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Abstract  

 

Nowadays, it is becoming increasingly important to use the most efficient and most suitable computational resources for 

algorithmic tools that extract meaningful information from big data and make smart decisions. In this paper, a comparative 

analysis is provided for performance measurements of various machine learning and bioinformatics software including scikit-

learn, Tensorflow, WEKA, libSVM, ThunderSVM, GMTK, PSI-BLAST, and HHblits with big data applications on different 

high performance computer systems and workstations. The programs are executed in a wide range of conditions such as single-

core central processing unit (CPU), multi-core CPU, and graphical processing unit (GPU) depending on the availability of 

implementation. The optimum number of CPU cores are obtained for selected software. It is found that the running times depend 

on many factors including the CPU/GPU version, available RAM, the number of CPU cores allocated, and the algorithm used. 

If parallel implementations are available for a given software, the best running times are typically obtained by GPU, followed 

by multi-core CPU, and single-core CPU. Though there is no best system that performs better than others in all applications 

studied, it is anticipated that the results obtained will help researchers and practitioners to select the most appropriate 

computational resources for their machine learning and bioinformatics projects. 

 

Keywords: Machine learning, bioinformatics, high performance computing, speed performance analysis 

 

 

1. INTRODUCTION   

 

We live in an age with millions of data generated every day. 

Originally introduced in the fields of astronomy, genomics, 

and bioinformatics, the concept of big data is now showing 

itself in every aspect of our lives. The Internet search engine 

Google presents huge amounts of data in every field, from 

diagnostics and treatment of diseases to shopping on the 

internet. In order to understand the information hidden in 

large collections of data, various computational tools, 

technologies and disciplines are brought together such as 

databases, computer programming, algorithms, high 

performance computing, data mining, machine learning, and 

artificial intelligence. As a result of this endeavor, customer 

trends and preferences can be envisaged dynamically, 

companies can make better strategic and innovative 

decisions, weather, economic trends, energy and service 

demands can be forecasted better to plan resources more 

effectively. Furthermore, risk factors, security threads can be 

predicted ahead of time, diseases can be prognosed and 

prevented at an early stage, new drugs and therapies can be 

developed, all of which improve the quality of our lives. 

 

Discovering and processing information in large collections 

of data calls for intelligent and efficient algorithms. For this 

purpose, artificial intelligence and machine learning methods 

are widely employed. Example applications of these 

techniques include object recognition from images, speech 

recognition, natural language processing, video 

classification, recommender systems, anomaly detection, 

forecasting, disease detection, survival analysis, churn 

prediction, and analyzing genes/proteins of organisms. 

Various algorithms have been proposed in the literature for 

making smart decisions. In addition to selecting the most 

suitable algorithm for the application of interest, it is also 

important to choose the right computational resources (both 

in terms of hardware and software) in order to process 

information accurately and efficiently. The running time of 

an algorithm can be different from one software to another. 

Furthermore, the possibility of executing the algorithm 

simulatenously on multiple processors in parallel (e.g. multi-

core CPUs or GPUs) may improve the running time of an 

algorithm dramatically [1]. Based on this fact, high 

performance computing (HPC) systems have been 

developed that contain parallel file systems, fast 

communication interfaces, CPU and GPU nodes, all of 
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which aim to maximize the execution speed of computer 

programs [2].  

 

There has been a number of studies in the literature that 

analyze the performance of different machine learning 

software. Kochura et al. compared Tensorflow, 

DeepLearning4J, and H2O in single and multi threaded 

modes [3]. Kovalev et al. compared Theano, Torch, Caffe, 

Tensorflow, Keras, and DeepLearning4J in terms of speed 

and accuracy [4]. Shatnawi et al. compared Tensorflow, 

Keras, Theano, and Microsoft’s CNTK in terms of 

performance for object recognition from images [5]. 

Bahrampour et al. compared Caffe, Neon, Tensorflow, 

Theano, and Torch in terms of extensibility, hardware 

utilization and speed for implementing convolutional and 

recurrent neural networks [6]. In addition to these, there are 

also studies that compare the performance of software 

developed for other big data applications such as 

bioinformatics. Among those, Bader et al. developed a 

benchmark suite to evaluate the performance of 

bioinformatics software on HPC architectures [7] and Kurtz 

et al. compared performance of bioinformatics software on 

multi-core systems [8]. 

 

To date, most of the work in the literature concentrated on 

analyzing and comparing the speed of software only. Despite 

the prevalent work on popular software on deep learning and 

artificial intelligence, there is not much work that analyzes 

how these software behave in different HPC systems and 

how they compare to standard workstations. This could be 

important because running a progam on an HPC cluster may 

not always be the best option due to waiting times in the 

queues. Furthermore, the available hardware resources in an 

HPC may not be the best choices for a given computer 

software.  

 

This paper focuses on analyzing the speed of software and 

algorithms in selected fields of machine learning and 

bioinformatics on various HPC systems in Turkey, on 

workstations and on single-core CPU, multi-core CPU, and 

GPU platforms including NVIDIA’s recently developed 

DGX-1, which is one of the fastest system architectures 

specialized for artificial intelligence [9]. The following 

scientific problems are considered: protein sequence 

alignment, protein structure prediction, respiratory viral 

infection detection, and optical character recognition by deep 

learning, all of which originate from scientific and/or 

technological projects. To the best of our knowledge there is 

no work in the literature that compares the performance of 

the selected software related to these problems on different 

HPC systems. The machine learning software tested include 

Tensorflow [10] scikit-learn [11], WEKA [12], Graphical 

Models Toolkit (GMTK) [13], libSVM [14], and 

ThunderSVM [15] for optical character recognition, protein 

structure prediction, and respiratory virus infection detection 

problems in which the train sets contain thousands of 

examples and hundreds of features. Among bioinformatics 

software, PSI-BLAST [16] and HHblits [17] are employed 

to align a protein's amino acid sequence to sequences in a 

large database with millions of proteins. All of these 

applications require processing millions or billions of data 

elements.  

 

2. MATERIAL AND METHOD 

 

In the subsequent sections, the software and computer 

systems used in this study will be explained in more detail. 

 

2.1. Operating System, Software and Algorithms 

 

This section details the computational methods and 

algorithms implemented for bioinformatics, health 

informatics, and machine learning problems along with the 

software used.  

 

2.1.1. Operating System 

 

All of the methods are implemented and tested using a Linux 

operating system with Ubuntu as the Linux distribution. 

 

2.1.2. Protein Sequence Alignment by PSI-BLAST  

 

Protein sequence alignment is one of the widely used 

applications in bioinformatics research projects. The amino 

acid sequence of a query protein whose structure and/or 

function is unknown is compared against the sequences of 

database proteins. This enables to understand (i.e. annotate) 

the structure and/or function of the query protein by finding 

matches against database proteins with known function. PSI-

BLAST [16] is a popular algorithm part of the BLAST 

software that is used to align the amino acid sequence of a 

query protein with millions of proteins in the non-redundant 

protein database (NR) of National Center for Biotechnology 

Information (NCBI) [18]. It is an iterative algorithm, which 

is developed mainly for finding hits (i.e. subject proteins) 

that have similar amino acid sequence as the query as well as 

distant hits that have low sequence similarity but high 

structural and/or functional similarity with the query. An 

example PSI-BLAST alignment is shown in Figure 1. 

 

 
 

Figure 1. PSI-BLAST alignment between two proteins 

 

In this paper, PSI-BLAST version 2.7.1 is executed on 

various computing systems for flavodoxin protein with 

Protein Data Bank (PDB) ID 1FX1A, which contains 147 

amino acids [19]. To compute these alignments, the NR 

database dated as September 4, 2018 is employed that 

contains 167,895,434 amino acid sequences and 

61,228,200,318 amino acids. The following parameters are 

used for PSI-BLAST: number of iterations=3, e-value 
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threshold=10, inclusion threshold=0.001, and the number of 

threads=28. Therefore the parallel version of PSI-BLAST is 

executed on multi-core CPUs for speed comparison. Note 

that each query protein can have a different number of amino 

acids and therefore the running time of PSI-BLAST can be 

different for each protein.  

 

2.1.3. Protein Sequence Alignment by HHblits 

 

Formerly known as HHsearch, HHblits is an iterative protein 

sequence alignment algorithm that employs hidden Markov 

model (HMM) profiles and is capable of finding proteins 

with high structural and/or functional similarity to the query 

protein [17]. The sequence similarity between query and hits 

may be low or high depending on the availability of distant 

or close matches. HHblits is shown to provide more sensitive 

alignments and can find more distant hits than PSI-BLAST. 

An example HHblits alignment is shown in Figure 2. 

 

 
 

Figure 2. HHblits alignment between two proteins 

 

In this paper, the query protein 1FX1A is aligned with the 

sequence database using the hhblits utility and the multiple 

alignment is computed using the hhmake utility of HHblits.  

Uniprot20 is used as the sequence database dated as February 

2016, which contains 8,290,068 proteins, 1,874,100,330 

amino acids, and PDB70 as the HMM-profile database dated 

as 06 September 2014, which contains 36,595 proteins and 

9,303,025 amino acids. The following parameters are used 

when computing the alignments: the number of iterations in 

the first step=2, the number of iterations in the second 

step=1, the number of threads=28. After performing the first 

step and building an HMM-profile, secondary structure 

sequence of the query is predicted using PSIPRED version 

2.6 [20] and added to the HMM-profile model using addss.pl 

script of HHblits. The HMM-profile of the query is aligned 

with the HMM-profiles in the PDB70 database using the 

hhblits utility. During this step, the secondary structure label 

sequences of the hits are obtained from the DSSP database 

[21] automatically by HHblits.  

 

2.1.4. Random forest by scikit-learn 

 

Scikit-learn is a Python [22] library for implementing 

machine learning methods [11]. To analyze the performance 

of scikit-learn, a random forest classifier is implemented, 

which combines predictions from multiple decision trees 

using the bagging ensemble technique [23]. A random forest 

model is depicted in Figure 3. 

 
Figure 3. A random forest classification model [24] 

 

A machine learning classifier aims to find a mapping 

between a given input feature vector 𝐱 = [𝑥1, 𝑥2, … , 𝑥𝐷] and 

an output variable 𝑦 so that 

𝑦 = 𝑓(𝐱)                                 (1) 

where 𝑥𝑖 (1 ≤ 𝑖 ≤ 𝐷) represent feature variables (i.e. 

parameters), 𝐷 is the number of dimensions and 𝑦 can take a 

discrete class value. For example, each tree model in Figure 

3 is a decision tree classifier that produce a class label 𝑦 (1 ≤
𝑦 ≤ 𝐾) as the output signal where 𝐾 is the number of 

possible class types. Then the random forest model chooses 

the particular class type that is predicted most frequently by 

the decision tree classifiers according to the majority voting 

rule.  

 

In order to train a machine learning classifier, a set of training 

samples are used, which are denoted as 𝐱𝑛 (1 ≤ 𝑛 ≤ 𝑁) 

where 𝑁 is the number of samples in training set. Similarly, 

to evaluate the prediction accuracy of a classifier, a set of test 

examples are used. Training in this regard corresponds to 

learning the function 𝑓(. ) from the training set by 

minimizing a cost function with the ultimate goal of making 

correct predictions for examples that are in training set and 

those that are outside (i.e. for new samples).  

 

For the random forest classifier model, a train set (with 

1,000,000 samples and 100 features) and a test set (with 

100,000 samples and 100 features) are generated artificially 

using the make_classification method of scikit-learn’s 

dataset class. The number of class labels is set to 2 (i.e. a 

binary classification problem). Then a random forest model 

is trained on the train set and class predictions are computed 

on test set. The number of trees parameter is set to 100, 

max_depth to 2, random_state to 0, and n_jobs to 1 and 28 

(i.e. single-core and multi-core executions). The scikit-learn 

version 0.20.2 is used in TRUBA, version 0.19.1 in İTÜ 

Uhem, version 0.20.1 in AGÜ HPC and version 0.19.2 is in 

all the remaining systems. These versions, albeit slightly 

different, are close to each other, which will not affect the 

performance of random forest models significantly. For 

instance, though the scikit-learn version in TRUBA is newer 
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than the other systems, it did not provide the fastest 

execution times as demonstrated in the results section. For 

this reason, the performance differences can be largely 

attributed to the hardware resources instead of the software 

versions. 

 

2.1.5. Multi-layer perceptron by WEKA  
 

WEKA software is developed in Java programming 

language for implementing various machine-learning 

methods [12]. In this paper, a multi-layer perceptron (MLP) 

neural network model [25] is implemented using WEKA for 

respiratory virus infection detection. An MLP architecture is 

illustrated in Figure 4.  

 

Figure 4. A multi-layer perceptron neural network model 

[26] 

 

In this architecture, the yellow squares represent input 

feature values 𝑥𝑖 (1 ≤ 𝑖 ≤ 𝐷), the blue circles represent 

hidden nodes ℎ𝑗
(𝑙)

 (1 ≤ 𝑙 ≤ 2), (1 ≤ 𝑗 ≤ 𝑀), the green 

circles represent the output nodes 𝑦𝑘  (1 ≤ 𝑘 ≤ 2). The 

output signal is computed by propagating the input feature 

vector 𝐱 = [𝑥1, 𝑥2, … , 𝑥𝐷] from left to right in the network. 

The output signal at the hidden nodes (i.e. the one on the left) 

is computed by the following relation 

 

ℎ𝑗
(1) = 𝜑(𝑎𝑗)                           (2) 

where ℎ𝑗
(1)

 represents the output of the 𝑗𝑡ℎ hidden node of the 

first hidden layer, 𝜑(. ) denotes a non-linear activation 

function and 𝑎𝑗 is computed as 

     𝑎𝑗 = ∑ 𝑤𝒊𝒋
(1)
𝑥𝒊

𝐷
𝑖=1                               (3) 

where 𝑤𝒊𝒋
(1)

 is the weight parameter between the 𝑖𝑡ℎ input 

feature and the 𝑗𝑡ℎ hidden node of the first hidden layer. 

Applying the same functions for the second hidden layer, 

output of the network can be obtained as  

 

𝐲 = 𝑓(𝐱,𝐰)                             (4) 

where 𝐲 = [𝑦1 , 𝑦2, … , 𝑦𝐾] with 𝐾 being the number of 

possible class types and 𝐰 is a vector that contains the set of 

all weight parameters of the network.   

Based on this formulation, training a neural network 

corresponds to learning a set of weight parameters 𝐰 that 

minimize a cost function. If squared loss is selected as the 

cost metric then the goal of training becomes finding 𝐰 that 

minimize 

                             𝐸(𝐰) = ∑ (𝐲𝑛 − 𝐭𝑛)
2𝑁

𝑛=1                       (5) 

 

where 𝐲𝑛 is the network’s output for the 𝑛𝑡ℎ data sample and 

𝐭𝑛 is the true output for the 𝑛𝑡ℎ data sample.  

 

The data set used for training and testing the MLP model 

contained gene expression data for Respiratory Viral 

DREAM Challenge, which was an international competition 

held in 2016-2017 and organized by Sage Bionetworks, 

Duke University, and Darpa [27]. The goal in this challenge 

was to predict whether a person will be infected by 

respiratory flu viruses (before and after being exposed to 

virus). Data is obtained by performing microarray 

experiments using Human Affymetrix assay and blood 

samples of the subjects [27]. The dataset contained 22,276 

gene features, 118 samples (i.e. subjects), and 2 class labels, 

which represents whether a flu virus will be present in nasal 

samples of the subjects. The same dataset is used both for 

training and testing phases of the MLP model. The number 

of hidden layers is set to 1, the number of hidden units to 5, 

random number seed to 0, and number of threads to 1 and 28 

(i.e. both single-core and multi-core CPU platforms are 

considered). Model training is performed by conjugate 

gradient algorithm [28], which is recommended when the 

number of features is large. In all experiments, WEKA 

version 3.8.0 is employed. 

 

2.1.6. Deep Convolutional Neural Network by 

Tensorflow  
 

Tensorflow is a Python library developed by Google for 

implementing neural network models [10]. In this paper, a 

deep convolutional network model [29] is implemented 

using Tensorflow for optical character recognition [30] from 

images. An example convolutional network is shown in 

Figure 5. 

 

 
Figure 5. A deep convolutional neural network for image 

recognition [31] 

 

A convolutional neural network operates similar to a multi-

layer perceptron network. Instead of having a fully 

connected architecture it has a sparse structure with most of 

the weights are set to zero. In this paper, notMNIST dataset 

[32] is used which contains 28 by 28 images of characters 

ranging from A to J as shown in Figure 6. This dataset is 
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more challenging than the standard MNIST dataset [33], 

which is used for recognizing digits.  

 

 
Figure 6. notMNIST dataset of characters from A to J [34] 

 

The notMNIST dataset is randomly partitioned into a train 

set of 200,000 images and a test set with 10,000 images. The 

convolutional network contains one input layer, three 

convolutional layers, two fully connected MLP layers and an 

output layer. The network has the following specifications. 

A 5 by 5 kernel is used at the convolutional layers. The 

“same” zero padding strategy is employed at the 

convolutional layers so that the signal dimensions are 

maintained. The activation function is set to ReLU in all 

hidden layers and softmax at the output layer. Each 

convolutional layer is followed by a max pooling layer with 

a kernel size of 2 by 2 and a stride size of 2 by 2. The number 

of filters in convolution layers is set to 8, 16, and 32, 

respectively. The number of hidden nodes in fully connected 

MLP layers is set to 256 and 128, respectively. Dropout 

regularization is performed at each hidden layer in which the 

dropout probability set to 0.7. L2-norm regularization (i.e. 

weight decay) is also employed on the weight parameters 

with the regularization coefficient set to 0.001. The network 

is trained using the gradient descent algorithm with mini-

batch size set to 128 and number of iterations to 100,001. 

The train set is shuffled and a random mini-batch is 

employed in each iteration. Weights are randomly initialized 

by the Xavier approach [35]. Learning rate is initialized to 

0.1 and an exponential decay is performed for the learning 

rate with decay step set to 1000 and decay rate to 0.96. The 

loss function is selected as the cross-entropy, which is 

minimized to learn the weight parameters of the network. 

Tensorflow is executed on three different settings: single-

core CPU, multi-core CPU (number of cores set to 28) and 

GPU. Once trained, the network was able to obtain 96.3% 

classification accuracy on test set. Tensorflow version 1.10.0 

is employed in AGÜ HPC, 1.5.0 in İTÜ UhEM, and 1.12.0 

in all the remaining systems. Similar to scikit-learn, the 

software version differences do not contribute significantly 

to running time performance of Tensorflow. For example in 

TRUBA, version 1.12.0 is used, which is the most recent 

among the versions tested though the running times of 

Tensorflow are not the smallest in this system. 

2.1.7. Support Vector Machine by libSVM and 

ThunderSVM  
 

libSVM [14] is developed in C++ programming language for 

implementing support vector machine (SVM) models [36], 

which runs on single-core CPU only. Recently, an alternative 

software named ThunderSVM [15] is introduced that 

parallelizes the kernel computation steps of an SVM. 

ThunderSVM is developed in C++ and can be executed on 

multi-core CPU and on GPU systems.  

 

In this paper, a support vector machine model is 

implemented using libSVM and ThunderSVM for protein 

secondary structure prediction. Figure 7 shows the principle 

behind a support vector machine, which maps the input 

feature vectors to a new space by a kernel transformation and 

finds a linear hyper-plane that best separates data samples. 

 
 

Figure 7. A support vector machine maps data samples to a 

higher dimensional space and finds a hyper-plane that best 

separates classes [37] 

 

Given a training set of sample-label pairs (𝐱𝑛, 𝑦𝑛) (1 ≤ 𝑛 ≤
𝑁) where 𝐱𝑛 ∈ ℝ𝑫 and 𝑦𝑛 ∈ {−1,1}, an SVM classifier aims 

to solve the following optimization problem: 

 

min
𝐰,𝑏

1

2
𝐰T𝐰+ 𝐶 ∑ 𝜉𝑛

𝑁
𝑛=1                  (6)  

  

subject to 

𝑦𝑛(𝐰
T𝜙(𝐱𝑛) + 𝑏) ≥ 1 − 𝜉𝑛                 (7) 

𝜉𝑛 ≥ 0                                                    (8) 

where 𝐶 is the penalty parameter of the error term, 𝑏 is the 

bias parameter, and 𝐾(𝐱𝑖, 𝐱𝑗) = 𝜙(𝐱𝑖)𝜙(𝐱𝑗)  is denoted as 

the kernel function. In this paper, an RBF (i.e. Gaussian) 

kernel is employed.  

 

The dataset used to train and test the SVM classifier in this 

work contains position specific scoring matrix (PSSM) 

features obtained by PSI-BLAST and HHblits alignment 

methods as well as structural profile matrices. The train set 

contains 36,676 samples and the test set contains 10,497 

samples. Each data sample corresponds to an amino acid of 

a protein. The number of features is 473 and the number of 

class labels is 3. In all experiments, libSVM version 3.21 is 

employed.  
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2.1.8. Dynamic Bayesian Network by GMTK  
 

Graphical Models Toolkit (GMTK) [13] is developed in C++ 

programming language for implementing probabilistic 

graphical models by Bilmes lab [38]. In this paper, a dynamic 

Bayesian network (DBN) [39], which is a time-series lattice 

model (a super-class of hidden Markov model [40]), is 

implemented using GMTK for protein secondary structure, 

solvent accessibility, and torsion angle class prediction 

problems [41]. A DBN model is shown in Figure 8. 

Predicting such properties of proteins is widely used as 

precursors for predicting the three dimensional structure, 

which enables to elucidate the functional role of the protein 

and has applications in drug design.  

 

 
Figure 8. A dynamic Bayesian network is a probabilistic 

graphical model  

 

For secondary structure prediction, two benchmark datasets 

named CB513 [42] and EVAset [43] are employed. For 

solvent accessibility and torsion angle class prediction, the 

EVAset benchmark is employed. 220 proteins are selected 

randomly from CB513 to form a train set, and another 220 to 

form a test set. As a result of this selection, the number of 

amino acid samples is obtained as 36,946 for train set and 

36,676 for test set derived from CB513. The number of input 

features used to train each conditional Gaussian distribution 

of the DBN model is 120. A similar selection procedure is 

applied to EVAset. As a result, 2589 proteins with 532,216 

amino acid samples are randomly selected to form the train 

set and 287 proteins with 52,379 amino acid samples to form 

the test set. The number of input features that are employed 

to train conditional Gaussian distributions of the DBN is 200 

for solvent accessibility and torsion angle prediction 

experiments performed on EVAset. Details of the DBN 

model implemented for predicting structural properties of 

proteins can be found in the papers by Aydin et al. [44], [45]. 

All the experiments are performed on single-core CPU using 

GMTK version 1.4.4.  

 

 

2.2. Hardware Resources 

 

In this section, we explain the hardware specifications of the 

computing systems used in this work. 

 

2.2.1 TRUBA  

 

TRUBA (Turkish National Science e-Infrastructure) also 

known as TÜBİTAK ULAKBIM High Performance and 

Grid Computing Center [46] is one of the national clusters of 

Turkey located in the city of Ankara. It contains various 

hardware resources and SLURM job queues (i.e. partitions). 

The software simulations performed in this paper are 

executed in different queues of TRUBA and on machines 

with different capacities. The jobs that used single-core CPU 

are executed on the single partition, those that employed 

multi-core CPUs are executed on the short partition, and 

those that required GPU are executed on the akya-cuda 

partition. The jobs that are sent to single partition are 

executed on machines named levrek, which have the 

following specifications: 32 CPUs, 2 sockets, 8 cores per 

socket, 2 threads per core, 2 nodes, CPU model Intel(R) 

Xeon(R) CPU E5-2690 0 @ 2.90GHz, and 256 GB of RAM. 

The multi-core CPU versions of PSI-BLAST, HHblits, 

ThunderSVM, WEKA, and scikit-learn are executed on the 

short partition on machines named barbun, which have the 

following configurations: 80 CPUs, 2 sockets, 20 cores per 

socket, 2 threads per core, CPU model Intel(R) Xeon(R) 

Gold 6148 CPU @ 2.40GHz, and 384 GBs of RAM. The 

multi-core CPU versions of Tensorflow are executed on the 

short partition on machines called sardalya with the 

following maximum specifications: 56 CPUs, 2 sockets, 14 

cores per socket, 2 threads per socket, CPU model Intel(R) 

Xeon(R) CPU E5-2690 v4 @ 2.60GHz, and 256 GBs of 

RAM. The GPU versions of ThunderSVM and Tensorflow 

are executed on akya-cuda partition which have the 

following maximum CPU configurations: 40 CPUs, 2 

sockets, 20 cores per socket, 1 threads per core, CPU model 

Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 384 GBs of 

RAM. The GPU configuration of akya-cuda includes 4 

NVIDIA Tesla V100 with NVlink connection interface and 

16 GBs of RAM. Details of hardware specifications in 

TRUBA can be found on the wiki page [47].  

 

2.2.2 İTÜ UHeM 

 

UHeM [48] is established in Istanbul Technical University 

(İTÜ). It is known as National Center for High Performance 

Computing funded by the Ministry of Development. It has a 

distributed cluster system as shown in Figure 9.  

 

 
Figure 9. Distributed cluster system of İTÜ UhEM 
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Similar to TRUBA, UHeM contains various hardware 

resources and SLURM job queues (i.e. partitions). The 

SLURM jobs of this paper are executed on shortq, defq, 

bigmemq and gpuq partitions of UHeM’s Sariyer cluster. 

Each CPU server employed for the present work had the 

following specifications: 28 CPUs, 2 sockets, 14 cores per 

socket, 1 threads per core, CPU model  Intel(R) Xeon(R) 

CPU E5-2680 v4 @ 2.40GHz. The RAM sizes of these 

machines are typically 128 GB (except for machines having 

name range f004-f013 which have 512 GB corresponding to 

the queue named bigmemq). The gpuq partition contains 

NVIDIA Tesla K20m GPUs. Detailed hardware 

specifications of Sariyer cluster can be found on the wiki 

page [49]. 

 

2.2.3 Feynman Grid  

 

Feynman Grid is the High Performance Computing cluster 

system of CompecTA company in Istanbul, Turkey [50]. All 

the CPU jobs in this work are executed in the short partition 

of Feynman Grid and the GPU jobs are executed on the cuda 

partition. The compute nodes have the following hardware 

specifications: 56 CPUs, 2 sockets, 14 cores per socket, 2 

threads per core, CPU model Intel(R) Xeon(R) CPU E5-

2697 v3 @ 2.60GHz. The RAM capacity of each compute 

node is 128 GB. The GPU node contains   4 NVIDIA Tesla 

K80.  

 

2.2.4 AGÜ HPC  

 

AGÜ HPC is the High Performance Computing cluster 

established in Abdullah Gul University [51]. All CPU jobs 

are executed in shorter partition except for the CPU version 

of Tensorflow which is executed on the short partition. The 

hardware specifications of the compute nodes are as follows: 

36 CPUs, 2 sockets, 18 cores per socket, 1 threads per core, 

CPU model Intel(R) Xeon(R) Gold 6150 CPU @ 2.70GHz. 

The RAM size in each compute node is 384 GBs. The GPU 

jobs are executed in cuda partition, which contains NVIDIA 

DGX-1, with V100 processor, 8 GPUs, NVlink connection 

interface and 512 GBs of RAM. Detailed specifications of 

DGX-1 can be found in [9]. 

 

2.2.5 Fujitsu Workstation 

 

The Fujitsu workstation contains 32 CPUs, 2 sockets, 8 cores 

per socket, 2 threads per core, 2 nodes, CPU model Intel(R) 

Xeon(R) CPU E5-2650 v2 @ 2.60GHz, and 64 GBs of 

RAM. As the GPU, Fujitsu has one NVIDIA Tesla K20c and 

one Quadro K2000. 

 

2.2.6 Supermicro Workstation 

 

The Supermicro workstation contains 28 CPUs, 2 sockets, 

14 cores per socket, 1 thread per core, 2 nodes, CPU model 

Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz, and 128 

GBs of RAM. This workstation also has two NVIDIA Tesla 

K80 GPUs.  

 

3. FINDINGS 

 

In this section, software execution times on various systems 

as well as the dependency of selected software on the number 

of CPUs are analyzed. Since there is no work in the literature 

that perform a similar analysis on the selected software and 

system configurations, the performance results obtained for 

Fujitsu and Supermicro workstations are taken as the 

baseline while the rest represent the HPC systems.  

 

3.1 Speed Comparison of Systems 

 

This section includes the running times of software on 

different systems. Tables 1 and 3 shows the running times of 

two bioionformatics software for protein sequence 

alignment, each executed twice with the second execution of 

a given software is performed right after the first execution 

finished. In these tables, MC stands for multi-core CPU in 

which 28 threads are used. According to Table 1, the best 

running times are obtained on Supermicro workstation (1st 

execution), TRUBA and AGÜ HPC (2nd execution). A large 

time difference is obtained between the first and the second 

executions of PSI-BLAST. This is due to the fact that the 

first time the program is executed, it loads the NR database 

with hundreds of millions of proteins to RAM, which is the 

main performance bottleneck. When the program is executed 

again soon after the first execution, the running time drops 

considerably due to the availability of the database in RAM’s 

cache unless a script in the system clears the cache 

automatically. An exception occurred for Fujitsu workstation 

which had a RAM capacity of 64 GBs where the NR 

database with size more than 90 GBs did not fit into RAM. 

For this reason, the second execution took much longer on 

this workstation as compared to other systems. A similar 

behavior is observed for UhEM. However the UhEM’s PSI-

BLAST job is submitted to bigmemq partition which has 512 

GBs of RAM capacity. Therefore the reason for having the 

second execution taking a long time may be attributed to the 

inavailability of the NR database in RAM’s cache. This can 

be due to the fact that bigmemq is a partition that is designed 

for jobs that require high RAM capacity and automated 

system scripts may be preventing the jobs to use the cache in 

subsequent executions. Table 2 lists the partitions and 

machines (i.e. compute nodes) used to execute PSI-BLAST 

on various systems. Note that since Fujitsu and Supermicro 

are workstation computers, they only contain one SLURM 

partition (i.e. no multiple partitions or nodes are defined on 

these machines). 

 

Table 1. Running times of PSI-BLAST on various 

computing systems. A second submission is performed right 

after the first submission finished executing. 

System PSI-BLAST 1 MC PSI-BLAST 2 MC 

TRUBA 11 min 45 sec 1 min 0 sec 

UhEM  30 min 01 sec 30 min 18 sec 

Feynman  9 min 30 sec 2 min 22 sec 

AGÜ  22 min 26 sec 1 min 0 sec 

Fujitsu 41 min 38 sec 42 min 22 sec 

Supermicro 4 min 37 sec 1 min 48 sec 
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Table 2. Partitions and nodes used for PSI-BLAST on 

various computing systems. A second submission is 

performed right after the first submission finished executing. 

 

System Partition, Node  

TRUBA short, barbun[68-70] 

UhEM  bigmemq, f008 

Feynman  short, cn03 

AGÜ  shorter, cn01 

 

Table 3 summarizes the running times of HHblits. The best 

results are obtained on Supermicro Workstation (1st 

execution) and UhEM (2nd execution). Similar to PSI-

BLAST, there has been a difference between the running 

times of the first and the second execution. However this 

difference is less than PSI-BLAST, which could be related 

to the fact the protein sequence database employed in 

HHblits (i.e. Uniprot) is smaller than the NR database of PSI-

BLAST. Table 4 lists partitions and machines (i.e. compute 

nodes) used to execute HHblits on various systems. Note that 

on UhEM, shortq partition is used instead of bigmemq since 

the database of HHblits is not as large as the NR database of 

PSI-BLAST. For this reason, the running time of the second 

execution has reduced as compared to the PSI-BLAST 

experiments on UhEM.  

 

Table 3. Running times of HHblits on various computing 

systems. A second submission is performed right after the 

first submission finished executing. 

 

System HHblits 1 MC HHblits 2 MC 

TRUBA 1 min 10 sec 35 sec 

UhEM  1 min 06 sec 29 sec 

Feynman  1 min 18 sec 1 min 03 sec 

AGÜ  1 min 19 sec 1 min 0 sec 

Fujitsu 1 min 37 sec 56 sec 

Supermicro 45 sec 44 sec 

 

Table 4. Partitions and nodes used for HHblits on various 

computing systems. A second submission is performed right 

after the first submission finished executing. 

 

System Partition, Node 

TRUBA short, barbun 

UhEM  shortq, f001 

Feynman  short, cn07 

AGÜ  shorter, cn01 

 

Table 5 contains the running time of the random forest model 

implemented by the scikit-learn library of Python. Reading 

data from disk to RAM, model training, and prediction times 

are evaluated separately both on single-core (SC) and multi-

core (MC) CPUs, in which 28 threads are used for parallel 

processing. The best data upload time is obtained on Fujitsu 

workstation, and the best model training and prediction times 

are obtained on AGÜ HPC. Table 6 lists partitions and 

compute nodes used to run scikit-learn on various systems. 

 

Table 5. Running times of random forest model of scikit-

learn library of Python on various computing systems. Data 

upload, model training, and prediction are evaluated on 

single and multiple core CPUs. 

 

System Load 

SC 

Train 

SC 

Predict 

SC 

Train 

MC 

Predict 

MC 

TRUBA 1 min 

24 

sec 

5 min 

28 sec 

14 sec 3 min 

42 

sec 

11 sec 

UhEM 1 min 

22 

sec 

3 min 

55 sec 

10 sec 35 

sec 

12 sec 

Feynman 1 min 

31 

sec 

6 min 

36 sec 

25 sec 40 

sec 

11 sec 

AGÜ  56 

sec 
3 min 

46 sec 

7 sec 17 

sec 

4 sec 

Fujitsu 38 

sec 

5 min 

4 sec 

12 sec 38 

sec 

14 sec 

Supermicro 42 

sec 

3 min 

57 sec 

9 sec 32 

sec 

11 sec 

 

Table 6. Partitions and nodes used for scikit-learn on various 

computing systems.  

 

System Partition, Node 

TRUBA single, levrek4 

UhEM  shortq, s052 

Feynman  short, cn01 

AGÜ  shorter, cn01 

 

Table 7 displays the running times of the multi-layer 

perceptron (MLP) neural network model implemented by the 

WEKA software. The time in each cell includes model 

training and testing since these operations are performed by 

a single line of command in WEKA. The best single-core 

running time is obtained on UhEM and the best multi-core 

running time on AGÜ HPC. The partitions and compute 

nodes used in this experiment are summarized on Table 8.  

 

Table 7. Running times of multi-layer perceptron model of 

WEKA on various computing systems. Model is trained and 

tested on the same dataset. Combined model train and 

prediction times are evaluated on single and multiple core 

CPUs. 

 

System MLP SC MLP MC 

TRUBA 2 min 41 sec 5 min 27 sec 

UhEM  2 min 9 sec 6 min 19 sec 

Feynman  2 min 46 sec 6 min 44 sec 

AGÜ  2 min 53 sec 2 min 54 sec 

Fujitsu 2 min 32 sec 6 min 6 sec 

Supermicro 6 min 33 sec ----- 
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Table 8. Partitions and nodes used for WEKA on various 

computing systems.  

 

System Partition, Node 

TRUBA single, levrek4 

UhEM  shortq, s052 

Feynman  short, cn01 

AGÜ  shorter, cn01 

 

Table 9 includes the running times of the deep convolutional 

neural network model implemented by the Tensorflow 

library of Python on single-core CPU (SC), multi-core CPU 

(MC), and GPU. The multi-core CPU experiments are 

performed using 28 threads. Model training and prediction 

times are evaluated together and the running times are mostly 

dominated by model training since prediction takes much 

shorter than training.  

 

The best running times are obtained on Supermicro 

workstation for single-core and multi-core CPU and on AGÜ 

HPC for GPU. The GPU system of TRUBA gave 

segmentation fault error and that of Feynman Grid was on 

maintenance at the time these experiments were performed. 

The single core execution on Feynman Grid also gave error 

and could not be evaluated (the job was killed with no 

reason). The NVIDIA’s DGX-1 system performed three 

times faster than the NVIDIA’s Tesla K20c and K80 models 

available on the workstations. Table 10 contains the 

partitions and nodes used in Tensorflow experiments.  

 

Table 9. Running time of deep convolutional neural network 

model of Tensorflow library of Python on various computing 

systems. The running times include model training and 

prediction on single-core, multiple core CPUs and GPU. 

 

System CNN SC CNN MC CNN GPU  

TRUBA 4h 48 min 

55 sec 

1 h 13 min 

36 sec 

----- 

UhEM  5 h 03 min 

12 sec 

1 h 11 min  

05 sec 

19 min 2 sec 

Feynman  ----- 3 h 27 min  

05 sec 

----- 

AGÜ  5 h 35 min 

29 sec 

3 h 24 min 

06 sec 
4 min 39 sec 

Fujitsu 2 h 47 min 

18 sec 

2 h 10 min 

09 sec 

13 min 57 

sec 

Supermicro 1 h 34 min 
33 sec 

37 min 04 

sec 

12 min 32 

sec 

 

Table 10. Partitions and nodes used for Tensorflow on 

various computing systems.  

 

System Partition, Node 

(CPU) 

Partition, Node, 

(GPU) 

TRUBA single, levrek110 akya-cuda, akya19 

UhEM  defq, s001 gpuq, f001 

Feynman  long, cn01 ----- 

AGÜ  short, cn07 cuda, dgx01 

 

Table 11 shows the running times of support vector machine 

model implemented by libSVM, which only operates on 

single-core CPU. Model training and prediction steps are 

evaluated separately since these require separate lines of 

commands. The best running times are obtained by 

Supermicro workstation though other systems also gave 

similar performance. The SLURM partitions and compute 

nodes used in these experiments are summarized in Table 12.  

  

Table 11. Running times of support vector machine model 

of libSVM on various computing systems. The running times 

for model training and prediction are obtained separately on 

single-core CPU. 

 

System SVM Train  SVM Predict 

TRUBA 10 min 10 sec 2 min 27 sec 

UhEM  9 min 31 sec 2 min 14 sec 

Feynman  16 min 04 sec 3 min 03 sec 

AGÜ  10 min 56 sec 2 min 23 sec 

Fujitsu 10 min 29 sec 2 min 32 sec 

Supermicro 9 min 07 sec 2 min 05 sec 

 

Table 12. Partitions and nodes used for libSVM on various 

computing systems.  

 

System Partition, Node 

TRUBA single, levrek112 

UhEM  defq, s076 

Feynman  short, cn03 

AGÜ  shorter, cn01 

 

Table 13 presents the running times of the support vector 

machine model implemented by ThunderSVM on single-

core CPU (SC), multi-core CPU (MC) and GPU. Model 

training and prediction times are evaluated separately. The 

best results for single-core model training, single-core 

prediction and multi-core CPU model training are obtained 

on UhEM and the best results for multi-core CPU model 

prediction as well as GPU based model training and 

prediction are obtained on TRUBA.  

 

The GPU running time of DGX-1 is also obtained as close to 

TRUBA’s recently established GPU system, which also had 

V100 processors and NVlink communication interface. 

Since the SVM job did not require significant amount of 

RAM the GPU servers performed comparably well. SLURM 

partitions and compute nodes used in these experiments are 

listed in Table 14. 
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Table 13. Running times of support vector machine model 

of ThunderSVM on various computing systems. Model 

training and prediction times are evaluated on single core 

CPU, multi core CPU and GPU. 

 

System Trai

n SC 

Pre

d 

SC 

Trai

n 

MC 

Pre

d 

MC 

Trai

n 

GPU 

Pred 

GP

U 

TRUBA 393 

sec 

57 

sec 

64 

sec 
8 

sec 

9 sec 5 

sec 

UhEM 58 

sec 

11 

sec 

55 

sec 

11 

sec 

23 

sec 

8 

sec 

Feynman 104 

sec 

29 

sec 

159 

sec 

27 

sec 

----- ----- 

AGÜ  778 

sec 

113 

sec 

170 

sec 

58 

sec 

13 

sec 

7 

sec 

Fujitsu 213 

sec 

13 

sec 

209 

sec 

66 

sec 

30 

sec 

10 

sec 

Supermicr

o 

110 

sec 

16 

sec 

109 

sec 

15 

sec 

16 

sec 

6 

sec 

 

Table 14. Partitions and nodes used for ThunderSVM on 

various computing systems.  

 

System Partition, 

Node (SC) 

Partition, 

Node 

(MC) 

Partition, 

Node (GPU) 

TRUBA single, 

levrek4 

single, 

barbun 

akya-cuda, 

akya9 

UhEM  shortq, s025 shortq, 

s025 

gpuq, f003 

Feynman  short, cn01 short, 

cn01-02 

----- 

AGÜ  shorter, cn01 shorter, 

cn01 

cuda, dgx01 

 

Table 15 includes the running times of dynamic Bayesian 

network model implemented using GMTK software for 

secondary structure prediction on CB513 benchmark. 

Similarly, Tables 17, 19, and 21 include the running times of 

GMTK on EVAset benchmark for secondary structure 

prediction, for solvent accessibility prediction, and for 

torsion angle class prediction, respectively. In all 

experiments, model training and prediction steps are 

executed separately on single-core CPU. The best running 

times are typically obtained on the Supermicro workstation, 

except for torsion angle class prediction on EVAset, which 

had the best running times on UhEM. The SLURM queues 

and compute nodes employed in these experiments are 

tabulated in Tables 16, 18, 20, and 22. 

 

 

 

 

 

 

 

 

Table 15. Running times of dynamic Bayesian network 

model implemented on CB513 benchmark using GMTK for 

protein secondary structure predicton on various computing 

systems. The running times for model training and prediction 

are obtained separately on single-core CPU. 

 

System DBN Train  DBN Predict 

TRUBA 54 sec 14 min 41 sec 

UhEM  32 sec 14 min 31 sec 

Feynman  39 sec 17 min 07 sec 

AGÜ  38 sec 15 min 54 sec 

Fujitsu 30 sec 13 min 56 sec 

Supermicro 25 sec 12 min 15 sec 

 

Table 16. Partitions and nodes used for secondary structure 

prediction on CB513 benchmark using GMTK on various 

computing systems.  

 

System Partition, Node 

TRUBA single, levrek7 

UhEM  shortq, s070 

Feynman  short, cn03 

AGÜ  shorter, cn01 

 

Table 17. Running times of dynamic Bayesian network 

model implemented on EVAset benchmark using GMTK for 

protein secondary structure predicton on various computing 

systems. The running times for model training and prediction 

are obtained separately on single-core CPU. 

 

System DBN Train  DBN Predict 

TRUBA 28 min 05 sec 16 min 02 sec 

UhEM  15 min 06 sec 14 min 04 sec 

Feynman  18 min 36 sec 18 min 06 sec 

AGÜ  16 min 29 sec 17 min 42 sec 

Fujitsu 16 min 51 sec 14 min 43 sec 

Supermicro 14 min 10 sec 13 min 20 sec 

 

Table 18. Partitions and nodes used for secondary structure 

prediction on EVAset benchmark using GMTK on various 

computing systems.  

 

System Partition, Node 

TRUBA single, levrek122 

UhEM  shortq, f001 

Feynman  short, cn01 

AGÜ  shorter, cn01 
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Table 19. Running times of dynamic Bayesian network 

model implemented on EVAset benchmark using GMTK for 

protein solvent accessibility prediction on various computing 

systems. The running times for model training and prediction 

are obtained separately on single-core CPU. 

 

System DBN Train  DBN Predict 

TRUBA 23 min 46 sec 2 min 52 sec 

UhEM  15 min 45 sec 2 min 48 sec 

Feynman  19 min 51 sec 3 min 41 sec 

AGÜ  18 min 19 sec 3 min 28 sec 

Fujitsu 17 min 03 sec 2 min 52 sec 

Supermicro 14 min 53 sec 2 min 35 sec 

 

Table 20. Partitions and nodes used for solvent accessibility 

prediction on EVAset benchmark using GMTK on various 

computing systems.  

 

System Partition, Node 

TRUBA single, levrek122 

UhEM  shortq, f005 

Feynman  short, cn01 

AGÜ  shorter, cn01 

 

Table 21. Running times of dynamic Bayesian network 

model implemented using GMTK for protein torsion angle 

class prediction on various computing systems. The running 

times for model training and prediction are obtained 

separately on single-core CPU. 

 

System DBN Train  DBN Predict 

TRUBA 17 min 40 sec 1 h 15 min 17 sec 

UhEM  9 min 12 sec 1 h 15 min 25 sec 

Feynman  13 min 08 sec 1 h 27 min 07 sec 

AGÜ  12 min 01 sec 1 h 22 min 33 sec 

Fujitsu 10 min 59 sec 1 h 12 min 32 sec 

Supermicro 9 min 51 sec 1 h 02 min 40 sec 

 

Table 22. Partitions and nodes used for torsion angle class 

prediction on EVAset benchmark using GMTK on various 

computing systems.  

 

System Partition, Node 

TRUBA single, levrek122 

UhEM  defq, s047 

Feynman  short, cn01 

AGÜ  shorter, cn01 

 

3.2 Optimizing the number of CPU threads 

 

In this section, three methods are selected that have multi-

core CPU implementation available: PSI-BLAST, HHblits 

and WEKA’s MLP method. The software running times are 

obtained with respect to the number of CPU threads 

including single core and multi-core CPU options (Figures 

10-12). According to Figure 10, there is a consireable 

increase in performance of PSI-BLAST if the program is 

executed on multiple CPU cores in parallel as compared to 

single-core execution, which took 1311 seconds. The best 

running time is obtained as 106 seconds using 60 threads, a 

12 fold improvement in performance as compared to single 

core execution. A similar behavior is obtained for the 

HHblits software for which the best running time is obtained 

as 22 seconds when the number of CPU threads is 48. This 

is an 8 fold increase in performance as compared to single 

core execution, which took 183 seconds (Figure 11). On the 

other hand, the multi layer perceptron model implemented 

by WEKA software did not benefit much from increasing the 

number of CPU cores (Figure 12). Almost all cases obtained 

a similar running time around 5 minutes and 30 seconds with 

the best running time obtained using 16 CPU threads. This 

experiment is also repeated using Tensorflow software (both 

in multi core CPU and GPU) and a similar behaviour is 

obtained and GPU performance was even worse than CPU 

(results not shown). Based on these, it can be anticipated that 

the MLP model implementation in these software may not be 

quite suitable for parallelization across multiple CPU cores.  

 
Figure 10. Running time of PSI-BLAST with respect to the 

number of CPU threads 

 
Figure 11. Running time of HHblits with respect to the 

number of CPU threads 
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Figure 12. Running time of MLP model implemented using 

WEKA with respect to the number of CPU threads 

 

 

4. DISCUSSION  

 

This work provides a comparative and comprehensive speed 

analysis of selected machine learning and bioinformatics 

software on various high performance computing systems. 

The following can be deduced from the analysis provided in 

this work: 

 

 For single core jobs, workstations with sufficient CPU 

and RAM resources can perform comparably or better 

than HPC cluster systems, which are typically loaded 

with many jobs running simultaneously. This will also 

reduce the waiting times in the queue of a large system. 

Therefore to optimize the computational needs of a 

research lab, both having access to workstation 

computers and larger cluster systems will be the best 

choice. 

 HPC clusters can be particularly more useful than 

workstations for programs that can run in multiple CPU 

or GPU cores or for programs that should be run 

repeatedly for different parameter settings.  

 GPU versions of the programs typically perform better 

than CPU versions especially if the algorithm is suitable 

for parallelization across multiple cores. Examples 

include deep convolutional neural networks and support 

vector machines. An example exception to this behavior 

is the MLP neural network model for which the GPU 

performance is worse than CPU due to training 

algorithm being less suitable for parallelization. 

 In certain cases, CPU nodes can still be preferred over 

GPU nodes. One example can be hyper-parameter 

optimization of machine learning models, which 

requires executing the same algorithm many times each 

with a different hyper-parameter setting. From a 

practical stand point, such an optimization can be 

parallelized across multiple CPU cores more easily 

(serial parallelization) as the number of GPU nodes in a 

system will typically be less than the number of CPU 

nodes and parallelizing across thousands of GPU cores 

will require more advanced programming skills such as 

re-implementing the hyper-parameter optimization 

scripts using more advanced software (e.g. CUDA 

programming). 

 Using GPU systems specialized for the problem of 

interest can provide significant performance gains. For 

example, NVIDIA’s DGX-1 developed for artificial 

intelligence and machine learning applications contains 

high number of GPU cores, high speed processors, high 

RAM capacity, and fast communication interface called 

NVlink enabling faster model training as compared to 

older GPU models such as Tesla K80.  

 As the number of CPU threads are increased, the 

performance of an application can also increase but may 

saturate and start to decrease after some point. This 

could be due to the memory system’s not being able to 

service data requests efficiently because the processes 

share the limited resources of cache capacity and 

memory bandwidth. Scaling can be harmed by memory 

loading/storing operations. Memory intensive programs 

can therefore suffer from memory bandwidth saturation. 

Other factors can include increased I/O requests of 

increased number of processes and whether the 

algorithm is suitable for parallelization. Fort his reason, 

to get the most out of parallel processing, hardware and 

software conditions should be optimized together. 

 

5. CONCLUSION 

 

This paper presents a comprehensive analysis for the running 

time performance of popular software on selected research 

problems and HPC systems. The As a future work, a similar 

analysis can be performed using other software on different 

fields and problems such as finance, forecasting; on 

platforms such as cloud computing; and on larger datasets 

where RAM size also becomes a bottleneck. Efforts in 

system performance analysis will provide richer information 

and guidance to end users for optimizing the performance of 

their applications. 
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