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Abstract. The effectiveness and applicability of magnetic levitation systems need precise feedback control designs. A 
cascade control approach consisting of sliding mode control plus sliding mode control (SMC plus SMC) is designed 
to solve position control problem and to provide a high control performance and robustness to the magnetic levitation 
plant. It is shown that the SMC plus SMC cascade controller is able to eliminate the effects of the inductance related 
uncertainties of the electromagnetic coil of the plant and achieve a robust and precise position control. Experimental 
and numerical results are provided to validate the effectiveness and feasibility of the method.  

1 Introduction  
Magnetic levitation technology with frictionless 
movement has been used in many industrial systems 
including in high-speed maglev trains, frictionless 
bearings, electromagnetic cranes, levitation of wind 
tunnel models, vibration isolation of sensitive machinery, 
levitation of molten metal in induction furnaces, rocket-
guiding projects, levitation of metal slabs during 
manufacture and high-precision positioning of wafers in 
photolithography  [1–8]. The technology under a 
feedback controller can ensure reliable and high-speed 
operations, but getting a high control performance is not 
easy with standard controllers due to open-loop unstable 
and highly nonlinear dynamics, and parameter 
uncertainties of the magnetic levitation plants.  

Many magnetic levitation control design have been 
reported in the literature, including feedback linearization 
based controllers [4,6,9–11], linear state feedback control 
design  [6,12], the gain scheduling approach  [13], 
observer-based  control  [5], neural network 
techniques  [14], sliding mode controllers  [8,15,16], 
backstepping control  [17], model predictive control  [18], 
cascade control  [19] and PID controllers  [20]. Since the 
governing differential equations are highly nonlinear, the 
nonlinear controllers are more attractive. However, many 
nonlinear control designs need exact knowledge about the 
plant nonlinearities, which is not possible, to ensure a 
good performance.  

In this work, a practical sliding mode based cascade 
control approach is considered. The cascade control 
allows us to design a high gain inner loop (current) 
controller to deal with the effects of plant disturbance and 
uncertainties. Sliding mode control (SMC) has ability to 
render robustness in the presence of inductance 
originated uncertainties. The effectiveness of the method 
is demonstrated with numerical simulations and 

experimental tests. The SMC based cascade controller 
ensures highly satisfactory tracking performance with a 
small tracking error for the magnetic levitation system in 
the existence of coil inductance uncertainty. 

The organization of the paper is as follows: Section 2 
provides information about the magnetic levitation 
system. Controller design strategy is given in Section 3, 
application results are given in Section 4, and finally 
conclusion of the study is provided in Section 5.  

2 Magnetic levitation system  
Magnetic levitation system consists of an electromagnet, 
a steel ball, a ball post and a ball position sensor. It is 
used to levitate a steel ball in air due to the 
electromagnetic force created by an electromagnet.  The 
schematic diagram of the magnetic levitation plant used 
in the experimental studies is shown in Fig. 1. The entire 
system is encased in a rectangular enclosure which 
contains three distinct sections. The upper section 
contains an electromagnet, made of a solenoid coil. The 
middle section contains suspension, and a photo sensitive 
sensor embedded in the post measures the ball elevation. 
The ball is only controlled through vertical x-axis. The 
attraction force is controlled by the computer controlled 
electromagnet mounted directly above the levitation ball. 
The photo detector consists of an NPN silicon 
photodarlington. The electromagnet consists of a tightly 
wound solenoid coil made of 2450 turns of 20 AWG 
magnet wire. Electromagnet coil input supply is ±24V 
with a maximum 3A coil current. The data acquisition 
board is a successive approximation type, 12-bit analog 
and digital conversion board capable of 4 kHz sampling. 
In this work, the controllers are implemented at a 
sampling rate of 1 kHz. The entire system is decomposed 
into two subsystems, namely mechanical and electrical 
subsystems, as seen Fig. 2. The coil current is adjusted to 
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control the ball position in the mechanical system, 
whereas the coil voltage is varied to control the coil 
current in an electrical system. In the following 
subsections, we obtain the nonlinear mathematical model 
of the system by using Fig. 2. 

Figure 1. Schematic diagram of a single-axis magnetic 
levitation system.  

2.1 Modelling the magnetic levitation plant 

Using the notation and conventions given in Fig. 2, the 
mechanical model of the plant can be obtained. Attractive 
force generated by the electromagnet is given by  [21]
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where Km is the electromagnet force constant (in Nm2/A2)
and Ic is the coil current (in A). By applying Newton’s 
second law of motion to the ball, the force balance 
equation of the ball is given with the following second-
order model: 
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where �� is the air gap (in m), Mb is the mass of the ball 
(in kg), g is the gravitational constant (in m/s2) and Fc is 
the force generated by the electromagnet (in N). At 
equilibrium point, all the time derivative terms are set to 
zero. 
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From Eq. (3), the coil current at equilibrium position, Ic0 ,
can be expressed as a function of xb0 and Km. 

                              ��� = �����
�� ���  (4) 

The nominal coil current Ic0 for the electromagnet ball 
pair can be obtained at the system’s static equilibrium. 
The static equilibrium at a nominal operating point (xb0,
Ic0) is characterized by the ball being suspended in air at a 
stationary point xb0 due to a constant attractive force 
created by Ic0. 

By assuming that the coil inductance is constant 
around the operation point and applying Kirchhoff’s 
voltage law to the electromagnet (RL circuit in Fig. 2.), 
the electrical model of the magnetic levitation can be 
written as 
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where Ic is the coil current, Lc is the coil inductance (in 
Henry), Rc is the coil resistance (in Ω), Rs is the current 
sense resistance (in Ω) and Vc is the supply voltage (in V). 
In nature, the electrical subsystem is much faster than the 
mechanical subsystem. All system parameters are given 
in Table 1. 

Figure 2. Dynamical modeling of the magnetic levitation 
system. 

Table 1. Plant parameters 
Symbol Description  Value 

Lc Coil inductance 412.5mH 
Rc Coil resistance 10Ω
Rs Current sense resistance 1Ω
Km Electromagnet force constant 6.53x10-5 Nm2/A2

Mb Steel ball mass 0.068kg 
KB Position sensor sensitivity 2.83x10-3m/V 
Nc Number of turns in coil wire 2450 

2.2 Linearization of the plant model 

In order to analyze the magnetic levitation system, the 
system can be linearized around equilibrium point (xb0,
Ic0), the point at which the system will converge as time 
tends to infinity. For the electrical part, the transfer 
function of the circuit can be obtained by applying 
Laplace transform to Eq. (5) 
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where �� = �
�	���  is the dc gain, and �� = �	

�	���  is the 
time constant of the electrical subsystem.  

For the mechanical part, Taylor series approximation 
at equilibrium point (xb0, Ic0) for Eq. (2) gives 
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Substituting Eq. (4) into (7), we get 
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Thus, applying Laplace transform in Eq. (8), transfer 
function of linearized system around the operation point 
is obtained as 

                         ��(�) =  �(!)
�	(!) = − ��"�


!
#"�

(9) 

where �� = ���/��� and $� = %2�/���. In this work, it 
is assumed that the operating point of the system is xb0=
6mm and Ic0= 0.86A. The open-loop transfer function of 
the system is of type zero and second-order. The two 
open loop poles of the system are located at � = ±$� , so
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the open loop system is unstable, and a feedback 
controller must be designed for stabilization.  

3 Sliding mode control design  

Sliding mode control based cascade structure is 
considered for controlling the magnetic levitation system. 
The proposed control scheme as shown in Fig. 3. The 
objective of the control strategy is to regulate and track 
the ball position in mid-air. The desired performance 
requirements are taken as (1) percentage overshoot ≤ 5%, 
(2) maximum settling time ≤  0.3s, for the position 
control. 

Figure 3. A cascade control block diagram of the 
magnetic levitation system. 

3.1 Sliding mode position controller

The sliding mode controller will be designed as the outer 
controller to control the ball position of the mechanical 
part. Here, in the outer controller for the magnetic 
levitation system, �' = ��  is assumed due to the inner 
SMC controller. Thus, we focus on the mechanical part 
of the system to control the ball position. First of all, a
sliding surface, ��, can be designed for the second-order 
mechanical system as 

                       �� =  ,̇ +  ., + .� ∫ , 34        (10) 

where , = �' − �� , . > 0 and .� > 0. The integral part 
is added to the sliding surface for a precise reference 
tracking. In addition, the second-order system from the 
linearized system (9) is obtained as 

                    ��̈ −  $���� +  ��$��6� = 0             (11) 

Thus, the time-derivative of (10), �̇�, is obtained as 
2 2
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During sliding mode, i.e., �� = �̇� = 0 , the equivalent 
current, 678 , can be obtained as follows,  
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The equivalent current value can be used in the controller 
design to reduce chattering on the system output. 
Therefore, the control input to the mechanical part of the 
magnetic levitation system can be designed as 

                          6� = 678 + 6�sat(��)               (14) 

where  
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The saturation function, sat(.) is used to eliminate 
chattering on the system output. From the reachability 
condition,  ����̇ < 0, one can obtain the gain, 6�, must be 
smaller than zero. To achieve design specifications, the 
gains λ, .� and 6� can be arranged with trial-error method 
via simulations. 

3.2 Sliding mode current controller 

Since the electrical part is much faster than the 
mechanical part, the SMC can also be designed as the 
inner controller to control the coil current for getting fast 
response and robustness. Since the coil inductance value 
is dependent on the ball position, but it is taken as 
constant to simplify analysis and designs, there exists a 
parameter uncertainty. The effects of inductance related 
uncertainties can be minimized by designing a high-gain 
SMC for controlling electrical part of the system current.  

To design SMC, first a sliding surface, �� , can be 
designed for the electrical subsystem as 

                                 2 r c
s I I� 	         (16) 

Thus, the time-derivative of (16), �̇�, is obtained as 

                          1
2

c s

c c

R R

r c cL L
s I I V


� 
 	R R

I
c s

R
c ss

I
c s

L2 r
s I2 r

II
R

I
c

R
cc

I
c (17) 

To achieve a sliding mode, i.e., �� = �̇� = 0, the voltage 
Vc as the control input of the magnetic levitation can be 
designed as [22],

9� = :|��|�.?sat(��) + @ ∫|��|�.?sat(��)34  (18)   

The saturation function, sat(.), is used to eliminate 
chattering. The stability of the SMC (i.e., reachability 
condition ����̇ < 0 ) must be satisfied for selected 
appropriate gains, : and @ . A detailed Lyapunov based 
stability and robustness analysis can be found in our 
previous studies (see [22]). Since a boundary layer 
approach (sat(.) function) is used in the controller design, 
the trajectory reaches a small ultimate bound set in finite 
time. This means that the tracking error also stays around 
the origin, but usually not in the origin. The appropriate 
gain values can be obtained via simulations.

4 Experimental results  

The experimental hardware-in-the-loop (HIL) test and 
numerical simulation results of the proposed cascade 
control scheme for the magnetic levitation are provided in 
this section. In both numerical and experimental studies, 
MATLAB/Simulink programs are used. Based on desired 
performance requirements, the outer SMC parameters are 
found as λ=2000, .� = 60 and 6� = −50, and the inner 
SMC parameters are taken as α=150 and β=50.

4.1 Numerical simulation results 
 
Numerical simulations are used to get suitable control 
parameters. It is assumed that the ball position varies 
between 8 to 10 mm ramp signals with a frequency of 
0.25Hz. From the desired performance requirements (see 
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Section 3.1), the controller should accomplish a desired 
±1mm square wave position set point. 

Figure 4. Ball position trajectory. 

Figure 5. Coil current response. 

The tracking performances of the cascade SMC 
controllers are illustrated in Figs. 4-8. It is seen in Fig. 4 
that the controller provides a desired tracking 
performance with a little overshoot (around 0.6%) and a 
little settling time (around 0.26s.). Thus, the ball position 
perfectly tracks the desired position. Figure 5 shows the 
response of the SMC current controller in which the coil 
current perfectly tracks the desired current with around 
0.008A error, which makes the ball to follow the 
reference trajectory. The tracking error, which is the 
difference between actual trajectory and reference 
trajectory, is shown in Fig. 6. The tracking error has little 
short transient response which satisfies the required 
settling time, and about 0.067mm (0.067% overshoot) in 
the simulations. Fig. 7 and 8 show that the sliding 
surfaces, �� and ��, goes to zero in a short time and stays 
around zero with around 1% error for all subsequent 
times. 

Figure 6. Position tracking error. 

4.2 Experimental studies 

To compare the numerical and experimental results, the 
same position reference is applied. The experimental 
results are shown in Figures 9-15. Figure 9 shows that the 
controller holds the ball during startup and follows the 
reference position trajectory thereafter with around 1.5% 
error. The small oscillations around the reference point 

are due to the effects of sampling time, measurement 
error and noise. In addition, the ball sways right and left 
rather than staying vertically as the photo detector does 
not exactly measure the ball position because of the 
circularity of the ball. This can be solved with touching 
lightly to the ball by hand. 

Figure 7. Current tracking error. 

Figure 8. Sliding surface s1. 

Figure 10 shows the response of the coil current. The 
SMC current controller eliminates the effects of 
inductance uncertainty and provides a highly satisfactory 
tracking performance. The position tracking error around 
1.5% is shown in Figure 11. Figure 12 shows the sliding 
surface, ��, (or current tracking error). It is seen that the 
sliding surface reaches zero in a short time and stays 
around zero with average 0.1A error thereafter. Figure 13 
shows the sliding surface, �� , for the ball position 
controller. It is seen that the sliding surface reaches zero 
in a short time and stays around zero with average 0.2% 
error thereafter. 

Figure 9. Experimental ball position trajectory 

Figure 10. Experimental coil current response. 
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Figure 11. Experimental position tracking error. 

Figure 12. Experimental current tracking error. 

Figure 13. Experimental sliding surface for outer SMC. 

Moreover, it can be said that the ball position 
trajectory error decreases due to the progressive 
simulation. We want to show when the real-time 
simulation reaches steady-state is in 40-50 seconds in 
Figures 14-15. In Figure 16, it is clear that the position 
error is limited about 0.1mm during steady-state which 
satisfies desired requirements. Figure 15 shows the 
position tracking error around 0.1mm in the steady-state. 

Figure 14. Experimental ball position trajectory in the steady-
state.
       

Figure 15. Experimental position tracking error in the steady-
state. 

5 Conclusion  

SMC based cascade controller is designed for feedback 
control of the magnetic levitation. Both numerical 
simulation and experimental test results are given to 
demonstrate the effectiveness of the controller. A high 
gain SMC is designed for current control of the magnetic 
levitation system in order to eliminate coil inductance 
originated disturbance and uncertainty. Furthermore, a 
SMC with the integral part attached to sliding surface is 
designed for the ball position control. The results show 
that the method provides a highly satisfactory tracking 
control performance in the presence of coil inductance 
uncertainty.
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