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ABSTRACT 

NIGHTTIME FIRE DETECTION FROM VIDEO  

 

Ahmet K. AĞIRMAN 

Ph.D. in Electrical and Computer Engineering 

Advisor: Asst. Prof. Kasım TAŞDEMİR  

 

June 2022 

 

With the recent advancements in the field of Computer Vision, the central tasks such as 

object detection, segmentation or object tracking methods attain all-time high accuracies 

in natural image sets such as ImageNet, COCO, etc. However, due to the innate 

downsides of digital images acquired in insufficiently illuminated environments, the 

conventional methods suffer severely. This specific problem remains unsolved. 

Especially if the environment is pitch dark and the object of interest is emitting light, the 

dynamic range of the current digital cameras falls short in this situation and the generated 

digital image contains almost no perceptible visual texture. One prominent example of 

this is nighttime forest fire videos. In this thesis, detection of nighttime forest fires from 

video is addressed as an application of the challenging task, scene perception in low light 

conditions.  

The first contribution of this dissertation is developing a novel object tracking algorithm 

for glowing object in the dark environments. The algorithm allows to track fire and non-

fire objects throughout the video. The second contribution of the thesis is proposal of new 

handcrafted features which are designed to capture spatio-temporal behavior of the 

glowing objects since there is little or no visual textures to be processed. The results 

showed that the features are descriptive enough to distinguish fire from the other 

deceptive light sources. The third contribution is employing deep learning models to 

automatically extract spatial features with CNNs, and temporal features from bi-

directional Long Short-Term Memory (BLSTM) networks. The empirical test results 

show that a CNN + BLSTM pipeline can effectively detect fires at night with a high 

accuracy. Finally, a new comprehensive nighttime fire video dataset comprising 1358 

positive videos and 334535 of fire frames is created. 

Keywords: SVM, CNN, BLSTM, nightfire, VFD 
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ÖZET 

VİDEODAN GECE YANGIN TESPİTİ 

 

Ahmet K. AĞIRMAN 

 Elektrik ve Bilgisayar Mühendisliği Anabilim Dalı Doktora 

Tez Yöneticisi: Dr. Öğr. Üyesi Kasım TAŞDEMİR 

 

Haziran-2022 

 

Bilgisayarlı Görü alanındaki son ilerlemeler, ImageNet, COCO, vb. doğal görüntü veri 

setleri üzerinde nesne tespiti, bölütlendirme, nesne takibi gibi merkezi işlemlerde tüm 

zamanların en yüksek doğruluklarına ulaşmaktadır. Fakat yetersiz ışığa sahip ortamlardan 

elde edilmiş dijital görüntüler üzerinde özünde var olan dezavantajlardan geleneksel 

yöntemler ciddi bir şekilde zorluk yaşamaktadır. Bu belirli problem henüz 

çözülememiştir. Özellikle ortam zifiri karanlık ve hedef nesne ışık yayıyorsa günümüz 

dijital kameraların dinamik menzili bu duruma yetersiz kalmakta ve elde edilmiş dijital 

görüntüler neredeyse hiç algılanabilir görsel doku taşımamaktadır. Buna önemli bir 

örnek, gece yangını videolarıdır. Bu tezde, düşük ışık şartlarında sahne algısı zorlu 

probleminin bir uygulaması olarak videolardan gece orman yangını tespiti sorunu üzerine 

gidilmiştir. 

Bu tezin ilk katkısı, karanlık ortamlarda parlayan nesnelerin takibini sağlayan bir 

algoritmanın geliştirilmesidir. Algoritma, yangın ve yangın olmayan nesnelerin video 

boyunca takibini sağlamaktadır. Tezin ikinci katkısı ise elle oluşturulmuş yeni 

öznitelikler ile işlenecek görsel doku neredeyse hiç olmadığından parıldayan nesnelerin 

zamansal ve uzamsal davranışını yakalanmasıdır. Sonuçlar göstermiştir ki bu öznitelikler 

yangını sahnedeki diğer çeldirici ışık kaynaklarından ayırt etmede yeterince 

betimleyicidir. Üçüncü katkı ise karanlık videolardan otomatik uzamsal öznitelik 

çıkarmak için CNN’ler, zamansal davranışı yakalayabilmek için de iki yönlü uzun kısa 

süreli bellek (BLSTM) kullanılmasıdır. Ampirik deney sonuçları göstermiştir ki 

CNN+BLSTM düzeneği gece yangınlarını etkin bir şekilde ve yüksek doğrulukta tespit 

edebilmektedir. Son olarak, 1358 pozitif video ve 334535 alev çerçevesinden oluşan 

kapsamlı bir gece orman yangını veri seti derlenmiş ve kullanışlı hale getirilmiştir. 

Anahtar kelimeler: SVM, CNN, BLSTM, gece yangını, VFD  
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Chapter 1 

Introduction 

Perception of real-world scenes has been an exciting yet a complex topic of 

psychology for decades. Visual scene perception is human’s understanding of the 

environment as she views it. As psychologists have been trying to thoroughly understand 

various aspects of human visual perception, computer science community has been quite 

busy about perception of environment not by humans but machines.  

Computer vision is one subfield of machine perception, extracting information from 

digital images. It can be contrasted to the human perception where images are captured 

by eyes and information extraction is done in brain. A computer typically creates an image 

by capturing a real-world scene through a sensor, then converting it to digital signals, and 

finally storing it in a digital memory. Even though human visual perception is limited to 

visual spectrum (VS) of full light spectrum, computer scene perception can work with 

wide range of electromagnetic spectrum and images acquired from different sensors such 

as VS cameras, LIDARs, RADARs, IR sensors, ultrasonic sensors, acoustic sensors, MRI 

scanners, X-RAY receptors, CT scanners, etc.  

Automated learning from sensed data and making decisions upon gathered 

knowledge has been possible after emergence of machine learning methods. After the 

recent revolution of deep learning, the computation costs have reduced significantly [1]. 

Computer vision has been an enabler of many emerging technologies: On healthcare, 

automated drug design, automated diagnosis by IBM’s Watson; on precision agriculture, 

assessing crop health and/or yield state, automated agricultural robot steering; on 

environmental protection, automated wildfire detection from cameras both on day and 

nighttime, observing oceans and wild life; on finance, making video conference with 

virtual assistants; on transportation, using automated vehicles, trucks, and buses, etc. are 

some limited number of examples can daily be found on news streams. 

Artificial intelligence captured momentum in history a couple of times leading 

humanity to think about the machines entering singularity, that is, machine intelligence 
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exceeding human intelligence. However, this has never been the case. Today, renaissance 

of deep learning on computer vision escalated such expectations again [2].  

A fundamental example that singularity is not the case at least for decades should 

be poor computer understanding of images captured from scenes in adverse environments 

and in low-light conditions. Relevant to orientation of this dissertation, a concrete 

example is fires taking place at night. 

Growing number of fires for each year in the last decade eradicating our forests 

faster than ever together with all natural and wildlife existing in. When coupled with 

adverse climate conditions, it is almost impossible to stop these devastating events and 

firefighting agents are irremediably left with a painful wait that they must watch the fire 

completely burn down an entire forest ecosystem and finally die out when there is no 

wood, house, car, and finally memories to burn. 

For this reason, responding the fire events timely has been a top priority more than 

ever. Responding that need, historically, many lookout towers were built and a human 

lookout living there had to observe forests for long hours especially at fire seasons. This 

method was effective for some time in the midst of unfavorable human factors. 

Emergence and later widespread use of surveillance cameras replaced many lookout 

towers & jobs and made forest observation relatively easier. However, watching too many 

screens and cameras by a limited number of human operators is also not feasible. This is 

the moment automatic fire detection algorithms enter the scene. These algorithms are 

being developed by researchers at least three decades. Today these systems are backbone 

of the automatic forest surveillance against the fire events.  

Today’s world liberated the data and the data liberated the artificial intelligence. In 

other words, deep learning contributed immensely to video fire detection (VFD) with 

more than three hundred fifty research papers to the date. However, a limited number of 

them address the detection of nighttime fire events. Fire videos at daytime can deliver 

many useful spatial, color, and texture features for an effective detection. Besides flames, 

smoke is a key indicator and target object to detect fire events at daytime. Unfortunately, 

nighttime fires do not include rich color and texture features compared to daytime fires. 

What’s worse, smoke is not effectively visible, thus not perceptible at night. In nighttime 

fires, detection mostly relies on flame movement and binary-like color information 

against the background. However, movement of flames can easily be confused with 

headlights and other light sources. Therefore, specialized algorithms should be developed 

for fire detection at night. Furthermore, building effective deep learning models require 
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well-organized representative datasets. Today’s world not only can generate fire data 

from fixed CCTV cameras, but also from various other sources like mobile phone 

cameras, UAV cameras, on-vehicle patrolling cameras, etc. Analysis of videos recorded 

from a fixed CCTV camera is relatively easy since, the camera is stationary, and it is 

straightforward to eliminate background to work on target objects in the scene. These 

cameras also generate almost same distant views which is not the case for non-stationary 

cameras. Therefore, algorithms should also adapt the new nature of the data intended to 

be used for model building.  

1.1 Structure of the Dissertation 

This work is organized as following. In Chapter 1, significance of fire disasters is 

addressed. Fundamental questions that are investigated in this thesis are given and 

contributions are presented. 

 In Chapter 2, the relation between nighttime visual environmental scenes and 

capturing them via digital imaging devices, i.e., cameras, are discussed. In Chapter 2.1, 

camera features and their adjustment for the nighttime are given. In Chapter 2.2, what 

attributes night fires show on digital images both due to camera capabilities and 

environmental conditions are illustrated. This chapter points out the challenges of fire 

detection at night in terms of these attributes. 

In Chapter 3, the methods frequently used for fire detection problem and their 

underlying theory are explained. For crafting features by hand, conventionally, SVM had 

been a popular method in the literature. In Chapter 3.1, SVM is briefly explained and 

showed that it can classify linearly not separable data by mapping it to an upper space. 

When useful features are desired to be extracted automatically, then deep learning 

methods are practical. In Chapter 3.2, theory of deep learning methods that are frequently 

applied to VFD problems are provided. For spatial feature analysis, CNNs and for 

temporal feature analysis, RNNs are explained. In chapter 4, a literature revie of nighttime 

VFD techniques are given.  

In chapter 5, two fire datasets are proposed. The first dataset, FinD Dataset Set1, is 

generated by the author and Assist. Prof. Kasım TAŞDEMİR, by starting controlled 

natural fires by burning wood and fodder at night. The second dataset, compiled by the 

author, is a collection of videos recoded for real world fire disasters. 
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In Chapter 6, a feature set for night fire detection is designed and used for automatic 

fire detection by training an SVM model. These features are mostly based temporal 

behavior of the fire blobs through a video. Later, further models like RF are used to test 

the proposed features. The test results showed that these temporal features are useful for 

nighttime fire detection.  

In Chapter 7, deep learning methods are used for automatic feature extraction, 

instead of designing them by hand. To accomplish this, both spatial and temporal feature 

extracting methods are used in a pipeline. For spatial feature extraction, a CNN model 

and for temporal analysis, a RNN model is used. The test results showed that this pipeline 

can attain a high accuracy in a considerably short time. 

Finally, in Chapter 8, conclusions drawn from this dissertation are given, expected 

social impact is discussed and comments on potential future directions are given. 

1.2 Fire Disasters 

From 1988 to date, 63480 forest fires occurred and roughly 313.000 hectares of 

forest destroyed in Turkey. Steady decrease of hectares destroyed per fire from 13 to 4.9 

throughout the years shows an effective fire response, but number of fires per year is on 

a slight increase [3]. US also has similar statistics that decline of its rate of destroyed area 

per fire is on a stall (Figure 1.1) [4]. Besides enhancements on firefighting techniques and 

development of related technology, this progress is apparently due to efficient 

surveillance techniques and timely reports. Furthermore, 20% of reported forest fires in 

Turkey and 48% of city fires in Istanbul occurred at no daylight conditions since July 

2020 and January 2020, respectively [5, 6]. 

Wildfire is a significant threat worldwide and among the significant devastating 

natural disasters that can have immediate and long-term effects on the environment, the 

people, and the economy [7]. In favorable conditions, the spread speed of bushfires can 

attain as high as 24 km/h which makes its suppression extremely hard [8].  Therefore, one 

of the most crucial steps in firefighting is early detection of the fire after the ignition. As 

one of the most common ways of early detection, analyzing live videos for a possible 

wildfire helps mitigate the severity of the aftermath of forest fires, as the statistical data 

indicates [3, 4]. 
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If fires are not controlled soon after ignition in conditions of strong dry wind, high 

temperature and abundant continuous fuel, they will travel at high speed for several hours, 

burning out huge areas. Control of the head fire is impossible, and the area that is burnt 

largely depends on the time a fire starts, the period that elapses before a change of wind 

direction and the weather conditions after the change [8]. 

1.2 Problem Statement and Goal 

Automated scene perception is a challenging task when the environment is under 

adverse conditions. Video fire detection (VFD) at night is a special sub-problem of the 

scene perception at low light conditions which also includes other popular detection 

problems of vehicle, pedestrian, object, and so on. Night-time object detection with visual 

spectrum (VS) cameras is a challenging task compared to its daytime counterpart since 

there is no sufficient light reflecting back from the target object to the camera lens. Even 

Figure 1.1 a) A running average of hectare area destroyed per fire in Turkey 

(left) and acre area in USA (right). b) A running average of number of fires per 

year in Turkey (left) and in USA (right) 
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if an object is detected, it is even more difficult to determine or identity of such an object 

in low light conditions. The fundamental reason for this is the physics of underlying 

mechanism of vision. It is impossible to perceive non-luminous objects with VS cameras 

without a distinct light source in a dark environment. Compared to non-luminous objects, 

fire itself is a light emitting object. Therefore, it seems detecting fire should be as trivial 

as detecting a light source in the dark. However, this is not always the case. Conventional 

day-time fire detection techniques use color and texture features effectively for smoke 

and fire detection which are mostly not present in night-time images which requires 

targeted methods for night-time fires. 

For fire event detection, smoke is not a reliable target object for raising fire alarms 

since its features are not detectable at night. In the event of fire, depending on amount of 

the light emitted from the fire, density and spread of the smoke, event distance from the 

camera, availability of the reflective objects in surroundings like dense tall trees, etc., 

smoke is mostly not visible as an integral object and behaves as light diffusing agent like 

air in the scene. These factors do not make it a reliable target but a challenge in detecting 

fire events. 

The only reliable object in detecting a non-urban fire event scene is the flame object 

which also brings its own detection challenges. These challenges can be defined based on 

different types of scenes, i.e., fire contour, other visible objects in the scene, event 

distance from the camera, etc. For example, a faraway forest fire or a forest fire recorded 

via an aerial vehicle will have a union of convex and concave lines creating a contour 

mostly following shape of the land field. However, this is not the case for close or mid-

range forest fires. In the close or mid-range forest fires, there is sufficient light that other 

stationary or moving objects are also visible under evident effect of the smoke. This 

requires differentiating such objects from fire object. Another example is distinguishing 

fire from other light sources especially in a smokey environment. In the event of non-

urban area wildfires, flames are accompanied most of the time by dense smoke which 

diffuses light from any source and makes surroundings of these light sources not easily 

detectable (Figure 2.6). Such light sources can be listed as revolving, flashing, or 

continuous head lights, city lights, road lights, hand or head-held lights, moon light, 

lightening, etc. Color and texture features of night fires are limited, therefore, besides 

spatial features, temporal features are central in detecting night-time fires. Some of the 

distinguishing temporal fire features are flickering, pointing high into the sky, dying down 

or flaring up of the flames, temporal disappearance of flame due to smoke accumulation. 
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Object detection in low-light conditions is sometimes possible but challenging 

depending on the light source’s flux, the contrast in the scene, the objects’ morphology, 

reflection and distance from the camera, and the light-source type which affects contrast 

against background. It is difficult to distinguish objects (i.e., road signs) from the 

background in a low contrast image without manually enhancing it, i.e., by changing color 

curves.  

In this dissertation, we propose methods that help robust scene perception from VS 

cameras under low-light conditions specific to VFD at night. 

The dissertation investigates prospective answers to the following questions: 

• What spatio-temporal features should be used for the measurement of temporal 

changes in a video to detect fire using prominent machine learning algorithms, 

i.e., SVM, RF, etc.? 

• Can an end-to-end CNN based deep learning model be used instead of hand-

crafting features? And can this model automatically generate descriptive features 

for the optimum detection performance? 

• Is temporal analysis useful for night-time VFD? 

• Is the data used in the night-time VFD research is satisfactory? 

1.3 Contributions 

This dissertation contributes to the scientific literature in the following ways: 

• It develops a method that designs features to be analyzed for fire detection via 

machine learning algorithms, i.e., SVM, RF, AB, IBk, etc. 

• It proposes an object tracking method between consecutive frames of a video. 

• It develops a pipeline consisted of CNN and BLSTM to use both spatial and 

temporal features for an automated feature generation and nighttime fire detection. 

• It proposes a challenging real-life dataset that can be used in training, testing, and 

benchmarking robust night-time VFD models. 
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Chapter 2 

Nighttime Imaging and Fires at Night 

In this chapter, we evaluate limits of nighttime digital imaging in terms of sensing and 

sensed parts. As a sensing device, cameras, have limitations which require adjustment of 

its capabilities carefully. On the other hand, independent of camera capabilities, the 

sensed environment also has its own challenges. Added contribution of adverse effects of 

fire for nighttime imaging is also discussed in this chapter.  

2.1 Night-Time Imaging 

Capturing quality images at night is troublesome compared to day-time imaging. 

One can improve night-time video quality by adjusting several parameters each with its 

own limitations.  

In night-time imaging, the fundamental item required is the light itself which turns 

out to be at a low amount naturally. Therefore, either natural or artificial, any light source 

is welcomed during a video shooting in the dark. When the light is insufficient, then the 

camera means should be utilized maximally to receive uttermost performance. A camera 

itself should embody competent features for the best results. One important feature is 

sensor size. The larger the sensor is, the more amount of light the camera will be able to 

Figure 2.1 Common sensor sizes in use. 36mm x 24mm sensor is known as full 

frame sensor [83]. 
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capture at an instant. A full frame (35mm) sensor is always preferred against other sensors 

(Figure 2.1).  

Another feature is the maximum ISO gain the camera can deliver. To increase light 

sensitivity of the camera, the max ISO gain available should also be high. Lens type is 

also an important feature since it will control how much light can be received at once. A 

lens with a higher max aperture will let the camera sensor receive more light at an instant 

which in turn require a shorter stutter speed. This type of lenses is called as quick or fast 

lenses. The final important feature for a camera is stabilization. Camera should include 

stabilization features like Optical Image Stabilization or requires use of a gimbal. 

Other than choosing a competent set of features for a camera, adjusting the exposure 

during a shooting is other side of the coin.  Aperture is size of the opening pupil of a lens. 

It directly controls the amount of light will land onto camera sensor at an instant. A larger 

aperture refers to a larger opening pupil and a higher intensity of light. As an example, 

doubling the light intensity is doubling the pupil area, in turn increasing the pupil diameter 

by a factor of √2 ≈ 1.4 which is known as f-number or f-stop. In a low-light environment, 

the sensor requires more amount of light to generate a brighter image. Then increasing 

aperture in such condition can be preferable. In this case, one should be careful about the 

depth of field. Depth of the field (DOF) is the distance between closest and farthest planes 

that are in focus (Figure 2.2). In a shallow DOF, this distance is short, i.e., these planes 

are closer to each other, and the image can only show the area very close to the plane of 

focus sharp and remaining area blurry. On the other hand, in a deep DOF, the image can 

show not only plane of the focus sharp, but also a variable amount of distance at behind 

and front of the plane of focus. Then, when the DOF is shallow, which is the case when 

the aperture is wide; one should be cautious that the interested scene should be in a 

required distance to let the narrow DOF field can contain it. This implies that a moving 

object can easily go out of DOF and become blurry when the camera is not moving 

correspondingly. 
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Shutter is either mechanical or electronic mechanism that is used to allow light land 

onto sensor for a determined length of time. The speed the shutter opens, and closes is 

termed as shutter speed; thus, the lower the shutter speed, the longer the exposure time, 

and then the higher amount of light accumulates onto the sensor during exposure time. 

For a video recording, shutter speed implies that the amount of time the light is sampled 

during a one frame interval. In the event of night-time imaging, one wants the sensor is 

exposed to more light to get a brighter image. By means of shutter speed, this can be 

achieved by letting the shutter open as long as needed. However, longer exposure times 

(i.e., lower shutter speeds) will make video recordings blurry in case of motion in the 

scene. In order to balance the motion-blur, the exposure time can be chosen to half of the 

one frame interval and keep the camera stationary on for example a tripod. At the time of 

hand-holding a camera, an important problem is the camera shake. This subsequently 

requires a balance between shutter speed and focal length of the lens. The general rule is 

using a shutter speed equal to the focal length; however, in night-time imaging, these 

speeds can be yet not enough, and even faster speeds may be required in the event of 

moving scenes. 

ISO refers to degree of the sensitivity of the camera to the light. Roughly, it is the 

amplifying gain applied to voltage levels of the sensor pixels. Therefore, when there is 

insufficient amount of light accumulated onto the sensor, by using ISO, the image can be 

Figure 2.2 Depth of field of a camera [85]. If target object is not within DOF, then 

it will be blurred in the frame. At the top, DOF is narrow, therefore a limited 

volume will be clear in the image. However, at the bottom, DOF is wide, and an 

extended volume will be seen clear in the image. 
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enhanced in terms of brightness as if it is constructed in a high amount of environmental 

light (Figure 2.3).  

 

However, the fact that the image contains noise, higher the ISO higher the 

amplification, in turn, larger the grains in the images. This may require a post-processing 

means to eliminate noise in the image (Figure 2.4) 

Brightness of a point in a scene can be measured by luminous intensity per unit area 

(cd/m2) or luminance. Most of the time not all points in a scene have the same luminance, 

indeed variable from a minimum value to a maximum. The amount of this variability or 

contrast is related to concept of dynamic range. Assuming the contrast ratio between 

brightest (max luminance) and darkest (min luminance) points in a scene is c (sometimes 

also referred to as c:1), then the dynamic range is defined in terms of stops by 

Figure 2.3 Contribution of ISO on image visibility at insufficient light [84]. In 

scarcity of light, ISO helps capturing more detailed images.  

Figure 2.4 Noise contributed by large ISO [84]. High ISO values also magnifies the 

noise (right) while enhancing the image (left). Thus, it should be used cautiously.  
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 log2 𝑐 (2.1) 

or in terms of decibels by 

 20log10 𝑐 (2.2) 

Roughly ~0.166 times the decibels value will give the stops value of the dynamic 

range of the scene. Moving a stop one up or down will double or halves the brightness, 

respectively. A scene with 24 stops dynamic range implies that the contrast ratio is above 

16,000,000:1.  

Besides the scenes, cameras also have a dynamic range. Most modern high-end 

camera dynamic ranges are around 14 stops. Considering real life scenes can easily have 

much higher stops, this implies that a camera can register the light as it is only if its 

luminance lies within dynamic range of the camera. When a luminance value coming 

from a scene and hitting the camera sensor photosite (pixel) is less than the minimum 

luminance value of camera dynamic range, then photosite is considered as in black color 

and when a luminance value hitting the photosite is higher than maximum value of camera 

dynamic range, this time color of corresponding photosite is considered as white. This 

limiting constraint makes it difficult to get quality photos or videos of scenes having high 

contrast. In order to overcome this problem, multiple shots of the scene each focusing on 

different mean brightness of the scene can be used to generate a better image. This 

Figure 2.5 HDR applied to a scene [86]. When dynamic range of a camera cannot 

cover contrast ratio of scene, it should capture either darkish (left) or brightish 

(right) image at a time. To overcome this, these two images can contribute their 

quality parts and generate an image that can illustrate dark and bright areas in 

great detail at the same time (middle). 
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technique is known as high dynamic range (HDR) and tries to enhance the image via post-

processing algorithms (Figure 2.5). By employing HDR, a limited dynamic range camera 

can stich an image that can show texture of dark areas (i.e., shadows) better but bright 

areas worse and another image that can show texture of bright areas (i.e., sky and clouds) 

better but dark areas worse. This tries to get the best of both worlds and generate better 

looking images.  

Another technique is wide dynamic range (WDR) and mostly employed in CCTV 

cameras. In this technique, the camera has dual sensors; one is capturing an image focused 

on dark areas in the scene and other focused on bright areas. These images then combined 

by an image processor for final outcome. When there is a single sensor on the CCTV 

camera, then camera captures the same scene at different shutter speeds multiple times. 

In this case, in order to realize texture of bright areas, a high shutter speed (short exposure 

time) lets the bright areas not blow out. Similarly, the dark areas require a slow shutter 

speed (long exposure time) to capture enough light to generate sufficient texture. Then 

the camera processor combines these images. In general, WDR technique is more 

successful in imaging dark scenes when compared to HDR.  

A rule of thumb for capturing quality images at night is using a tripod for the camera 

in use, or alternatively capturing images from a fixed camera. A fixed camera makes 

capturing images in manual mode sound which lets adjusting exposure setting for desired 

results.  

Even though visible range cameras are a popular option for VFD, to get non-blurry, 

bright, and sharp shootings at night require a stationary camera and an adaptive 

adjustment of shutter speed, aperture, and ISO settings for the night environment. 

Furthermore, the contrast of the environment shouldn't exceed the dynamic range of the 

camera. Nevertheless, a stationary camera can be an option for only forest fire watch 

towers and security cameras but not for moving land or aerial surveillance vehicles as 

well as mobile devices with video recording capability. Therefore, detecting fire from 

moving camera recordings is a great challenge for VFD, especially for the night. 

2.2 Nature of Night Fires 

Fire is a chemical process that takes place when a combustible agent and oxygen 

react in suitable conditions [9]. Fire process can emit color depending on amount of 

oxygen content as in Bunsen burner and combustible agent as in chemicals used for 
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colorful fireworks. The spectral interval of fire light is in the range from 0,4 to 14 𝜇𝑚 

while the visible spectrum lays between 0,4 and 0,7 𝜇𝑚 [10]. This makes visible spectrum 

cameras a useful and budget option for fire sensing; however, the wide range of fire colors 

also make it difficult to train neural networks based only on image color information. 

Nighttime object detection is a challenging task compared to its daytime 

counterpart. It is impossible to perceive non-luminous objects with RGB cameras without 

a distinct light source in a dark environment. Object detection in low-light conditions is 

sometimes possible but challenging depending on the light source's flux, the contrast in 

the scene, the objects' morphology, reflection and distance from the camera, and the light-

source type which affects contrast against background. In Figure 2.6a, the left picture is 

a dark image with a low contrast against the background and the right picture is the same 

image manually enhanced by changing color curves. It is difficult to distinguish objects 

(i.e., road signs) from the background in the left image. 

Another challenge is the insufficiently visible texture which makes identifying 

objects in their surroundings difficult. When images are blurry or in indistinguishable 

texture due to the camera, heavy smoke, or fog in the environment, then CNN filters will 

generate similar feature maps. As a result, it misleads the network to an incorrect 

classification. In Figure 2.6b, two pictures of scenes with an insufficient texture are given. 

Such images may have a fairly similar texture that makes it difficult to distinguish them 

from each other. The image on the left shows a fire object around a house with a 

significantly reduced texture. The image on the right shows a vehicle headlight. The 

texture of both vehicle and headlights are significantly reduced. 
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The dark images contain a considerable amount of noise. This noise also brings a 

challenge to the training process. In Figure 2.6c, the noise is mainly due to the heavy 

smoke coming from fires.  

Nighttime images contain minimal color information compared to daytime images. 

This makes them close to binary images; thus, color and texture analysis becomes harder 

In Figure 2.6d, an aerial image of a vehicle and the corresponding black-white image are 

given. Smoke detection is possible with daytime videos. However, due to the lack of rich 

color information, this is impossible primarily for night-time videos. Cameras have a 

limited dynamic range. When the parameters such as exposure and ISO are set for the 

foreground object region, the remaining part of the scene becomes near black.  

 

Figure 2.6 Challenges of nigh-time fire detection a) A dark image with a low 

contrast against the background (left) and the same image manually enhanced 

by changing color curves.; b) Images with insufficient texture.; c) Noisy night-

time images.; d) An aerial image of a vehicle and the corresponding black-

white image.  
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Moreover, the light sources visible in a frame introduce further challenges due to 

the camera's dynamic range shift. Those effects are explained in the experimental results 

at Section 7.4.  

In some cases, the scene includes only bright or dark regions making the video akin 

to a binary video. Binary images give limited information about an object, including its 

shape and position in the frame. It lacks color and texture information which are central 

in object detection tasks. For example, a streetlight or a freshly ignited flame might look 

indistinguishable in night images (Figure 2.7).  

 

Nonetheless, a binary video offers descriptive clues about the investigated object, 

such as its motion behavior throughout the video. In night-fire videos, the flame has a 

distinct motion behavior such as flickering, shooting high into the air, dying down or 

flaring up, and temporal disappearance due to smoke occlusion. Therefore, this study aims 

to benefit from these temporal behavioral characteristics of a fire object. 

The challenging properties of nighttime fire videos can be summarized as: 

Figure 2.7 A streetlight (red circle) and freshly started fire object (blue circle). 

They are almost indistinguishable from each other. Note that land line is also 

indistinguishable that position of both objects that are relative to each other is also 

insignificant.  
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• No texture or color information: The acquired digital image looks more like 

a binary-colored image because of the insufficient dynamic range of the 

cameras, 

• All light emitting objects look alike: Especially under the heavy influence 

of smoke, car headlights, fire, streetlights, etc. are formidably 

distinguishable from each other, 

• High noise in the image: The camera sets the ISO value to the maximum in 

order to compensate the low light. This causes a significantly high noise in 

the image, 

• Insufficient dynamic range against high contrast: Nighttime fire scenes 

includes almost pure dark areas due to no sufficient light source around and 

very bright areas due to fire object as a powerful light emitting source. This 

leads a high contrast ratio where cameras cannot adopt. This eventually 

causes the camera work in a contrast range close to either dark or bright 

areas depending on focus, 

• Low contrast against background: In the night images, due to low contrast 

of objects against the background, it is difficult to distinguish such objects 

from the background effectively. 
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Chapter 3 

Underlying Theory of Fire Object 

Detection 

3.1 Conventional Methods 

In two-class classification problems, any data point in a dataset is expected to 

belong into either the first class, i.e., positive or the second class, i.e., negative. This 

requires the dataset be divided into two disjoint groups. This pre-divided dataset can help 

one to determine class of a never-seen-before data sample. The algorithms do this task 

for us in an automated way by learning rules for assigning a new data sample to pre-

existing classes with the help of mathematical models they are designed to optimize.  

Support Vector Machines (SVMs) have been a successful example of such 

algorithms and used not only for binary classification problems but also for multi-class 

classification problems for many years. It is also used for nighttime VFD analysis in this 

thesis. 

SVM uses hyperplanes to separate data into regions (see Figure 3.1). Assume the 

linear model of a two-class classification problem [11]: 

  

𝑦(�⃗�) = �⃗⃗⃗�𝑇𝜙(�⃗�) + 𝑏 (3.1) 

 

where notations are denoted as following: 

 �⃗�: 𝐷-dimensional input vector. Each dimension corresponds to a feature, 
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 �⃗⃗⃗�: 𝐷-dimensional weight vector. Each value corresponds to weight of corresponding 

input at that dimension, 

𝑏: Scalar bias term, 

𝑦: Output, 

𝜙: A function that transforms the feature space to another space. 

 The input vector �⃗� takes a class from 𝑘 ∈ {−1,1} and sign of the output 𝑦(𝑥) 

contributes to this assignment via its sign, i.e., 

 

�⃗� → 𝑘𝑥 = −1 ⇒ 𝑦(𝑥) < 0 (3.2) 

and 

�⃗� → 𝑘𝑥 = 1 ⇒ 𝑦(𝑥) > 0 (3.3) 

or 

𝑘𝑥𝑦(𝑥) > 0. (3.4) 

The separation hyperplane is defined at 𝑦(�⃗�) = 0. Its rotation behavior is 

determined by orthogonal weight vector, �⃗⃗⃗�, while translation behavior is controlled by 

magnitude of bias, 𝑏. For a given separating hyperplane, we can measure distance of all 

data points to the hyperplane. The minimum distance is of importance which is termed as 

the margin. Margin is defined by two boundaries defined by 

 

𝑘𝑥𝑦(𝑥) = 1. (3.5) 
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 By definition, it is expected at least one data point to lie on one boundary of the 

margin (Figure 3.1). These data points are termed as support vectors, and they satisfy 

equation (3.5). On the other hand, no data point should lie within the margin. When this 

is the case, i.e., 𝑘𝑥𝑦(𝑥) < 0, then incorrect classifications have been made.  

A data scattered in 𝐷-dimensional feature space requires a (𝐷 − 1)-dimesional 

hyperplane to get divided by. When there is at least one  (𝐷 − 1)-dimesional hyperplane 

dividing the feature space into two disjoint regions, then the data is called as linearly 

separable data in the 𝐷-dimensional feature space. When this is not the case, then the data 

is linearly not separable in the 𝐷-dimensional feature space which requires different 

techniques for the classification task. 

Assume that the data is linearly separable in the feature space. However, it is 

possible to be more than one hyperplane that can divide the binary data into two disjoint 

regions. In that case, the hyperplane with the maximum margin is the optimum hyperplane 

that leads to the least generalization error.  

If the data is not linearly separable in current feature space, where here 𝐷 = 2, then 

the dataset is mapped to a higher feature space, i.e., a space with a 𝐷 > 2 dimension, for 

the hope that the data is linearly separable by an optimum corresponding hyperplane, i.e., 

by a plane. The function maps the current feature space to a higher dimensional space is 

called the kernel function. The kernel function generates a higher dimensional feature 

space with transformed data point and SVM find a hyperplane dividing the new space 

into two disjoint regions (Figure 3.2). Then that hyperplane is projected back to the 

original space leading a nonlinear separation boundary. 

Margin 

Margin 

Figure 3.1 A 2-dimensional data scattered in space and separating hyperplanes 

(red lines). 
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When classes and features are attributed in a nonlinear way and the number of 

features is not very large compared to the number of samples, then Gaussian (or radial 

bases function, RBF) kernel is useful to separate the higher space as defined by 

 

K(�⃗�, �⃗�′) = exp(−𝛾‖�⃗� − �⃗�′‖2) , 𝛾 > 0. (3.6) 

 

When SVM is allowed to make error, penalizing it is a good practice. Then one 

wants to minimize 

1

2
�⃗⃗⃗�𝑇 �⃗⃗⃗� + 𝐶 ∑ 𝜉𝑖

𝑎𝑙𝑙 𝑖

 (3.7) 

 

where 𝐶 > 0 is the error penalty term and 𝜉𝑖 is indicator variable in that 𝜉𝑖 > 1 

implies an incorrect classification. LIBSVM library [12] conducts a grid search of 

(𝐶, 𝛾) pairs using cross-validation in the manner that  𝐶 ∈ {2−5, 2−3, … , 215} and 𝛾 ∈

{2−15, 2−13, … , 23}.  

Figure 3.2 Feature space transformation [81]. 
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3.2 Deep Learning Methods 

For computers, learning from experience became possible via hard work of 

researchers in the broad discipline of artificial intelligence (AI). AI generally aimed to 

perform human-like cognitive capabilities via computer programs or algorithms. A 

computer program that can count from 1 to 100 should not be considered as an act of 

intelligence. Yet, intelligence is associated with discovering patterns and making 

decisions or concluding automated results based on those patterns. Therefore, machine 

learning (ML) is another, but more constrained, term used interchangeably with AI 

implying little human intervention during pattern discovery and automatic decision-

making process. Today we have the term deep learning which implying the following 

qualities: use of neural networks, use of immense amount of data, employing from simpler 

to more complex hierarchy of concepts, and full automated decision making with no 

human intervention in the process. 

Building block of a neural network is artificial neuron. Artificial neuron is 

frequently compared to an actual neuron we have in our brains. Even though they have 

some similarities, they differ in terms of topology, size, propagation speed, adaptive 

topology and learning scheme (Figure 3.3). An artificial neuron receives a number of 

inputs, amplifies each with a corresponding weight, sums the amplified inputs and finally 

outputs a value if the sum meets certain conditions. This is definition of a perceptron and 

when multitude of them is used for the same inputs, we call it as single-layer network. 

 

Figure 3.3 Actual and artificial neuron [13]. 
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When output of a single layer is given as input to another layer, and so on, then this 

is a multi-layer perceptron (MLP) with an input and an output where at least one hidden 

layer is in the middle (Figure 3.4). 

 

In Figure 3.4, the network receives one dimensional data. When two or more-

dimensional topological data is required for the input, then convolutional neural networks 

(CNNs) are convenient. 

CNNs are the neural network models that can work on images, learn from them, 

and execute desired deep learning tasks, i.e., object detection, image segmentation, image 

classification, etc. In general terms, a CNN consists of an input layer, a number of hidden 

layers, and a classification layer (Figure 3.5). If we need to process RGB images, then in 

the input layer, an (𝐻 × 𝑊 × 3) image is given as an input, where 𝐻, 𝑊, and 3 is the 

height, the width, and the number of channels of the image, while preserving its spatial 

grid-like structure. 

 

 

Figure 3.4 A neural network structure [87]. 

Figure 3.5 A standard convolutional neural network structure (partly [88]). 
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A standard neural network, as shown in Figure 3.3, connects each node of previous 

layer to each node of current layer. We term this structure as full connection. Contrary to 

this idea, a CNN does not connect each node of previous layer to the nodes of current 

layer, i.e., it is not necessarily fully connected. It is selective. To achieve this, a very 

useful operation, convolution is performed onto the previous layer.  

Convolution is performed in a type of the hidden layers that is called the 

convolutional layer. This layer receives an input image and scans a (𝑘 × 𝑘 × 3) filter over 

it which is termed as convolution process as mentioned above. The filter and its projection 

onto the image matrix are element-wise multiplied then summed to get a weighted sum. 

Values of elements of the filter are termed as weights which should be optimized during 

training (Figure 3.6).  

 

At each projection, the (𝑘 × 𝑘) kernel gets an abstraction or summary of the 

(𝑘 × 𝑘) image region via convolution. The number of scans corresponds to the number 

of abstractions the kernel in use performed onto the input image. One should realize that 

a (𝑘 × 𝑘) region is mapped to a scalar number. This implies that 𝑘2 number of inputs are 

not mapped to the next layer individually, as expected in a fully connected layer. Instead, 

Figure 3.6 A 3x3 kernel (convolution filter) is projected on an image and after 

convolution, the scalar is registered on the corresponding cell in a feature map 

(destination cell) [89]. 
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they are only mapped to a single neuron after the convolution operation. Then, other 

neurons in the current layer should not get any input data from this region. A convolution 

result for each region of the image is stored into corresponding matrix cell of a convoluted 

matrix, of which is also spatially related as in the input image (Figure 3.7).  

Using more than one kernel is a common practice where each kernel abstracts the 

entire image in a different way. For example, one kernel may focus on certain line 

attributes and other on certain color attributes, so on. Depending on size of the kernel and 

the method preferred for scanning, size of the feature map varies. Scan methods are 

distinguished by their stride and padding settings. Stride means, at each shift, how many 

cells the filter will move in one direction. In Figure 3.7, the left quaternary group shows 

a 1-stride operation in both directions and the right group, a 2-stride operation.  Padding 

is adding zero values to borderlines of an image. For example, a (𝐻 × 𝑊) image will be 

(𝐻 + 2 × 𝑊 + 2) after padding by setting the added first and last columns and rows to 

zeros. 

 

 

 

 

 

Figure 3.7 Two common types of stride operation. 1-stride on the left group and 2-

strides on the right group (partly [90]). 
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The size of the convoluted matrix that the convolution operation generates can be 

computed as following. 

(1 +
ℎ + ∑ 𝑝𝑖 − 𝑓

𝑠
) × (1 +

𝑤 + ∑ 𝑝𝑖 − 𝑓

𝑠
) (3.8) 

where ℎ and 𝑤 are height and width of the original image, 𝑝𝑖 is size of padding from 

one side of the image, i.e., when the size of padding is 2 from left and 3 from right, then 

total padding for width is 5, 𝑓 is kernel size on one dimension, i.e., for a 3 × 3 kernel 𝑓 =

3, and 𝑠 is the stride step along one dimension. 

Now, the convoluted matrix with (𝑀 × 𝑁) dimensions will be input to an activation 

layer. In the activation layer, an activation function is applied elementwise to the 

convoluted matrix to determine which cells to fire. A common activation function is 

RELU among many others and is required to make negative elements of convoluted 

matrix zero and add non-linearity to the network. The activation process generates an 

(𝑀 × 𝑁) activation or feature map which is then input to a pooling layer. A pooling layer 

summarizes the most important information in a feature map. A common pooling method 

is max pooling which gets the max value of a projection sub-matrix onto the feature map 

and finally generates an (𝑚 × 𝑛) matrix. This convolution, activation, pooling sequence 

can take place numerous times depending on the desired architecture which, in general, 

constitutes depth of the hidden layers.  

Assuming the final output of the hidden layers is an (𝑚 × 𝑛) matrix, the first layer 

of classification layer, i.e., flatten layer, converts it to an (1 × 𝑚𝑛) vector to make it a 

useful input to a conventional multi-layer perceptron (MLP). Final layer values of MLP 

are passed to a Softmax layer which is another type of activation specifically preferred to 

be used in output layer for classification problems.  Softmax computes probabilities of 

each label that the input image belongs to. An argmax function finally picks the max 

probability class among others and delivers a prediction for the class of the image with 

the corresponding probability. 
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A BLSTM cell uses two coupled LSTM cell engines, as summarized in Figure 3.8. 

The coupled engine receives the first elements of a sequence and time-reversed version 

of it, and then produces an output. This procedure continues until all elements of 

(sequence, reversed version) pairs are processed by the engine. This allows the network 

to learn both from past and `future' simultaneously and gives more accurate results in 

classifying a scene. 

CNN features extracted from the first stage are fed to a BLSTM network stack for 

training. The rolled network structure is given in Figure 7.1. The BLSTM stack receives 

each sequence with the size 1024 × 𝑁 where 𝑁 is the number of frames per sample video.  

Stacked BLSTM performs better than single-cell counterparts in accuracy, ability 

to learn at different time scales, and ability to manipulate parameters with increased non-

linear operations [14]. A dropout layer is required to avoid overfitting for long stacks. 

Final conventional layers are a fully connected layer output of two for (fire, non-fire) 

classes, a Softmax layer for probability computations, and a classification layer for cross-

entropy loss computations. 

  

Figure 3.8 BLSTM cell engine. 
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Chapter 4 

Related Work 

Fire event monitoring and detection methods rely on a number of systems operated 

by mostly miscellaneous governmental authorities. Conventionally systems include 

manual observation on watch towers by fire lookouts or periodic patrols. Stuff employed 

as lookout needs to have an exceptional eyesight for long distances, no color bias, and 

ability to distinguish details in depth. The observation of the forest field will be typically 

12 hours/day especially on fire seasons and on stormy days with lightnings.  Therefore, a 

lookout should be in excellent mental and physical conditions for a lifestyle with 

loneliness and monotonous routines [15]. One alternative to on-site manual monitoring is 

surveillance cameras deployed at observation sites. These cameras send observational 

video data to forest administration centers and human operators watches multiple monitor 

screens for fire or smoke catching. This effort includes 24 hours/day observation which 

requires shifting working hours [16]. These two surveillance systems require human 

lookout either on-site or in-office both of which are subject to human factors and human 

error. 

An alternative to manual detection, automatic fire detection is carried out by 

technological systems that include sensors, devices, and underlying algorithms. Sensors 

of these systems may be installed on stationary points, on mobile land or aerial vehicles 

or on satellites. Stationary points frequently include on-site watch towers while mobile 

and aerial vehicles include patrolling vehicles and UAVs, respectively. The data acquired 

from these sensors are transferred to computing devices to instantly process it through 

decision making algorithms and finally generate required alert messages. 

Time of a fire event is also important in designing detection methods. The nature of 

fire at nighttime has already been discussed in Section 2.2. Due to these complexities, 

specific algorithms are required for nighttime fire detection.  

Evidence used to make a fire event decision and a corresponding sensor to detect 

that evidence also require specialized methods. Heat is a common evidence of fire 
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detection; thus, it requires heat detectors. These detectors can be mounted on certain 

buildings, trees, or other entities and may have data and power lines. They may also be 

deployed from air or by hand to the ground and powered by batteries with wireless 

connectivity for data transfer. Another evidence frequently used is existence of odor, 

certain gases like CO2 or CO, or smoke in the field of interest. For the specific gas, a 

specific sensor is required. These sensors can be stationary or mobile. The last evidence 

will be illustrated is image of smoke or flame in terms of various electromagnetic 

spectrum, i.e., visual spectrum cameras, IR cameras, etc.  Image based algorithms uses 

useful features derived from images to detect fires. When these features are designed by 

hand, machine learning tools are required for automatic decision making. On the other 

hand, when automatic feature extraction is desired, then deep learning tools are used. 

Consequently, specialized sensors, algorithms, or devices should adequately be combined 

to sense the fire evidence on target and raise alerts.  

In this thesis, methods of interest include visible spectrum-based land or aerial fire 

detection methods from videos. 

In order to overcome fire detection problem from video surveillance systems, many 

techniques have been proposed [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28]. 

Front runner techniques include detection of fire, smoke or both depending on spatial and 

temporal features of objects and colors in a video and using different spectral or physical 

range cameras [24]. After processing video sequences, those techniques decide if a pixel, 

frame, sequence or the whole video contain a fire. This requires use of a decision-making 

process. To date, logistic regression, adaptive decision fusion, correlation or covariance 

descriptors, Bayesian models, neural networks, LMS and SVM have been frequent tools 

used for decision making process. 

However, very limited number of these works considered the fire detection in dark 

videos. Recent works shows evidence of semi or full daytime fires [29, 30, 31, 32, 33, 34, 

35] . The most relevant studies are briefly explained below. 

Tasdemir's work at  [29] proposes a method on distant night fire detection. Since 

the fire event is assumed to be at far distance, fire is considered as a slow-moving object. 

Even though this approach is fine for distant fires, it may not be correct for short or mid-

range ones. 

Gunay et al. proposed a set of hand-crafted features for night-fire detection [30]. 

They developed a decision-making system that fuses decisions of sub-algorithms. These 

sub-algorithms make decisions based on detecting slow-moving objects, bright regions, 
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periodic regions, and moving region interpretation. Ho and Chen used a CCD camera and 

a laser light to detect smoke at night [31]. They analyzed spectral, diffusing, and scattering 

characteristics of the trajectory of the laser beam with a fuzzy reasoning system to detect 

fire smokes. Gomes et al. proposed a rule-based fire detection system tested on night-time 

fires besides indoors, rural, and urban fires [32]. They used two parallel working 

pipelines, one for fire detection and the other for fire confirmation, to make the final fire 

decision. 

Park and Ko proposed a multi-staged night-time fire classification method using a 

modified YOLOv3 architecture and Random Forests (RF) [34]. They first analyzed the 

videos with ELASTIC-YOLOv3 to detect candidate fire regions per frame. Then, they 

generated fire tubes from fire frames based on a rule that joins fire object candidates in 

successive frames. They generated a histogram of oriented features (HoF) from the fire 

tubes, then transferred them to a bag of features (BoF) with a code-book mapping. Finally, 

they used a bag of feature histograms as features to train an RF classifier. In the process 

of fire tube generation, a threshold that allows adding a frame to the fire tube needs to be 

manually set. This threshold should be adjusted according to the distance between the fire 

object and the camera. A dataset containing a diverse set of real-world examples is not 

practical to decide on a global threshold covering all samples. In addition, they extract a 

histogram of features from each frame of an object tube. The motion behavior of the 

flame, such as flickering, cannot be captured because the indexes of frames are lost when 

the features are put into a bag of features set. The limited generalization capacity of the 

method makes it suitable only for scenarios where the dataset distribution is not diverse.  

Pan et al. developed a pruned CNN via Fourier analysis to detect wildfire and tested 

its performance on a limited number of fire videos besides daytime videos [35]. They 

used MobileNetv2 and pruned redundant low-energy kernels and similar kernel pairs by 

calculating their DFTs, thus letting them save approximately 7% time and 22% storage. 

In its problem nature, fire detection is a subdomain of object detection. Evaluating 

performance of a network pipeline in object detection, a well-defined set of metrics based 

on a ground truth method should be employed. Two domains of ground-truths can be 

defined for fire datasets. Spatial ground-truths are generated at pixel-, region-, or frame-

level. A pixel-level ground-truth identifies the label of each pixel in a frame. Therefore, 

it gives the densest ground-truth information about a frame. However, it does not give 

any neighboring information between pixels. A region-level ground truth refers to a 

region of interest where a certain area of the frame is labeled as positive or negative. It 
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can still divide the entire frame pixels as positive or negative and can give neighboring 

information between cells. A frame-level ground-truth implies that the target object is 

contained in all pixels of the frame. Temporal ground-truths, on the other hand, are 

generated at frame-, interval-, or video-level. A frame-level temporal ground-truth 

implies which frame at what time instance contains the target object, and an interval-level 

ground-truth implies the target object is contained at all frames in a certain interval of the 

video. It is noted that none of the temporal ground truths can give spatial information 

about the labeling. For example, let a 10-seconds video contains fire objects at only 2nd 

to 4th seconds, then only this interval is labeled as fire. Finally, a video-level temporal 

ground truth implies that each frame of the video contains the target object, then the video 

is labeled as fire or none of them contains the target object, then the video is labeled as 

non-fire. 

Ground-truth depth and domain is important for the method used in fire detection. 

For example, consider that a video-level temporal ground-truth of a video is fire; however, 

in the same video, some of the frames do not contain a fire object. Also consider that a 

temporal deep learning method will be used for the analysis. Then it should be considered 

that the algorithm will also learn from the frames without fire as if they are fire and this 

will affect the training process. 

Depending on ground-truth type employed for the data, a performance metric 

should be selected. In [36], authors give a comprehensive review of spatial ground-truth 

performance metrics based on intersection over union (IOU) for both images and videos. 

With IOU, a bounding box or a closed boundary line around a target object is required to 

calculate intersection and union of actual bounding box (or blob generated by the closed 

boundary line) and predicted bounding box (or blob). In the case of temporal ground-

truthed data, there are no bounding boxes or boundary lines. In that case, IOU is not 

suitable, and the whole image or video is considered to belong to a class. Accuracy and 

F1 scores are two useful performance metrics chosen for our experiments as also by recent 

VFD studies including [32, 34, 35]. 
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Chapter 5 

Proposed Night Fire Datasets 

5.1 Introduction 

5.1.1 Importance of a dataset 

Wildfires cause tremendous damage to the natural life, economy, and society more 

than ever nowadays. In the USA, the burned area increases by approximately 180,000 

acres per each year. In 2020, the burned area due to wildfires is slightly more than 10 

million acres which is a land area greater than that of Maryland [37]. There are many 

important reasons for the increasing fire trend in USA compared to world [38]; however, 

the scope of this chapter will be limited to detection means of fires occurring in the wild, 

rural/exurban, and suburban areas, collectively we will call as non-urban areas. Non-

urban areas have potential to create wildfires since their environment contains plant 

agents that are prone to wild, fast growing, and large fires compared to urban/city areas. 

In the case of such fire events, fire can spread very quickly in these areas and rough land 

structure gives a limited mobility and accessibility to the fire regions. Therefore, 

accessing, controlling, and extinguishing non-urban fires are more difficult compared to 

urban fires and their occurrence locations. This brings importance of early detection of 

non-urban fires to front. Video fire detection (VFD) techniques have been an effective 

response to this need that successful project were implemented to realize VFD techniques 

[28, 39]. VFD techniques use video data to detect fires where machine learning methods 

have been central. Neural networks are state-of-the-art methods for detecting fires in 

videos and these networks require a ground truth video data that will be used to train a 

model which is expected to raise true positive fire alarms on the never-seen video streams. 
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5.1.2 Purpose of preparing a new dataset 

Even though a ground truth dataset is essential for training a neural network, it is 

also essential in comparing performance of existing neural nets offered by researchers. 

There are many video fire datasets used and made available by research community. A 

review of these sets is given in Section 5.2. However, these datasets are almost for day-

time fire detection tasks, i.e., smoke or flame detection. In this work, we introduce a 

comprehensive and challenging night-time fire dataset, Fire in Dark (FinD) which is 

expected to help researchers develop and compare machine learning models for night-

time non-urban fires.  

5.2 Literature Review of Fire Datasets 

To the best knowledge of the authors, Neal et al. published the first work on image-

based fire detection with neural networks in 1991 [40]. Since then, there have been over 

3 hundred research works on the problem of VFD. These publications used image or video 

data in order to verify performance of their work for hand-crafted features or to train their 

neural networks for automatic feature extraction and then verify performance of the 

trained models. The data of the majority of these works are not accessible due to lack of 

access links, broken links, or in-accessible links from other countries. Even though, the 

dataset used is created from a combination of data from other accessible known datasets, 

access links to the mixture of final dataset mostly not given in those works. Therefore, it 

is not possible to replicate these methods with their original data. 

The papers with open access data either includes direct working links or controlled 

access by registering to the database or signing a license agreement of the providing 

institution. Since the data is available, it is possible to replicate the original work with the 

corresponding data. Some of these works provide a citation format to their data when 

other researchers intend to use them in their own work and some of them only have access 

links for citation purposes. When the sets in the access links given below assessed, it will 

be seen that researchers borrowed data from other datasets in creating a dataset according 

to their needs. In this study, we only review and list popular open access datasets to make 

research community save time in searching fire datasets. 

The most used dataset for model development and comparison in the literature is 

VisiFire dataset [41] from Bilkent University, Turkey. It includes 14 positive fire videos, 

23 positive smoke videos and 2 negative smoke videos. Only 2 of these videos are 
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negative fire or smoke videos.1 Since this dataset dates to 2005, video resolutions are not 

HD. Another most used dataset is KMU Fire \& Smoke Database from Keimyung 

University, Korea [42]. This dataset includes 22 positive fire videos, 6 positive smoke 

videos, and 10 negative fire or smoke videos. This dataset includes only 7 positive smoke 

videos and 1 negative smoke video at night.2 

The MIVIA Fire Detection Dataset from University of Salerno, Italy [43] includes 

14 positive & 17 negative fire videos and 149 positive smoke videos.3  

Video smoke detection (VSD) dataset from University of Science and Technology 

of China includes 3 positive smoke videos, 3 negative smoke videos, 6323 positive smoke 

images, and 74989 negative smoke images without checking duplications for the images.4  

The ViSOR dataset from University of Modena and Reggio Emilia, Italy [44, 45] 

includes 14 positive smoke videos among other provided sets.5 

FIRESENSE dataset [28] includes 11 positive fire videos, 16 negative fire videos 

two of which are night-time videos, 13 positive smoke videos, and 9 negative smoke 

videos.6 

Corsican Fire Database from The University of Corsica Pasquale Paoli [10] 

includes 500 images in visible spectrum (VS), 100 pair of images in both VS and NIR, 

and 5 sequences of pair of images in both VS and NIR7. Since we do not have direct 

access to this dataset, we cannot give exact content of night video in the set. 

FiSmo dataset from University of Sao Paulo, Brazil [46] and the RESCUER project 

[39] includes a collection of datasets: FiSmo-FireVid dataset contains 27 positive fire 

videos only one being night-time fire video, FiSmo-RESCUER dataset contains 61 

positive fire videos, FiSmo-BoWFire dataset contains 199 positive fire images, 107 

negative fire images, 80 positive smoke images, and 80 negative fire images, FiSmo-

Flicker-Fire dataset contains 984 positive fire images, FiSmo-FireSmoke dataset contains 

1077 positive fire, 369 positive smoke, 527 positive fire and smoke, 3583 negative fire 

 
1 http://signal.ee.bilkent.edu.tr/VisiFire/Demo/SampleClips.html 
2 https://cvpr.kmu.ac.kr/Dataset/Dataset.htm 
3 https://mivia.unisa.it/datasets/ 
4 http://staff.ustc.edu.cn/~yfn/vsd.html 
5 https://aimagelab.ing.unimore.it/visor 
6 https://zenodo.org/record/836749##.YNhUxugzYdU 
7 http://cfdb.univ-corse.fr/ 
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and smoke images, and FiSmo-SmokeBlock dataset includes 832 positive and 834 

negative smoke images.8 

DynTex dataset from La Rochelle University, France is a wide and great collection 

of texture videos and suitable for neural network model training. The DynTex contains 

29 positive fire/flame videos, 20 positive smoke videos and 630 negative fire and smoke 

videos.9  

The National Institute of Standards and Technology (NIST) has an online repository 

of fire videos in different environments that has been also popular in research 

community.10  

Furg Fire dataset from Federal University of Rio Grande, Brazil [47] contains 17 

positive fire videos and 6 negative fire videos.11  

State Key Laboratory of Fire Science (SKLFS) from University of Science and 

Technology of China [48] contains 20 positive and 10 negative smoke videos.12  

ImageNet [49] is a very popular benchmark dataset in neural networks research 

community and used for fire detection research. Since it does not contain any fire or 

smoke images, images from it can be added to negative fire or smoke images.13  

Even though it is rarely used by the research community, we should also mention 

the ALERT Wildfire observation camera network14 which is very useful for extracting 

landscape view of both fire and non-fire sequences from long distances at various points 

of west of the US.  

The dataset Anton used in his research [50] contains 10 positive and 10 negative 

smoke videos\footnote.15 The Ultimate Chase website\footnote16 and its YouTube 

channel also have 14 positive fire videos used multiple times by the fire researchers. Only 

one video from The Ultimate Chase is of night fire.   

 
8 https://github.com/mtcazzolato/dsw2017 
9 http://dyntex.univ-lr.fr/index.html 
10 https://www.nist.gov/video-category/fire 
11 https://github.com/steffensbola/furg-fire-dataset 
12 http://smoke.ustc.edu.cn/datasets.htm 
13 https://www.kaggle.com/c/imagenet-object-localization-challenge/data 
14 http://www.alertwildfire.org/ 
15 https://disk.yandex.com.tr/d/q97BQ9v58WNRD 
16 http://www.ultimatechase.com/Fire_Video.htm 
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FESB department at University of Split offers a collection of some datasets on 

smoke detection and one dataset\footnote17 provides 10 positive smoke videos [51].  

(YUP++) Dynamic Scenes Dataset from York University, Canada [52] provides 30 

stationary & 30 moving camera positive fire videos and 570 stationary & 570 moving 

camera negative fire videos with different contexts\footnote.18 9 of these videos can be 

considered as night-time fires. 

From the most cited and popularly used datasets reviewed above show that they do 

not contain sufficient amount of night-time fire videos both for positive and negative 

cases. Furthermore, these datasets should also be examined in terms of if deceptive 

negative videos are in existence in the set. For example, when the smoke detection is the 

task, then obviously positive smoke videos should contain smoke produced by fire. 

However, the neural networks should also distinguish smoke-like objects from the smoke 

in the scene. Therefore, it is desirable to have deceptive smoke-like videos as negative 

samples to sufficiently train the model against deceptive objects. 

Park et al. developed a new night-fire dataset which contains 10 positive and 10 

negative fire videos collected from both KMU dataset and from YouTube. There is no 

access link to this dataset as for now to give information about nature of videos, however 

from their work [34] we deduce that the positive and negative videos belong to urban 

areas. Pan et al. also used both daytime and night-time videos for their algorithm [35] 

however these videos are also not openly accessible. Nevertheless, sample images in their 

work show that they belong to non-urban area fire events. 

5.4 Preparing A Fire Dataset 

Well-designed datasets are a backbone stage of developing automatic fire detection 

systems based on computer vision. In the literature, it is difficult to find an extended 

preprocessing information given about the dataset used for the video fire detection 

research. This section intends to give a framework on fire dataset preparation for 

researchers based on objective experience during creation of the FinD dataset. Besides 

general dataset preparation requirements, a video fire dataset may include requirements 

regard to the specific problem of video fire detection. 

 
17 

http://wildfire.fesb.hr/index.php?option=com_content&view=article&id=65&Itemid=53 
18 http://vision.eecs.yorku.ca/research/dynamic-scenes/ 
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5.4.1 Data retrieval and acquisition 

Deep learning model development requires ready-to-use structured data. If the 

structured data is not in hand, then it should either be acquired from other structured data 

sources, be collected from unstructured data sources, and then converted to structured 

data or generated from scratch. In either case, lack of dataset in hand for VFD research 

brings us to initial step of preparing a dataset, data retrieval.  

Structured data retrieval is more trivial since it frequently requires searching the 

source, registering the institutions service, requesting access, requesting permission, and 

downloading and storing the data. Publicly listed datastores for structured data frequently 

requires its own terms and conditions. Some of them even impose transferring terms and 

conditions, i.e., copyleft license. Data under a copyleft license can be downloaded, 

adapted, and shared; however, any derivative work generated from this data is also under 

the same original terms and conditions of the original data that made creating of these 

derivatives possible.  Structured data is expected to require little to no effort for use in 

model development.  

In the case of unstructured or raw data, that is the data that cannot readily be used 

for a deep learning pipeline and potentially requires multiple strenuous processing steps 

beforehand, a search should be conducted across public video sharing services like 

Google, YouTube, or Vimeo or data repositories that are specifically constructed to hold 

desired data. Most of the time the data of interest is publicly available, however it does 

not mean that the data is immediately allowed for downloading. In other words, one 

should be cautious for collecting data from publicly accessible data sources in terms of 

data licenses and permissions. For example, videos that will be collected from the 

YouTube videos will have either The Standard YouTube (TSY) License or Creative 

Commons (CC) License. The Standard YouTube License gives the YouTube rights to 

stream the content of an owner/uploader and requires the third parties access this media 

only on YouTube website. This implies that videos under TSY license is not allowed to 

be downloaded, adapted, or shared. At the first instant this constraint seems troublesome. 

However, Section 107 of the Copyright Act of USA defines four pillars of fair use that 

data collection for scientific research can be based on: 

1- The purpose and character of the use, including whether such use is of 

a commercial nature or is for nonprofit educational purposes: In terms of this 

criterion, the desired dataset should not directly be taken from the source as a 
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whole. Instead, videos should be cropped, trimmed, resized, etc. Furthermore, the 

samples can include only a fraction of a short time compared to the corresponding 

original video lengths and sound is advised to be eliminated. Therefore, these 

small video pieces should not and cannot satisfy an audience in any way that the 

corresponding original, long, uncropped, untrimmed, and unresized video with the 

sound would. 

2- The nature of the copyrighted work: In terms of this criterion, the 

desired raw data (i.e., YouTube videos) should be factual work, in other words, 

they should be merely and naturally occurring physical events and not include any 

fictional work. In that regard, the dataset being compiled from raw videos should 

also be factual work without any fictional element.  

3- The amount and substantiality of the portion used in relation to the 

copyrighted work as a whole: In this criterion, one should be clear that she/he 

does not use the raw data as a whole, in fact it should not subject to direct or whole 

use. Thus, the raw data should be trimmed (took only a small-time interval of the 

video) for scientific use. Consequently, the amount of these small video pieces 

should not be comparable to the amount of corresponding original video in terms 

of wholeness.  

4- The effect of the use upon the potential market for or value of the 

copyrighted work: In terms of this criterion, researchers should not conduct a 

business activity that rely on the dataset they generated. They should have no 

intention to market any opportunity that one may seek from the work. They also 

should not have intention to put this dataset to any video streaming service in the 

way that original video uploaders did. Therefore, the researchers should not be a 

potential competitor or market killer for the original video uploader. The authors 

should only seek scientific contribution to advance common good in the event of 

adverse effects of the problem being studied. 

In summary, during the process of generating a dataset, the researchers should be 

within the boundaries of "fair use" in terms of Section 107 of the Copyright Acts and the 

video service’s terms and conditions for fair use if the data is not licensed under CC. 

Giving reference to the original creators of the data is also required regardless of the 

Section 107 of the Copyright Acts. 
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If the data desired to be collected is licensed under CC, then a researcher is free to 

download, adapt, and share the data or even use it in commercial applications. It should 

be noted that giving reference to the original creators of the data is also required. 

Data sources often include a search engine and "fire, wildfire, smoke, video, flame, 

burn, forest, video, explosion" are some useful keywords that can be considered for 

finding desired video fire data.  

Sometimes, preexisting data is not enough or does not fit the problem, then data 

generation from scratch is required. Data generation is a more involved method for data 

acquisition. It requires environment set up, data generator instrument selection (i.e., 

camera, sensor, etc.) and adjustment of the instrument settings.  

After gathering raw data from various sources, it should be accepted to the dataset 

after it meets a set of data accepting rules. Data accepting rules ensure that the data added 

to the database meets standards and ready to be used for subsequent steps. Different data 

accepting rules can be developed for different preprocessing steps. For example, a set of 

data accepting rules that will be used after collecting raw data should be different than the 

rules that will be used after data cleansing. Fundamental rules of thumb for raw data 

acceptance are validity, quality, quantity, variety.  

Each candidate video should be evaluated in terms of these dimensions to determine 

its potential contribution to the VFD research. Data validity refers to checking class or 

label, type, size, time stamp, and uniqueness of the data. Selection bias is a problem in 

data validity. When accepted data does not represent form, appearance, or version of the 

target object, then the model built on this data will not be able to make adequate 

predictions. 

Data quality refers to checking image resolution, object interpretability, and 

selection bias. For example, videos record decades ago may have higher resolutions but 

bad image quality, i.e., insufficient details of colors and texture, or pixelated video, etc. 

Distribution of video resolutions in the accepted set is also considered under data quality. 

Choosing RGB videos contrary to black and white or grayscale videos is also considered 

under video quality check.  

Data variety refers to how representative the whole dataset is for target 

classification problem. Different than selection bias, the accepted data is a representation 

of the target object; however, the whole accepted dataset is based on a limited number of 

forms, appearances, or versions of the target object. For example, if the dataset is based 

on very short-range fires at macro level, then a model built on this set will not be able to 
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detect far-range fires effectively. High variety in terms of fire scenarios and scenes will 

contribute to developing more robust fire detecting pipelines.  

Data quantity refers to how the number of accepted videos is distributed in the 

dataset in terms of data variety. It also includes total number of accepted videos in the set. 

5.4.2 Data cleansing 

Most of the time, the raw video data includes many unwanted data fragments in 

terms of spatial regions or temporal intervals. A researcher may want to extract these parts 

from the raw data and refine it for the next preprocessing step. For example, news outlets 

have very useful fire data embedded in their broadcasts. However, these broadcasts 

frequently include logos of the news outlet, subtitles, supertitles, other irrelevant video 

embeddings, etc., along with desired video footage in the same frame. Therefore, one will 

want to eliminate these spatially unwanted regions or conversely will only extract the 

desired region in the frame along with the video. Then editing the frame spatially is called 

cropping and lets one to eliminate or extract regions per frame along the video. 

Alternatively, a video can include an unwanted video interval, or it can be longer 

than a predetermined time length. Then, eliminating the unwanted video length is 

performed by trimming or cutting. Trimming is merely shaving the video from the 

beginning and end to make its length shorter. Cutting is detaching a time interval of a 

video either for later use or for dropping.   

There are many software tools that implement cropping, trimming, and cutting steps 

effectively. A couple of them are Adobe Premiere Pro, Final Cut Pro, Filmora, etc. 

After obtaining a video part that is spatially and temporally acceptable, i.e., it does 

not include any unwanted region or frame, resizing can be the next step for data cleaning. 

Depending on the pipeline input size, the video data can be resized, or as a matter of 

choice, it can be stored as is. A researcher may want to extract these parts from or shorten 

the raw data before using it. It is strongly advised that keeping geographical region, city, 

denominated fire call name, incident date for each video will be very helpful in preventing 

data duplicates. Accessing fire data was limited a decade ago, but as of today, there is an 

immense amount of fire videos, numerous of them are rebroadcasted by many news 

outlets. Therefore, it is likely to add the same fire scene to the dataset multiple times. If 

that is the case, then removing or checking for duplicates will be an added step for data 

cleaning. 
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5.4.3 Data annotation 

5.4.3.1 Fire/Non-Fire annotation protocol 

In the video fire detection research, the fundamental goal is classifying a data 

sample as either fire or non-fire. Interpretation of such classification should be defined 

clearly.  

When an automatic fire detection system alarms a true positive fire event, then this 

is an alert that should call attention of firefighting services and possibly requires an 

immediate intervention. This is a common set of actions that one expects to be taken in 

case of a fire alert. This expectation is a definitive key about what a fire event is.  

From the deep learning point of view, however, each of these steps should be 

defined carefully. In other words, deep learning algorithms should agree on the meaning 

of fire and non-fire labels via a well-defined annotation protocol. For example, if the 

assignment rule for fire label is determined as "a flame object implies the fire label" then 

a fire smoke object should not be attributed to the fire label. On the other hand, if the 

assignment rule for fire label is determined as "a flame and/or smoke object implies a fire 

event which implies the fire label" then this time a smoke object should also be attributed 

to the fire label.  

In the real-world examples, video smoke detection is another effective method for 

raising fire alarms during daytime. The most common difficulty for video smoke 

detection is distinguishing fire smokes from fogs, clouds, and other smoke like sources. 

In the nighttime fire events, smoke object is not useful evidence for fire detection due to 

low light conditions, therefore, researchers use flame object as evidence for a fire event 

even though the smoke can coexist with the flame object in the scene. 

Annotating the data with a high confidence is a difficult task which determines 

quality of the annotation step, which in turn has a direct impact on the prediction 

performance of deep learning models.  

Data annotation protocol should also be designed in terms of annotating frames as 

time instances or annotating successive frames as transitions. In that regard, the first 

annotation technique is made by annotating the data frame by frame by assigning either 

fire or non-fire labels to each frame of the video. With annotation of instances, one can 

get existence of fire in the frames. On the other hand, the second technique, transitional 

annotation, labels a transition, 𝑇𝑡, from frame 𝐼𝑡−1 to 𝐼𝑡 labeled as fire if fire is propagated 

from time 𝐼𝑡−1 to 𝐼𝑡 and as non-fire otherwise. Transitional annotation lets segmentation 
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of fire events across the video compared to object segmentation in single instances [46, 

53]. 

5.4.3.2 Selection rules of objects for annotation 

Some temporal analysis methods require uniquely identifying fire objects from the 

beginning of a video and label them with the same labels. Keeping track of unique objects 

is easier after converting frames to black and white images. Then the rules developed in 

Section 5.4.3 is used for object annotation. 

5.4.3.3 Ground-truth depts 

In the literature, two domains of ground-truths used for training and test fire 

datasets. Spatial ground-truths are generated at pixel-, region-, or frame-level. A pixel-

level ground-truth identifies label of each pixel in a frame. Therefore, it gives the densest 

ground-truth information about a frame. However, it does not give any neighboring 

information between pixels. A region-level ground truth refers to a region of interest that 

a certain area of the frame is labeled as positive or negative labels. It can still divide the 

entire frame pixels as positive or negative and can give neighboring information between 

cells. A frame-level ground-truth implies that the target object is contained in all pixels 

of the frame. Temporal ground-truths, on the other hand, are generated at frame-, interval-

, or video-level. A frame-level temporal ground-truth implies which frame at what time 

instance contains the target object, and an interval-level ground-truth implies the target 

object is contained at all frames in a certain interval of the video. It is noted that none of 

the temporal ground truths can give spatial information about the labelling. For example, 

let a 10-seconds video contains fire objects at only 2nd to 4th seconds, then only this 

interval is labeled as fire. Finally, a video-level temporal ground truth implies that each 

frame of the video contains the target object, then the video is labeled as fire or none of 

them contains the target object, then the video is labeled as non-fire. 

Ground-truth depth and domain is important for the method used in fire detection. 

For example, consider that a video is labelled as fire assuming video-level temporal 

ground-truth scheme; however, some of the frames in fact do not contain a fire object. 

Also consider that a temporal deep learning method will be used for the analysis. Then it 

should be considered that the algorithm will also learn from the frames without fire as if 

they are fire and this will affect the training process. 
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5.4.3.4 Annotation framework 

For supervised learning tasks an annotation framework is useful in understanding 

the behavior of deep learning model. Presence of a certain object may alter decision of 

the network on target object in a way that it is not expected to conclude. For, example, 

training an RNN model on videos frequently including both fire and fire fighters together 

my lead the same model make fire prediction on videos that contains fire fighter but fire. 

Therefore, further annotating videos for such deceptive objects, events, and states will be 

useful in training data selection stage as well as understanding performance of the model 

and the miss-classifications. This framework can be based on events, objects, or states 

and corresponding sub-features to be labelled. A table of annotations that are useful for 

fire datasets are given in Table 5.1.  

Table 5.1 A summary of proposed fire dataset video annotations 

Caption Group  Captions 

Object in fire : 
tree fire, brush fire, forest fire, vehicle fire, exterior building fire, interior 

building fire, structure fire 

Other light sources :  head light, city light, road light, hand-held light, moon light, lightning 

Objects in scene : fire truck, other vehicle, fire fighter, reporter, other people, pole 

Events in scene : structure collapse, tree collapse, vehicle pass, human movement 

Fire contour : 
Ground view: V shape, Λ shape, / shape, \ shape;  

Aerial view: S shape, C shape, water drop, free line 

View of fire : 
aerial view, ground view, direct view, vehicle-drive view, indirect view 

(through car/building windows) 

Camera motion : stable, include waggling, include tilts, include displacements, include zooms 

Record time : day, night, semi (heavy smoke like night) 

Distance : macro, short-range, mid-range, far-range 

Stage: pre-fire, beginning, matured, end, post-fire 

Fundamental objects that lead to fire event prediction on day and night-time fire 

alerts are fire and smoke objects. The fire object in the scene can be in a directly visible 

form, partially or completely occluded by opaque or transparent objects or there can be 

no fire object in the scene at all. When a fire object is directly visible to camera, then its 

color, texture, and temporal features are useful in fire event prediction. If an opaque object 

partially blocks the fire object, true form of the fire object is altered by the blocking object. 

If a complete occlusion by an opaque object is the case, color, texture, and temporal 

features will be even more limited for fire event prediction depending on amount of 

environmental illumination due to reflection and refraction of the light. When a 

transparent object occludes the fire object, then an altered and limited color, texture, and 

temporal features will be available. 
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The fire event scenes sometimes do not include any visible smoke, which can be 

termed as smoke-free scene.  When environmental illumination is not sufficient to 

distinguish darkness from smokes, then the smoke level is light. When smoke is visible 

with distinguishable gray tones under sufficient illumination and there is no cloud like 

smoke objects, then the smoke level is moderate. When smoke is visible, shady with gray 

tones, and partially blocks the fire and other objects with visible smoke clouds, then the 

smoke level is heavy. Sometimes, smoke can completely block fire object and other light 

sources, which is termed as no-vision. When artificial smoke is generated by computer 

vision means, this is termed as artificial. 

Distance between the camera and fire event is also important in designing fire 

detection algorithms. The distance determines contour and flickering behavior of the fire. 

Furthermore, color composition will change due to reflection, scattering, and refraction. 

When a fire is close enough to the camera or camera is zoomed enough to get a macro 

shooting that a clear texture of the fire object is visible, then this seen is termed as macro. 

When a person can reach the fire area with a couple of steps, then it is in a short-range. 

When a fire is far enough that a landscape view is available, i.e., from an aerial vehicle 

or a lookout tower, then it is in far-range. Other than these, fires are considered as in mid-

range. 

If fire event is recorded from an aerial vehicle, then this is air-to-land view. This 

type of videos is frequently subject of fire detection techniques employing UAVs. If video 

is recorded on the ground, then this is termed as land-to-land view. This is the most 

frequent fire video recording mode. If there is no semi- or full-transparent object in 

between fire and recording device, then this is termed as direct view. If there is a semi- or 

full-transparent in the middle, then this is indirect view. This type of videos is frequently 

recorded behind a car or building windows.  If the video is recorded from a moving 

vehicle, then this is termed as vehicle-drive view. In these videos, background is 

effectively changing. 

In nighttime fire events, the target object is fire or flame object rather than smoke 

object. The object in fire determines motion, color, and contour characteristics of a non-

urban fire. These objects are frequently tree, brush, forest, vehicle, 

interior/exterior/window of a building, and other flammable structures. 

Other than the fire object as a light source in night, there can be other light sources 

behavior of which can be challenging for fire event detection. These light types are 

revolving/flashing/continuous headlights, city lights, road lights, hand/head-carried 
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lights, moon light, fireworks, lights emitted from hot molten metal, stars, volcanoes, 

sunset, and sunrise.  

In non-urban night fires, when the illumination is sufficient, labelling data with 

frequently seen objects are useful in measuring their effect in training process. These 

objects can be fire truck, other vehicles, fire fighter, reporter, other people, pole, road 

sign. 

Other than chemical burning process, there are other frequent event occurring in 

fire related scenes. These can be listed as structure collapse, tree collapse, vehicle pass, 

and human movement. 

Depending on geographic topography, distance, and view angle, the fire contour 

can be in a couple of shapes which can be listed as V, Λ, forward/back-slash, S, C, water 

drop, and free line shapes. These shapes become important when the data includes videos 

recorded from both land and air. 

In recorded night fire videos, camera is not always stationary which requires 

adapting methods other than methods developed for specifically stationary cameras. The 

moving camera can include the motion characteristics of waggling, tilts, displacements, 

and zooms. 

The obvious record time for nighttime fires is night; however, depending on amount 

of smoke discharged to air, sometimes night-like vision is possible at daytime. Therefore, 

using videos recorded at that time sometimes can be an option at training or test processes 

which can be termed as semi-night. 

Scene belonging to stages of the fire can be categorized as pre-fire, beginning of 

the fire, matured fire, end of the fire, and post-fire. Finding the data for some of the stages 

of the fire can be relatively difficult, i.e., beginning of the fire.  

Finally, the difficulty of the scenes is labelled as easy, moderate, and difficult. The 

difficult scenes include fire events even difficult for a human to interpret directly by 

detecting a fire object. It should be emphasized that, for a human, detecting a fire event 

from a scene by using other evidence is easy, however the difficulty arises when a fire 

object is difficulty visible. Easy scenes are the ones if a human can easily detect a fire 

object in it. The moderate scenes are considered in between easy and difficult scenes. 

In the literature, data annotation and labelling are conducted by manually or 

automated by software tools. In manual techniques, researchers, experts, or MTurk 

workforce is used to complete these tasks by hand. Software tools let the tasks done by in 

a more automated way. There are plenty of tools and services doing simple labelling, 
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bounding box, or polygon annotations. Popular software tools include Darwin, CVAT, 

VoTT, Supervise.ly, SuperAnnotate, and many. State-of-the-art data annotator tools and 

their features are given in Table 5.2. 
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Table 5.2 SOTA data annotator tools 
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Alegion         

Coco-

Annotator 
   X    i 

CVAT X   X   GitHub b 

DataLoop 

Playment 
 X       

Dataturks    X    b 

Deepen         

Diffgram X   X     

hasty.ai  X       

Heartex         

Hive Data  X       

Image 

Tagger 
  X      

ImgLab X        

Labelbox  X X      

Labelimg X  X      

LabelMe X  X   X GitHub i 

Make-Sense    X    i 

Prodigy    X     

RectLabel   X      

Scale AI  X       

Super 

Annotate 
 X      b 

Supervise.ly  X  X    b 

V7's Darwin  X       

VGG Image 

Annotation 

Tool (VIA) 

X   X   GitHub b 

VoTT X   X X X GitHub b 
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5.5 Introducing the FinD Dataset, Set1: A Synthetic 

Outdoor Night Fire Dataset 

This dataset is the initial set generated for nighttime VFD research by me and Asst. 

Prof. Dr. Kasım Taşdemir. A decent amount of dry bush and wood pieces are used as 

combustible agent during pure nighttime. The fires are ignited from a single point at it 

started to develop from the ignition point until its full size. Sketch of place that fire videos 

were recorded is given in Figure 5.1. The maximum distance a camera can see in the night 

is 1km and distance between fires and cameras changes from 30m to 100m. Besides fires, 

in 360o sight of the cameras there are a series of streetlights, bright and dark roads, city 

lights, flashing tower lights, moving vehicle headlights in low- or high-density traffic, 

short distance house and streetlights. 

Four different cameras are used recording fires usually in 640x480 resolution: Casio 

Exilim EX-Z350, Nikon D3200, Samsung S850, and Samsung WB100. In total, 15 night 

Figure 5.1 Dataset videos are intentionally taken from a place where possible 

negative light sources appear in the scene such as city lights or car lights. Location 

of test fires (stars) and cameras (arrows). Sight of the scene is shown in red circle. 

Maximum distance of sight from cameras is around 1 km. 
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fires are recorded. In Table 5.3, some characteristics of the videos are tabulated. 

Screenshots of each video is given in Figure 6.2 and 6.3.  

Table 5.3 Properties of the samples in the video dataset. 

Video Duration # of frames # of negative 

samples 

# of positive samples 

1 9:41 17439 99 178 

2 16:09 29091 265 148 

3 21:23 38518 27 307 

4 29:00 52231 17 671 

5 04:00 6009 505 175 

6 11:04 16608 2044 471 

7 12:46 19158 530 405 

8 20:00 30003 6 1343 

9 12:05 21746 81 1508 

10 14:14 25608 89 1608 

11 18:10 32688 1208 927 

12 20:00 35977 266 1876 

13 08:34 15435 2681 1113 

14 13:17 23913 7758 1839 

15 03:25 6145 222 624 

 

5.6 Introducing the FinD Dataset, Set2: A Natural 

Non-Urban Area Night Fire Dataset 

Well-designed datasets are a backbone stage of developing automatic fire detection 

systems based on computer vision and machine learning.  

In this work, a novel video dataset is created in response to scarcity of data sets 

particularly prepared for night-time fire events occurring at wild, rural, or suburban areas. 

The dataset contains night-fire videos collected from a number of public online video 

services for VFD research purposes.  

Videos are collected from public video sharing services like Google, YouTube. A 

combination of search terms like fire, flame, night, wildfire, forest fire, disaster, night 

drive, lightning, firework, headlight, animation, flicker, etc., was used in search engines 

and video services to list candidate data. After beginning the search, automatic 

suggestions have been very helpful in accessing more useful and diverse data. It is 

important to note that searching for not only fire videos, but also fire-like videos is crucial 
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in creating a challenging dataset that can represent real life situations. Furthermore, 

videos of hand-made fires were discarded to let the algorithms trained on complex fire 

scenarios rather than comparatively simple experimental environments.  

Each candidate video was evaluated in terms of data acceptance rules defined in 

Section 5.4.1. Data validity checks included if the candidate data is a video (i.e., not a 

GIF file) with any video format, has at least 20 frames, recording time is at night or almost 

at night with heavy smoke for fire videos and any time for deceptive non-fire videos, 

includes videos from natural fire events for fire class and includes videos strongly from 

fire events and fire-like deceptive events for non-fire class, and is not duplicate. Data 

quality included checking if the candidate data preferably has a higher resolution with a 

corresponding image quality. Data variety aimed by selecting various types of fire 

scenarios and scenes while accepting a video candidate. The scenario variety is 

summarized in Table 5.1. 

The publicly available videos are mostly made available by news channels on their 

accounts at YouTube; therefore, they include many unwanted video fragments which 

should be handled at preprocessing step. All fire scenes were chosen from real-life fire 

incidents from 2013 to 2019. During data collection, videos were organized in terms of 

the incident country, location in the country, fire name, and incident time as much as 

possible to keep track of incident origins and prevent duplicate samples.  

Creating the proposed dataset required several data preprocessing steps.  The raw 

data collected from open sources in .mp4 format was generally not suitable to be readily 

used in model development. Thus, the data was cleaned from unwanted data fragments 

by cropping, trimming, cutting, resizing, removing duplicates, etc. The software tool used 

for this purpose was Adobe Premiere Pro®. The accepted data is then stored in .mp4 

format with H.264 compression codec. Furthermore, the video data was organized for 

each video as either containing fire in all the frames or none of the frames. This lets all 

frames of a video be labeled as either fire or non-fire and prevent the network getting 

affected from counter labels during learning about a certain label. For example, a fire 

labeled video cannot contribute to a non-fire training process since the fire video contains 

the fire event in all frames. After completing these steps, all videos were added to the 

dataset in common video formats. In order to reduce computer work and accelerate 

analysis, a mat file version of the video files was created. 

The dataset includes various human-interpreted captions. For instance, videos are 

captioned in terms of objects of interest that are being burned, such as tree fire, brush fire, 
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forest fire, vehicle fire, exterior building fire, interior building fire, and structure fire. 

Another example includes captions in camera movement, such as stable, including 

waggling, tilts, displacements, or zooms. These captions are extensively explained in 

Section 5.4.3 and summarized in Table 5.1.  

A couple of daytime videos exist only for non-fire videos where tanker aircraft 

deploy fire extinguisher materials to the land area. They are added to challenge the 

network with fire-like objects. In total, 1835 videos comprise 1358 night-fire and 477 

non-fire videos in the base dataset. Log-scale histogram charts that show frame number 

frequency of the videos are given in Figure 5.2. 90% of the videos are in 720x1080 

resolution and minimum resolution (240x432) videos are only 2.2% of the dataset. A 

montage of fire and not fire samples are given in Figure 5.3 and 5.4. 

 

Figure 5.2 A log-scale distribution of the number of frames in both fire and non-

fire videos 
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Figure 5.3 A montage of selected fire images from videos. 
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Figure 5.4 A montage of selected non fire images from videos. 
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Chapter 6 

Night Fire Detection Using Hand-Crafted 

Features 

In this section, a wildfire detection algorithm from dark videos is proposed. Unlike 

the daytime wildfires, in the dark videos, neither the fire nor its surrounding has visually 

clearly perceptible texture. Its unique visual characteristics make it challenging to extract 

descriptive object features. This section addresses the challenging problem by tracking 

the glowing objects in the darkness and extracting features based on the spatio-temporal 

behavior of them. It is experimentally shown that the proposed features are descriptive 

enough to classify wildfires with over 90% accuracy even there exists deceptive light 

sources such as city lights, flashlights, car headlights and reflections in the scene. 

Moreover, we investigate several conventional machine learning algorithms such as 

ensemble and kernel-based methods on the same spatio-temporal feature set. 

Comprehensive empirical test results demonstrate that the most accurate detection is 

obtained when the spatio-temporal feature set is classified using Random Forest. 

6.1 Introduction 

Beginning from 1900s, watch towers have been an important part of fire detection 

across the world. However, due to human factors, fire announcement procedures didn’t 

work properly all the time which increased forest loses especially at rural areas. 

Employing surveillance cameras instead of lookouts made forest observation relatively 

easier. However, watching too many cameras by a limited number of staff is also not an 

easy task. For this reason, computer vision based automatic fire detection methods have 
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been an important welcome to the fire as well as forestry departments since they do not 

require any sensor deployment to the fire risk wild areas and besides a quick yes-no alarm, 

they support information of a fire via monitoring systems. 

In this section, we propose a fire detection method that is able to detect short and 

mid-range fires while overcoming false alarm sources, such as city lights, car headlights, 

streetlights, etc. 

Contribution of this section can be counted as three folds: 

• A spatio-temporal feature extraction method including object tracking in 

dark video is proposed, 

• Comprehensive comparison of ensemble and kernel-based classification 

methods on wildfire detection in dark videos are demonstrated, 

• A final wildfire detection method which is robust against common source 

of false alarm sources in dark videos such as city lights or car headlights is 

proposed. 

6.2 The Proposed Wildfire Detection Method 

6.2.1 Extraction of Foreground Objects in Dark Videos  

One challenging part of working on light emitting objects on the dark videos is they 

have limited visual features to be tracked or make any in depth visual analysis. For that 

reason, instead of visual ques of the object, we target to investigate its temporal behavior. 

However, we need to track an object throughout the video despite of the challenge. Light-

emitting objects appear, disappear, flicker, move and even intersect with others or 

unmerge from the others in the video. All these cases are handled by the proposed object 

extraction and tracking algorithm. 

Contrary to daytime counterparts, night-time videos contain very limited color 

information. They are very akin to digital binary images. Thus, without any color 

processing, each frame is converted to a black & white image with a threshold of 𝜏0 by 

using Otsu's method [54]. As a result, the dark pixels are represented by 0 and bright ones 

by 1. Binary blobs in each frame is detected with 8 connectivity adjacency rule. This 

eliminated disconnected or isolated foreground pixels. Blobs having fewer pixels than 𝜏1 

are discarded to reduce number of blobs considered as noise. The reason 8 connectivity 

is used instead of 4 is the nature of a fire which has a very fragmented structure, thus, 
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when 4 connectivity is used there will be many small blobs belonging to same fire flame 

which makes analysis difficult. Let 𝑏𝑛,𝑘 be 𝑘’th fire candidate blob of 𝑛’th video frame 

and 𝑜𝑚 be 𝑚th object in the video. While in one frame 𝑜𝑚 can be represented by 𝑘th blob, 

𝑏𝑛,𝑘, in succeeding frame it can be represented by 𝑘 + 1th blob, 𝑏𝑛+1,k+1. Then a tagging 

procedure should be implemented for each blob in each frame  to uniquely index each 

object across the video with an ID. A tag will have a lifetime; a tag is born, lives for a 

while, and then dies as the object disappears from the video. Basically, light blobs not 

only appear and disappear from the video, but they also move, intersect or unmerge. For 

that reason, we need to have an algorithm to track these light emitting objects. If the 

subsequent frames have intersecting blobs, then it is considered that they are the same 

objects and so tagged with the same ID. In other words, if tagging function, 𝑏𝑛,𝑘 → 𝑜𝑚,  

is known, tagging procedure is performed as follows: 

𝑏𝑛+1,𝑖 → {
𝑜𝑚,   𝑏𝑛,𝑘 ∩ 𝑏𝑛+1,𝑘 ≠ ∅
𝑜𝑚+1,                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6.1) 

The equation indicates that if two object in consecutive frames are spatially 

intersecting, they are the same objects and they need to have the same ID. Initially, blobs 

in the first frame also tagged with their blob numbers. However, this approach has some 

difficulties. For example, if both 𝑏𝑛,𝑘 and 𝑏𝑛,𝑘+1 intersect with 𝑏𝑛+1,𝑖, are those all the 

same objects? Another difficulty is if both 𝑏𝑛+1,𝑖 and 𝑏𝑛+1,𝑖+1 intersect with 𝑏𝑛,𝑘, which 

objects are to be as separate?  

In Figure 6.1, both difficulties given above are represented. Assume the first frame 

𝑛 = 1 contains seven blobs drawn in black circles and the second frame 𝑛 = 2 contains 

eight blobs drawn in red circles. Blobs in the first frame take their blob numbers as ID 

tags, i.e., 𝑏1,1 gets tag 1, 𝑏1,2 gets tag 2, etc. Now consider 𝑏1,1 and 𝑏2,4 intersect most, 

then 𝑏2,4 gets the tag 1. Next, 𝑏1,2 intersects with 𝑏2,2 most, thus 𝑏2,1 dies, 𝑏2,2 pairs with 

𝑏1,2 and gets the tag 2. Third, 𝑏1,3 intersects with 𝑏2,2 most, and thus both 𝑏2,3 and 𝑏2,5 

die, 𝑏2,2 pairs with 𝑏1,3 and gets the tag 3. Fourth, 𝑏1,4 intersects only with 𝑏2,6 and  𝑏2,6 

gets the tag 4. Fifth, 𝑏1,5 intersects only with 𝑏2,6 and 𝑏2,6 this time gets the tag 5. In 

similar way 𝑏2,7 gets the tag 7, 𝑏1,6 intersects with no one and dies, 𝑏2,8 intersects with no 

one and is born by getting a new tag 8.  
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This operation made the second difficulty apparent: 𝑏2,2 and 𝑏2,6 have two distinct 

tags transferred to them. This conflict is resolved in a similar way: 𝑏2,2 intersects with 

𝑏1,3 most when compared to 𝑏1,2, thus gets the tag 3 and 𝑏1,2 dies; 𝑏2,6 intersects with 𝑏1,4 

most, gets the tag 4, and 𝑏1,5 dies. In summary, tags 2, 5, and 6 dies, tags 1, 3, and 4 

survives, tag 8 is newly born, however 𝑏2,3 and 𝑏2,5 are stillbirths. 

 

6.2.2 Extracting Features 

In order to capture the temporal behavior of the flickering flame, the features are 

extracted from a number of video sequences. Size of the temporal window is a tradeoff 

between detection time of fire alarm and its accuracy. In order to extract features from 

same number of frames, a tag that is not apparent along a full window is discarded from 

computations. 

Features of a full-window tag are extracted from change in various motion variables 

of the tagged object. Thirty features are derived from these 6 variables which can be listed 

Figure 6.1 The figure shows possible scenarios that might come up during glowing 

object tracking in a dark video. Black and red circles indicate the foreground 

object location in the nth and the next frame, i.e., (n+1)’th frame. Since the flame 

has limited visual ques, their spatio-temporal locations are used to track the 

objects throughout the video. 
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as: pixel area of the object in frame, 2D position of the mass center of the object, height, 

width and area of smallest bounding box (BB) of the object. 

By using these variables, we can realize distinctive characteristics of a night fire 

that are flickering and motion behavior. The variables are followed along a window and 

various features are extracted as explained presently.  

While an object's variance of pixel area is large along a window, it is small for 

moving vehicles and fixed sources such as street, city, or house lights since area of such 

non-fire light sources does not change suddenly along a video. However, due to flickering 

motion of a fire, the area will change rapidly. Similarly, variance of height and width of 

BB will usually be large for fire objects and small for others. It is for this reason, mean 

and variance of height and width of a BB as well as their first and second order derivatives 

will be distinctive between fire and non-fire objects. 

Let 𝜓𝑛 be value of a variable at 𝑛th frame in a window with 𝑁 number of frames. 

For many of these variables, mean and variance is computed as follows, respectively: 

 

𝜇0 =
1

𝑁
∑ 𝜓𝑛

𝑁

𝑛=1

 (6.2) 

𝜎0
2 =

1

𝑁 − 1
∑|𝜓𝑛 − 𝜇0|2

𝑁

𝑛=1

 (6.3) 

Mean and variance of first and second order derivative of some variables are 

computed as in (8.4) & (8.5) and (8.6) & (8.7), respectively. 

𝜇1 =
1

𝑁 − 1
∑(𝜓𝑛 − 𝜓𝑛−1)

𝑁

𝑛=2

 (6.4) 

𝜎1
2 =

1

𝑁 − 2
∑|(𝜓𝑛 − 𝜓𝑛−1) − 𝜇1|2

𝑁

𝑛=2

 (6.5) 

𝜇2 =
1

𝑁 − 2
∑(𝜓𝑛 + 𝜓𝑛−2)

𝑁

𝑛=3

 (6.6) 

𝜎2
2 =

1

𝑁 − 3
∑|(𝜓𝑛 + 𝜓𝑛−2) − 𝜇2|2

𝑁

𝑛=3

 (6.7) 

For a fire object, variance of center of mass (CoM) is higher in vertical axis than in 

lateral axis. For a car moving horizontally, variance of CoM of headlights in vertical axis 

is very small compared to fire. In the same manner, variance of CoM of fixed light sources 
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in both axis is negligibly small. These are the reasons we used variance of CoM as a 

feature. 

Here, it is important to note that horizontal and vertical location of CoM is not 

considered as features since a fire can take place anywhere in the video. Otherwise, the 

system can be trained for a specific location that fire is expected to start. That's why 

position free features (i.e., mean and variance of first and second order derivatives) are 

used. In Table 6.1, variables and features are summarized. 

Table 6.1 Extraction of Features from Variables 

 Feature Feature 1st Der Feature 2nd Der   

 Mean Var Mean Var Mean Var     

Pixel Area x x x x   

CoM x axis   x x x x 

CoM y axis   x x x x 

BB width x x x x x x 

BB height x x x x x x 

BB area x x x x x x 

If a feature belongs to a greater interval than other features, impact of small-

bounded ones may be reduced. Normalization is the solution to avoid such a problem. 

Min-max normalization has the ability to preserve relation between elements of a feature 

vector, thus it is chosen. Let 𝛿𝑖,𝑗 be value of 𝑗th feature at sample 𝑖. Then, min-max 

normalization is defined as 

𝛿�̅�,𝑗  =
𝛿𝑖,𝑗 − 𝑚𝑖𝑛𝛿𝑖,𝑗

𝑚𝑎𝑥𝛿𝑖,𝑗 − 𝑚𝑖𝑛𝛿𝑖,𝑗𝑖,𝑗

   (6.8) 

In real-time applications, video stream may be continuous. Therefore, after adding 

a new window, normalization should be implemented throughout up-to-date data. 

6.2.3 Training the Model 

In this work, as a base classifier, Support Vector Machines (SVM) is used. Besides 

SVM, majority voting, Random Forests, AdaBoostM1, IBk, and J48 classifiers used, and 

their performance are compared to SVM. First a classifier model is constructed and then 

the model predicts class of any test instance it is supplied. Here, we used LIBSVM library 

with radial based function (RBF) kernel since our data set has a nonlinear classification 

characteristic. 

In order to get most accurate classification, the best 𝑐 ∈ 𝕀+ cost and 𝛾 ∈ 𝕀+ impact 

range parameters should be found. If 𝑐2 > 𝑐1 > 0 and 𝛾2 > 𝛾1 > 0 are predetermined 
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intervals, then optimization requires a [𝑐1, 𝑐2]  × [𝛾1, 𝛾2 ] size grid search for the best  

(𝑐∗, 𝛾∗) pair [55]. In our tests, an accelerating intervention to optimization saved time and 

gave a better (𝑐∗, 𝛾∗) pair compared to pairs obtained when not intervened. The 

intervention is simple: after at least ten trials, if the last five trials produce a mean absolute 

deviation of accuracy no greater than 1.5, halt the search and use current pair as (𝑐∗, 𝛾∗). 

Classes of instances in training set is determined by a professional for fire objects 

as 1 and for non-fire objects −1. With (𝑐∗, 𝛾∗) pair, a model is constructed in SVM and 

class of all instances from a distinct test set is predicted from the set {−1,1}. Accuracy 

and elements of confusion matrix (i.e., true positive rate, false negative rate, true negative 

rate, and false positive rate) are used as performance measures. 

While SVM gives satisfactory results of predictions, majority voting (MV) 

improves these results significantly. In a test set, MV is implemented between distribution 

of fire or non-fire classification of an object tag. Then, class of the object is redetermined 

according to result of MV. 

6.3 Setup of Experiments 

Experiments implemented on a video dataset curated by the authors as depicted in 

Section 5.5. The global image threshold is experimentally determined to be 𝜏0 = 0.5, thus 

objects with low luminance and noise can be eliminated. Furthermore, objects having 

pixels fewer than 𝜏1 = 16 also discarded even fire objects since an event size lower than 

16 pixels is not considered significant. 

Analysis implemented in MATLAB® environment for window sizes of 5, 10, 20, 

50, 100, and 200. SVM parameter optimization intervals are experimentally determined 

to be 𝑐1 = 5, 𝑐2 = 9, 𝛾1 = 4, and 𝛾2 = 8. 

When a video is chosen for test, remaining ones are used for training (leave-one-

out). For a total number of 90 experiments, average training and test set sizes are 7437 

and 5058 instances, respectively. It should be noted that number of instances in a training 

set is limited to a maximum 10,000 while no restriction applied to test sets. Average 

distribution of fire and not-fire instances over 6 windows are tabulated in Table 6.2 and 

number of instances per window size is given in Table 6.3. 
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Table 6.2 Distribution of Not-Fire Classes Among Videos 

Video  
# of Average 

Not-Fire Classes (%)  
Video  

# of Average 
Not-Fire Classes (%)  

1 56,31 9 0,09 

2 66,86 10 0,4 

3 63,89 11 10,35 

4 62,2 12 1,36 

5 3,34 13 92,54 

6 8,89 14 91,23 

7 8,1 15 18,32 

8 0,08   

 

Table 6.3 Number of Instances Among Windows 

Window Size  # of Instances 

5 280,381 

10 102,588 

20 44,584 

50 16,243 

100 7,758 

200 3,723 

Representative screen shots of videos in not-fire mode and fire mode are given in 

Figure 6.2 and 6.3, respectively. Some fires were able to reach up to $ 3m $ height under 

low wind conditions. In videos 1, 2, 3, and 4, a very deceptive streetlight is apparent. 

From video 9 to 15, very deceptive city lights combined with semi-intense traffic are 

apparent. Besides these not-fire objects, a torch is also used to create false objects (Figure 

6.3, video 3). 
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Figure 6.2 Camera screen shots showing both fire and not-fire objects. (Videos are 

numbered from first left to right then up to down) 

Figure 6.3 Camera screen shots showing not-fire objects. (Videos are numbered 

from first left to right then up to down) 
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6.4 Experimental Results 

In this section, performance of our method evaluated, and experimental results are 

analyzed. The measures we use for evaluation are accuracy, true positive rate which 

implies state of "true alarm", and false negative rate which implies state of "false alarm". 

Other measures can be false negative rate or "missed alarm" and true negative rate or 

"true silent".  

6.4.1 SVM Results 

Selected performance measurements of the proposed method is shown in Table  6.4. 

When proposed features are used for a night fire, SVM is able to classify new instances 

correctly with an accuracy of usually over 90%. Implementing MV after SVM 

classification boosts accuracy rates usually over 95%. TPR values are over 94% on 

average, however in some videos TNR values are low due to reasons given as follows. 

Table 6.4 SVM Test Results 

Video  
Accuracy 

(SVM) 
Accuracy 

(SVM+MV) 
TPR 

(SVM) 
TNR 

(SVM) 

1 0,90 0,97 0,91 0,89 

2 0,88 0,99 0,78 0,92 

3 0,96 0,99 0,92 0,98 

4 0,98 0,99 0,97 0,99 

5 0,84 0,84 0,84 0,69 

6 0,92 0,95 0,95 0,45 

7 0,93 0,93 0,99 0,30 

8 0,98 0,99 0,97 0 

9 0,95 0,98 0,95 0,22 

10 0,96 0,99 0,97 0,15 

11 0,92 0,93 0,99 0,19 

12 0,97 0,99 0,97 0,52 

13 0,98 0,99 0,99 0,97 

14 0,97 0,99 0,99 0,97 

15 0,81 0,81 0,99 0,02 

In videos 5 and 6, false alarm generating frame region is a sharp turn which is part 

of road in the scene (Blue circle in Figure 5.1). This part of the road extends from front 

to aft in the scene which makes vehicles move not quite linearly. Since traffic is semi-

intense or intense during the recording time, vehicles slowed down and overhead lights 
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clustered to form fire-like moving objects. In Figure 6.4 on top, a sample frame is shown. 

Even tough tag 11 is a not-fire object, it is detected as fire and boxed.  

In videos 7, 8, 10, 12, and 15, reflections at not-fire regions on the ground up to half 

or one meter close to fire origin and intense luminance on objects very close to fire cause 

an error. In Figure 6.4 on middle, tag 30 is a fire objects a predicted as fire, however 

though tag 172 is a reflection and not a fire, it is classified as fire. Notice that, since these 

types of errors appear when a fire is the case, they do not really cause a false alarm. 

In videos 9 and 11, a moving torch initially turns to the camera and then turns 

quickly back which makes the illuminated area first grow and then suddenly shrink, 

eventually causes an error. In Figure 6.4 on bottom, both tags 1873 and 1975 predicted as 

fire while tag 1975 is a not-fire object. 

Window size also has an effect on accuracy. When window size increases, more 

evidence per window is collected for decision process which allows better predictions. 

For pre-processing, which includes tagging procedure, more computation is required. 

However, for SVM runs, less computation is the case. When window size decreases less 

evidence per window is collected, less pre-processing computation and more SVM 

computation is required. Table 6.5 shows performance measures for two windows: 𝑁 =

5 and 𝑁 = 200. When 𝑁 = 5, average accuracy is 89.47% and when 𝑁 = 200, accuracy 

also increases to an average of 96.63%. An increase in window size also decreases false 

Figure 6.4 Error examples. Top: Independent of fire, 1: fire, 11 (right) not-fire, 

Middle: Fire dependent, 30: fire, 172 (bottom right) not fire, Bottom: Independent 

of fire, 1975 (left) fire, 1873 (right) not-fire. 



65 

 

alarm rates. For example, in Figure 6.3 and video 1, the street, the house, and a torch light 

are predicted as fire objects. When window size is 200, at the beginning of the video 

house lights very short time, the torch never and due to move of the camera at the end of 

the video the streetlight very short time are predicted as fire. Even though this encourages 

us to use longer windows (preferably with high fps cameras) due to heavy work of pre-

process, alarm response time will eventually decrease. In Table 6.5, NaN corresponds to 

existence of no not-fire objects in the video. In videos 11 and 15, TNR value is 0 due to 

misclassification of intense luminance of a vehicle standing very close to fire (Figure 6.2). 

Table 6.5 Comparison of window sizes of N=5 and N=200 

Video 

Accuracy (%) 
(SVM) 

TPR 
(SVM) 

TNR 
(SVM) 

N=5  N=200  N=5  N=200  N=5  N=200 

1 88,28  91,09  0,96  0,87  0,81  0,93 

2 82,98  91,32  0,77  0,8  0,85  0,96 

3 92,25  98 0,88  0,94  0,94  1 

4 97,43  98,78  0,95  0,97  0,98  0,99 

5 79,03  91,89  0,79  0,91  0,78  NaN 

6 86,61  100 0,93  1 0,61  NaN 

7 88,03  100 0,99  1 0,12  1 

8 95,87  99,20  0,95  0,99  0 NaN 

9 89,59  100 0,89  1 0,43  NaN 

10 94,90  98,039  0,95  0,98  0,17  NaN 

11 87,68  98,47  0,99  1 0,36  0 

12 95,10  98,78  0,96  0,98  0,51  NaN 

13 95,66  99,34  0,94  0,98  0,95  0,99 

14 94,61  99,54  0,98  1 0,94  0,99 

15 73,95  85 0,96  1 0,01  0 

Apart from errors explained above, the proposed method successfully does classify 

street or city lights, headlights of vehicles and many other not-fire objects. 

6.4.2 Other Results 

SVM is a standard tool for image classification problems. However, there exist 

some other tools performs equally, some even better. In this section, we implement 

Random Forests (RF), AdaBoostM1 (AB), IBk and J48 machine learning tools on our 

data. Performance measures are the same as we used for SVM at previous section. The 

platform used for implementation is Weka data mining software by The University of 

Waikato. Default parameter set up is used for the tests. Contrary to SVM experiments, 
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training data is not limited, and full training set is used for building a model (see Table 

6.3). In addition to SVM, 360 more tests are implemented, one test per video per window 

size, and per machine learning tool.  

Accuracy results are given in Table 6.6. In the table, except videos 11 and 15, RF 

showed the best performance among other tools. Second the best performance belongs to 

J48. AB showed the best performance for video 15 and IBk for video 11. Videos 3, 4, 6, 

7, 8, 10, 11, 12,13, and 14 show a robust performance under any machine learning tool 

while videos 1, 2, 5, 9, 15 shows unstable performance. In Table 6.7, TNR values are 

tabulated. On average, IBk gives lowest average false alarm rate of 32.01% and SVM 

gives the highest average rate of 44.75%. Most robust videos in terms of TNR value are 

videos 3, 4, 13, and 14. After all, all these analysis shows us in terms of fire catch RF 

performs the best, however in terms of false alarm avoidance IBk performs the best. 

Table 6.6 Accuracy comparison of SVM, Random Forests (RF), AdaBoostM1 

(AB), IBk and J48 

Video  SVM  RF  AB  IBk  J48 

1 90 94,4 83,9 91,5 84,7 

2 88 94 83,1 89,6 87,9 

3 96 98,6 92,8 94 96,5 

4 98 98,4 95 95,6 97,4 

5 84 88,3 72,8 78,4 85,3 

6 92 92,6 86,3 87,6 88,7 

7 93 95,1 92,8 93,8 95 

8 98 98,8 95,5 94,4 98 

9 95 97,2 85,4 86,5 93 

10 96 98,9 96,8 94 98,3 

11 92 93,8 93,6 94 93,1 

12 97 98,6 95,6 93,1 97,9 

13 98 99,3 98,1 97,8 98,6 

14 97 98,3 97,3 97,2 96,8 

15 81 84,6 88 79,3 82,5 
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Table 6.7 TNR comparison of SVM, Random Forests (RF), AdaBoostM1 (AB), 

IBk and J48 

Video  SVM  RF  AB  Ibk  J48 

1 10,4 8,38 17,2 9 22,72 

2 7,7 5,55 21,26 3,9 10,59 

3 1,9 0,76 7,58 1,5 2,9 

4 1,1 1,12 4,29 1,3 2,4 

5 30,8 13,31 15,77 18,86 16,4 

6 54,5 53,91 51,19 58,1 56,4 

7 69,9 68,9 84,5 78 70,3 

8 100 83,3 100 0 33,3 

9 77,2 54,7 80 29,7 36,6 

10 85,3 89,2 93,9 85,52 94,5 

11 80,2 57,12 60,8 48,6 62,2 

12 47,7 4,84 56,6 44,2 28,8 

13 2 0,72 1,7 1,9 1,36 

14 2,8 1,86 2,83 2,9 3,38 

15 99,8 68,9 37,72 96,7 78,7 

6.5 Concluding Remarks 

In this section, a video-based wildfire detection method for under-illuminated 

environments is proposed. The experimental results show that temporal behavior of the 

flickering flame in a dark video has a distinct characteristic, and it is well suited for flame 

and fire detection in low light conditions. This temporal behavior of the fire allows us to 

extract descriptive spatio-temporal features from a fire video even the visual texture of 

the objects in the dark video are not visible. The proposed object features are taking 

advantage of temporal flickering motion of a night fire. The classification method can 

distinguish the deceptive false alarm sources such as city and streetlights, vehicle 

headlights and flickering reflections.  

It is experimentally verified that the fire detection accuracy of the proposed method 

is over 90% on the average. 

The method is tested with various hyper-parameters such as temporal window size. 

It is shown that when the temporal window size is increased to include 200 consecutive 

frames, over 95% accuracy on average was obtained.  

The proposed object features are tested with various classification methods such as 

SVM, Random Forests, AdaBoostM1, IBk and J48. The comprehensive comparison 
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shows that Random Forests classification attains the highest accuracy on the extracted 

features. It is also shown that the detection accuracy of IBk is comparable to the most 

accurate model. Moreover, among all tested machine learning algorithms, IBk gives the 

smallest false alarm rate, 32.01%, while SVM gives the highest. Therefore, when the 

reduction of the false alarm rate is more critical, IBk can be employed.  
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Chapter 7 

BLSTM Based Night-Time Video Fire 

Detection 

Distinguishing fire from non-fire objects in night videos is problematic if only 

spatial features are to be used. Those features are highly disrupted under low-lit 

environments because of several factors, such as the dynamic range limitations of the 

cameras. This makes the analysis of temporal behavior of night-time fire indispensable 

for classification. To this end, a BLSTM based night-time wildfire event detection from 

a video algorithm is proposed. It is shown in the experiments that the proposed algorithm 

attains 95.15% of accuracy when tested against a wide variety of actual recordings of 

night-time wildfire incidents and 23.7 ms per frame detection time.  

Moreover, to pave the way for more targeted solutions to this challenging problem, 

experiment-based thorough investigations of possible sources of incorrect predictions are 

discussed.  

7.1 Introduction 

Fire videos can be categorized as daytime and night-time. Night-time wildfires have 

a considerable percentage among fire incidents as indicated in Section 1.2. Nevertheless, 

detection of night-time wildfires from videos has not been used effectively due to its 

challenges. 

There are several challenges to wildfire detection from a night-time video. Some 

are related to the nature of the fire, and others are more related to the camera's limitations. 
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Compared to its low cost, RGB cameras bring their own challenges to the task of fire 

detection, especially when night fires are in question.  

Historically, previous studies that worked on wildfire detection with night videos 

employed hand-crafted features until the 2013s [56]. Since then, the paradigm has shifted 

from hand-crafted features to hand-crafted networks. Today, the recent approach 

generates features out of the networks, which has been possible by convolutional neural 

networks (CNN).  

CNN-based methods have shown their effectiveness on object detection tasks. 

However, it is challenging to detect night fires from RGB cameras with well-known 

object detection algorithms for night-time fire detection in video. One particular reason 

is that it is not benefiting from the temporal relation of the frames. To alleviate this 

limitation, employing Recursive Neural Networks (RNNs), which can model a video as 

a data sequence, has been an option.  

2D CNNs can be used for extracting spatial features and RNNs for extracting 

temporal features. Cascaded CNN+RNN structure is a well-known approach used in 

various fields such as video description extraction, action recognition, etc., and its 

effectiveness is shown in multiple studies [57]. Using both CNNs and RNNs in a pipeline 

has the potential to increase detection performance. This study is the first time that 

approach has been used against night-time wildfire detection problems to the authors' best 

knowledge. 

The present work proposes a two-stage approach combining spatial and temporal 

information of an object appearing in a night-time video. The first stage (CNN) computes 

spatial features, and the second stage (RNN) makes the temporal analysis depending on 

these features. The CNN stage employs transfer learning on a pre-trained GoogLeNet [58] 

to reduce the training time of the overall network. The second stage employs the 

bidirectional long short-term memory (BLSTM) network and is trained with feature maps 

obtained from the first stage for each video frame. After the network pipeline is trained, 

it can readily be used for detection in for example watchtowers that are equipped with 

CCTV cameras. The network can be deployed in two ways. First, it uses the weights 

determined with the initially training-test procedure and they are not updated in response 

to different fire or non-fire samples events. Second and the adaptive one is the pipeline 

continuously updates itself by simultaneous re-training iterations. By doing so, the 

pipeline always becomes up to date for changing environmental conditions.  
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As mentioned before, the night fires have a unique nature. Due to the low-lit 

environment and extremely bright fire objects appearing in the same scene, the physical 

limitations of the camera, such as the dynamic range, give a unique digital video. 

Investigating the typical features of night-time wildfire videos, discussing possible 

sources of incorrect classifications and possible solutions are essential for developing 

well-targeted solutions. These are also thoroughly investigated and discussed in this 

study. 

Therefore, the novelties and contributions of this study can be summarized as: 

• The proposed method incorporates both the spatial and temporal behavior of a 

night-time wildfire by using a CNN+RNN based network and detects fire at min 

of 23.4 ms per frame. 

• It employs BLSTM for capturing both forward and backward temporal 

relationships in the night-time wildfire video, 

• It uses decisions from spatial and temporal networks to employ majority voting to 

improve the prediction accuracy,  

• The data samples which give the most failure in night-time wildfire detection tasks 

is identified and carefully investigated, and the nature of night-time wildfire 

videos is discussed. It is revealed in CNN+BLSTM networks that a non-fire event 

that is seen on fire scenes has potential to suppress the fire event and revert the 

decision as “non-fire” instead of “fire” or vice versa.  

• A novel night-time wild, rural, suburban area fire detection dataset is proposed to 

push night-time video fire detection (VFD) research forward.  

This chapter is organized as follows: In Section 7.2, the proposed method is 

explained. In Section 7.3, the experimental setup is illustrated. In Section 7.4, the results 

of the experiments are discussed, the performance of the GoogLeNet+BLSTM network 

is evaluated, and majority voting introduced to improve prediction performance. In 

Section 7.5, misclassifications are discussed in detail and finally in Section 7.6, the 

findings are summarized, and the conclusions are drawn. 

7.2 The proposed method 

Distinguishing fire from non-fire objects in night videos is problematic if only 

spatial features are to be used. Those features are highly disrupted under low-lit 
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environments because of the physical limitations of the camera and other reasons, as 

discussed in Section 2.1. This makes the temporal behavior of the bright object 

indispensable for classification.  

To capture the temporal behavior of a fire object along with its spatial features, a 

coupled spatio-temporal behavior analysis is crucial. To this end, a spatio-temporal 

network structure consisting of CNN and RNN is proposed. The proposed network first 

extracts the spatial features of fire candidate videos of various lengths with the help of a 

pre-trained GoogLeNet CNN network, as explained in Section 7.2.1. Second, temporal 

learning is performed using a BLSTM RNN network, as explained in Section 7.2.2. In 

Section 7.2.3, the cascaded CNN+RNN model is demonstrated (Figure 7.1). 

7.2.1 The first stage: spatial feature extraction 

The first stage of the proposed network is spatial feature extraction. Since the 

detection of fire will be conducted on sequences of images; the model should be able to 

process image data and obtain spatial characteristics that will be essential in 

understanding objects in a scene. 

A pre-trained GoogLeNet architecture is picked for spatial feature extraction. The 

GoogLeNet architecture set a new state of the art for object detection in the ImageNet 

Large-Scale Visual Recognition Challenge 2014 (ILSVRC 2014). In this work, the 

network was pre-trained on the ImageNet [49] and is available from MATLAB®. 

GoogLeNet has been used in previous studies [59]. Their results show that it has a 

high detection accuracy of 96.7% on a subset of ImageNet with flame, smoke, and other 

flame-like labels. In another study, GoogLeNet's performance is tested and compared 

with other well-known models [60]. It reports that GoogLeNet attains 99% accuracy, 

which is the highest among AlexNet, VGG13, and modifications of them when tested on 

wildfire videos taken from UAVs. Researchers designed their own models inspired by 

GoogLeNet because it has higher accuracy than models like AlexNet and is easily 

adaptable to field-programmable gate array (FPGA) platforms [61] and [62]. They 

received a 94.43% on BowFire and MIVIA Fire Detection datasets and 93% accuracy on 

Furg Fire Dataset, respectively, with their modified GoogLeNet network on respective 

fire detection video datasets. Finally, it was reported that Inception-v3 leads to 2.5% more 

computational cost than GoogLeNet (Inception-v1) [63].  With the findings on day-time 

fire datasets mentioned above in the literature and extensive performance comparisons 
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[64], it is conjectured that GoogLeNet is a reasonable choice for less computational 

complexity, less model complexity, and relatively high accuracy. 

GoogLeNet approximates dense layers by employing local sparse units. These units 

(Inception modules) can be repeated spatially in the architecture. An Inception module 

receives input from a previous layer, processes convolutional layers with different kernels 

in a parallel fashion and concatenates all parallel outputs depth-wise into one tensor. To 

reduce network resolution, max-pooling layers are used. The Average-pooling layer is 

used instead of an extra fully connected layer, leading to additional over-fitting [65]  

We implement transfer learning with the GoogLeNet network that is pre-trained on 

ImageNet. Each frame is fed to the pre-trained GoogLeNet CNN network, and a 

corresponding feature map is extracted from the final average pooling layer. Thus, a 

video, as an image sequence of size (𝐻 × 𝑊 × 3 × 𝑁), is converted to a tensor of size 

(1 × 1 × 1024) × 𝑁 where 𝐻, 𝑊, and 𝑁 is the height, the width, and the number of 

frames of the video, respectively. The sequence of these vectors is used for further 

temporal analysis, using the BLSTM network [66], as explained in the following section. 

In Figure 7.1, the dashed blue box shows a standard GoogLeNet network structure. 

GoogLeNet receives images or sequences of images in 224 × 224 size. 

7.2.2 Temporal analysis 

Long short-term memory (LSTM) is a special kind of recurrent neural network that 

can learn from sequentially related data without losing essential features throughout time 

[67]. In other words, LSTM networks can learn from past events and use this knowledge 

to classify present events. In order to keep track of the past, it requires a useful summary 

of the past carried to the present. This is accomplished by an updating cell state also 

termed as long-term memory. The long-term memory is updated by dropping 

insignificant information and keeping the significant one by distinct internal neural 

networks. There is another state known as hidden state and is required to update short-

term memory and generate an output prediction. Short-term memory is also obtained by 

another internal neural network. In the end, the LSTM network makes predictions for a 

given input by keeping track of long-term and short-term 'past experience'. 

This property makes them a prominent candidate for video captioning [68]. The 

building block of an LSTM network is a cell engine that receives input of the current time 

step along with the cell state and output of the previous time step (hidden state) to generate 

the current cell state and output. Then these are fed to the next cell iteration.  
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LSTM is also applied to daytime fire detection problems in [69]. The obtained 

accuracies are 97.92% and 93.3%, respectively.  

However, LSTM models require a longer training time than CNN models since they 

cannot be run in parallel. On the other hand, LSTM architecture can infer results only in 

a feed-forward direction, i.e., from past to present. It cannot generalize predictions with 

the valuable knowledge from the `future.' For example, when an LSTM network is to 

predict the next word of the statement "I like to make ...", there are numerous options to 

Figure 7.1 GoogLeNet+BLSTM classifier architecture. Both the GoogLeNet and 

BLSTM are trained networks. They are connected to each other by pruning final 

four layers of the GoogLeNet. Pruned CNN version outputs feature maps which 

are input to BLSTM. 
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choose from. However, if the network were to have a subsequent statement of "I believe 

melodies heal people" then the prediction would likely be "music" rather than i.e., "cake". 

In the similar way, predicting the fire events in a video not only via the past experience 

but also with respect to knowledge of the "future" can be accomplished by a bidirectional 

LSTM (BLSTM) [70].  

Considering that the night-time fire video scenes are inadequate in terms of spatial 

features compared to daytime videos, the contribution of temporal features to the decision 

process becomes increasingly important. To capture the temporal behavior of the 

candidate object and its advantages over LSTM, the BLSTM network is used as the 

second stage of the proposed method. In Figure 7.1, dashed red box, shows a standard 

stacked BLSTM network structure in rolled form. A BLSTM network receives a series of 

data in 1024 × 1 size. If N number of such vectors is the case, then input is in 1024 × N 

size. Blue arrows starting from the input video and ending at the classification box show 

the flow diagram of the proposed method. 

7.2.3 Model architecture and pipeline 

Training the overall network normally includes training of two sub-networks: CNN 

and BLSTM. However, when it is available, adopting a pre-trained network is useful in 

order to reduce overall network training time and obtain a working final classifier as soon 

as possible. In Section 7.2.1, it is mentioned that a pre-trained model is adopted only for 

the CNN model, which is also termed as transfer learning. Therefore, spatial feature 

extraction is obtained by using a pre-trained CNN network given in Figure 7.1. In the 

figure, the full-stack trained CNN network receives never-seen images and generates a 

prediction in the end. In this work, the full stack trained CNN is not used as is, in fact is 

only used to extract features of the video frames from the final pooling layer's output of 

the GoogLeNet network. This implies that final dropout5, FCC, and Softmax layers are 

excluded from the overall classifier. In Section 7.2.2, these features are used to train a 

BLSTM network given in Figure 7.1. 

Finally, these two stages are connected to each other, as shown in Figure 7.1. 

Connecting the two stages requires two trained models adapted to a pipeline model with 

the following steps. First, since the pipeline will receive videos, the image input layer of 

CNN is replaced by a sequence input layer and input videos are converted from sequences 

of frames to a tensor of images to let the CNN convolutional layers receive video data 

image by image. Second, CNN is not expected to output predictions but only generate 
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feature maps; as a result, dropout5, fully connected, Softmax, and classification layers are 

unnecessary and truncated from the CNN structure letting the last CNN layer be pool5 

which is the final global average pooling layer of GoogLeNet. Third, the pool5 layer will 

be the input layer of the BLSTM architecture, so the input layer of the BLSTM layer is 

dropped and the remaining structure is kept as it is. Finally, the adjusted and truncated 

CNN is connected to truncated BLSTM to obtain the end-to-end classifier pipeline. 

In summary, an 𝑁 frame-long video of size 𝐻 × 𝑊 × 3 is given as an input to the 

first layer in the figure. The data is processed through the CNN layers until the average 

pooling layer. Here, the final feature maps are generated as a 1024 × 𝑁 tensor, and it is 

fed as input to the first cell of the stacked BLSTM layers. The fully connected final layer 

outputs the probabilities of the two classes. The class with the highest probability in the 

Softmax layer is finally labeled to be fire or non-fire. 

7.3 Experimental setup 

7.3.1 Preprocessing 

In the preprocessing step, the data is organized for network training and test. Steps 

performed in the preprocessing step are shown with gray arrows in Figure 7.2. 

Since base videos are in various sizes and a CNN network accepts the input in only 

a specific size, all fire and non-fire RGB video frames are resized to 224 × 224 × 3. This 

yields the resized base dataset with 1835 videos, each of which is the size of 

224 × 224 × 3 × 𝑁.  

We repeated the experiments for various video lengths to investigate the proposed 

method's fire detection speed and accuracy. We name the video lengths as window size, 

𝑁, referring to the number of frames in the temporal window. Since the detection speed 

from 2/3 to 2 seconds suffices for near real-time detection, smaller temporal window sizes 

at around 60 frames are preferable in a practical sense.  

The base videos are sub-sampled with various time windows, 𝑁. Assuming that the 

videos are in 30 fps, the video length, 𝑁 ∈ 𝑵, 𝑵 = {20, 30, 45, 60, 75, 90, 120}, would 

give 2/3 to 4 seconds detection latency. We picked max 𝑁 sequential frames for a window 

size, 𝑁, starting from a randomly determined time position in each base video. In this 

way, we construct a new intermediate dataset with 1835 shorter videos corresponding to 

the window size, 𝑁. From each base video, only one sub-sample is extracted to ensure 



77 

 

that BLSTM blocks do not memorize the similar scenes that belong to the same base 

video. This random subsample dataset generation step is repeated for each fold in the 

experiments. That is, for each fold, a new intermediate sub-sample dataset is generated 

randomly. 

As mentioned in Section 7.2, A CNN network is not trained from scratch, and a pre-

trained GoogLeNet architecture is used. The pre-trained GoogLeNet network model was 

used on the sub-sample dataset for spatial feature extraction. Thus, each video yielded a 

feature map of size 1024 × 𝑁. This map was used in the following step, the BLSTM 

network. 

We trained a BLSTM network with a feature map set constructed for each given 𝑁 

window size. We repeated the same training process for 𝑘 = (1,2, . . . ,5) fold for each 𝑁 

and network settings.  Given a window size 𝑁, train, validation, and test sets are generated 

randomly from the corresponding feature maps for each fold 𝑘. 

There are 477 non-fire negative videos in the base video set. To have balanced 

positive and negative samples in both train and test sets, we picked 477 feature maps 

randomly out of 1358 positive samples. This constituted randomly picked 477 fire and 

477 non-fire intermediate feature maps set for each (𝑘, 𝑁) pair. The intermediate feature 

maps set was randomly split into three disjoint sets: 70% for training, 10% for validation 

during training, and 20% for testing. It should be noted that test, train, and validation sets 

are taken from completely different scenes. If a sample video taken from a base video is 

in the train set, another sample video taken from the same base video at different intervals 

cannot be in any of the train, the validation, or the test sets. In this way, we have a more 

reliable testing scenario because the train and test sets have entirely different scenes. To 

this end, for each (𝑘, 𝑁) pair, 35 = |𝑵|𝒎𝒂𝒙(𝑘) intermediate datasets each of which 

contains its own training, validation, and test sets are constructed (See Figure 7.2). 

7.3.2 Model construction and experiments 

This method requires CNN and BLSTM parts trained separately, and then the pre-

trained networks are concatenated to construct an end-to-end classifier network. Since a 

pre-trained GoogLeNet network is used instead of training the CNN from scratch, the 

only part left to be trained is the BLSTM network based on the extracted features from 

the pre-trained CNN (Figure 7.2). These feature sets taken from the CNN are given as 

input to the BLSTM block for temporal behavior analysis.  
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The experiments are conducted in the MATLAB® environment on the Intel® 

Xeon® CPU E5-2620v2 2x2.1GHz 96GB memory hardware set.  

The experiments are performed for various BLSTM network depths, ℓ ∈ 𝑳, 𝑳 =

{20, 100, 200, 250, 300, 500, 1000, 2000, on train, validation, and test sets. Moreover, 

each of these experiments repeated for various window sizes 𝑁 for 𝑘 fold. During the 

training, the batch size is set to be 16, and the dropout rate is 50% to prevent overfitting. 

The training initially continued for 30 epochs at the first three folds. In these experiments, 

it is observed that no improvement occurred in validation accuracy and loss after 12 

epochs, i.e., the accuracy and loss graphs stalled. Therefore, to save training time, we 

decided that the initial setup of 30 epoch is not a good fit. and 12 epochs would suffice 

for the remaining experiments. Additionally, after experimenting with greater learning 

rate values, 0.0005 and 0.001, the learning rate was finally set to 0.0001. Since our dataset 

has large and many data samples, it was important to conduct experiments in viable time 

and computing power without conceding accuracy; therefore, Adam optimizer was 

chosen rather than SGDM with recommended parameters in [71]. In RNN network 

training, gradients can easily explode to unstable values which require limiting gradients 

not exceeding a threshold. The threshold value for gradients is set to be 2. In the 

experiments, there were 666 training samples per a training session with a batch size of 

16. This makes 10 samples out of 41 batches if batches would not be shuffled after each 

epoch. In order to make the network see all training samples and prevent the network 

stuck in a local minimum, batches were shuffled at every epoch. After a training session 

is completed for an epoch, a validation was performed on the validation set.  

In short, we investigated the effect of window size and network depth on various 

performance scores amounting to 56 = |𝐿| × |𝑁| test scenarios, 𝑠𝑖 as given in Eq. 10.1, 

by selecting sub-sample video lengths from 20 to 120 frames and network depth from 20 

to 2000 stacked cells. Each scenario was tested with the same hyper-parameters, 

optimized with a smaller video set in the previous steps. 

𝑠𝑖 ∈ 𝑺, 𝑺 = {ℓ𝑖, 𝑁𝑖}𝑖=1
|𝐿|×|𝑁|

 (7.1) 

Then the scores for the experimented scenario, 𝑠𝑖, are obtained by averaging the 

five-fold validation results. A chart of averaged validation accuracy values and F1 scores 

for all scenarios is given in Table 7.1 and 7.2. The plots of 5-fold average accuracy values 

and F1 scores for all scenarios are given in Figure 7.3. The average accuracy and F1 score 
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of all scenarios are 92.2% and 92.1%, respectively. The maximum values of 5-fold 

average validation accuracy and F1 scores have been 94.5% and 94.4%, respectively, 

observed at 𝑁 = 30 and ℓ = 100. The validation results in Figure 7.3 and Table 7.1 & 

7.2 shows that deep layers and long video samples do not contribute to training more than 

shallow layers and short videos. 

Table 7.1 5-fold averages of the validation accuracies of the proposed model for 

various window sizes and layer depths. The highest score is in boldface 

  Window Size 
  20 30 45 60 75 90 120 

La
ye

r 
D

e
p

th
 

20 91.7 93.6 91.1 91.5 89.4 91.1 89.4 

100 93.2 94.5 92.1 91.7 90 92.3 90.2 

200 93.2 94.3 93 91.7 91.3 92.1 91.3 

250 94.3 93.4 92.6 92.6 91.1 91.9 91.9 

300 92.8 93.8 91.9 91.9 91.1 92.6 91.1 

500 93.2 94 92.8 92.8 91.1 92.1 91.5 

1000 94.3 94.3 93.2 93.2 91.5 92.1 92.3 

2000 93.4 94.3 92.6 92.6 90.6 92.6 91.3 

 

Table 7.2 5-fold averages of the validation F1 scores of the proposed model for 

various window sizes and layer depths. The highest score is in boldface 

  Window Size 

La
ye

r 
D

e
p

th
 

  20 30 45 60 75 90 120 

20 91.6 93.6 90.5 91.6 89.1 90.9 89 

100 93.1 94.4 91.8 91.8 89.4 92.3 90 

200 93 94.1 91.9 91.8 90.9 91.9 91 

250 94.1 93.3 92.8 92.5 90.7 91.9 91.6 

300 92.6 93.8 92.3 92 90.5 92.3 90.7 

500 93 94 92.5 92.8 90.6 92.1 91.3 

1000 94.1 94.2 91.7 93.2 91.1 92.1 92.2 

2000 93.3 94.2 92.1 92.7 90.4 92.5 91.1 
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Figure 7.3 5-fold average results of validation sets (a) Accuracy (b) F1 score 
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7.4 Test results 

To show the proposed network's performance, trained models should be tested on 

never-seen videos in an end-to-end fashion.  

These trained classifier models are generated for 7 = |𝑵| different window sizes, 

8= |𝑳| different layer depths, and for each (𝑁, ℓ) pair, a 5-fold training is performed. That 

gives 7 × 8 × 5 = 280 models to be trained and tested. After generating and training 280 

classifier models for each (𝑁, ℓ, 𝑘) triplet, the models are tested against a never-seen 

night-time fire video data set. A selection of snapshots of videos for early detection results 

on the test set is given at Figure 7.4. Video versions can also be watched on [72]. At the 

6th to 12th seconds in [72], reflection of light from an object, diffused street and 

headlights, and firefighters with their spatial and temporal behavior were influential in 

mispredictions. 

The test dataset used for each model is different from that of the training and 

validation sets because of the random selection, as illustrated in Figure 7.2. The randomly 

selected test set used in each fold contains 194 video clips. Each 280 trained classifier 

model is tested with 194 respective videos, which makes 280 × 194 =  54320 

predictions.  

As mentioned in Section 7.2, we employed accuracy and F1 measure as the 

performance metrics. In the case of unbalanced data, i.e., the number of positive and 

negative samples are not equal, F1 score is a robust indicator for network performance. 

Given that true positive (TP) is "predicted positive is also actual positive", true negative 

(TN) is "predicted negative is also actual negative", false positive (FP) is "predicted 

positive is in fact actual negative", and false negative (FN) is "predicted negative is in 

fact actual positive"; accuracy and F1 score are defined as 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (7.2) 

F1 =  2 ∗
Precision ∗ Recall

Precision + Recall
 (7.3) 

where precision and recall are defined as 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (7.4) 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (7.5) 

From the equations 7.2 and 7.3, it is evident that both accuracy and F1 score can 

get values between [0,1]. The better the accuracy and F1 score is the better performance. 

Predictions of the models are obtained by giving the videos as an input to the overall 

network (Figure 7.2). The average test accuracy and F1 score for each scenario, 𝑠𝑖, are 

given in Table 7.3 and 7.4. Their plots are given in Figure 7.5. The highest average values 

of test accuracy and F1 score came out as both 94.7% with 0.0132 and 0.0134 standard 

deviations, respectively. The (min, max) standard deviation values of Table 7.3 and 7.4 

are (0.0039, 0.0263) and (0.0032, 0.0262), respectively. The maximum observed 

accuracy among the 5-fold attained to 96.9%. The average values of test accuracies and 

F1 scores have almost been the same as validation measurements. This indicates that there 

was not an over or underfitting problem with the tests.  

Table 7.3 5-fold averages of the test accuracies of the proposed model for various 

window sizes and layer depths. The highest score is in boldface 

 

Window Size 

20 30 45 60 75 90 120 

La
ye

r 
D

e
p

th
 

20 92.7 92.2 91.6 92.2 92 90.3 90.1 

100 93.2 93.5 93.3 93.3 92.6 92 91.5 

200 93.8 93 93.4 94.1 93 91.4 92.5 

250 94.5 93.5 93.2 93.6 93 91.4 92.9 

300 93.8 93.4 93.9 93.5 93 92.2 93.1 

500 94.7 93.4 93.8 93.6 92.7 92.6 93.1 

1000 94.6 93.7 94.4 93.8 93.1 92.8 92.9 

2000 94.6 93.1 93.4 93.4 92.3 92.5 92.6 
 

Table 7.4 5-fold averages of the test F1 scores of the proposed model for various 

window sizes and layer depths. The highest score is in boldface 

  Window Size 

  20 30 45 60 75 90 120 

La
ye

r 
D

e
p

th
 

20 92.7 92.2 91.5 92.1 92 90.3 89.9 

100 93.1 93.5 93.2 93.3 92.5 91.8 91.5 

200 93.8 93 93.4 94.1 93 91.4 92.4 

250 94.5 93.5 93.2 93.6 93 91.4 92.8 

300 93.8 93.4 93.9 93.5 93 92.1 93 

500 94.7 93.4 93.8 93.7 92.7 92.6 93.1 

1000 94.6 93.7 94.4 93.9 93.2 92.8 92.8 

2000 94.6 93.1 93.4 93.5 92.4 92.6 92.6 
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Figure 7.4 Selected images from early test results. In (a) and (b), predictions are 

correctly fire, and non-fire, respectively. In (c) and (d), predictions are incorrectly 

fire, and non-fire, respectively. (Faces are blurred in response to privacy 

concerns.) 
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Figure 7.5 5-fold average results of test sets given in the Tables 3 and 4. (a) Accuracy 

(b) F1 score 

The worst accuracy appears when (𝑁, ℓ) = (120,20). This is followed by the 

(90,20) pair. (See the Table 7.3). The table shows an inverse correlation between the 

window size 𝑁 and performance measures, accuracy, and F1 scores, for every layer depth 
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ℓ   with few exceptions such as (30, 1000) pair. However, the performance measurements 

peak when ℓ is around the 300-500 range. The optimal window size and layer depth 

parameter ranges are 𝑁 = 20 and ℓ =  [300 − 500]. 

We observe that shallow networks and long windows do not lead to improved 

results from the overall results. Indeed, when the BLSTM network has 500 stacked cells 

fed with 20 frame-long videos, the accuracy rises to the highest. Furthermore, 250 stacked 

cells give as good accuracy as 500 cells. A lower window size means a lower detection 

time. Fortunately, the proposed method gives the highest accuracy in the smallest window 

size, 20. Our method reached a detection duration of 23.4 ms per frame for (𝑁, ℓ) =

(20,250) and for the best accuracy, i.e., (𝑁, ℓ) = (20,500), the detection duration is 23.7 

ms per frame. This shows that, contrary to [34], a window size of 20 frames, i.e., two 

third of a second, would only contribute a delay less than a second. This detection 

performance can sufficiently be considered as real-time detection. 

For a typical video with 30 frames per second (fps) recording, 20 frames would take 

less than a second. Since the detection time is a significant concern for the first responders 

in the field, the proposed method significantly contributes. 

In summary, a pre-trained CNN was used to extract feature maps which in turn were 

used to train a BLSTM network. Finally, trained CNN and BLSTM models were 

interconnected and given never-seen videos to show the pipeline's real-life performance. 

The CNN was trained on ImageNet which does not include the fire object as a class; 

instead, it includes a few wildfires event-related classes which are 'fire engine and fire 

truck'. We tested this pre-trained GoogLeNet on our fire images and as one expects, 

observed zero percent accuracy. 

Obtained results above were used to design, train, and test an improved network. 

The improved network used a ground-up trained CNN, tCNN, which was trained on our 

novel dataset rather than a pre-trained CNN (Step 2 of Stage 1 in Figure 7.6. Disjoint 

video sets for training, validation, and test were determined. In training and validation 

sets, one frame from each video was randomly sampled to construct an image dataset for 

CNN training (Step 1 of Stage 1 in Figurer 7.6). After training the CNN, feature maps 

were extracted through the tCNN and they were used to re-train the BLSTM network 

which led to a trained BLSTM model, tBLSTM (Steps 5-9 of Stage 3). The best 

performing window size and layer depths from the model pipeline proposed at Section 

7.2 were 𝑁 = 20 and ℓ =  [300 − 500], thus these parameters were chosen to be 𝑁 =

20 and ℓ =  {250, 500, 1000} for the improved model.  
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Four prediction results were acquired from the improved network. First result was 

obtained from tCNN at Step 4 of Stage 2 as shown in Figure 7.6. All frames of a test video 

were given to the model sequentially to see full performance of the model on the whole 

video. Therefore, the tCNN model gave 20 predictions per video that overall performance 

was computed by averaging the number of correct predictions (true positives and true 

negatives) over the number of all predictions. Second, third, and fourth results were 

obtained from tCNN + tBLSTM pipeline at Steps 4 and 10 of Stage 4 in Figure 7.6. Video 

frames were given as input to the pipeline and a single decision was obtained at the output 

per each layer depth tested. These four results, finally, were given as inputs to a majority 

voting module (Step 11) to improve the effect of spatial features on decision making. This 

led to the best average accuracy increase from 94.7 % to 95.15 %. If only the pre-trained 

CNN were to be used as a classifier, zero accuracy is obtained. If only the tCNN were to 

be used as a classifier, 94.33 % accuracy is obtained. When the tCNN is coupled with the 

BLSTM and majority voting, the accuracy increases to 95.15 %. All tests were performed 

in a five-fold manner as described before. 

7.5 Investigating the misclassifications 

To further improve the detection performance of the night-time forest fire detection 

algorithms, sources of misclassifications ought to be investigated. This gives an essential 

insight into the false classifications and might pave the way for more targeted methods.  

We investigated the most frequently misclassified videos in the hope of revealing 

patterns that lead to wrong predictions. In that regard, the 34 most misclassified test 

videos, which comprise 44% of the total misclassifications, are considered sufficient for 

that purpose. We applied masks to these videos while preserving the original video size 

to see any performance improvement and possible deceptive patterns. The masks are 

simple black regions that cover either fire or non-fire objects depending on their shape in 

the scene. When an object is masked by a black region with an arbitrary shape, then that 

object cannot be considered in the decision process during testing a classifier model. 

Adobe Premiere Pro® was used to create such dynamic-shape masks and the masked 

videos were used for re-testing. The tests were repeated with the respective classifier that 

gave an error initially on the original non-masked video (As an example, see Figure 7.7). 
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The number of masks applied to a misclassified video can be different depending 

on the content of the video (Figure 7.7). Therefore, multiple test videos might be 

generated from a single video. In total, 76 masked videos were generated from 34 most 

erroneous videos. In [73] an illustration of how a mask was applied to a misclassified 

video is given. In the video, only two masks were used, one for fire objects and another 

for suspected non-fire objects as a whole. 

When the masks are applied to fire videos to hide the fire portion, since no fire 

object is visible in it anymore, its ground truth class is converted from fire to non-fire, 

respectively. With the updated ground truth labels, re-tests were conducted on masked 

videos. This resulted in a 50.9% improvement in correctly classifying videos by using the 

original respective classifier models. This shows that multiple objects in a scene confuse 

the decision mechanism of the network. If the objects are shown to the models 

individually, the detection accuracy potentially changes. 

[73] is an example of a missed detection (Figure 7.7). When only a fire object is 

left, and remaining firefighter figures are masked out, as at the 1st second in [73] then the 

original respective classifier model makes the new decision correctly as 'fire.' When only 

firefighters are left in the video, as at the 3rd second in [73] the original model decides 

'non-fire' incorrectly 'non-fire' for the original video given in [73]. 

The presence of people in firefighter-like jackets (i.e., yellow jackets, Figure 7.8) 

also leads to missed detection as some examples are shown in [74]. In the dataset, 

firefighters and reporters are frequently seen in these jackets in non-fire videos and less 

Figure 7.7 A misclassification of a fire scene as non-fire due to firefighters [73]. 

An originally misclassified video in (a), two firefighters with yellow jackets are 

blacked out with mask M1 in (b), and all fire objects are blacked out with mask 

M2 in (c). The video in (b) correctly classified as fire 12/30 times, and the video 

classification in (c) remained as non-fire for 29/30 times. (Faces are blurred in 

response to privacy concerns.) 
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frequently in fire videos. It indicates that the network learns 'yellow jackets are more 

related to non-fire class than fire class.' However, the network is expected to learn fire 

objects as fire, as well. Therefore, when 'fire object' and 'yellow jacket' are in the same 

scene, we observed that the fire object is in a weak appearance, not flickering, fully or 

partially occluded by other objects or scene borders. However, when firefighters' jacket 

is not visible as yellow but mostly dark/shady as at the 2nd second or with a visible yellow 

jacket with a highly flickering fire object in the scene as at the 3rd second in [74] the 

video is successfully classified as fire.  

Similarly, video in [75] was misclassified as ̀ non-fire even though it is a ̀ fire' video 

(Figure 7.9). At the 1st second in [75]mask M1 was applied to the video, and vehicle 

headlights were blacked out; the ground truth label is still `fire.' The same respective 

Figure 7.8 Yellow jacket is considered evidence of non-fire class due to its frequent 

presence in the non-fire dataset [74]. (a) and (b) are misclassified as non-fire due to 

competition between fire and non-fire (yellow jackets) objects. (c) is correctly 

classified as fire since the yellow jacket is not perceptible. (d) is correctly classified 

as fire since there is a highly flickering fire object at the back of the reporter’s 

right arm and shoulder. (Faces are blurred in response to privacy concerns.) 
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model could predict this video as `fire' this time correctly. At the 4th second in [75], 

deceptive objects (headlights) were left only, and fire objects were blacked out; now, the 

ground truth label is `non-fire.' Then the same respective model correctly classified it as 

`non-fire.' However, this is not strong evidence that "the model predicted `non-fire' 

correctly since it was already giving the same prediction. In other words, it is a possibility 

that the model is replicating its incorrect decision meanwhile the ground truth label was 

changed. This decision pattern implies that a negative object in the scene can manipulate 

decision-making when a model is trained with scenes containing both negative and 

positive objects.  

The video shown in [76] is recorded in a fire event, although there is no fire object 

in the scene (Figure 7.10). The trained model classified it as ̀ fire' due to vehicle headlights 

as numbered at the 1st second in [76] Headlights 1, 2, and 3 are flashing while 4 is not. 

When flashing headlight 3 is masked out from the scene with mask M1 as shown in [76] 

the prediction is still incorrectly `fire.' However, when all flashing lights are masked out 

with another mask, M2, as at the 2nd second in [76] then the model correctly predicts the 

scene as `non-fire.' Similarly, in [77] an artificially flickering electric light was predicted 

as `fire' (Figure 7.11). When the center and reflected halo environments were masked out 

separately as given at the 1st and 2nd seconds in [77], respectively, the model could 

predict them correctly as `non-fire. These two pieces of evidence strongly indicate that 

the flickering effect of non-fire light sources is a potential deceptive pattern for RNNs 

Figure 7.9 A misclassification of a fire scene as non-fire due to headlights [75]. An 

originally misclassified video in (a). When vehicles with headlights are blacked out 

with mask M1 in (b), the video is correctly classified as fire. When all fire objects 

are blacked out with mask M2 in (c), then the decision is non-fire. 



92 

 

and possibly for other temporal analysis algorithms. This finding is also parallel with the 

reports found in the literature [21]. 

Figure 7.10 A misclassification of a non-fire scene as fire due to flashing headlights 

[76]. An originally misclassified video in (a) with headlights 1, 2, and 3 flashing 

while 4 non-flashing. Flashing headlight 3 is blacked out with mask M1 in (b); 

however, the prediction is still fire. Vehicles with all flashing headlights are 

masked out with mask M2, and non-flashing headlight 4 of another vehicle is 

preserved as it is in (c). Now, the prediction changed from fire to correctly non-

fire. 

Figure 7.11 A misclassification of a fire scene as non-fire due to a flickering electric 

light [77]. An originally misclassified video in (a) and (b) includes a flickering 

electric light. The light source environment is blacked out with mask M1 in (c), 

and the light source center is blacked out with mask M2 in (d). Videos in (c) and 

(d) are correctly predicted as non-fire while original video in (a) and (b) not. 
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Flickering frequency of light at high or low rates have the potential to puzzle 

predictions (Figure 7.12). In short-range, a fire object's flickering characteristic is 

apparent. If the fire object is large and strong enough in mid-range, its flickering 

characteristic is still evident. In long ranges, flickering characteristics become less critical 

in fire motion characterization. However, if the flickering rate is very high in short or mid 

ranges, the algorithm cannot relate its motion to average fire motion. High-rate flickering 

occurs when a burning element contains agents with high flame propagation speed or 

during strong winds. Low-rate flickering occurs in matured fires that remain primarily in 

ember form or videos recorded/edited in slow motion [78].  

Occlusion is another problem as it is for other object detection tasks, too. If other 

objects obstruct the fire object, this reduces the chances of correct prediction. When the 

indefinite form of a fire object is visible, its contour helps the algorithm in the prediction. 

Figure 7.12 The flicker rate of fire dramatically changes depending on the fire’s 

combustible agent, wind, and stage [78]). a) A fire object with a high flickering 

rate. b) A very similar video, but with a steady flickering rate. Only this video was 

correctly classified among the four. c) A fire object with a very high flickering rate 

due to explosion. d) A fire object in slow motion video. 
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In some cases, fire objects are obstructed in certain ways by other objects. The contour of 

an occluding object becomes the contour of a visible fire object. In the first two seconds 

of [78] it is seen that fire appears behind a window (Figure 7.12), and at the 1st and 3rd 

seconds in [79], fire is occluded by solid objects (Figure 7.13). Thus, the typical form of 

fire disappears, and it creates a fixed-contour object with fire color characteristics. It is 

conjectured that the algorithm incorrectly learned that fire could have a rigid shape. 

Therefore, this results in false positives. 

When the wildfire size is immense and discharges a large amount of smoke into the 

environment, the light rays in the environment diffuse into smoke or fog and create a halo 

effect around the source (Figure 7.13). Illuminated smoke leads to a diminished visible 

flame contour, and the nature of the fire seems smoother than it should be. In the 1st and 

3rd seconds in [79] the videos were misclassified as non-fire. The fire objects in the videos 

have reduced visibility of flickering and smooth behavior due to dense smoke. 

Considering the network is trained on videos containing other light sources in dense 

Figure 7.13 Due to thick smoke, the turbulent nature and contour of the flame is 

diminished [79]. 
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smoke, fire objects are indistinguishable from other light sources in such foggy 

environments. On the other hand, a quite similar video at the 2nd second in [79] includes 

fire objects with evident flickering. Therefore, this video was correctly classified as fire. 

Since fire and other light sources become less distinguishable in dense smoke 

environments, it prevents the network from learning fire motion. In this case, other sub-

events in the scene become more important in decision making. At the 3rd second in [79], 

the presence of a fire-fighter in a yellow jacket has been crucial in classifying the video 

as non-fire. 

Sometimes, objects that are not a natural light source can also resemble fire objects 

and mislead the network (Figure 7.14). Red fire extinguisher substance discharged from 

a fire-tank aircraft tricked the network 98 times in our experiments [80] During the 

substances' landing on the ground and plant area, its spread and motion resemble a fire 

object, and the network classifies it as fire. 

In this section, we have investigated the sources of misclassifications. The tests are 

repeated with various modified videos to unmask the misleading parts in the contents and 

vulnerabilities of the networks. These additional tests showed that: 

• Multiple light sources: The decision accuracy increases if the scene has a single 

bright object. When both positive and negative objects appear in the scene, the 

model's prediction accuracy decreases. 

• Flickering: The fire has a distinct flickering behavior. The flickering frequency 

diminishes as the fire gets further away. This makes it hard for the network to 

learn a single flickering frequency. Moreover, some other light sources, e.g., 

Figure 7.14 An aircraft fire-tanker is discharging red fire extinguisher liquid [80]. 
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lanterns, also have a flickering nature. This is one of the unsolved challenges of 

these tasks. 

• Fog: A visible flame has sharp and quickly altering edges. When fog is introduced, 

these details, which are valuable indicators for the model, vanish. 

• Occlusion: When an object occludes the fire, a halo appears around the blocking 

object. This halo looks quite similar to a flame in terms of color. However, it stays 

still and has a somewhat different shape than fire. During the training, this might 

force the model to learn these features incorrectly. 

• Strobe lights: As reported, a common misclassification source is the strobe lights 

attached to the vehicles in the field [29, 30]. Those lights cause problems in two 

respects: first, they have similar periodicity features as fires. Second, they both 

appear in non-fire scenes, e.g., typically in traffic and in forest fires. Those two 

features make the predictions less accurate if they appear in the scene. 

 

The night-fire classification problem's challenges can be countered by designing 

targeted approaches such as preprocessing filters or cascaded models. For example, in an 

experiment, the authors first detect and mask the possible strobe lights before the 

prediction [29, 30]. These experiments intended to show and identify the challenges that 

exist in the night-time fire videos. 

7.6 Concluding Remarks 

Night-time forest fire videos lack some important spatial information such as color, 

sharp edges, etc., due to the physical limitations of the camera. For some cases, 

distinguishing a night fire from artificial light from a single frame is highly challenging 

even for human-level classification. This makes the night-time fire classification harder 

than its daytime counterpart. To alleviate this, temporal information is incorporated in the 

proposed method. Thus, night fire's natural flickering and motion behavior could be 

captured and involved in the analysis.  

In this study, GoogLeNet + BLSTM based network architecture was used to analyze 

the spatio-temporal information of fire object candidates and detect fire events in night-

time videos. The tests were performed for a wide range of parameter sets. The video 

lengths used in training and tests ranged from 20 to 120 frames. The BLSTM network 

depths ranged from shallow 20 layers to deep 2000 layers. It is shown in the pre-trained 
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experiment that the shortest videos, with 20 frames and 500 BLSTM layer-deep-network 

gave the best parameter combinations with 94.7% accuracy and F1 score at 23.7 ms per 

frame. Even though the longer videos have more information and deeper networks have 

more adaptation capacity, they did not have the best parameters. These results were used 

to tune a majority voting module and the highest accuracy of 95.15% was reached. 

For a typical 30 FPS video, the proposed algorithm requires less than a second to 

accumulate 20 frames and detect the night fire event. Since the response speed of first 

responders in the field is crucial, this method makes a significant contribution by reducing 

the response time.  

The study also contains a thorough investigation and discussion of possible sources 

of misclassifications in night-time wildfire detection tasks. Multiple light sources, the 

flickering of artificial lights, strobe lights, fog, smoke, and occlusion are the primary 

sources of incorrect predictions. 

Several problems remain unsolved. It is conjectured that by designing targeted 

solutions such as image preprocessing or cascaded decisions, the effects of the 

aforementioned false classification sources can be mitigated. Moreover, distant fires look 

significantly different than close ones. Instead of a unified algorithm, multiple algorithms 

targeting these situations separately can be designed as shown in the majority voting 

module. 
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Chapter 8 

Conclusions and Future Prospects  

8.1 Conclusions 

The thesis showed that distinct temporal behavior of glowing objects in a dark video 

can reveal the identity or the class of them even if there exists little or no visually 

perceptible textures in the scene. With this, a hand-crafted feature set and an end-to-end 

deep learning method is used to benefit from the temporal behavior of the objects. 

Moreover, the largest night fire video dataset to the date is prepared and curated. The 

details of the individual conclusions drawn from each chapter is given below. 

In Chapter 1, impact of fire disasters to our environment is illustrated and 

importance of timely and automatic fire detection is emphasized. In Chapter 2, it was 

made clear that how taking images at night requires a careful setup of environment, 

selection of image taking device and adjusting setting of that device before capturing such 

images or videos. In Chapter 3, a portrait of nature of nighttime fires and challenges of 

capturing them via imaging means are given. In Chapters 4, 5, and 6, the theoretical 

background of the methods used in this dissertation is given. More precisely, working 

principles of support vector machines, convolutional neural networks, and bidirectional 

long-term short-term memory networks are presented then related literature is 

summarized.  

In Chapter 7, a novel dataset, FinD, is proposed for nighttime VFD research. This 

dataset includes two sets. FinD Set1 is developed for hand crafted features and the 

background is almost black except limited deceptive patterns like streetlights, headlights, 

hand-held lights, etc. The smoke is not visible in the videos of this set. Subtracting the 

background is relatively easy for FinD Set1 since the recording cameras were stationery. 

FinD Set2 is compiled from various videos that were recorded during fire disasters 
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occurred across the globe. These videos contain challenging scenes including smoke’s 

adverse effects rather than its favorable contribution to daytime fires. These videos mostly 

recorded from mobile cameras of such as mobile phones, UAVs, helicopters, patrolling 

vehicles, firetrucks, etc. Negative videos are also collected from fire environments 

without flame object, or from fire-like videos of nonfire events, i.e., fireworks, volcanos, 

etc. 

In Chapter 8, useful features for nighttime fires are developed and used for machine 

learning model development with SVMs, RFs, and other algorithms. These features 

allowed successfully detect fires with 95.53% average accuracy. These features are based 

on movement of flame object. Therefore, some deceptive objects like exact reflection of 

fire from a reflective surface, slowly moving vehicle headlights are also considered as 

fire. In Chapter 10, deep learning-based nightfire detection method is proposed. In a deep 

learning model, features are not designed by hand anymore, the network discovers useful 

features by itself and optimizes their weights. In this method, a pipeline of CNN and 

BLSTM is used. The purpose of using this model is employing both spatial and temporal 

features of a video for robust fire detection at night videos. Spatial features are extracted 

via CNN model and used to train BLSTM model. First training both CNN and BLSTM 

and then connecting them constructed the final classifier model which receives videos at 

the input and gives predictions at the output. This model attained 95.15% accuracy at 2/3 

seconds videos. However, this model is also prone to mispredictions. The model is trained 

on the FinD Set2 which labels the data video by video as “fire” or “not fire”. Then, if a 

fire video includes the flame object together with i.e., firefighter, then it is observed that 

on a not fire video including a firefighter could also be predicted as fire. 

8.2 Societal Impact and Contribution to Global 

Sustainability  

The proposed research relates to one of the United Nation’s 17 Sustainable 

Development Goals, Goal 15 which states “Protect, restore and promote sustainable use 

of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and 

reverse land degradation and halt biodiversity loss”. Fires are considered part of natural 

life cycle in terms of eliminating unhealthy forests, stimulating tree growth. However, 

uncontrolled, frequent, and large fires (collectively unnatural fires) result in severe 
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ecological, societal, economical, and sustainability problems. Forest fire disasters 

aggravate greatly the broken carbon cycle, air pollution, natural habitat degradation, 

respiratory and other health problems. Each uncontrolled wildfire destroys people’s 

houses, habitat, biotope, and destabilizes natural carbon inventory. Therefore, wildfires 

are at greatest importance in societal impact and global sustainability.   

The forest fire detection from video methods developed in this dissertation are 

expected contribute actual firefighting efforts at early detection and alerting steps. 

Department of Forestry has automatic fire detection systems running on lookout towers 

scattered on the forests. However, they are designed to detect only the daytime fires. With 

the help of the proposed methods, the developed models can be integrated to Department 

of Forestry’s live camera systems and make detection for both daytime and nighttime 

forest fires. This will let the detection task will extend to 24/7.  Furthermore, since the 

environment of each forest field may demonstrate different visual appearance, the models 

can be adapted to these environments to make improved predictions and reduce false 

alarm rates.  For this purpose, the models can be iteratively re-trained with continuously 

flowing video data to realize highest adoption level.  

Reducing the number of forest fires by early detection methods has a direct impact 

on the biodiversity of the natural environments. The forest fires are known to be one of 

the most disastrous incidents which eliminates large number of living organisms from a 

wide range of species. When the range of the regions destroyed exceeds a reasonable 

number of areas, the negative effect of it on the biodiversity might become irreversible. 

Eventually this chain of incidents might yield desertification of natural and fertile regions 

in a country. 

Moreover, the forests are one of the most valuable assets for countries. Every year 

dozens of hectares of areas are lost to these disasters. The proposed approaches are 

believed to lessen this effect by assisting the officials to detect the forest fires earlier. 

8.3 Future Prospects 

The thesis showed that distinct temporal behavior of glowing objects in a dark video 

can reveal the identity or the class of them even if there exists little or no visually 

perceptible textures in the scene. In the thesis, a hand-crafted feature set and an end-to-

end deep learning method is used to benefit from the temporal behavior of the objects. 

However, there are a lot more aspects of it to be studied. The current model does not take 
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the inter-correlation of the objects in the scene. In future, a Transformer based model can 

be employed to not only capture the spatio-temporal movements of the objects but also 

their inter-relations.  

The methods proposed can be further optimized for real-time applications. First, the 

CNN+BLSTM portions can be combined to a single stage similar to single stage 

segmentation methods such as MaskRCNN. Then the model can be further quantized to 

small integer format (8-bit integer) to give smaller model in size. This will help the users 

to install the model into embedded devices such as Raspberry Pi or ARM based 

microcontrollers. 

Apart from that, the proposed dataset is expected to be highly useful to the 

community. It is hoped that the thoroughly prepared and labeled night fire video dataset 

pave the way for an academic competition to reach higher or faster detection accuracies.  
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