feature selection 

strategy is used. Table 2.2 demonstrates the accuracy of classifiers when data is 

normalized, and hybrid feature selection method is employed. Table 2.3 includes the 

accuracy measures of the stacking ensemble for all combinations of the following 

conditions: Data is not normalized, data is normalized, no feature selection is performed, 

CFS subset evaluator is employed, and a hybrid feature selection method is employed.  

According to these results, we achieved the best results with the decision tree 

approach and stacking classifiers when data is normalized, and the hybrid feature 

selection is used. Because the decision tree was among the base learners in all stacking 

methods implemented, we can conclude that stacking ensemble does not improve the 

accuracy of its base learners further. Based on the results presented in Tables 2.1 to 2.3, 

we can also observe that feature selection generally increases the classification accuracy 
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compared to the condition where no feature selection is employed. Comparing the two 

feature selection methods, some classifiers are more accurate when the first feature 

selection method is used, while the rest gives better results with the second strategy. 

Similar behavior is observed for data normalization conditions, and no winner takes all 

conditions that exist. Furthermore, hyper-parameter optimization improved the prediction 

accuracy of certain classifiers but not all of them. This could be related to constraints 

imposed by having a small number of samples. Table 2.4 shows the confusion matrix for 

the LOOCV experiment. It is evident that when the tumor subtype is SqCC, the prediction 

is more successful, but the identification is harder for the ADC subtype. 

Figure 1 shows the histogram of the number of features selected on each training 

set of the leave-one-out cross-validation (a total of 96 feature subsets) when the hybrid 

feature selection is employed, and no normalization is applied. According to this figure, 

most of the time, approximately 20 features are selected out of 40. Similar behavior is 

observed when the same experiment is repeated on normalized data. 

Figures 2.3 and 2.4 show the relative importance of the features when the hybrid 

feature selection method is employed on not normalized and normalized data, 

respectively. The horizontal axis shows the features used in this study and the vertical 

axis represents the number of times a feature is selected when feature selection is 

repeatedly applied on each training set of the leave-one-out cross-validation. Comparing 

these plots, the key features are similar for the two normalization conditions. 

Finally, when the decision tree classifier is trained on the normalized version of 

the dataset with 96 samples (without performing any feature selection), the tree diagram 

shown in Figure 4 is obtained, which performs a test on a single attribute named RLV 

(run-length variance, a parameter extracted from gray-level run-length matrix). Since a 

decision tree classifier inherently performs feature selection and is pruned during training, 

the resulting model is a feature-selected version of the original data. Furthermore, its 

simplicity makes it interpretable and can be applied directly in clinical settings on future 

data. This is also consistent with the relative importance rankings of the features in 

Figures 2.3 and 2.4.  

 

 

 

 



23 

 

 

Table 2.1 Accuracy measures of classifiers when no normalization is applied, and 

the hybrid feature selection method is employed. 

Method  Sensitivity Specificity PPV NPV MCC F-

Measure 

Overall AUC 

k-NN (k=3)  73.33 61.11 75.86 57.89 0.34 74.58 68.75 63.94 

k-NN (k opt)  80.00 25.00 64.00 42.86 0.06 71.11 59.38 58.61 

Decision Tree 

(J48) 

 66.67 30.56 61.54 35.48 -0.03 64.00 53.12 46.39 

Bayes Net  83.33 36.11 68.49 56.52 0.22 75.19 65.62 53.70 

AdaBoostM1  

(iterations=10) 

 93.33 41.67 72.73 78.95 0.43 81.75 73.96 53.98 

AdaBoostM1  

(#iterations 

opt) 

 93.33 36.11 70.89 76.47 0.37 80.58 71.88 58.10 

Logistic 

Regression 

 75.00 47.22 70.31 53.12 0.23 72.58 64.58 65.37 

Random 

Forest    

(#trees=100) 

 73.33 38.89 66.67 46.67 0.13 69.84 60.42 59.95 

Random 

Forest    (#trees 

opt) 

 66.67 47.22 67.80 45.95 0.14 67.23 59.38 58.47 

RBF Network 

(#clusters=15) 

 75.00 33.33 65.22 44.44 0.09 69.77 59.38 53.33 

RBF Network 

(#clusters opt) 

 66.67 44.44 66.67 44.44 0.11 66.67 58.33 52.08 

SVM default  100.00 11.11 65.22 100.00 0.27 78.95 66.67 59.86 

SVM opt  73.33 36.11 65.67 44.83 0.10 69.29 59.38 55.97 

Stacking 1  90.00 33.33 69.23 66.67 0.29 78.26 68.75 50.83 

Stacking 2  90.00 30.56 68.35 64.71 0.26 77.70 67.71 54.21 

Stacking 3  86.67 33.33 68.42 60.00 0.24 76.47 66.67 49.77 

 

Table 2.2 Accuracy measures of classifiers when data is normalized, and the 

hybrid feature selection method is employed. 

Method  Sensitivity Specificity PPV NPV MCC F-

Measure 

Overall AUC 

k-NN (k=3)  68.33 47.22 68.33 47.22 0.16 68.33 60.42 56.85 

k-NN (k opt)  86.67 22.22 65.00 50.00 0.12 74.29 62.50 55.74 

Decision Tree 

(J48) 

 95.00 44.44 74.03 84.21 0.48 83.21 76.04 42.22 

Bayes Net  88.33 38.89 70.67 66.67 0.32 78.52 69.79 52.31 

AdaBoostM1  

(#iterations=10) 

 91.67 38.89 71.43 73.68 0.37 80.29 71.88 49.49 

AdaBoostM1  

(#iterations opt) 

 90.00 38.89 71.05 70.00 0.34 79.41 70.83 50.79 
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Logistic 

Regression 

 76.67 52.78 73.02 57.58 0.30 74.80 67.71 67.31 

Random Forest    

(#trees=100) 

 83.33 38.89 69.44 58.33 0.25 75.76 66.67 59.95 

Random Forest    

(#trees opt) 

 71.67 58.33 74.14 55.26 0.30 72.88 66.67 61.20 

RBF Network 

(#clusters=15) 

 78.33 36.11 67.14 50.00 0.16 72.31 62.50 68.75 

RBF Network 

(#clusters opt) 

 53.33 47.22 62.75 37.78 0.01 57.66 51.04 56.94 

SVM default  100.00 0.00 62.50 0.00 0.00 76.92 62.50 53.52 

SVM opt  78.33 36.11 67.14 50.00 0.16 72.31 62.50 59.26 

Stacking 1  95.00 44.44 74.03 84.21 0.48 83.21 76.04 67.18 

Stacking 2  95.00 44.44 74.03 84.21 0.48 83.21 76.04 68.94 

Stacking 3  95.00 44.44 74.03 84.21 0.48 83.21 76.04 62.27 

 

Table 2.3 Accuracy of stacking methods with respect to normalization and feature 

selection.  

Method  Sensitivity Specificity PPV NPV MCC F-Measure Overall AUC 

S1 FS0 N0  90.00 30.56 68.35 64.71 0.26 77.70 67.71 48.80 

S1 FS1 N0  88.33 36.11 69.74 65.00 0.29 77.94 68.75 69.49 

S1 FS2 N0  90.00 33.33 69.23 66.67 0.29 78.26 68.75 50.83 

S1 FS0 N1  95.00 36.11 71.25 81.25 0.40 81.43 72.92 61.20 

S1 FS1 N1  95.00 44.44 74.03 84.21 0.48 83.21 76.04 65.23 

S1 FS2 N1  95.00 44.44 74.03 84.21 0.48 83.21 76.04 67.18 

S2 FS0 N0  83.33 27.78 74.03 50.00 0.13 73.53 62.50 49.26 

S2 FS1 N0  88.33 36.11 69.74 65.00 0.29 77.94 68.75 66.11 

S2 FS2 N0  90.00 30.56 68.35 64.71 0.26 77.70 67.71 54.21 

S2 FS0 N1  95.00 33.33 70.37 80.00 0.38 80.85 71.88 58.01 

S2 FS1 N1  93.33 44.44 73.68 80.00 0.45 82.35 75.00 69.63 

S2 FS2 N1  95.00 44.44 74.03 84.21 0.48 83.21 76.04 68.94 

S3 FS0 N0  83.33 27.78 65.79 50.00 0.13 73.53 62.50 43.61 

S3 FS1 N0  86.67 36.11 69.33 61.90 0.27 77.04 67.71 61.85 

S3 FS2 N0  86.67 33.33 68.42 60.00 0.24 76.47 66.67 49.77 

S3 FS0 N1  91.67 33.33 69.62 70.59 0.32 79.14 69.79 51.81 

S3 FS1 N1  93.33 33.33 70.00 75.00 0.35 80.00 70.83 65.65 

S3 FS2 N1  95.00 44.44 74.03 84.21 0.48 83.21 76.04 62.27 

 

S1: First stacking method, S2: Second stacking method, S3: Third stacking method, FS0: 

No feature selection is performed, FS1: CFS subset evaluator is employed, FS2: hybrid 

feature selection is employed, N0: No data normalization, N1: Features are normalized. 
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Table 2.4 Confusion matrix for Stacking 2 classifier when data is normalized and 

the hybrid feature selection is employed. 

True \ Pred Pred = ADC Pred = SqCC 

True = ADC 16 20 

True = SqCC 3 57 

 

 

Figure 2.2 Histogram of the number of features selected on each training set of the 

leave-one-out cross-validation when no data normalization is performed. 

 

In this work, we compared the accuracy of several machine learning approaches 

for discriminating the two cancer subtypes: adeno and squamous cell lung cancer. We 

also analyzed the effect of feature selection and data normalization. The most accurate 

method was the stacking ensemble classifier, which combines a decision tree, 

AdaBoostM1, and Logistic regression methods by a meta-learner. In future work, we plan 

to evaluate other feature selection methods in the machine learning literature and enlarge 

our dataset by including more subjects and new features. All these efforts are expected to 

advance the detection of cancer subtypes, which is very important for future targeted 

therapies. In addition, in the literature, this kind of discrimination problem has not been 

managed in such a rigorous manner from the feature selection to classification. 
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Figure 2.3 Selection frequencies of the features on training sets of the leave-one-out 

cross-validation when hybrid feature selection is employed, and data are not 

normalized. 
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Figure 2.4 Selection frequencies of the features on training sets of the leave-one-out 

cross-validation when hybrid feature selection is employed, and data are 

normalized. 
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Chapter 3 

Semantic Segmentation of PET images 

3.1 Background Information 

 

According to the Global Cancer Statistic report [73], lung cancer is the leading 

cause of death among the other cancers, with approximately 2 million deaths across 185 

countries in 2020, and the second most diagnosed after breast cancer with 2 million cases.  

According to the American Cancer Society, Non-small cell lung cancer (NSCLC) is the 

most common subtype of lung cancer ranging from 80% to 85%. The biopsy is the golden 

standard for diagnosing NSCLC; however, imaging tests are frequently used with biopsy 

in detection, staging, assessment of therapy response, and prognostic evaluation.  

Among the imaging tests, PET/CT is the most common modality compared to X-

Ray and MRI due to the importance of radiation therapy planning and functional tumor 

volume assessment [74]. Positron emission tomography (PET) with 2-deoxy-2-[fluorine-

18] fluoro-D-glucose (18F-FDG) provide functional information based on the 

radiolabeled glucose uptake in metabolically active tumors. FDG-PET is valuable for 

staging, restaging, radiotherapy planning, and biopsy guidance in oncology. 

             Manual segmentation is a time-consuming, tedious task in medical imaging. 

Furthermore, manual segmentation reproducibility is poor. Also, PET image resolution 

and SNR value is low compared to the CT and MRI modalities. The first automatization 

approach in segmentation is threshold-based. Since the quantification of PET image is 

SUV value, they took some percentage of SUV to decide tumor and background regions. 

However, the binary threshold is not a solution since there is no convention to which 

value should be used. Secondly, SUV values are affected by many biological and physical 

factors and are hard to standardize. 

            Over the years, many different techniques have been suggested based on 

optimization, statistic, etc. [75]. Hatt et al. [76]  defined one of the important problems as 
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no benchmark dataset to decide which approach provides better and fair comparison. 

First, most of the datasets used in publications are not open to public. Another problem is 

that only one expert draws the boundaries of the tumors. Furthermore, most publications 

ignore the repeatability, reproducibility, and robustness of segmentation based on scanner 

type and reconstruction parameters. All the arguments explain why tumor segmentation 

is still an active area of research.  

           Many institutions attacked the problem of creating a benchmark dataset for 

evaluating PET automatic segmentation algorithms for tumor delineation, such as the 

American Association of Physicists in Medicine (AAPM). Besides, creating dataset 

evaluation criteria is critical. AAPM created the first PET tumor segmentation challenge 

[77] to evaluate the online platform's state-of-the-art delineation algorithm. The 

Challenge dataset includes solid tumor PET images containing simulated, phantom, and 

clinical images. At the end of the challenge a CNN based model won the competition. 

This shows that higher-level feature extraction through the layers has a superior 

performance even in the small dataset.  

Medical image segmentation consists of classifying each pixel or region that 

belongs to the organ, tumor, or structure. Radiologists visually inspect the images and 

define the boundaries manually or using an available software. Segmentation is a time-

consuming and tedious task, and manual segmentation suffers from intra- and inter-

variability. 

Before deep learning gained attention, segmentation methods mainly were based 

on thresholding, region-based, boundary-based, stochastic, and learning-based [78]. Most 

of the deep learning-based medical segmentation methods in the literature are based on 

FCN [48], U-Net [49], 3D U-Net [79], V-Net [80] architectures. General segmentation 

strategy includes fine-tuning of the parameters specific to image dataset, modification of 

architecture, or changing cost function. The most applied problem is organ segmentation, 

and MRI is the leading modality due to its high image resolution [81]. 

This chapter introduces adaptation of DeepLab [82] architecture for lung tumor 

segmentation in FDG-PET images. We use Tversky loss for the class imbalance between 

large and small tumors [83]. We introduce a new PET based lung tumor dataset with the 

masks and conduct an experiment performance comparison of DeepLab with UNet. 
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3.2 Materials and Methods 

3.2.1 Dataset 

In this retrospective study, 141 patients with non-small cell lung cancer (NSCLC) 

that previously underwent 18F-FDG-PET/ CT imaging for cancer staging before surgery, 

chemotherapy, or radiotherapy treatment according to the stage of their disease from 

March 2010 to April 2014 were evaluated in the Acıbadem Kayseri Hospital. This study 

was approved by the research ethics committee of the Kayseri Research and Training 

Hospital. All procedures involving human participants' studies followed the institutional 

and/or national research committee's ethical standards and the 1964 Helsinki Declaration 

and its later amendments or comparable ethical standards. Informed consent was obtained 

from all individual participants included in the study.  

 

3.2.2 Proposed Model 

We adapted DeepLab version 3 (DeepLabV3) for semantic lung tumor 

segmentation. In [82], they use atrous (dilated) convolution instead of pooling and down 

sampling layers, which causes the loss of spatial information for a deeper network. Atrous 

convolution is a layer with a stride parameter that allows changing the filter’s field of 

view and carrying information to deeper blocks by inserting rate-1 zero to consecutive 

filter values. The main advantage is to extract denser features without extra parameters. 

Additionally, they introduce spatial pyramid pooling to capture multi-scale information. 

To capture different scale information, they use 4 different rated dilated convolutions in 

parallel and then concatenate the result. We used MobileNet-v2 [84] pretrained on 

ImageNet as a backbone to DeepLabV3. ASPP module was placed next to block 16 with 

rates (6,12,18) 3x3 convolutions as in [82]. We interchanged the classification layer with 

the Tversky loss layer with penalty terms α = 0.4 and β = 0.6. The Tversky index helps 

improve the model's performance while the dataset is imbalanced. We used the Tversky 

layer for two reasons. The first reason was that the tumor size was small compared to the 

background. The second reason was the tumor size changed through slices (a need for 

regularization). It was also hard to convert 2D segmentation to 2.5D segmentation for 

further study.   
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Figure 3. 1 Atrous convolution kernel [82] 

 

Figure 3. 2 Spatial pyramid pooling [82] 

 

 

 

(3.1) 

where α, β control the recall and precision tradeoff. P and G are predicted and ground 

truth images where p0i
 is the probability of pixel i being a tumor and p1i

 is the probability 

of pixel i being a background.  

 

3.2.3 Experiment Design 

We applied ten-fold cross-validation on our dataset; we trained with 131 patient 

images and tested for 10 images. We had such 10 training and test sets. Results were 

based on the average of these test sets. For each dataset prepared, we compared 

DeepLabV3 and U-Net architectures using three evaluation criteria whose details are 

given below. 
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In addition, we applied data augmentation by random rotation (-10 to 10) and 

reflection during each training phase. We performed Adam optimizer with a decay rate 

of 0.99, the initial learning rate of 0.0003 multiplied by 0.9 every 126 steps during one 

epoch, and a mini-batch size of 1. Three different cropping sizes were evaluated such as 

32x32, 64x64 and 256x256. The same frameworks were investigated on cropped images 

with single tumor. In this study, the effects of augmentation, cropping and Tversky loss 

on the segmentation performance of the proposed model based on DeepLabV3 

architecture were investigated. We implemented our codes in MATLAB. 

 

3.2.4 Evaluation Metrics  

The definitions performance metrics for intersection over union (IoU), Dice similarity 

index (DSI) and F1 score are as follows: 

 

 
(3.2) 

 

 
(3.3) 

 

 
(3.4) 

 

where TF, FP, and FN are the true positives, false positives, and false negative rates. F1 

score can also be mentioned as boundary F score or BFScore. Here we will use BFScore.  

 

3.3 Results and Discussion 

In Figure 3.3, the segmentation results are shown on one sample image for different 

frameworks such as U-Net, DeepLabV3, DeepLabV3 and Augmentation used together, 

and DeepLabV3 and Augmentation and Tversky Loss used together. The last framework 

gave the best segmentation performance both visually and quantitatively. The resultant 

evaluation metrics for each framework are listed in Table 3.1.  Here, to highlight the 

advantage of using augmentation and Tversky loss along with DeepLabV3 architecture 

the image/slice that contains two bright spots is chosen. The center bright spot occurred 

due to the heart tissue, i.e., it does not indicate a tumor. As depicted in this figure, 

DeeplabV3 architecture is able to overcome multiple bright spots as opposed to the U-
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Net architecture. In this study, only solid tumors (one tumor in each slide) were included 

in the analysis.  

            Table 3.1 demonstrates the comparative results of segmentation performance for 

DeepLabV3 and U-Net frameworks and the effect of augmentation and Tversky loss on 

the DeepLabV3 using three metrics such as mean IoU, BFScore and DSI. The scores are 

the average of all 10 test sets. Using augmentation with Tversky loss improves 

segmentation performance as can be seen from Table 3.1. Mean IoU scores are similar 

because tumor size is significantly small compared to the whole image. However, 

improvements can be observed even better using DSI and BFscore. Even though DSI 

values are similar in DeepLabV3 and U-Net architectures, BFscore values that take 

precision and recall into account are considerably different. It is evident that DeepLabV3 

approach exhibits superior performance compared to the U-Net. It is worth noting that 

augmentation do not have considerably effect on the segmentation performance, however, 

Tversky loss layer increased DSI scores remarkably. 

            Figure 3.4 illustrates successful segmentation outcomes from six patients whose 

tumors were at different anatomical locations with different sizes using the DeepLabV3 

and Tversky loss model with augmentation. As mentioned earlier, we worked on primer 

tumors, which assume each slice has one solid tumor. Even if there is another hot spot 

(bright mass) in the slice, the model can distinguish the difference and classify the second 

bright mass as a background. For instance, in the third row of Figure 3.4, there is a second 

mass on the image on the left, an artifact and a heart. In Figure 3.3, one can observe that 

a similar artifact could significantly affect the segmentation result. The Tversky loss layer 

helped to regularize artifacts in the image. Dilated convolution approach showed 

resistance to such artifacts compared to the U-Net. In the dataset, there are few examples 

of such artifacts. We expected a worse DSI score since a few examples are insufficient to 

learn.        
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Figure 3. 3 Segmentation results for (a) U-Net, (b) DeepLabV3, (c) DeepLabV3 and 

Augmentation, and (d) DeepLabV3 and Augmentation and Tversky Loss. Blue and 

red lines indicate the ground truth and predicted segmentation outcomes 

respectively. 

 

Table 3. 1 Segmentation performance comparison for different frameworks and 

augmentation and Tversky loss on the DeepLabV3 architecture.  
 

Mean IoU BFScore DSI 

DeepLabV3 0.783504246 0.767433378 0.674516318 

DeepLabV3 + Augmentation 0.784975141 0.78843336 0.68368549 

DeepLabV3 + Augmentation + 

Tversky Loss 

0.809876166 0.79074866 0.735556089 

U-Net 0.757720767 0.62869407 0.645562299 
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Figure 3. 4 Segmentation results for (a) U-Net, (b) DeepLabV3, (c) DeepLabV3 and 

Augmentation, and (d) DeepLabV3 and Augmentation and Tversky Loss. Blue and red 

lines indicate the ground truth and predicted segmentation outcomes respectively.  
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Figure 3. 5 Segmentation outcomes for cropped images with different box size such 

as (a) 256x256 (b) 64x64 (c) 32x32. Blue and red lines indicate the ground truth 

and predicted segmentation outcomes respectively. 

 

Figure 3.5 demonstrates the segmentation performance of DeepLabV3 with 

Tversky loss and augmentation on one tumor with different box size, not the whole slice 

visually. Briefly, the segmentation performance was superior on 64x64 box size when 

compared to 32x32 in terms of BFScore (as shown in c). Both experiments showed that 

DeepLabV3 converges better compared to U-Net. Table 3.2 shows the cropped tumor 

segmentation results. As expected, cropping the tumor site improves segmentation results. 

However, 64x64 is better than 32x32 segmentation results. The main reason is that 

Tversky loss adds constraint and negatively affects the segmentation performance. Using 

DeepLabV3 without Tversky loss gives better results. The main reason for using 

DeepLabV3 with Tversky loss is to work on the whole image rather than the cropped 



37 

 

 

versions since  cropping the image will require adding an extra step to the procedure. 

Without cropping the tumor environment, satisfactory results can still be accomplished. 

One point to mention is that we created three different training sets for each fold. Each 

fold had the same patient ID and had different cropping sizes. For each cropping scheme, 

we created a new segmentation mask. This was because the interpolation step distorted 

the segmentation mask. We observed that if we used the ground truth mask in 256x256 

size, cropped the tumor region (64x64, 32x32), and resized the input and masks to match 

the model's size, the mask boundaries were distorted. To prevent this, we created each 

size segmentation again with the help of the nuclear medicine doctor in our research team.     

Table 3. 2 Segmentation results on cropped images using DeepLabV3 with Tversky 

loss and augmentation. 

Cropping Box Size Mean IoU BFScore DSI 

256x256 0.809876166 0.79074866 0.735556089 

64x64 0.868627545 0.588774377 0.832548396 

32x32 0.848804223 0.271532421 0.853158922 

                   

Tables 3.3 to 3.5 show the performance of the proposed model with cropping of 

the tumor site. Cropping the image does not always improve the result. The tumor 

environment is also important. Our general observation is that the extra workload of 

cropping is removed in the proposed model.  

If we look closer to the data, cropping tumor site significantly affects Patient 102. 

For several patients, cropping is necessary for better results. Cropping size being 64x64 

or 32x32 does not substantially affect the Dice similarity index for this patient. For our 

dataset, 64x64 cropping is a better option since the tumor environment is clean and 

performance does not change significantly. 

For each fold, we examined patient slices which yielded poor performance. In 

Figure 3.6, failures of segmentation are shown. This is the study's limitation since we 

have a small dataset compared to the patient's variability. Increasing the number of data 

would help to overcome these failures. Even for the same patient, slice-to-slice 

environment, pixel variation, and image quality were different.  

Optimizing small datasets makes it harder to generalize the result; most of the 

time, it is impossible to produce one perfect solution. For this model and other deep 

learning research, the performance of the segmentation is limited to the dataset's quality. 
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That is why we opened the dataset for further research and contributed a multi-cancer 

research dataset.   

  

 

Figure 3. 6 Failure of proposed methods 

In Figure 3.6, failures of the proposed segmentation results are shown. We have 

131 patients with a variety of physical and metabolic conditions. Even though average 

scores are high, segmentation failures occurred on 6 patients. The reasons are that some 

of the tumors are too small, and these patients are outliers compared to the other patients 

in intensity variations. To overcome these failures, the proposed methods can be used as 

a preprocessor, and experts can choose the tumor or roughly crop the window to help 

segment the tumor.  

The purpose was to automate the segmentation process. Doctors should always be 

in the loop during clinical applications. The model's overall performance is not enough to 
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translate models to the clinic. For instance, one patient segmentation result did not 

improve overall performance; however, the result is significant for this patient as a human 

being. When we designed the model, we assumed final approval or modification applied 

by an expert. The proposed model accelerates the process of hand-crafted manual 

segmentation. 

Table 3. 3 Using DeepLabV3 with Tversky loss and augmentation, Fold 6 of test 

images result (256x256) 

Patient ID Mean IoU BFScore DSI 

102 0.621715 0.8125 0.39215 

105 0.960477 1 0.95901 

110 0.903009 0.91106 0.89302 

115 0.661399 0.54321 0.48979 

120 0.893036 1 0.88043 

127 0.633745 0.53731 0.42424 

46 0.859733 1 0.83720 

64 0.912799 1 0.90476 

67 0.710078 0.31772 0.59615 

83 0.812202 0.95082 0.76923 

92 0.89249 0.88495 0.88 

94 0.859228 0.97029 0.83687 

95 0.730436 0.61748 0.63325 

96 0.824733 0.93333 0.78787 

Avg 0.805363 0.81990 0.73457 

 

Table 3. 4 Using DeepLabV3 with Tversky loss and augmentation, Fold 6 of test 

images result (64x64) 

Patient ID Mean IoU BFScore DSI 

102 0.816499 0.44221 0.779046 

105 0.952405 0.829703 0.953309 

110 0.851851 0.540785 0.838471 

115 0.709104 0.220779 0.604044 

120 0.916518 0.760183 0.911594 

127 0.952126 0.894231 0.950555 
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46 0.919871 0.689893 0.915497 

64 0.921526 0.748655 0.919073 

67 0.821339 0.252473 0.806873 

83 0.910726 0.698124 0.904836 

92 0.843744 0.536137 0.828524 

94 0.933909 0.641462 0.933747 

95 0.934965 0.741845 0.93387 

96 0.937711 0.909382 0.935227 

Average 0.887307 0.636133 0.872476 

 

Table 3. 5 Using DeepLabV3 with Tversky loss and augmentation, Fold 6 of test 

images result (32x32) 

Patient ID MeanIoU BFScore DSI 

102 0.8097 0.1206 0.7766 

105 0.9423 0.5593 0.9540 

110 0.8608 0.5447 0.8796 

115 0.8186 0.0253 0.7960 

120 0.9649 0.7773 0.9675 

127 0.8450 0.2271 0.8316 

46 0.9158 0.4249 0.9193 

64 0.9190 0.4716 0.9290 

67 0.6527 0.1116 0.7020 

83 0.8059 0.1056 0.7918 

92 0.7782 0.1514 0.7978 

94 0.9183 0.3657 0.9332 

95 0.7907 0.3347 0.7944 

96 0.9032 0.4823 0.9026 

Average 0.8518 0.3359 0.8554 

 

Table 3. 6 Model without augmentation overall 10-fold result 

  Acc mAcc mIoU wIoU BFScore Jaccard DSI 

Fold1 0.9972 0.9854 0.7800 0.9963 0.8690 0.5628 0.6908 

Fold2 0.9982 0.7015 0.6921 0.9966 0.8095 0.3860 0.5294 

Fold3 0.9975 0.9203 0.7986 0.9963 0.8543 0.5996 0.7171 
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Fold4 0.9986 0.9266 0.8094 0.9980 0.9163 0.6201 0.7376 

Fold5 0.9984 0.9425 0.8091 0.9975 0.9097 0.5012 0.6065 

Fold6 0.9987 0.8674 0.7836 0.9980 0.9076 0.5684 0.6570 

Fold7 0.9985 0.7791 0.7666 0.9970 0.9081 0.5348 0.6487 

Fold8 0.9988 0.8386 0.8112 0.9977 0.9170 0.6236 0.7610 

Fold9 0.9981 0.8994 0.7715 0.9974 0.8385 0.5448 0.6478 

Fold10 0.9986 0.9052 0.8126 0.9977 0.9003 0.6266 0.7487 

Average 0.99831 0.8766 0.7835 0.9973 0.8830 0.5568 0.6745 

 

Table 3. 7 Model with Tversky loss 10-fold result 

  Acc mAcc mIoU wIoU BFScore Jaccard  DSI 

Fold1 0.9982 0.95736 0.83332 0.9974 0.9035 0.6684 0.7677 

Fold2 0.9985 0.93106 0.81529 0.9977 0.8985 0.6320 0.7335 

Fold3 0.9966 0.97684 0.79629 0.9954 0.8407 0.5959 0.7093 

Fold4 0.9973 0.94955 0.74497 0.9965 0.8316 0.4925 0.6178 

Fold5 0.9987 0.90251 0.81987 0.9977 0.9133 0.6410 0.7702 

Fold6 0.9988 0.87184 0.80536 0.9980 0.9050 0.6118 0.7345 

Fold7 0.9986 0.96562 0.85195 0.9977 0.9239 0.7052 0.8203 

Fold8 0.9978 0.98038 0.82154 0.9969 0.8830 0.6452 0.7543 

Fold9 0.9983 0.93177 0.79009 0.9976 0.8776 0.5818 0.6883 

Fold10 0.9986 0.95098 0.82004 0.9978 0.8993 0.6414 0.7592 

Average 0.9981 0.94179 0.8098 0.9973 0.8876 0.6215 0.7355 

 

Table 3. 8 Model with augmentation 10-fold result 

  Acc mAcc mIoU wIoU BFScore Jaccard  DSI 

Fold1 0.9980 0.9114 0.7916 0.9971 0.8957 0.5852 0.7067 

Fold2 0.9983 0.9430 0.8117 0.9976 0.8962 0.6251 0.7277 

Fold3 0.9977 0.7634 0.7291 0.9957 0.8026 0.4605 0.6097 

Fold4 0.9989 0.7728 0.7209 0.9981 0.9143 0.4429 0.5378 

Fold5 0.9990 0.8231 0.7867 0.9981 0.9322 0.5745 0.6870 

Fold6 0.9987 0.7650 0.7322 0.9975 0.8898 0.4658 0.5903 

Fold7 0.9988 0.9519 0.8766 0.9980 0.9626 0.7544 0.8541 

Fold8 0.9990 0.9039 0.8473 0.9982 0.9341 0.6956 0.8053 

Fold9 0.9971 0.8941 0.7338 0.9962 0.8027 0.4706 0.5844 

Fold10 0.9990 0.8308 0.8192 0.9982 0.8923 0.6394 0.7334 

Average 0.9984 0.8559 0.7849 0.9975 0.8922 0.5714 0.6836 

 

Table 3. 9 U-Net 10-fold result 

  Acc mAcc mIoU wIoU BFScore Jaccard DSI 

Fold1 0.9983 0.9764 0.7950 0.9974 0.8443 0.5917 0.7236 

Fold2 0.9931 0.9887 0.6919 0.9917 0.6331 0.3908 0.5119 

Fold3 0.9984 0.9183 0.8264 0.9972 0.8722 0.6544 0.7790 
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Fold4 0.9992 0.8905 0.8330 0.9985 0.9547 0.6667 0.7919 

Fold5 0.9978 0.9051 0.7674 0.9967 0.8064 0.5370 0.6669 

Fold6 0.9918 0.9704 0.6478 0.9903 0.6010 0.3038 0.4288 

Fold7 0.9989 0.9780 0.8711 0.9982 0.9218 0.7433 0.8475 

Fold8 0.9976 0.8170 0.7237 0.9960 0.7734 0.4497 0.6103 

Fold9 0.9958 0.9575 0.7021 0.9948 0.6943 0.4085 0.5332 

Fold10 0.9936 0.9898 0.7184 0.9923 0.7058 0.4432 0.5618 

Average 0.9964 0.9392 0.7577 0.9953 0.7807 0.5189 0.6455 

 

Table 3. 10 Comparison result for 256x256 

256x256  Acc mAcc mIoU wIoU BFScore Jaccard DSI 

DeepLabV3 0.9983 0.8766 0.7835 0.9973 0.8830 0.5568 0.6745 

DeepLabV3 + Aug 0.9984 0.8559 0.7849 0.9975 0.8922 0.5714 0.6836 

DeepLabV3 +Aug +Tver 0.9981 0.9417 0.8098 0.9973 0.8876 0.6215 0.7355 

U-Net 0.9964 0.9392 0.7577 0.9953 0.7807 0.5189 0.6455 

 

Table 3. 11 Comparison result based on image sized proceed 

DeepLab+Aug+Tver  Acc mAcc mIoU wIoU BFScore Jaccard DSI 

256x256 0.998173 0.941798 0.80987 0.9973 0.8876 0.6215 0.7355 

64x64 0.989377 0.929216 0.86862 0.9808 0.7686 0.7483 0.8325 

32x32 0.953838 0.938877 0.848804 0.9178 0.5420 0.7541 0.8531 

 

            In this study we proposed the use of DeepLabV3 architecture to segment non-

small-cell lung tumors on FDG-PET images, especially on the slice with the SUVmax. In 

our previous study [85], we used random walk segmentation approach with a similar goal 

in which the user/physician defined two seed points one inside and one outside of the 

tumor region. However, this kind of an interactive segmentation is time consuming and 

requires user interaction and post-processing. However, the proposed model does not 

need any supervision and can successfully segment the tumor from the whole slice or the 

bounding box.  

            We compared the proposed model with the U-Net architecture which is highly 

popular in medical image segmentation. U-Net performed relatively well depending on 

the tumor size and location. However, for small tumors it either overestimated or 

underestimated the tumor boundary. DeepLabV3 solved this problem with atrous 

convolution layer and spatial pyramid approach. Further improvement came with the 

Tversky loss layer added to the MobileNet architecture. In most datasets including ours, 

small-size tumors are fewer than large ones which creates a significant imbalance in the 
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training phase of the segmentation. We selected Tversky loss layer to refine tumor 

boundaries by penalizing incorrect segmentation. Moreover, augmentation during the 

training phase improved the segmentation performance which can especially be seen in 

dice similarity index.  

As suggested in [86], for reproducibility we share our dataset to address limited 

annotated data problem in medical images. Cross-validation was applied to prevent 

overfitting problem and we used evaluation metrics of segmentation. The generalizability 

of the proposed solution is a challenging issue due to variability of patient and the limited 

number of data. However, contributing a new PET image dataset coming from lung 

cancer patients will add value to comparing workable solutions with different scanners 

and cancer types.  

Further improvement can be accomplished with interactive and image-specific 

fine-tuning after applying DL-based segmentation as proposed in [87]. In this study, our 

aim was to decrease the time that the clinical expert spends time on manual drawing. The 

segmentation accuracy that is obtained in this study is acceptable by clinical experts. 

However, we are aware of the fact that there is inevitable variability among their 

decisions. 

The proposed solution's purpose is to improve the accuracy of segmentation; in 

another work [89], we observed classification problem variation comes mainly from the 

classification method rather than the segmentation mask. Choosing 2D segmentation is 

not mandatory; the proposed solution can be converted to 2.5D segmentation, which 

applies to each patient slide and then converted to isotropic volume data using scanner 

parameters. Compared to the 3D methods 2D and 2.5D methods are cost-efficient [49]. 

In this paper, we proposed a semantic segmentation model for PET images of 

NSCL cancer. We compared the proposed method with U-Net and showed that Tversky 

loss and the proposed network significantly improved segmentation results. For 

reproducibility and generalizability we shared images with masks. 

In recent years PET/CT multi-modality segmentation approach has been 

widespread. The idea behind the multi-modality segmentation is to use each modality’s 

advantage to improve segmentation accuracy and visual fusion map. However, we think 

that this is highly challenging for two reasons: First, the image resolutions and size of 

image obtained using each modality are different. In our case, the image size of PET is 

168x168. On the other hand, CT image size is 256x256. If you want to use two modalities 

for the same region of interest, you need to interpolate or down-sample one of the 
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modalities. For both cases, still, anatomical matching is required; registration of PET to 

CT is not a trivial task. Since the resolution of PET is low, it is hard to verify anatomical 

matching. In studies, the registration step was generally missing; they interpolated PET 

image size to CT. This process gave saliency maps. The second problem with multi-

modality segmentation is that each modality generates a different tumor volume. CT 

based tumor volume is more problematic because functional features are not represented 

in CT. That is why the clinic uses the PET/CT modality, combining anatomical and 

functional imaging.  

Commercial PET/CT devices register and show fused images to clinicians to 

segment tumors. Vendors generate the volume of scan CT and PET in DICOM images 

separately; they do not provide fused volume. This causes two sets of images with 

distinctive features and ground truth masks. Using two different modalities with different 

masks for one ground truth segmentation makes the assessment unclear. Another point is 

the problem definition. If we apply semantic segmentation to a classification problem, the 

segmentation solution is vital but decisive performance. The performance limitation 

occurs due to the classification problem (TNM staging, subtype classification, therapy 

response), classifier, and feature selection. However, when the problem is to decide the 

radiation dose for the therapy, segmentation performance may affect the final outcome. 

Even though there are such difficulties, multi-modality segmentation studies provided 

valuable information for semantic segmentation of lung tumors in PET images. 

In [88], 3D-UNet was applied for PET segmentation for extracted patches. The 

Dice score is 0.85 for PET-only segmentation without cross-validation for 60 NSCLC 

cases. They compared their method with a graph-based segmentation algorithm and found 

deep learning approach outperforms to segmentation bot PET and CT images. They found 

multimodality feature fusion had limited improvement on PET-only segmentation. 3D U-

Net performance for PET images was under 70%, similar to our dataset. In [89], DSI is 

0.86 for segmentation using patches/boxes without cross-validation. In [90], DSI is 0.85 

for multi-modality segmentation for patches without cross-validation for 84 NSCLC 

patients. 

Using patches/boxes increases the DSI significantly; however, it is unrealistic to 

ask doctors to create a bounding box for each slice. Because a data-driven approach is a 

power supported by data, models should be built upon more available data. Graph-based 

and parametric segmentation methods perform well with preprocessing and post-

processing approaches. Dilated convolution approach with pyramid pooling performs 
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well without a bounding box. The article above also suggested that a well-structured 

natural image segmentation approach will improve the performance. The main limitation 

in medical semantic segmentation is annotated data. It is impossible to compare each deep 

learning state-of-the-art segmentation method. While designing an experiment, we 

expected that DeepLabV3 will outperform U-Net because of the technical contribution of 

dilated convolution, pyramid pooling, and MobileNet backbone. We compared U-Net 

since it is very popular and a general improvement modifying it according to a specific 

problem.     

As mentioned in [51], many possible improvements can be made to improve the 

segmentation performance. One is architecture level; we borrowed DeepLabV3 from 

natural image processing. Another is the loss function; we used Dice loss which is more 

suitable compared to the cross-entropy loss function, and finally, we used the Tversky 

loss layer to solve the imbalanced tumor size problem.  
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Chapter 4 

Prognostic Value of Radiomics in 

Pancreatic Cancer 

4.1 Introduction 

       Pancreatic adenocarcinoma (PA) is one of the mortal cancers with, a five-year 

survival rate is 3% for distant tumors based on SEER staging [91]. The common treatment 

of PA is neoadjuvant chemotherapy (NC) which chemotherapy drugs are administered 

before undergo resection of the tumor. If resection is not possible although the NC, 

radiation therapy can be used for possibility of surgery. However, a major problem with 

this treatment is only 20% of tumors are able to the resection.  [92].  

       FDG-PET clinical application was explained in chapter one. 18F-FDG PET/CT is an 

accurate and useful modality in PA diagnosing, staging and treatment response [93]. 

According to meta-analysis study FDG PET/CT diagnosing PA sensitivity and specificity 

can be reached 90% and 80% respectively [94].   

One of the most common clinical features to assess treatment response is SUV value. 

Recently researchers have shown higher SUV value is associated with prognosis of PA 

[95]. Alternative studies MTV and TLG [96] can be used as a prognostic factor beside 

SUV.   

        However, these clinical features are having serious problem with standardization 

issue because modality parameters affect the values of SUV, MTV and TLG. Addition to 

variation in imaging parameters, inflammatory lesion and small volume of the tumor 

affect these clinical feature values.The past decade has seen the rapid development of 

radiomics approach, image-derived features, in quantification of tumor heterogeneity. 

Radiomics showed association with survival in pancreas patient [97].  In the present 

study, we evaluated radiomics features extracted from 18F-FDG PET images for 

predicting OS in patients with PA.  
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4.2 Materials and methods 
 

            We retrospectively reviewed the electronic medical records of 72 patients who 

were histopathological diagnosed with pancreatic adenocarcinoma in Başkent University, 

Adana, Dr. Turgut Noyan Application and Research Center Hospital between March 2006 

and January 2017. Patients who received neoadjuvant chemotherapy, radiotherapy, 

surgical tumor resection, stent, and drainage catheter were excluded. A total of 72 patients 

(37 men and 35 women) were eligible and included in the study. A complete demographic 

description of the patient population is shown in Table 4.1. 

 

Table 4. 1 Demographic and clinical characteristics of the 72 patients 

 

Characteristic Value 

Age 64.9±10.3 

Gender, n (%)  

                 Female 35 (48.6) 

                 Male 37 (51.4) 

Tumor size (cm),  4.6 ± 1.4 (1.9 – 8.6)* 

Tumor maximum SUV 9.5 ± 4.8 (3.8 – 29.1)* 

Metabolic tumor volume (cm3 ) 44.7 ± 41.3 (2.54-176.5)* 

Clinical stage, n (%)  

                    I 10 (13.9) 

                    II 13 (18.1) 

                    III 11 (15.3) 

                    IV 38 (52.8) 

*mean ± SD (range)  

 

         18F-FDG PET/CT images were acquired an integrated scanner (Discovery-STE 8; 

General Electric Medical System, Milwaukee, WI, USA). All patients were instructed to 

fast for at least 6 hours before the intravenous administration of 5 MBq/Kg 18FDG. We 

measured pre-injection blood glucose levels to be sure that it is below than 200 mg/dL.  

Approximately 60 min after the intravenous administration of FDG, an unenhanced CT scan 

with a slice thickness of 3.3 mm from the skull's vertex or base to the inferior pelvis's 

inferior border was performed at 80mA and 140kV. The subsequent PET scan was 

performed for 3 min in each seven-bed position under the three-dimensional mode from 

the vertex or base of the skull to the inferior border of the pelvis. FDG PET images were 

reconstructed using CT image for attenuation correction. 

         An experienced nuclear medicine specialist used PT/CT modality software to 

delineate tumor region. SUV, MTV and TLG was calculated from VOI.  Regional lymph 

nodes were excluded in the VOI. For the radiomics features experts decided the range of 
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slices for the tumor of each patient. Images were transferred from DICOM to PC using 

MATLAB. A tumor mask was extracted for each slice based on expert drawings. We used 

a random walk algorithm to extract tumor masks in MATLAB, manual adjustment was 

done based on expert visual inspection. All images were normalized to 0 to 255. Image 

plane resolution was 5.46x3.47 mm2, and slice resolution was 3.27 mm. We isotopically 

resampled the volume to 3.27x3.27x3.27 mm3. Uniform quantization was applied to each 

patient volume, and level-64 was chosen to compute image features. We extracted GLCM 

(8 features), GLRLM (13 features), GSZM (13 features), and NGTDM (5 features) from 

tumor region. 

              All statistical analyses were performed using the Statistical Package for the 

Social Sciences (SPSS for Windows, version 22) software program (IBM, Armonk, New 

York, USA). Continuous variables were expressed as mean ± standard deviation, and 

categorical variables were expressed as frequency (percentage). The statistical 

significance level was selected as p < 0.05, and all tests were two-sided. Confidence 

intervals (CIs) are reported at the 95% level. The primary endpoint was overall survival 

(OS) measured from the date of the PET/CT scan to the date of death from any cause or 

the date of the last clinical follow-up. To assess and compare the predictive performance 

of PET imaging parameters, we used time-dependent receiver operating characteristic 

(ROC) curves for censored survival data and areas under the ROC curve (AUC) two years 

after diagnosis. Univariate and multivariate analyses using Cox proportional hazards 

regression were performed to assess the relationship between PET imaging parameters 

and OS. Multivariable analysis adjusted for age, sex, clinical stage, and tumor size was 

performed. Kaplan-Meier curves were generated with an optimal cut-off value derived 

from maximally selected rank statistics for imaging parameters.  

4.3 Results and Discussion 

               Time-dependent ROC curve analysis gave AUCs for 2-year survival prediction 

showed in Table 4.2. PET textural features and conventional PET indices were ranked 

based on predictive performance. First-order energy (AUC = 78.36) as a textural feature 

had the highest performance. The textural features with the highest performance after 

energy are strength (AUC = 77.64) and entropy (AUC = 77.25). Among the conventional 

PET parameters, maximum SUV (AUC = 68.33) and mean SUV (AUC = 68.33) gave the 

best index followed by mean SUV (AUC = 0.628), followed by MTV (AUC = 59.36) and 
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TLG (AUC = 51.49). The highest-ranking features in the time-dependent ROC curve 

analysis were selected for further analysis. Energy, strength, and entropy as textural 

features and clinical variables of age, sex, clinical stage, and tumor size were used as 

variables in Cox regression models. 

Table 4. 2 Time-dependent ROC curve analysis for 2-year overall survival 

prediction 

Textural features AUC 95% CI 

Energy                           78.36 60.97-95.74 

Strength                         77.64 57.52-97.76 

Entropy                          77.25 58.13-96.36 

Complexity                       76.77 56.71-96.83 

SZLGE                            75.46 56.96-93.96 

Coarseness                       74.76 54.04-95.49 

LGZE                             74.07 54.39-93.75 

GLN                              73.76 50.42-97.11 

LZLGE                            73.76 55.32-92.20 

Contrast.1                       73.20 51.55-94.85 

GLV                              73.19 55.58-90.81 

LRLGE                            73.11 52.47-93.74 

LGRE                             73.03 52.80-93.25 

SRLGE                            73.03 52.80-93.25 

ZSV                              70.18 43.73-96.64 

GLN.1                            70.01 45.05-94.97 

RLV                              69.23 46.45-92.01 

GLV.1                            68.45 43.27-93.64 

Maximum SUV                      68.33 46.52-90.14 

Mean SUV                         68.33 46.52-90.14 

Variance                         67.44 48.69-86.20 

MTV                              59.36 33.14-85.59 

SRHGE                            57.83 31.08-84.59 

HGZE                             57.32 31.16-83.48 

Busyness                         57.27 35.06-79.48 

HGRE                             57.06 29.73-84.39 

LRHGE                            56.48 28.61-84.36 

SZHGE                            56.31 33.20-79.43 

LZE                              56.15 28.52-83.78 

ZP                               55.99 27.28-84.70 

Sum Average                       55.10 28.58-81.61 

ZSN                              54.91 24.88-84.93 

SZE                              54.63 24.37-84.90 

LRE                              54.50 26.95-82.06 

RP                               54.50 26.95-82.06 

SRE                              54.37 26.72-82.01 

RLN                              54.37 26.72-82.01 

Correlation                      54.29 23.77-84.81 

LZHGE                            53.26 23.27-83.25 

Contrast                         52.23 22.01-82.44 

TLG                              51.49 23.36-79.62 

Dissimilarity                    51.48 21.02-81.94 

Homogeneity                      50.07 17.49-82.65 
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           In the univariable analyses, tumor size, energy, entropy, and strength were 

significant predictors of OS showed in Table 4.3. After adjusting for age and strength, the 

multivariable Cox analysis demonstrated that strength (hazard ratio, HR, 0.98 95 % CI 

0.97 – 0.99 P = 0.005) was independently associated with better overall survival. 

            Kaplan-Meier analysis of the entire cohort demonstrated significantly improved 

survival in patients with higher strength tumors. Patients with lower strength tumors had 

a significantly shorter 2-year OS than those with higher strength tumors. 

Table 4. 3 Univariate and Multiple Cox regression analysis results in identifying 

the risk factors of overall survival 

Variable Univariate Multivariate 

HR (95% CI) p HR (95% CI) p 

Age (years) 1.03(1.01-1.05) 0.043 1.02(1.01-1.05) 0.049 

Gender (male/female) 1.09(0.64-1.85) 0.762 - - 

Clinical Stage     

   I 1.00 - - - 

   II 1.88(0.71-4.97) 0.202 - - 

   III 0.78(0.26-2.34) 0.655 - - 

   IV 1.79(0.79-4.06) 0.164 - - 

Tumor size (cm) 1.17(1.01-1.36) 0.045 - - 

Energy (x1000)                    0.64(0.47-0.90) 0.010 - - 

Strength                         0.98(0.97-0.99) 0.003 0.98(0.97-0.99) 0.005 

Entropy                          1.66(1.15-2.40) 0.007 - - 

 

           

This study demonstrated that heterogeneity of 18F-FDG uptake measured by PET 

radiomics was an independent prognostic factor for survival in patients with PA. The 

strength of the primary tumor had a better prognostic value than metabolic parameters. 

Higher-strength tumors as a measure of heterogeneity were independently associated with 

more prolonged survival. 
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Chapter 5 

Conclusions and Future Prospects  
 

5.1 Conclusions 

   

The primary aim of this study was to find the feature or features that can be 

obtained from the image to be used clinically. This is important because the feature used 

in classification has clinical problems and requires biopsy for definitive diagnosis. As a 

result, this thesis used machine learning techniques for lung cancer subtype classification. 

Significant amount of time was spent to extract the features, collect patient data, 

and identify tumor sites of interest. An isotropic volume was created, and various features 

were extracted under the programming and expert physician consultation. Extracted 

features were classified using machine learning techniques. The fact that the features 

extracted from the image have an essential role in cancer studies. This is very important 

in terms of saving patients from biopsy and evaluating the course of their disease and 

their response to treatment. 

The first part of this study is important in that it shows that similarly extracted 

features can be helpful in the diagnosis and that machine learning models will contribute 

to clinical applications. Some factors limit this study. The first is the limited number of 

patients. Although there is not a large enough data for a general solution, the number of 

patients is more than the number of articles in the literature. The complex metabolism of 

cancer, the differences in the scanning scanner, and the analysis methods are among the 

factors that make it difficult to evaluate the solution found. In addition, the unique nature 

of each cancer type has made it very difficult to find a feature or features that can be 

applied to the general clinic. For this reason, only lung cancer was focused on, and 

subtype discrimination was chosen. 

While machine learning brings together statistical and mathematical models, since 

data production has increased exponentially, models to explain phenomena from data, 
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deep learning, have become very popular. The success of models that feature the data as 

a whole rather than extracting specific features is increasing rapidly in image processing. 

It has also increased success using deep learning on the same dataset. 

The second study's subject is determining the tumor region by the model using a 

deep learning approach. One of the problems we observed in the first study is that it takes 

the physician a long time to draw the area manually. Although there is a feature for this 

in the program of the PET/CT imaging device, it cannot be exported to be studied further 

on a PC for example. This makes the study difficult. 

This problem is one of the most frequently studied problems in image processing. 

Finding a well-reconciled algorithm or model is difficult due to the organ studied, the 

extraction technique, and the disease. Our study has also several limitations in this 

context. The proposed model was developed to increase the success of our patient set. 

However, it is possible to train the model with more data and generalize its success in 

deep learning approaches. It is possible to see this in computer vision applications. It is 

possible to see the success of models based on data when there is enough data in smart 

homes, face and voice recognition programs, and autonomous vehicles. There are 

assorted reasons why applications in the health field do not develop at this speed. First, 

patient ethics is a relatively slow-developing field due to the difficulty of data availability 

and the economic value of the devices' software. In addition, each patient is far from being 

just data in health. The failure of a new model may result in the loss of human life, a 

responsibility that no one wants to take. 

Especially in cancer research, doctors do not want to take responsibility for ethical 

reasons. In this case, studies accumulate in the literature but cannot turn into clinical 

applications. Although each study's limitations depend on its data, it is important to 

emphasize the probes and provide information. 

Our second study developed a model by considering these issues and successfully 

determining the tumor region for this dataset. Sharing the dataset we used aims to benefit 

those working in this field and provide different patient data in the field of cancer-related 

imaging. 

For this, a deep learning approach has been applied. As mentioned above, learning 

the system over data has helped solve many problems. This is true for semantic 

segmentation as well as other classification problems. Similarly, deep learning model 

pixels can be trained whether they are part of the object. We also benefited from these 

approaches in PET images of lung cancer patients. One of the problems with our dataset 
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was the limited number of small tumors. This causes the system trained with large tumors 

to choose a larger area than it does for such problems. Thus, we wanted to reduce the 

selected areas that are larger than they are. For this, a new constraint equation is needed 

when the augmentation methods are insufficient. At this point, we have benefited from 

the Tversky equation. 

This study aimed to save time for physicians on tumor segmentation and provide 

better results as data is added to the system. We achieved approximately 90% success in 

our data by adapting the definitive version of the model to the semantic segmentation 

problem with the DeepLab method of MobileNet architecture and using the Tversky 

equation. We compared this method with another popular method such as U-Net. 

When evaluated together with our first study, we can segment the tumor 

autonomously and successfully classify it by extracting features from it. As the number 

of data increases, the models learn better, and it is expected that the data and studies in 

this field will increase. These approaches will take their place in the clinic as a 

complementary tool, not a substitute for doctors, in the processes from the first shooting 

to diagnosis, then treatment planning and follow-up of the disease. We can think of this 

thesis as an assistive system design for doctors. We hope that because of cancer studies, 

humanity will find the cure for cancer, and scientists will focus on studies on the benefits 

of artificial intelligence on different subjects. 

5.2 Societal Impact and Contribution to Global  

This thesis contributes to the effort to improve classification and prognosis 

performance. In 2018, international cancer research funding reached USD 5.5 billion [98]. 

While treatment research is the top category with 25%, the diagnosis and prognosis 

category are approximately 15%.  

Global oncology spending was USD 126 billion in 2018. Besides the economic 

damage, more importantly, we lose people. The National Cancer Institute estimates that 

130,180 people died due to lung cancer, 21% among the cancer types, in 2022, and newly 

diagnosed lung cancer is 236,740. We prepared an open database for lung cancer. It will 

serve as another benchmark for further investigation. Open datasets in the field are highly 

limited.  
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5.3 Prospects 
 

5.3.1 Software as a Medical Device (SAMD) 

            The Food and Drug Administration (FDA) published a regulation and action plan 

for Artificial Intelligence & Machine Learning based software [99]. Due to an increased 

amount of software in medical application and their success, regulation and validation are 

required before clinical usage. The critical point is that the FDA accepts software as a 

medical device even though there is no hardware part. There are four hundred software 

packages approved and listed on the official website. Approximately 75% of SAMD is 

related to radiology, and several of them are developed for PET devices.  

            The main aims of the action plan are to encourage good machine learning practice 

through the software (bias elimination, robustness, etc.) and standardization. According 

to the Guideline for Clinical Evaluation [100], our work is in the early clinical association 

stage. In the future, our purpose is to add more data to generalize the output and develop 

more reliable and precise software to be listed in SAMD. 

5.3.2 Interpretability and Explainable Machine Learning       

Interpretability of the model can be defined as explaining how a particular model 

decides specific outputs. It is a crucial topic; especially ML/DL models are used in bank 

credit, law, and the healthcare system. Model interpretability is a new topic in the 

literature compared to ML and DL. It is because people prefer accuracy over 

understanding how models decide certain outputs. 

Another challenge is to measure whether the model is explainable or interpretable. 

There is no consensus and standard in this field. While evaluating interpretability, we 

have global and local tools [98]. Global tools focus on understanding the reasoning 

leading to all possible outcomes. On the other hand, local tools focus on understanding 

specific decisions.  

Evaluating explanations can be categorized as application-grounded, human 

grounded, or functionally grounded. In our case, our model should be application 

grounded so that we can explain our model to domain experts (doctors). In the future, we 

will develop an interpretable and explainable model reviewed in [101].  
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5.3.3 Cloud and Tensor Processing Unit 

             In this thesis, we used a workstation and personal computer since the patient 

population is limited to two hundred patients. However, a clinical application needs 

millions of patients for validation. Cloud platforms are essential for sharing multicancer 

data and computation performance. On the other hand, hardware technology is improving. 

GPU accelerated ML and DL research; now we have TPUs [102]. In the future, we will 

move to cloud service and write programs for TPUs.    
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