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A B S T R A C T 

Cables are invaluable members for some applications of engineering. The specialty is 
due to its behavior under transverse loads. Having almost no rigidity in transverse 

direction makes cables different from other structural elements. In most applica-

tions, cables are assumed to be two force members. However, not only its weight but 

also its application with roller supports makes them different structural elements. 

Generally, cables are assembled as single-segmented cables (SSC) where they are 

fixed at their ends. However, in most of the SSC applications, cables have intermedi-

ate supports which can be rollers or sliders. These type of cable applications are 

called as multi-segment continuous cables (MSCC). In MSCC systems, the cable fixed 

at its ends and supported by a number of intermediate rollers. Total length of cable 
is constant, and the intermediate supports are assumed to be frictionless and station-

ary. In this problem, the critical issue is to find the distribution of the cable length 

among the segments in the final equilibrium state, so reactions at all supports can be 

found. Two methods are proposed for the segment length adjustment based on the 

stress continuity among the cable. These methods are named as direct stiffness 

method and tension distribution method (relaxation method). Results calculated 

from the proposed methods are verified by both the reference benchmark problems 

and commercial finite element program. 
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1. Introduction 

Cables are invaluable elements for structural systems 
such as guyed towers, cable-stayed bridges marine vehi-
cles, offshore structures, cable roofs, tensegrities, trans-
mission lines and pre-stressing works. Cables can be 
bended without any residual stress. This property makes 
them more nonlinear than other structural elements. Alt-
hough, the nonlinearity is both geometric and material, 
material nonlinearity is not considered (Judge et al. 2012; 
Prawoto and Mazlan 2012) in the scope of this research. 

Various single-segment cable (SSC) analysis methods 
have been proposed by researchers. These methods 
solve the continuous cable fixed at both ends. Some re-
searchers (Dischinger 1949; Ernst 1965) made some 
shape predictions for cable which is generalized in the 
research of Hajdin et al. (1998) and some made finite el-
ement calculations with iterative procedures which is pi-

oneered by Micholas and Brinstiel (1962) and Skop and 
O’Hara (1970). After increase of computational capabili-
ties in 1980’s, researchers have proposed methods for 
more accurate results. Peyrot and Goulois (1979) pro-
posed a finite element solution procedure for cable con-
sidering its catenary action. Polat (1981) applied New-
ton-Raphson method to the nonlinearity of cable prob-
lems. Fleming (1979) and Ren et al. (2008) proposed dif-
ferent finite element procedures to solve cable struc-
tures. Force density method was also used by Christou et 
al. (2014) for implementation of slack cables. Besides, 
author used (Dinçer and Demir 2020) Smoothed particle 
hydrodynamics (SPH), which is a meshless method, for 
analysis of single segment cable. 

Although there are many studies about SSC analysis, 
limited researches have made for multi-segment contin-
uous cables (MSCC). Some solution methods for cable 
systems having more than one segment were proposed 
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in the following studies. Aufaure (1993, 2000) defined a 
cable system having two segments. In that study, a cable 
was fixed at both ends and supported by one roller sup-
port. The cable was analyzed with a finite element 
method in which a specific element was defined. This fi-
nite element was the contact element of cable with roller 
support. Three nodes named as N1, N2, N3 were defined 
on this element in which N3 is the intermediate one. Po-
sition of N3 must be in between N1 and N2 and it is found 
by stress continuity through the cable. A similar method 
with sliding cable elements was proposed by Zhou et al. 
(2004). Ju and Choo (2005) are proposed a super ele-
ment approach. Although frictional effect between ca-
bles and pulleys was taken into consideration, cable was 
assumed to be a linear structural element in that study. 
McDonald and Peyrot (1988, 1990) studied on cables 
suspended in sheaves. They used a cable element based 
on a catenary relationship and defined a pulley element 
in their study. Besides, a dynamic relaxation formulation 
was given for tensegrity structures by Bel Hadj Ali et al. 
(2017). Element free Galerkin method was also used for 
solution of membranes strengthen by sliding cable in re-
search of Noguchi (2004) and Dehghan and Abbaszadeh 
(2016). 

In this study, a novel method is proposed for the solu-
tion of multi-segment continuous cable analysis. Solu-
tion of continuous cable is achieved by dividing the com-
plete cable system into segments. Each single-segment 
cable is solved by the method proposed by Polat (1981). 
This method is redefined for the sake of completeness of 
the research. Then, the direct stiffness and tension dis-
tribution method is defined (Demir 2011). Methods are 
verified by benchmark problems and commercial finite 
element solver (ANSYS). 
 

2. Methodology 

2.1. Single segment cable (SSC) analysis 

Cable fixed at one end is a determinant system and the 
second end of cable has a position for the corresponding 
reaction at the first end. Reaction at the first end is 
changed by some iteration techniques until the released 
end of cable is positioned at desired location, which is 
the second fixed support. A detailed formulation of SSC 
analysis for 2D and 3D can be seen in the studies of Polat 
(1981) and Demir (2011), respectively. 

 

Fig. 1. An SSC layout. 

In an SSC as illustrated in Fig. 1, position of an arbi-
trary node M can be defined as; 

�⃗� (𝑙𝑢) = �⃗� 𝐴 − ∫
�⃗� (𝑠)

𝑇(𝑠)

𝑙𝑢

0
[1 + 휀(𝑠)]𝑑𝑠 (1) 

where �⃗� 𝐴  is the position vector of A, 𝑙𝑢 is the cable length 
from A to M, �⃗� (𝑠) 𝑇(𝑠) and 휀(𝑠) are the reaction vector, 
tension and strain at s, respectively. 

The relation between change in position of node B, 
∆�⃗� 𝐵 , and change in reaction at node A, ∆�⃗� 𝐴 , can be ex-
pressed with the help of tangent stiffness matrix [𝑆]. 

∆�⃗� 𝐴 = [𝑆]∆�⃗� 𝐵  (2) 

From Equation (1) ∆�⃗� 𝐵  is determined as; 

∆�⃗� 𝐵 = −∫ {|
1+𝜀(𝑙𝑢)

𝑇(𝑙𝑢)
| ∆�⃗� 𝐴 − |

1+(1−𝜐)𝜀(𝑙𝑢)

𝑇3(𝑙𝑢)
| [�⃗� (𝑙𝑢) ∙ ∆�⃗� 𝐴]�⃗� (𝑙𝑢)}

𝐿𝑢
0

𝑑𝑙𝑢

 (3) 

where 𝜐 is Poissson’s ratio. 
In global coordinate directions, Eq. (3) can be ex-

pressed in Cartesian coordinate directions as; 

∆𝑃𝐵𝑋𝑖̂ = −∫ [𝐶1∆𝑅𝐴𝑋𝑖̂ − 𝐶2𝐶3𝐶4]
𝐿𝑢

0
𝑑𝑙𝑢  (4a) 

∆𝑃𝐵𝑌𝑗̂ = −∫ [𝐶1∆𝑅𝐴𝑌 �̂� − 𝐶2𝐶3𝐶4]
𝐿𝑢

0
𝑑𝑙𝑢  (4b) 

∆𝑃𝐵𝑍�̂� = −∫ [𝐶1∆𝑅𝐴𝑍�̂� − 𝐶2𝐶3𝐶4]
𝐿𝑢

0
𝑑𝑙𝑢  (4c) 

where  

𝐶1 = [
1+𝜀(𝑙𝑢)

𝑇(𝑙𝑢)
] ,  

𝐶2 = [
1+(1−𝜐)𝜀(𝑙𝑢)

𝑇3(𝑙𝑢)
] , 

 
𝐶3 = [𝑅𝑋(𝑙𝑢)∆𝑅𝐴𝑋 + 𝑅𝑌(𝑙𝑢)∆𝑅𝐴𝑌 +𝑅𝑍(𝑙𝑢)∆𝑅𝐴𝑍] , and

 𝐶4 = [𝑅𝑋(𝑙𝑢)𝑖̂ + 𝑅𝑌(𝑙𝑢)�̂� + 𝑅𝑍(𝑙𝑢)�̂�] . 

where ∆𝑃𝐵𝑋 , ∆𝑃𝐵𝑌  and ∆𝑃𝐵𝑍  are directional components of 
∆�⃗� 𝐵  as for ∆�⃗� 𝐴, 𝐿𝑢 is total unstressed length of cable, 𝑅𝑋(𝑙𝑢), 
𝑅𝑌(𝑙𝑢) and 𝑅𝑍(𝑙𝑢) are directional components of �⃗� (𝑙𝑢). 

Writing Eqs. (4a), (4b) and (4c) in the form of Eq. (2); 

{
∆𝑃𝐵𝑋
∆𝑃𝐵𝑌
∆𝑃𝐵𝑍

} = [𝑆]−1 {
∆𝑅𝐴𝑋
∆𝑅𝐴𝑌
∆𝑅𝐴𝑍

} (5) 

where 

[𝑆] =

[
 
 
 
 − ∫ [𝐶1 − 𝐶2𝑅𝑋

2(𝑙𝑢)]
𝐿𝑢
0

𝑑𝑙𝑢 −∫ [𝐶2𝑅𝑋(𝑙𝑢)𝑅𝑌(𝑙𝑢)]
𝐿𝑢
0

𝑑𝑙𝑢 −∫ [𝐶2𝑅𝑋(𝑙𝑢)𝑅𝑍(𝑙𝑢)]
𝐿𝑢
0

𝑑𝑙𝑢

−∫ [𝐶2𝑅𝑌(𝑙𝑢)𝑅𝑋(𝑙𝑢)]
𝐿𝑢
0

𝑑𝑙𝑢 −∫ [𝐶1 − 𝐶2𝑅𝑌
2(𝑙𝑢)]

𝐿𝑢
0

𝑑𝑙𝑢 −∫ [𝐶2𝑅𝑌(𝑙𝑢)𝑅𝑍(𝑙𝑢)]
𝐿𝑢
0

𝑑𝑙𝑢

−∫ [𝐶2𝑅𝑍(𝑙𝑢)𝑅𝑋(𝑙𝑢)]
𝐿𝑢
0

𝑑𝑙𝑢 −∫ [𝐶2𝑅𝑍(𝑙𝑢)𝑅𝑌(𝑙𝑢)]
𝐿𝑢
0

𝑑𝑙𝑢 −∫ [𝐶1 − 𝐶2𝑅𝑍
2(𝑙𝑢)]

𝐿𝑢
0

𝑑𝑙𝑢 ]
 
 
 
 

 

(6) 

An iterative solution of Eq. (5) gives the solution for 
SSC. Results of SSC are important because MSCC analysis 
is based on it, which means that obtaining correct SSC 
results will calibrate the MSCC analysis. This relation is 
more apparent in MSCC part. Two reference case (in part 
3) are used to validate the results of SSC. 



50 Demir and Polat / Challenge Journal of Structural Mechanics  9 (2) (2023) 48–54  

 

2.2. Direct stiffness method (DSM) 

Multi-segment continuous cables are monolithic 
structural elements like continuous beams. In MSCC sys-
tem there are number of intermediate supports. These 
supports are stationary and frictionless. Thus, cable is 
free to slide over these intermediate supports. In addi-
tion to the assumption of zero friction, intermediate roll-
ers are assumed to be points. Thus, cable finds its station-

ary position by sliding on the roller supports i.e. changing 
length of cable at each segment. Direct stiffness method 
is developed by modeling this inherent sliding motion. 

Total cable length of a MSCC system is known. How-
ever, length of each segment is unknown. Therefore, so-
lution procedure of MSCC system starts with distribution 
of total cable length to each segment. In Fig. 2, an initial 
geometry of MSCC is given with defined unstressed seg-
ment lengths 𝑙𝑢

𝑖 , where 𝑖 is the segment number.

 
Fig. 2. Configuration of an MSCC system.

Summation of each unstressed cable length gives the 
total length of the continuous cable with 𝑛 segments. 

 

𝐿𝑢 = ∑ 𝑙𝑢
𝑖𝑛

𝑖=1  (7) 

Solution of each cable segment is performed by SSC 
procedure with its known cable length. SSC solution for 
each segment gives the forces at the ends of the seg-
ments. Wrong distribution of segmental lengths will lead 
to unbalanced forces on intermediate roller supports. 
The unbalanced forces at 𝑖𝑡ℎ  roller support ( 𝑖𝑡ℎ  roller 
support is the connection point of 𝑖𝑡ℎ  segment and 
(𝑖 + 1)𝑡ℎ segment) is shown in Eq. (8) as ∆𝑇𝑖 . 

∆𝑇𝑖 = |�⃗� 𝐹
𝑖+1| − |�⃗� 𝐿

𝑖 | (8) 

where �⃗� 𝐹
𝑖+1  and �⃗� 𝐿

𝑖  are shown in Hata! Başvuru kay-
nağı bulunamadı.. 

 

Fig. 3. FBD of a roller support of an MSCC system. 

Converging to balanced support reactions is possible 
only by correct prediction. If not, correction step is 
needed for segment lengths of cable. Assuming quasilin-
ear behavior of the system at the end of each predictive 
solution step, a relation between unstressed length ad-
justment ∆𝑙𝑢

𝑗
 and corresponding change in the unbal-

anced reactions ∆𝑇𝑖  can be set up; where 𝑖 and 𝑗 denotes 
the support number. The relation is expressed in matrix 
form as follows. 

{∆𝑇} = [𝐾] ∙ {∆𝑙𝑢} (9) 

where, ∆𝑇  is a (𝑛𝑥1)  vector composed of ∆𝑇𝑖 , ∆𝑙𝑢  is a  
(n x 1) vector composed of ∆𝑙𝑢

𝑗
, 𝐾 is a (n x n) coefficient 

matrix composed of 𝐾𝑖𝑗.  

Coefficient matrix can be regarded as a tangential 
stiffness matrix in which 

ijK  represents the change in 
unbalanced reaction, 𝛿𝑇𝑖, due to a change in unstressed 
length 𝛿𝑙𝑢

𝑗
 between cable segments 𝑗  and (𝑗 + 1) . The 

tangential stiffness matrix in Eq. (9) can be constructed 
column-by-column by adjusting the unstressed lengths 
of cable segments at support 𝑗 by a small amount 𝛿𝑙𝑗 and 
calculating the resulting changes in the unbalanced reac-
tions 𝛿𝑇𝑖 at all supports from the reanalysis of the SCC 
with the changed segment lengths. The 𝑗𝑡ℎ column of [𝐾] 
is obtained as. 

{
 
 

 
 
𝐾1
⋮
𝐾𝑖
⋮
𝐾𝑛}
 
 

 
 

=

{
  
 

  
 
𝛿𝑇1

𝛿𝑙𝑗
⁄

⋮
𝛿𝑇𝑖

𝛿𝑙𝑗
⁄

⋮
𝛿𝑇𝑛

𝛿𝑙𝑗⁄ }
  
 

  
 

 (10) 

The objective is to balance the reactions at supports 
which is the static equilibrium condition. This is possible 
by applying required length adjustment for each seg-
ment. Length adjustments are achieved by solving Eq. 
(9). If the cable behavior were linear, the length adjust-
ments {𝛿𝑙𝑢} would eliminate the unbalanced reactions at 
intermediate supports and bring the cable system into 
true equilibrium. However, iterations are needed for the 
final equilibrium due to nonlinear behavior of cable. 
Newton-Raphson method is implemented for this pre-
dictive/corrective algorithm to reach the final equilib-
rium state. 

2.3. Tension distribution method (TDM)  
(relaxation method) 

Tension distribution method is a special form of the 
direct stiffness method. Being inception of analysis, TDM 
is inspired from the moment distribution method which 
is commonly used for the analysis of continuous beams. 
Relaxation method is the byname of this method. This 
additional name is given due to relaxation procedure at 
supports while balancing the reactions of cables at sup-
ports. In this context, this method is similar to DSM. The 

 

 𝑖𝑡ℎ  

 𝑅  𝐿
𝑖  

 

 𝑅  𝐹
𝑖+1 
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basic difference is the way of relaxation. While segment 
lengths are incremented for the whole system in DSM, 
slip amount is determined for two adjacent segments in 
TDM. Therefore, in the corrective stage, an influence 
(stiffness) coefficient is calculated at a selected joint first 
by introducing a virtual adjustment at the joint. Thus, the 
actual amount of adjustment required to eliminate the 
unbalanced reaction at the joint is determined based on 
this information. A cyclic procedure is needed for TDM, 
because elimination of unbalanced reactions (relaxa-
tion) is made for one support. Therefore, iterative cyclic 
calculations are carried out until the unbalanced reac-
tions at the intermediate supports became negligibly 
small. 

It is expected that; application of anticipated length 
adjustment ∆𝑙𝑢

𝑖 , for 𝑖𝑡ℎ  roller support makes the tension 
difference ∆𝑇𝑖 , zero. Relation between ∆𝑙𝑢

𝑖  and ∆𝑇𝑖  is ex-
pressed in Eq. (11). 

∆𝑇𝑖 = 𝑘𝑖∆𝑙𝑢
𝑖  (11) 

The stiffness coefficient of the 𝑖𝑡ℎ  roller support 𝑘𝑖 , 
can be found by adjusting the unstressed lengths of ad-
jacent segments by applying a small amount 𝛿𝑙𝑢

𝑖  and cal-
culating the resulting changes in the unbalanced reac-
tions 𝛿𝑇𝑖 at that support as follows. 

𝑘𝑖 = 𝛿𝑇
𝑖

𝛿𝑙𝑢
𝑖⁄  (12) 

In correction step of calculations, length adjustments 
can be calculated by the known tension difference ∆𝑇𝑖  
and stiffness coefficient 𝑘𝑖  from Eq. (11). It is not ex-
pected that; unbalanced reactions on each roller support 
to be zero in a single cycle of correction step due to non-
linear behavior of cable. Therefore, Newton-Raphson it-
erations are used to handle that nonlinearity. 

In order to verify and prove the result of both meth-
ods, a benchmark cable system is created for MSCC sys-
tem to point out the effect of cable motion on rollers. 
 

3. Verification Cases 

3.1. Case 1 

Case 1 is a benchmark problem which is used by many 
researchers (Andreu et al. 2006; Jayaraman and 
Knudson 1962; Michalos and Birnstiel 1962; O’Brien and 
Francis 1964; Salehi et al. 2013; Thai and Kim 2011; 
Tibert 1999; Yang and Tsay 2007). A cable suspended by 
two fixed supports has its catenary shape as illustrated 
in Fig. 4. Initial properties of cable are given in Table 1. 
An external concentrated load is applied, and displace-
ments of this node is determined. Results are compara-
tively shown in Table 2. 

3.2. Case 2 

Another SSC was defined by Peyrot and Goulois 
(1979) and used by researchers (Salehi et al. 2013; Yang 
and Tsay 2007). In this case, one end of the cable is fixed 

at a fixed position (0 m, 90 m) and the other end is moved 
starting from (0 m, 30 m) to (100 m, 30 m) as seen in Fig. 
5. Initial properties of problem are given in Table 3. Re-
actions at the second end of the cable is compared as 
seen in Table 4. 

 

Fig. 4. SSC under concentrated load. 

Table 1. Initial properties of Case 1. 

Item Data 

Cable self-weight 46.12 N/m 

Cross-sectional area 548.4 mm2 

Elastic modulus 131 kN/mm2 

Sag under self-weight at load point 29.262 m 

Unstressed cable length 1-2 125.88 m 

Unstressed cable length 2-3 186.85 m 

Table 2. Comparison of results of Case 1. 

Researcher 
Vertical  

displacement 
(m) 

Horizontal  
displacement 

(m) 

Michalos and Birnstiel (1962) -5.472 -0.845 

Jayaraman and Knudson (1962) -5.626 -0.859 

Yang and Tsay (2007) -5.625 -0.859 

Thai and Kim (2011) -5.626 -0.859 

Andreu et al. (2006) -5.626 -0.860 

O’Brien and Francis (1964) -5.627 -0.860 

Tibert (1999) -5.626 -0.859 

Salehi et al. (2013) -5.592 -0.855 

SSC Solution -5.626 -0.859 

 

Fig. 5. SSC configuration of Case 2. 
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Table 3. Initial properties of Case 2. 

Item Data 

Unstressed cable length 100 m 

Cross-sectional area 1 m2 

Cable self-weight 1 N/m 

Elastic modulus 3.0e7 N/mm2 

Thermal expansion coefficient 0.65e-5 1/°K 

Thermal change 100°K 

 

3.3. Case 3 

In order to configure a multi segment continuous ca-
ble, a continuous cable is fixed at its ends ((0,0) and 
(300,0)) and supported by two rollers ((100,0) and 
(200,0)). All supports are positioned at the same eleva- 
 

tion to point out the load effect on change in segmental 
lengths. Total cable length is selected longer than the to-
tal direct distance between supports, hereby a slack ca-
ble is achieved. Initially, the cable is loaded under its self-
weight and a distributed load which is the ten times unit 
cable weight. This distributed load is applied on mid one 
fifth portion of whole cable. Initial properties of system 
are given in Table 5 and initial equilibrium state under 
self-weight and external distributed load is given in Fig. 6. 

In this state, cable is almost linear at the first and the 
third segment. Theoretically, cable lengths at these seg-
ments should be equal due to symmetry. Taking maxi-
mum error as 0.1 mm and 0.1 N, cable lengths for each 
segment are given for finite element numbers in Fig. 7. 
As seen, almost same cable lengths are achieved for a 
small number of elements. In addition, maximum dis-
placements at the midpoint of mid-segment are given for 
increasing number of elements in Fig. 8.

Table 4. The reactions at the second end of the cable. 

Researchers Peyrot and Goulois (1979) Yang and Tsay (2007) Salehi et al. (2013) SSC Solution 

Reactions x y x y x y x y 

R1 0.00 20.02 0.01 20.02 0.01 19.99 0.0 20.02 

R2 3.061 19.93 3.061 19.93 3.090 19.83 3.061 19.942 

R3 9.172 19.24 9.172 19.24 9.16 19.14 9.172 19.252 

R4 22.15 15.73 22.15 15.73 22.11 15.63 22.146 15.744 

R5 504.0 -328 504.1 -328.9 504.48 -329.4 504.102 -328.859 

R6 4.17e6 2.511e6 42.56e6 -25.53e6 42.56e6 -25.55e6 42.58e6 -25.55e6 

Table 5. Initial properties of Case 3. 

Item Data 

Total unstressed cable length 315 m 

Cross-sectional area 7.854e-5 m2 

Cable self-weight 6.0482 N/m 

External load 60.482 N/m 

Elastic modulus 200e9 N/m2 

Thermal expansion coefficient 1.2e-5 1/C 

 

Fig. 6. Initial equilibrium state of Case 3. 

In this state, cable is almost linear at the first and the 
third segment. Theoretically, cable lengths at these seg-
ments should be equal due to symmetry. Taking maxi-
mum error as 0.1 mm and 0.1 N, cable lengths for each 
segment are given for finite element numbers in Fig. 7. 
As seen, almost same cable lengths are achieved for a 
small number of elements. In addition, maximum dis-
placements at the midpoint of mid-segment are given for 
increasing number of elements in Fig. 8. 

Additional point loads are applied to see the changes in 
cable lengths of segments and the displacement of mid-
segment. These point loads are applied to left segment 
and right segment. Amounts of point loads are 5080.488 
N and 2540.488 N, respectively. Locations of forces on ca-
ble are specified as cable length which are 63 m and 252 
m measured from left support of MSCC system. Final con-
figuration of MSCC is given in Fig. 9 for 3000 finite ele-
ments and predefined precisions. Changes on MSCC sys-
tem solved by TDM, DSM and ANSYS (a commercial com-
puter program) are given in Tables 6-8, respectively. So-
lution times does not exceed a several minutes via a stand-
ard laptop computer. Solution time depends on mostly the 
cable slackness which decreases its stability. In ANSYS 
analysis, LINK10 element is used to model the cable. Be-
sides, CONTA175 and TARGE169 elements are used for 
modelling of contact between the roller and the cable. 

Table 6. Coordinates of nodes having maximum  
vertical displacement solved by TDM. 

Segments 
Initial state Final state 

X (m) Y (m) X (m) Y (m) 

Left segment 50 -2.0640 59.0275 -22.2794 

Mid-segment 149.8866 -25.8670 148.6932 -11.5097 

Right segment 250 -2.0798 237.8608 -10.4961 
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Table 7. Coordinates of nodes having maximum  
vertical displacement solved by DSM. 

Segments 
Initial state Final state 

X (m) Y (m) X (m) Y (m) 

Left segment 50 -2.0723 59.0277 -22.2806 

Mid-segment 149.8866 -25.8670 148.6931 -11.5098 

Right segment 250 -2.0798 237.8608 -10.4961 

Table 8. Coordinates of nodes having maximum  
vertical displacement solved by ANSYS. 

Segments 
Initial state Final state 

X (m) Y (m) X (m) Y (m) 

Left segment 50 -2.0712 58.9193 -22.2874 

Mid-segment 149.9024 -25.9248 148.6820 -11.5099 

Right segment 250 -2.0768 237.7980 -10.4932 

 

Fig. 7. Segment cable lengths vs. number of finite elements. 

 

Fig. 8. Maximum displacement vs. number of finite elements.

 

Fig. 9. Final equilibrium state of Case 3. 

4. Conclusions 

Multi-segment continuous cable (MSCC) has different 
behavior from single segment cable (SSC). A cable having 
constant length is fixed at its ends in SSC systems. In con-
trast, a cable having constant length is fixed at ends and 
supported by stationary and frictionless roller supports 

between ends in MSCC systems. Therefore, cable length 
of each segment is not constant for MSCC; it can change 
by the change of loading conditions as seen in the verifi-
cation cases. This length change will change the resultant 
forces on cable and supports. 

In this study, a novel solution approach is proposed 
for MSCC systems. Two methods are proposed; direct 
stiffness method (DSM) and tension distribution method 
(TDM) (relaxation method). DSM is imitated from the in-
herent motion of cable on roller supports and based on 
the stress continuity on the continuous cable. TDM is in-
spired from the moment distribution method, which has 
been used for continuous beam solutions.  
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DSM calculates length adjustment for the entire sys-
tem consisting all segments which yields stress continu-
ity through the cable. Length adjustments are calculated 
and applied for all roller supports. Nevertheless, stress 
continuity does not yield in one calculation phase. TDM 
calculates the length adjustment for two adjacent seg-
ments. Length adjustments are calculated and applied 
for each roller support, thus one cycle of calculations is 
fulfilled. Nevertheless, stress continuity does not yield in 
one cycle due to nonlinear behavior of cable. Newton-
Raphson technique is used for both methods to over-
come the nonlinearity. 

Although DSM and TDM run in a similar manner, there 
are some differences. Those differences are due to the 
behavior of methods. DSM considers the circumstances 
on each segment while calculating the segment length 
adjustments. In contrast, TDM adjust two adjacent seg-
ment lengths by assuming other segments ineffective. 
Thus, those behaviors of methods give some advantages 
and disadvantages which are mainly related with the 
computational cost of the methods. DSM loses its effec-
tiveness and speed for cable systems having many seg-
ments. In contrast, speed (not solution time) of TDM 
does not depend on the number of roller supports. Con-
sequently, selection of method should be made accord-
ingly, which will affect the solution time. Nevertheless, 
verification results show that both methods are effective 
and accurate methods for MSCC systems. 
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