

Academic Platform Journal of Engineering and Science 8-1, 01-14, 2020

Academic Platform Journal of Engineering and Science

journal homepage: http://apjes.com/

Corresponding Author: Abdullah Gül Üniversity, Department of Computer Engineering, Kocasinan, Kayseri, Turkey, zafer.aydin@agu.edu.tr

Doi: 10.21541/apjes.547016

Performance Analysis of Machine Learning and Bioinformatics Applications on High

Performance Computing Systems

*1Zafer Aydın
1Abdullah Gül Üniversity, Department of Computer Engineering, Kocasinan, Kayseri, Turkey,

zafer.aydin@agu.edu.tr,

Research Paper Arrival Date: 30.03.2019 Accepted Date: 28.08.2019

Abstract

Nowadays, it is becoming increasingly important to use the most efficient and most suitable computational resources for

algorithmic tools that extract meaningful information from big data and make smart decisions. In this paper, a comparative

analysis is provided for performance measurements of various machine learning and bioinformatics software including scikit-

learn, Tensorflow, WEKA, libSVM, ThunderSVM, GMTK, PSI-BLAST, and HHblits with big data applications on different

high performance computer systems and workstations. The programs are executed in a wide range of conditions such as single-

core central processing unit (CPU), multi-core CPU, and graphical processing unit (GPU) depending on the availability of

implementation. The optimum number of CPU cores are obtained for selected software. It is found that the running times depend

on many factors including the CPU/GPU version, available RAM, the number of CPU cores allocated, and the algorithm used.

If parallel implementations are available for a given software, the best running times are typically obtained by GPU, followed

by multi-core CPU, and single-core CPU. Though there is no best system that performs better than others in all applications

studied, it is anticipated that the results obtained will help researchers and practitioners to select the most appropriate

computational resources for their machine learning and bioinformatics projects.

Keywords: Machine learning, bioinformatics, high performance computing, speed performance analysis

1. INTRODUCTION

We live in an age with millions of data generated every day.

Originally introduced in the fields of astronomy, genomics,

and bioinformatics, the concept of big data is now showing

itself in every aspect of our lives. The Internet search engine

Google presents huge amounts of data in every field, from

diagnostics and treatment of diseases to shopping on the

internet. In order to understand the information hidden in

large collections of data, various computational tools,

technologies and disciplines are brought together such as

databases, computer programming, algorithms, high

performance computing, data mining, machine learning, and

artificial intelligence. As a result of this endeavor, customer

trends and preferences can be envisaged dynamically,

companies can make better strategic and innovative

decisions, weather, economic trends, energy and service

demands can be forecasted better to plan resources more

effectively. Furthermore, risk factors, security threads can be

predicted ahead of time, diseases can be prognosed and

prevented at an early stage, new drugs and therapies can be

developed, all of which improve the quality of our lives.

Discovering and processing information in large collections

of data calls for intelligent and efficient algorithms. For this

purpose, artificial intelligence and machine learning methods

are widely employed. Example applications of these

techniques include object recognition from images, speech

recognition, natural language processing, video

classification, recommender systems, anomaly detection,

forecasting, disease detection, survival analysis, churn

prediction, and analyzing genes/proteins of organisms.

Various algorithms have been proposed in the literature for

making smart decisions. In addition to selecting the most

suitable algorithm for the application of interest, it is also

important to choose the right computational resources (both

in terms of hardware and software) in order to process

information accurately and efficiently. The running time of

an algorithm can be different from one software to another.

Furthermore, the possibility of executing the algorithm

simulatenously on multiple processors in parallel (e.g. multi-

core CPUs or GPUs) may improve the running time of an

algorithm dramatically [1]. Based on this fact, high

performance computing (HPC) systems have been

developed that contain parallel file systems, fast

communication interfaces, CPU and GPU nodes, all of

http://apjes.com/
https://orcid.org/0000-0001-7686-6298

Z. AYDIN Academic Platform Journal of Engineering and Science 8-1, 01-14, 2020

2

which aim to maximize the execution speed of computer

programs [2].

There has been a number of studies in the literature that

analyze the performance of different machine learning

software. Kochura et al. compared Tensorflow,

DeepLearning4J, and H2O in single and multi threaded

modes [3]. Kovalev et al. compared Theano, Torch, Caffe,

Tensorflow, Keras, and DeepLearning4J in terms of speed

and accuracy [4]. Shatnawi et al. compared Tensorflow,

Keras, Theano, and Microsoft’s CNTK in terms of

performance for object recognition from images [5].

Bahrampour et al. compared Caffe, Neon, Tensorflow,

Theano, and Torch in terms of extensibility, hardware

utilization and speed for implementing convolutional and

recurrent neural networks [6]. In addition to these, there are

also studies that compare the performance of software

developed for other big data applications such as

bioinformatics. Among those, Bader et al. developed a

benchmark suite to evaluate the performance of

bioinformatics software on HPC architectures [7] and Kurtz

et al. compared performance of bioinformatics software on

multi-core systems [8].

To date, most of the work in the literature concentrated on

analyzing and comparing the speed of software only. Despite

the prevalent work on popular software on deep learning and

artificial intelligence, there is not much work that analyzes

how these software behave in different HPC systems and

how they compare to standard workstations. This could be

important because running a progam on an HPC cluster may

not always be the best option due to waiting times in the

queues. Furthermore, the available hardware resources in an

HPC may not be the best choices for a given computer

software.

This paper focuses on analyzing the speed of software and

algorithms in selected fields of machine learning and

bioinformatics on various HPC systems in Turkey, on

workstations and on single-core CPU, multi-core CPU, and

GPU platforms including NVIDIA’s recently developed

DGX-1, which is one of the fastest system architectures

specialized for artificial intelligence [9]. The following

scientific problems are considered: protein sequence

alignment, protein structure prediction, respiratory viral

infection detection, and optical character recognition by deep

learning, all of which originate from scientific and/or

technological projects. To the best of our knowledge there is

no work in the literature that compares the performance of

the selected software related to these problems on different

HPC systems. The machine learning software tested include

Tensorflow [10] scikit-learn [11], WEKA [12], Graphical

Models Toolkit (GMTK) [13], libSVM [14], and

ThunderSVM [15] for optical character recognition, protein

structure prediction, and respiratory virus infection detection

problems in which the train sets contain thousands of

examples and hundreds of features. Among bioinformatics

software, PSI-BLAST [16] and HHblits [17] are employed

to align a protein's amino acid sequence to sequences in a

large database with millions of proteins. All of these

applications require processing millions or billions of data

elements.

2. MATERIAL AND METHOD

In the subsequent sections, the software and computer

systems used in this study will be explained in more detail.

2.1. Operating System, Software and Algorithms

This section details the computational methods and

algorithms implemented for bioinformatics, health

informatics, and machine learning problems along with the

software used.

2.1.1. Operating System

All of the methods are implemented and tested using a Linux

operating system with Ubuntu as the Linux distribution.

2.1.2. Protein Sequence Alignment by PSI-BLAST

Protein sequence alignment is one of the widely used

applications in bioinformatics research projects. The amino

acid sequence of a query protein whose structure and/or

function is unknown is compared against the sequences of

database proteins. This enables to understand (i.e. annotate)

the structure and/or function of the query protein by finding

matches against database proteins with known function. PSI-

BLAST [16] is a popular algorithm part of the BLAST

software that is used to align the amino acid sequence of a

query protein with millions of proteins in the non-redundant

protein database (NR) of National Center for Biotechnology

Information (NCBI) [18]. It is an iterative algorithm, which

is developed mainly for finding hits (i.e. subject proteins)

that have similar amino acid sequence as the query as well as

distant hits that have low sequence similarity but high

structural and/or functional similarity with the query. An

example PSI-BLAST alignment is shown in Figure 1.

Figure 1. PSI-BLAST alignment between two proteins

In this paper, PSI-BLAST version 2.7.1 is executed on

various computing systems for flavodoxin protein with

Protein Data Bank (PDB) ID 1FX1A, which contains 147

amino acids [19]. To compute these alignments, the NR

database dated as September 4, 2018 is employed that

contains 167,895,434 amino acid sequences and

61,228,200,318 amino acids. The following parameters are

used for PSI-BLAST: number of iterations=3, e-value

Z. AYDIN Academic Platform Journal of Engineering and Science 8-1, 01-14, 2020

3

threshold=10, inclusion threshold=0.001, and the number of

threads=28. Therefore the parallel version of PSI-BLAST is

executed on multi-core CPUs for speed comparison. Note

that each query protein can have a different number of amino

acids and therefore the running time of PSI-BLAST can be

different for each protein.

2.1.3. Protein Sequence Alignment by HHblits

Formerly known as HHsearch, HHblits is an iterative protein

sequence alignment algorithm that employs hidden Markov

model (HMM) profiles and is capable of finding proteins

with high structural and/or functional similarity to the query

protein [17]. The sequence similarity between query and hits

may be low or high depending on the availability of distant

or close matches. HHblits is shown to provide more sensitive

alignments and can find more distant hits than PSI-BLAST.

An example HHblits alignment is shown in Figure 2.

Figure 2. HHblits alignment between two proteins

In this paper, the query protein 1FX1A is aligned with the

sequence database using the hhblits utility and the multiple

alignment is computed using the hhmake utility of HHblits.

Uniprot20 is used as the sequence database dated as February

2016, which contains 8,290,068 proteins, 1,874,100,330

amino acids, and PDB70 as the HMM-profile database dated

as 06 September 2014, which contains 36,595 proteins and

9,303,025 amino acids. The following parameters are used

when computing the alignments: the number of iterations in

the first step=2, the number of iterations in the second

step=1, the number of threads=28. After performing the first

step and building an HMM-profile, secondary structure

sequence of the query is predicted using PSIPRED version

2.6 [20] and added to the HMM-profile model using addss.pl

script of HHblits. The HMM-profile of the query is aligned

with the HMM-profiles in the PDB70 database using the

hhblits utility. During this step, the secondary structure label

sequences of the hits are obtained from the DSSP database

[21] automatically by HHblits.

2.1.4. Random forest by scikit-learn

Scikit-learn is a Python [22] library for implementing

machine learning methods [11]. To analyze the performance

of scikit-learn, a random forest classifier is implemented,

which combines predictions from multiple decision trees

using the bagging ensemble technique [23]. A random forest

model is depicted in Figure 3.

Figure 3. A random forest classification model [24]

A machine learning classifier aims to find a mapping

between a given input feature vector 𝐱 = [𝑥1, 𝑥2, … , 𝑥𝐷] and

an output variable 𝑦 so that

𝑦 = 𝑓(𝐱) (1)

where 𝑥𝑖 (1 ≤ 𝑖 ≤ 𝐷) represent feature variables (i.e.

parameters), 𝐷 is the number of dimensions and 𝑦 can take a

discrete class value. For example, each tree model in Figure

3 is a decision tree classifier that produce a class label 𝑦 (1 ≤
𝑦 ≤ 𝐾) as the output signal where 𝐾 is the number of

possible class types. Then the random forest model chooses

the particular class type that is predicted most frequently by

the decision tree classifiers according to the majority voting

rule.

In order to train a machine learning classifier, a set of training

samples are used, which are denoted as 𝐱𝑛 (1 ≤ 𝑛 ≤ 𝑁)

where 𝑁 is the number of samples in training set. Similarly,

to evaluate the prediction accuracy of a classifier, a set of test

examples are used. Training in this regard corresponds to

learning the function 𝑓(.) from the training set by

minimizing a cost function with the ultimate goal of making

correct predictions for examples that are in training set and

those that are outside (i.e. for new samples).

For the random forest classifier model, a train set (with

1,000,000 samples and 100 features) and a test set (with

100,000 samples and 100 features) are generated artificially

using the make_classification method of scikit-learn’s

dataset class. The number of class labels is set to 2 (i.e. a

binary classification problem). Then a random forest model

is trained on the train set and class predictions are computed

on test set. The number of trees parameter is set to 100,

max_depth to 2, random_state to 0, and n_jobs to 1 and 28

(i.e. single-core and multi-core executions). The scikit-learn

version 0.20.2 is used in TRUBA, version 0.19.1 in İTÜ

Uhem, version 0.20.1 in AGÜ HPC and version 0.19.2 is in

all the remaining systems. These versions, albeit slightly

different, are close to each other, which will not affect the

performance of random forest models significantly. For

instance, though the scikit-learn version in TRUBA is newer

Z. AYDIN Academic Platform Journal of Engineering and Science 8-1, 01-14, 2020

4

than the other systems, it did not provide the fastest

execution times as demonstrated in the results section. For

this reason, the performance differences can be largely

attributed to the hardware resources instead of the software

versions.

2.1.5. Multi-layer perceptron by WEKA

WEKA software is developed in Java programming

language for implementing various machine-learning

methods [12]. In this paper, a multi-layer perceptron (MLP)

neural network model [25] is implemented using WEKA for

respiratory virus infection detection. An MLP architecture is

illustrated in Figure 4.

Figure 4. A multi-layer perceptron neural network model

[26]

In this architecture, the yellow squares represent input

feature values 𝑥𝑖 (1 ≤ 𝑖 ≤ 𝐷), the blue circles represent

hidden nodes ℎ𝑗
(𝑙)

 (1 ≤ 𝑙 ≤ 2), (1 ≤ 𝑗 ≤ 𝑀), the green

circles represent the output nodes 𝑦𝑘 (1 ≤ 𝑘 ≤ 2). The

output signal is computed by propagating the input feature

vector 𝐱 = [𝑥1, 𝑥2, … , 𝑥𝐷] from left to right in the network.

The output signal at the hidden nodes (i.e. the one on the left)

is computed by the following relation

ℎ𝑗
(1) = 𝜑(𝑎𝑗) (2)

where ℎ𝑗
(1)

 represents the output of the 𝑗𝑡ℎ hidden node of the

first hidden layer, 𝜑(.) denotes a non-linear activation

function and 𝑎𝑗 is computed as

 𝑎𝑗 = ∑ 𝑤𝒊𝒋
(1)
𝑥𝒊

𝐷
𝑖=1 (3)

where 𝑤𝒊𝒋
(1)

 is the weight parameter between the 𝑖𝑡ℎ input

feature and the 𝑗𝑡ℎ hidden node of the first hidden layer.

Applying the same functions for the second hidden layer,

output of the network can be obtained as

𝐲 = 𝑓(𝐱,𝐰) (4)

where 𝐲 = [𝑦1 , 𝑦2, … , 𝑦𝐾] with 𝐾 being the number of

possible class types and 𝐰 is a vector that contains the set of

all weight parameters of the network.

Based on this formulation, training a neural network

corresponds to learning a set of weight parameters 𝐰 that

minimize a cost function. If squared loss is selected as the

cost metric then the goal of training becomes finding 𝐰 that

minimize

 𝐸(𝐰) = ∑ (𝐲𝑛 − 𝐭𝑛)
2𝑁

𝑛=1 (5)

where 𝐲𝑛 is the network’s output for the 𝑛𝑡ℎ data sample and

𝐭𝑛 is the true output for the 𝑛𝑡ℎ data sample.

The data set used for training and testing the MLP model

contained gene expression data for Respiratory Viral

DREAM Challenge, which was an international competition

held in 2016-2017 and organized by Sage Bionetworks,

Duke University, and Darpa [27]. The goal in this challenge

was to predict whether a person will be infected by

respiratory flu viruses (before and after being exposed to

virus). Data is obtained by performing microarray

experiments using Human Affymetrix assay and blood

samples of the subjects [27]. The dataset contained 22,276

gene features, 118 samples (i.e. subjects), and 2 class labels,

which represents whether a flu virus will be present in nasal

samples of the subjects. The same dataset is used both for

training and testing phases of the MLP model. The number

of hidden layers is set to 1, the number of hidden units to 5,

random number seed to 0, and number of threads to 1 and 28

(i.e. both single-core and multi-core CPU platforms are

considered). Model training is performed by conjugate

gradient algorithm [28], which is recommended when the

number of features is large. In all experiments, WEKA

version 3.8.0 is employed.

2.1.6. Deep Convolutional Neural Network by

Tensorflow

Tensorflow is a Python library developed by Google for

implementing neural network models [10]. In this paper, a

deep convolutional network model [29] is implemented

using Tensorflow for optical character recognition [30] from

images. An example convolutional network is shown in

Figure 5.

Figure 5. A deep convolutional neural network for image

recognition [31]

A convolutional neural network operates similar to a multi-

layer perceptron network. Instead of having a fully

connected architecture it has a sparse structure with most of

the weights are set to zero. In this paper, notMNIST dataset

[32] is used which contains 28 by 28 images of characters

ranging from A to J as shown in Figure 6. This dataset is

Z. AYDIN Academic Platform Journal of Engineering and Science 8-1, 01-14, 2020

5

more challenging than the standard MNIST dataset [33],

which is used for recognizing digits.

Figure 6. notMNIST dataset of characters from A to J [34]

The notMNIST dataset is randomly partitioned into a train

set of 200,000 images and a test set with 10,000 images. The

convolutional network contains one input layer, three

convolutional layers, two fully connected MLP layers and an

output layer. The network has the following specifications.

A 5 by 5 kernel is used at the convolutional layers. The

“same” zero padding strategy is employed at the

convolutional layers so that the signal dimensions are

maintained. The activation function is set to ReLU in all

hidden layers and softmax at the output layer. Each

convolutional layer is followed by a max pooling layer with

a kernel size of 2 by 2 and a stride size of 2 by 2. The number

of filters in convolution layers is set to 8, 16, and 32,

respectively. The number of hidden nodes in fully connected

MLP layers is set to 256 and 128, respectively. Dropout

regularization is performed at each hidden layer in which the

dropout probability set to 0.7. L2-norm regularization (i.e.

weight decay) is also employed on the weight parameters

with the regularization coefficient set to 0.001. The network

is trained using the gradient descent algorithm with mini-

batch size set to 128 and number of iterations to 100,001.

The train set is shuffled and a random mini-batch is

employed in each iteration. Weights are randomly initialized

by the Xavier approach [35]. Learning rate is initialized to

0.1 and an exponential decay is performed for the learning

rate with decay step set to 1000 and decay rate to 0.96. The

loss function is selected as the cross-entropy, which is

minimized to learn the weight parameters of the network.

Tensorflow is executed on three different settings: single-

core CPU, multi-core CPU (number of cores set to 28) and

GPU. Once trained, the network was able to obtain 96.3%

classification accuracy on test set. Tensorflow version 1.10.0

is employed in AGÜ HPC, 1.5.0 in İTÜ UhEM, and 1.12.0

in all the remaining systems. Similar to scikit-learn, the

software version differences do not contribute significantly

to running time performance of Tensorflow. For example in

TRUBA, version 1.12.0 is used, which is the most recent

among the versions tested though the running times of

Tensorflow are not the smallest in this system.

2.1.7. Support Vector Machine by libSVM and

ThunderSVM

libSVM [14] is developed in C++ programming language for

implementing support vector machine (SVM) models [36],

which runs on single-core CPU only. Recently, an alternative

software named ThunderSVM [15] is introduced that

parallelizes the kernel computation steps of an SVM.

ThunderSVM is developed in C++ and can be executed on

multi-core CPU and on GPU systems.

In this paper, a support vector machine model is

implemented using libSVM and ThunderSVM for protein

secondary structure prediction. Figure 7 shows the principle

behind a support vector machine, which maps the input

feature vectors to a new space by a kernel transformation and

finds a linear hyper-plane that best separates data samples.

Figure 7. A support vector machine maps data samples to a

higher dimensional space and finds a hyper-plane that best

separates classes [37]

Given a training set of sample-label pairs (𝐱𝑛, 𝑦𝑛) (1 ≤ 𝑛 ≤
𝑁) where 𝐱𝑛 ∈ ℝ𝑫 and 𝑦𝑛 ∈ {−1,1}, an SVM classifier aims

to solve the following optimization problem:

min
𝐰,𝑏

1

2
𝐰T𝐰+ 𝐶 ∑ 𝜉𝑛

𝑁
𝑛=1 (6)

subject to

𝑦𝑛(𝐰
T𝜙(𝐱𝑛) + 𝑏) ≥ 1 − 𝜉𝑛 (7)

𝜉𝑛 ≥ 0 (8)

where 𝐶 is the penalty parameter of the error term, 𝑏 is the

bias parameter, and 𝐾(𝐱𝑖, 𝐱𝑗) = 𝜙(𝐱𝑖)𝜙(𝐱𝑗) is denoted as

the kernel function. In this paper, an RBF (i.e. Gaussian)

kernel is employed.

The dataset used to train and test the SVM classifier in this

work contains position specific scoring matrix (PSSM)

features obtained by PSI-BLAST and HHblits alignment

methods as well as structural profile matrices. The train set

contains 36,676 samples and the test set contains 10,497

samples. Each data sample corresponds to an amino acid of

a protein. The number of features is 473 and the number of

class labels is 3. In all experiments, libSVM version 3.21 is

employed.

Z. AYDIN Academic Platform Journal of Engineering and Science 8-1, 01-14, 2020

6

2.1.8. Dynamic Bayesian Network by GMTK

Graphical Models Toolkit (GMTK) [13] is developed in C++

programming language for implementing probabilistic

graphical models by Bilmes lab [38]. In this paper, a dynamic

Bayesian network (DBN) [39], which is a time-series lattice

model (a super-class of hidden Markov model [40]), is

implemented using GMTK for protein secondary structure,

solvent accessibility, and torsion angle class prediction

problems [41]. A DBN model is shown in Figure 8.

Predicting such properties of proteins is widely used as

precursors for predicting the three dimensional structure,

which enables to elucidate the functional role of the protein

and has applications in drug design.

Figure 8. A dynamic Bayesian network is a probabilistic

graphical model

For secondary structure prediction, two benchmark datasets

named CB513 [42] and EVAset [43] are employed. For

solvent accessibility and torsion angle class prediction, the

EVAset benchmark is employed. 220 proteins are selected

randomly from CB513 to form a train set, and another 220 to

form a test set. As a result of this selection, the number of

amino acid samples is obtained as 36,946 for train set and

36,676 for test set derived from CB513. The number of input

features used to train each conditional Gaussian distribution

of the DBN model is 120. A similar selection procedure is

applied to EVAset. As a result, 2589 proteins with 532,216

amino acid samples are randomly selected to form the train

set and 287 proteins with 52,379 amino acid samples to form

the test set. The number of input features that are employed

to train conditional Gaussian distributions of the DBN is 200

for solvent accessibility and torsion angle prediction

experiments performed on EVAset. Details of the DBN

model implemented for predicting structural properties of

proteins can be found in the papers by Aydin et al. [44], [45].

All the experiments are performed on single-core CPU using

GMTK version 1.4.4.

2.2. Hardware Resources

In this section, we explain the hardware specifications of the

computing systems used in this work.

2.2.1 TRUBA

TRUBA (Turkish National Science e-Infrastructure) also

known as TÜBİTAK ULAKBIM High Performance and

Grid Computing Center [46] is one of the national clusters of

Turkey located in the city of Ankara. It contains various

hardware resources and SLURM job queues (i.e. partitions).

The software simulations performed in this paper are

executed in different queues of TRUBA and on machines

with different capacities. The jobs that used single-core CPU

are executed on the single partition, those that employed

multi-core CPUs are executed on the short partition, and

those that required GPU are executed on the akya-cuda

partition. The jobs that are sent to single partition are

executed on machines named levrek, which have the

following specifications: 32 CPUs, 2 sockets, 8 cores per

socket, 2 threads per core, 2 nodes, CPU model Intel(R)

Xeon(R) CPU E5-2690 0 @ 2.90GHz, and 256 GB of RAM.

The multi-core CPU versions of PSI-BLAST, HHblits,

ThunderSVM, WEKA, and scikit-learn are executed on the

short partition on machines named barbun, which have the

following configurations: 80 CPUs, 2 sockets, 20 cores per

socket, 2 threads per core, CPU model Intel(R) Xeon(R)

Gold 6148 CPU @ 2.40GHz, and 384 GBs of RAM. The

multi-core CPU versions of Tensorflow are executed on the

short partition on machines called sardalya with the

following maximum specifications: 56 CPUs, 2 sockets, 14

cores per socket, 2 threads per socket, CPU model Intel(R)

Xeon(R) CPU E5-2690 v4 @ 2.60GHz, and 256 GBs of

RAM. The GPU versions of ThunderSVM and Tensorflow

are executed on akya-cuda partition which have the

following maximum CPU configurations: 40 CPUs, 2

sockets, 20 cores per socket, 1 threads per core, CPU model

Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 384 GBs of

RAM. The GPU configuration of akya-cuda includes 4

NVIDIA Tesla V100 with NVlink connection interface and

16 GBs of RAM. Details of hardware specifications in

TRUBA can be found on the wiki page [47].

2.2.2 İTÜ UHeM

UHeM [48] is established in Istanbul Technical University

(İTÜ). It is known as National Center for High Performance

Computing funded by the Ministry of Development. It has a

distributed cluster system as shown in Figure 9.

Figure 9. Distributed cluster system of İTÜ UhEM

Z. AYDIN Academic Platform Journal of Engineering and Science 8-1, 01-14, 2020

7

Similar to TRUBA, UHeM contains various hardware

resources and SLURM job queues (i.e. partitions). The

SLURM jobs of this paper are executed on shortq, defq,

bigmemq and gpuq partitions of UHeM’s Sariyer cluster.

Each CPU server employed for the present work had the

following specifications: 28 CPUs, 2 sockets, 14 cores per

socket, 1 threads per core, CPU model Intel(R) Xeon(R)

CPU E5-2680 v4 @ 2.40GHz. The RAM sizes of these

machines are typically 128 GB (except for machines having

name range f004-f013 which have 512 GB corresponding to

the queue named bigmemq). The gpuq partition contains

NVIDIA Tesla K20m GPUs. Detailed hardware

specifications of Sariyer cluster can be found on the wiki

page [49].

2.2.3 Feynman Grid

Feynman Grid is the High Performance Computing cluster

system of CompecTA company in Istanbul, Turkey [50]. All

the CPU jobs in this work are executed in the short partition

of Feynman Grid and the GPU jobs are executed on the cuda

partition. The compute nodes have the following hardware

specifications: 56 CPUs, 2 sockets, 14 cores per socket, 2

threads per core, CPU model Intel(R) Xeon(R) CPU E5-

2697 v3 @ 2.60GHz. The RAM capacity of each compute

node is 128 GB. The GPU node contains 4 NVIDIA Tesla

K80.

2.2.4 AGÜ HPC

AGÜ HPC is the High Performance Computing cluster

established in Abdullah Gul University [51]. All CPU jobs

are executed in shorter partition except for the CPU version

of Tensorflow which is executed on the short partition. The

hardware specifications of the compute nodes are as follows:

36 CPUs, 2 sockets, 18 cores per socket, 1 threads per core,

CPU model Intel(R) Xeon(R) Gold 6150 CPU @ 2.70GHz.

The RAM size in each compute node is 384 GBs. The GPU

jobs are executed in cuda partition, which contains NVIDIA

DGX-1, with V100 processor, 8 GPUs, NVlink connection

interface and 512 GBs of RAM. Detailed specifications of

DGX-1 can be found in [9].

2.2.5 Fujitsu Workstation

The Fujitsu workstation contains 32 CPUs, 2 sockets, 8 cores

per socket, 2 threads per core, 2 nodes, CPU model Intel(R)

Xeon(R) CPU E5-2650 v2 @ 2.60GHz, and 64 GBs of

RAM. As the GPU, Fujitsu has one NVIDIA Tesla K20c and

one Quadro K2000.

2.2.6 Supermicro Workstation

The Supermicro workstation contains 28 CPUs, 2 sockets,

14 cores per socket, 1 thread per core, 2 nodes, CPU model

Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz, and 128

GBs of RAM. This workstation also has two NVIDIA Tesla

K80 GPUs.

3. FINDINGS

In this section, software execution times on various systems

as well as the dependency of selected software on the number

of CPUs are analyzed. Since there is no work in the literature

that perform a similar analysis on the selected software and

system configurations, the performance results obtained for

Fujitsu and Supermicro workstations are taken as the

baseline while the rest represent the HPC systems.

3.1 Speed Comparison of Systems

This section includes the running times of software on

different systems. Tables 1 and 3 shows the running times of

two bioionformatics software for protein sequence

alignment, each executed twice with the second execution of

a given software is performed right after the first execution

finished. In these tables, MC stands for multi-core CPU in

which 28 threads are used. According to Table 1, the best

running times are obtained on Supermicro workstation (1st

execution), TRUBA and AGÜ HPC (2nd execution). A large

time difference is obtained between the first and the second

executions of PSI-BLAST. This is due to the fact that the

first time the program is executed, it loads the NR database

with hundreds of millions of proteins to RAM, which is the

main performance bottleneck. When the program is executed

again soon after the first execution, the running time drops

considerably due to the availability of the database in RAM’s

cache unless a script in the system clears the cache

automatically. An exception occurred for Fujitsu workstation

which had a RAM capacity of 64 GBs where the NR

database with size more than 90 GBs did not fit into RAM.

For this reason, the second execution took much longer on

this workstation as compared to other systems. A similar

behavior is observed for UhEM. However the UhEM’s PSI-

BLAST job is submitted to bigmemq partition which has 512

GBs of RAM capacity. Therefore the reason for having the

second execution taking a long time may be attributed to the

inavailability of the NR database in RAM’s cache. This can

be due to the fact that bigmemq is a partition that is designed

for jobs that require high RAM capacity and automated

system scripts may be preventing the jobs to use the cache in

subsequent executions. Table 2 lists the partitions and

machines (i.e. compute nodes) used to execute PSI-BLAST

on various systems. Note that since Fujitsu and Supermicro

are workstation computers, they only contain one SLURM

partition (i.e. no multiple partitions or nodes are defined on

these machines).

Table 1. Running times of PSI-BLAST on various

computing systems. A second submission is performed right

after the first submission finished executing.

System PSI-BLAST 1 MC PSI-BLAST 2 MC

TRUBA 11 min 45 sec 1 min 0 sec

UhEM 30 min 01 sec 30 min 18 sec

Feynman 9 min 30 sec 2 min 22 sec

AGÜ 22 min 26 sec 1 min 0 sec

Fujitsu 41 min 38 sec 42 min 22 sec

Supermicro 4 min 37 sec 1 min 48 sec

Z. AYDIN Academic Platform Journal of Engineering and Science 8-1, 01-14, 2020

8

Table 2. Partitions and nodes used for PSI-BLAST on

various computing systems. A second submission is

performed right after the first submission finished executing.

System Partition, Node

TRUBA short, barbun[68-70]

UhEM bigmemq, f008

Feynman short, cn03

AGÜ shorter, cn01

Table 3 summarizes the running times of HHblits. The best

results are obtained on Supermicro Workstation (1st

execution) and UhEM (2nd execution). Similar to PSI-

BLAST, there has been a difference between the running

times of the first and the second execution. However this

difference is less than PSI-BLAST, which could be related

to the fact the protein sequence database employed in

HHblits (i.e. Uniprot) is smaller than the NR database of PSI-

BLAST. Table 4 lists partitions and machines (i.e. compute

nodes) used to execute HHblits on various systems. Note that

on UhEM, shortq partition is used instead of bigmemq since

the database of HHblits is not as large as the NR database of

PSI-BLAST. For this reason, the running time of the second

execution has reduced as compared to the PSI-BLAST

experiments on UhEM.

Table 3. Running times of HHblits on various computing

systems. A second submission is performed right after the

first submission finished executing.

System HHblits 1 MC HHblits 2 MC

TRUBA 1 min 10 sec 35 sec

UhEM 1 min 06 sec 29 sec

Feynman 1 min 18 sec 1 min 03 sec

AGÜ 1 min 19 sec 1 min 0 sec

Fujitsu 1 min 37 sec 56 sec

Supermicro 45 sec 44 sec

Table 4. Partitions and nodes used for HHblits on various

computing systems. A second submission is performed right

after the first submission finished executing.

System Partition, Node

TRUBA short, barbun

UhEM shortq, f001

Feynman short, cn07

AGÜ shorter, cn01

Table 5 contains the running time of the random forest model

implemented by the scikit-learn library of Python. Reading

data from disk to RAM, model training, and prediction times

are evaluated separately both on single-core (SC) and multi-

core (MC) CPUs, in which 28 threads are used for parallel

processing. The best data upload time is obtained on Fujitsu

workstation, and the best model training and prediction times

are obtained on AGÜ HPC. Table 6 lists partitions and

compute nodes used to run scikit-learn on various systems.

Table 5. Running times of random forest model of scikit-

learn library of Python on various computing systems. Data

upload, model training, and prediction are evaluated on

single and multiple core CPUs.

System Load

SC

Train

SC

Predict

SC

Train

MC

Predict

MC

TRUBA 1 min

24

sec

5 min

28 sec

14 sec 3 min

42

sec

11 sec

UhEM 1 min

22

sec

3 min

55 sec

10 sec 35

sec

12 sec

Feynman 1 min

31

sec

6 min

36 sec

25 sec 40

sec

11 sec

AGÜ 56

sec
3 min

46 sec

7 sec 17

sec

4 sec

Fujitsu 38

sec

5 min

4 sec

12 sec 38

sec

14 sec

Supermicro 42

sec

3 min

57 sec

9 sec 32

sec

11 sec

Table 6. Partitions and nodes used for scikit-learn on various

computing systems.

System Partition, Node

TRUBA single, levrek4

UhEM shortq, s052

Feynman short, cn01

AGÜ shorter, cn01

Table 7 displays the running times of the multi-layer

perceptron (MLP) neural network model implemented by the

WEKA software. The time in each cell includes model

training and testing since these operations are performed by

a single line of command in WEKA. The best single-core

running time is obtained on UhEM and the best multi-core

running time on AGÜ HPC. The partitions and compute

nodes used in this experiment are summarized on Table 8.

Table 7. Running times of multi-layer perceptron model of

WEKA on various computing systems. Model is trained and

tested on the same dataset. Combined model train and

prediction times are evaluated on single and multiple core

CPUs.

System MLP SC MLP MC

TRUBA 2 min 41 sec 5 min 27 sec

UhEM 2 min 9 sec 6 min 19 sec

Feynman 2 min 46 sec 6 min 44 sec

AGÜ 2 min 53 sec 2 min 54 sec

Fujitsu 2 min 32 sec 6 min 6 sec

Supermicro 6 min 33 sec -----

Z. AYDIN Academic Platform Journal of Engineering and Science 8-1, 01-14, 2020

9

Table 8. Partitions and nodes used for WEKA on various

computing systems.

System Partition, Node

TRUBA single, levrek4

UhEM shortq, s052

Feynman short, cn01

AGÜ shorter, cn01

Table 9 includes the running times of the deep convolutional

neural network model implemented by the Tensorflow

library of Python on single-core CPU (SC), multi-core CPU

(MC), and GPU. The multi-core CPU experiments are

performed using 28 threads. Model training and prediction

times are evaluated together and the running times are mostly

dominated by model training since prediction takes much

shorter than training.

The best running times are obtained on Supermicro

workstation for single-core and multi-core CPU and on AGÜ

HPC for GPU. The GPU system of TRUBA gave

segmentation fault error and that of Feynman Grid was on

maintenance at the time these experiments were performed.

The single core execution on Feynman Grid also gave error

and could not be evaluated (the job was killed with no

reason). The NVIDIA’s DGX-1 system performed three

times faster than the NVIDIA’s Tesla K20c and K80 models

available on the workstations. Table 10 contains the

partitions and nodes used in Tensorflow experiments.

Table 9. Running time of deep convolutional neural network

model of Tensorflow library of Python on various computing

systems. The running times include model training and

prediction on single-core, multiple core CPUs and GPU.

System CNN SC CNN MC CNN GPU

TRUBA 4h 48 min

55 sec

1 h 13 min

36 sec

UhEM 5 h 03 min

12 sec

1 h 11 min

05 sec

19 min 2 sec

Feynman ----- 3 h 27 min

05 sec

AGÜ 5 h 35 min

29 sec

3 h 24 min

06 sec
4 min 39 sec

Fujitsu 2 h 47 min

18 sec

2 h 10 min

09 sec

13 min 57

sec

Supermicro 1 h 34 min
33 sec

37 min 04

sec

12 min 32

sec

Table 10. Partitions and nodes used for Tensorflow on

various computing systems.

System Partition, Node

(CPU)

Partition, Node,

(GPU)

TRUBA single, levrek110 akya-cuda, akya19

UhEM defq, s001 gpuq, f001

Feynman long, cn01 -----

AGÜ short, cn07 cuda, dgx01

Table 11 shows the running times of support vector machine

model implemented by libSVM, which only operates on

single-core CPU. Model training and prediction steps are

evaluated separately since these require separate lines of

commands. The best running times are obtained by

Supermicro workstation though other systems also gave

similar performance. The SLURM partitions and compute

nodes used in these experiments are summarized in Table 12.

Table 11. Running times of support vector machine model

of libSVM on various computing systems. The running times

for model training and prediction are obtained separately on

single-core CPU.

System SVM Train SVM Predict

TRUBA 10 min 10 sec 2 min 27 sec

UhEM 9 min 31 sec 2 min 14 sec

Feynman 16 min 04 sec 3 min 03 sec

AGÜ 10 min 56 sec 2 min 23 sec

Fujitsu 10 min 29 sec 2 min 32 sec

Supermicro 9 min 07 sec 2 min 05 sec

Table 12. Partitions and nodes used for libSVM on various

computing systems.

System Partition, Node

TRUBA single, levrek112

UhEM defq, s076

Feynman short, cn03

AGÜ shorter, cn01

Table 13 presents the running times of the support vector

machine model implemented by ThunderSVM on single-

core CPU (SC), multi-core CPU (MC) and GPU. Model

training and prediction times are evaluated separately. The

best results for single-core model training, single-core

prediction and multi-core CPU model training are obtained

on UhEM and the best results for multi-core CPU model

prediction as well as GPU based model training and

prediction are obtained on TRUBA.

The GPU running time of DGX-1 is also obtained as close to

TRUBA’s recently established GPU system, which also had

V100 processors and NVlink communication interface.

Since the SVM job did not require significant amount of

RAM the GPU servers performed comparably well. SLURM

partitions and compute nodes used in these experiments are

listed in Table 14.

Z. AYDIN Academic Platform Journal of Engineering and Science 8-1, 01-14, 2020

10

Table 13. Running times of support vector machine model

of ThunderSVM on various computing systems. Model

training and prediction times are evaluated on single core

CPU, multi core CPU and GPU.

System Trai

n SC

Pre

d

SC

Trai

n

MC

Pre

d

MC

Trai

n

GPU

Pred

GP

U

TRUBA 393

sec

57

sec

64

sec
8

sec

9 sec 5

sec

UhEM 58

sec

11

sec

55

sec

11

sec

23

sec

8

sec

Feynman 104

sec

29

sec

159

sec

27

sec

----- -----

AGÜ 778

sec

113

sec

170

sec

58

sec

13

sec

7

sec

Fujitsu 213

sec

13

sec

209

sec

66

sec

30

sec

10

sec

Supermicr

o

110

sec

16

sec

109

sec

15

sec

16

sec

6

sec

Table 14. Partitions and nodes used for ThunderSVM on

various computing systems.

System Partition,

Node (SC)

Partition,

Node

(MC)

Partition,

Node (GPU)

TRUBA single,

levrek4

single,

barbun

akya-cuda,

akya9

UhEM shortq, s025 shortq,

s025

gpuq, f003

Feynman short, cn01 short,

cn01-02

AGÜ shorter, cn01 shorter,

cn01

cuda, dgx01

Table 15 includes the running times of dynamic Bayesian

network model implemented using GMTK software for

secondary structure prediction on CB513 benchmark.

Similarly, Tables 17, 19, and 21 include the running times of

GMTK on EVAset benchmark for secondary structure

prediction, for solvent accessibility prediction, and for

torsion angle class prediction, respectively. In all

experiments, model training and prediction steps are

executed separately on single-core CPU. The best running

times are typically obtained on the Supermicro workstation,

except for torsion angle class prediction on EVAset, which

had the best running times on UhEM. The SLURM queues

and compute nodes employed in these experiments are

tabulated in Tables 16, 18, 20, and 22.

Table 15. Running times of dynamic Bayesian network

model implemented on CB513 benchmark using GMTK for

protein secondary structure predicton on various computing

systems. The running times for model training and prediction

are obtained separately on single-core CPU.

System DBN Train DBN Predict

TRUBA 54 sec 14 min 41 sec

UhEM 32 sec 14 min 31 sec

Feynman 39 sec 17 min 07 sec

AGÜ 38 sec 15 min 54 sec

Fujitsu 30 sec 13 min 56 sec

Supermicro 25 sec 12 min 15 sec

Table 16. Partitions and nodes used for secondary structure

prediction on CB513 benchmark using GMTK on various

computing systems.

System Partition, Node

TRUBA single, levrek7

UhEM shortq, s070

Feynman short, cn03

AGÜ shorter, cn01

Table 17. Running times of dynamic Bayesian network

model implemented on EVAset benchmark using GMTK for

protein secondary structure predicton on various computing

systems. The running times for model training and prediction

are obtained separately on single-core CPU.

System DBN Train DBN Predict

TRUBA 28 min 05 sec 16 min 02 sec

UhEM 15 min 06 sec 14 min 04 sec

Feynman 18 min 36 sec 18 min 06 sec

AGÜ 16 min 29 sec 17 min 42 sec

Fujitsu 16 min 51 sec 14 min 43 sec

Supermicro 14 min 10 sec 13 min 20 sec

Table 18. Partitions and nodes used for secondary structure

prediction on EVAset benchmark using GMTK on various

computing systems.

System Partition, Node

TRUBA single, levrek122

UhEM shortq, f001

Feynman short, cn01

AGÜ shorter, cn01

Z. AYDIN Academic Platform Journal of Engineering and Science 8-1, 01-14, 2020

11

Table 19. Running times of dynamic Bayesian network

model implemented on EVAset benchmark using GMTK for

protein solvent accessibility prediction on various computing

systems. The running times for model training and prediction

are obtained separately on single-core CPU.

System DBN Train DBN Predict

TRUBA 23 min 46 sec 2 min 52 sec

UhEM 15 min 45 sec 2 min 48 sec

Feynman 19 min 51 sec 3 min 41 sec

AGÜ 18 min 19 sec 3 min 28 sec

Fujitsu 17 min 03 sec 2 min 52 sec

Supermicro 14 min 53 sec 2 min 35 sec

Table 20. Partitions and nodes used for solvent accessibility

prediction on EVAset benchmark using GMTK on various

computing systems.

System Partition, Node

TRUBA single, levrek122

UhEM shortq, f005

Feynman short, cn01

AGÜ shorter, cn01

Table 21. Running times of dynamic Bayesian network

model implemented using GMTK for protein torsion angle

class prediction on various computing systems. The running

times for model training and prediction are obtained

separately on single-core CPU.

System DBN Train DBN Predict

TRUBA 17 min 40 sec 1 h 15 min 17 sec

UhEM 9 min 12 sec 1 h 15 min 25 sec

Feynman 13 min 08 sec 1 h 27 min 07 sec

AGÜ 12 min 01 sec 1 h 22 min 33 sec

Fujitsu 10 min 59 sec 1 h 12 min 32 sec

Supermicro 9 min 51 sec 1 h 02 min 40 sec

Table 22. Partitions and nodes used for torsion angle class

prediction on EVAset benchmark using GMTK on various

computing systems.

System Partition, Node

TRUBA single, levrek122

UhEM defq, s047

Feynman short, cn01

AGÜ shorter, cn01

3.2 Optimizing the number of CPU threads

In this section, three methods are selected that have multi-

core CPU implementation available: PSI-BLAST, HHblits

and WEKA’s MLP method. The software running times are

obtained with respect to the number of CPU threads

including single core and multi-core CPU options (Figures

10-12). According to Figure 10, there is a consireable

increase in performance of PSI-BLAST if the program is

executed on multiple CPU cores in parallel as compared to

single-core execution, which took 1311 seconds. The best

running time is obtained as 106 seconds using 60 threads, a

12 fold improvement in performance as compared to single

core execution. A similar behavior is obtained for the

HHblits software for which the best running time is obtained

as 22 seconds when the number of CPU threads is 48. This

is an 8 fold increase in performance as compared to single

core execution, which took 183 seconds (Figure 11). On the

other hand, the multi layer perceptron model implemented

by WEKA software did not benefit much from increasing the

number of CPU cores (Figure 12). Almost all cases obtained

a similar running time around 5 minutes and 30 seconds with

the best running time obtained using 16 CPU threads. This

experiment is also repeated using Tensorflow software (both

in multi core CPU and GPU) and a similar behaviour is

obtained and GPU performance was even worse than CPU

(results not shown). Based on these, it can be anticipated that

the MLP model implementation in these software may not be

quite suitable for parallelization across multiple CPU cores.

Figure 10. Running time of PSI-BLAST with respect to the

number of CPU threads

Figure 11. Running time of HHblits with respect to the

number of CPU threads

Z. AYDIN Academic Platform Journal of Engineering and Science 8-1, 01-14, 2020

12

Figure 12. Running time of MLP model implemented using

WEKA with respect to the number of CPU threads

4. DISCUSSION

This work provides a comparative and comprehensive speed

analysis of selected machine learning and bioinformatics

software on various high performance computing systems.

The following can be deduced from the analysis provided in

this work:

 For single core jobs, workstations with sufficient CPU

and RAM resources can perform comparably or better

than HPC cluster systems, which are typically loaded

with many jobs running simultaneously. This will also

reduce the waiting times in the queue of a large system.

Therefore to optimize the computational needs of a

research lab, both having access to workstation

computers and larger cluster systems will be the best

choice.

 HPC clusters can be particularly more useful than

workstations for programs that can run in multiple CPU

or GPU cores or for programs that should be run

repeatedly for different parameter settings.

 GPU versions of the programs typically perform better

than CPU versions especially if the algorithm is suitable

for parallelization across multiple cores. Examples

include deep convolutional neural networks and support

vector machines. An example exception to this behavior

is the MLP neural network model for which the GPU

performance is worse than CPU due to training

algorithm being less suitable for parallelization.

 In certain cases, CPU nodes can still be preferred over

GPU nodes. One example can be hyper-parameter

optimization of machine learning models, which

requires executing the same algorithm many times each

with a different hyper-parameter setting. From a

practical stand point, such an optimization can be

parallelized across multiple CPU cores more easily

(serial parallelization) as the number of GPU nodes in a

system will typically be less than the number of CPU

nodes and parallelizing across thousands of GPU cores

will require more advanced programming skills such as

re-implementing the hyper-parameter optimization

scripts using more advanced software (e.g. CUDA

programming).

 Using GPU systems specialized for the problem of

interest can provide significant performance gains. For

example, NVIDIA’s DGX-1 developed for artificial

intelligence and machine learning applications contains

high number of GPU cores, high speed processors, high

RAM capacity, and fast communication interface called

NVlink enabling faster model training as compared to

older GPU models such as Tesla K80.

 As the number of CPU threads are increased, the

performance of an application can also increase but may

saturate and start to decrease after some point. This

could be due to the memory system’s not being able to

service data requests efficiently because the processes

share the limited resources of cache capacity and

memory bandwidth. Scaling can be harmed by memory

loading/storing operations. Memory intensive programs

can therefore suffer from memory bandwidth saturation.

Other factors can include increased I/O requests of

increased number of processes and whether the

algorithm is suitable for parallelization. Fort his reason,

to get the most out of parallel processing, hardware and

software conditions should be optimized together.

5. CONCLUSION

This paper presents a comprehensive analysis for the running

time performance of popular software on selected research

problems and HPC systems. The As a future work, a similar

analysis can be performed using other software on different

fields and problems such as finance, forecasting; on

platforms such as cloud computing; and on larger datasets

where RAM size also becomes a bottleneck. Efforts in

system performance analysis will provide richer information

and guidance to end users for optimizing the performance of

their applications.

6. ACKNOWLEDGEMENTS

This work was supported by 3501 TUBITAK National

Young Researchers Career Award [grant number 113E550].

The numerical calculations reported in this paper were

fully/partially performed at TUBITAK ULAKBIM, High

Performance and Grid Computing Center (TRUBA

resources), the National Center for High Performance

Computing of Turkey (UHeM) under project no

5004062016, AGÜ HPC, and Feynman Grid. Special thanks

to Mr. Aydın Şaşmaz, the manager of the CompecTA

company, for making the Feynman Grid and its resources

available. Mr. Kenan Pelit and Mr. Ekrem Seren from

CompecTA provided great support as solution architects in

installing some of the software tested in this work.

Z. AYDIN Academic Platform Journal of Engineering and Science 8-1, 01-14, 2020

13

REFERENCES

[1]. R. Bekkerman, M. Bilenko, and J. Langford, Scaling Up

Machine Learning: Parallel and Distributed Approaches,

Cambridge University Press, 2012.

[2]. Supercomputer,

https://en.wikipedia.org/wiki/Supercomputer (first

published on 31 January 2002).

[3]. Y. Kochura, S. Stirenko, O. Alienin, M. Novotarskiy,

and Y. Gordienko, “Performance Analysis of Open Source

Machine Learning Frameworks for Various Parameters in

Single-Threaded and Multi-Threaded Modes”, In:

Shakhovska N., Stepashko V. (eds) Advances in Intelligent

Systems and Computing II. CSIT 2017. Advances in

Intelligent Systems and Computing, vol 689. Springer, 243-

256, 2018. DOI: https://doi.org/10.1007/978-3-319-70581-

1_17.

[4]. V. Kovalev, A. Kalinovsky, and S. Kovalev, “Deep

Learning with Theano, Torch, Caffe, TensorFlow, and

Deeplearning4J: Which One Is the Best in Speed and

Accuracy?”, International Conference on Pattern

Recognition and Information Processing, (2016).
http://elib.bsu.by/handle/123456789/158561.

[5]. A. Shatnawi, G. Al-Bdour, R. Al-Qurran, and M. Al-

Ayyoub, “A Comparative Study of Open Source Deep

Learning Frameworks”, IEEE 9th International Conference

on Information and Communication Systems (ICICS), 72-

77, (2018). DOI: 10.1109/IACS.2018.8355444.
[6]. S. Bahrampur, N. Ramakrishnan, L. Schott, and M.

Shah, “Comparative Study of Deep Learning Software

Frameworks”, arXiv:1511.06435, 2016.

[7]. D.A. Bader, Y. Li, T. Li, and V. Sachdeva, “BioPerf: A

Benchmark Suite to Evaluate High-Performance Computer

Architecture on Bioinformatics Applications”, The IEEE

International Symposium on Workload Characterization

(IISWC 2005), Austin, TX, October 6-8, 2005. DOI:

10.1109/IISWC.2005.1526013.

[8]. M. Kurtz, F. J. Esteban, P. Hernandez, J. A. Caballero,

A. Guevara, G. Dorado, and S. Galvez, “Bioinformatics

Performance Comparison of Many-core Tile64 vs. Multi-

core Intel Xeon”, Clei Electronic Journal, vol. 17, no. 1, 1-9,

2014.

[9]. NVIDIA DGX-1, https://www.nvidia.com/en-us/data-

center/dgx-1/ (published on 9 October 2017).

[10]. M. Abadi et al., “Tensorflow: A system for large-

scale machine learning”, 12th USENIX Symposium on

Operating Systems Design and Implementation (OSDI)”,

USENIX Association, 265-283, (2016). Software available

at https://www.tensorflow.org. (published on 5 March 2019).

[11]. F. Pedregosa et al., “Scikit-learn: machine learning

in python”, Journal of Machine Learning Research, vol. 12,

pp. 2825-2830, 2011. Software available at https://scikit-

learn.org/stable/ (published on 20 October 2011). Url:

http://www.jmlr.org/papers/volume12/pedregosa11a/pedreg

osa11a.pdf.

[12]. E. Frank, M. A. Hall, and I. Witten, “The WEKA

Workbench. Online Appendix for "Data Mining: Practical

Machine Learning Tools and Techniques", Morgan

Kaufmann, Fourth Edition, 2016. Software available at

https://www.cs.waikato.ac.nz/ml/weka/ (published on 13

July 2008).

[13]. J. Bilmes and G. Zweig, “The graphical models

toolkit: An open source software system for speech and time-

series processing”, IEEE International Conference on

Acoustics, Speech, and Signal Processing, vol. 4, IV-3916-

IV-3919, (2002). Software available at

https://melodi.ee.washington.edu/gmtk/ (published on 20

October 2014). DOI: 10.1109/ICASSP.2002.5745513.

[14]. C.-C. Chang and C.-J. Lin, “LIBSVM: a library for

support vector machines”, ACM Transactions on Intelligent

Systems and Technology, vol. 2, pp. 27:1--27:27, 2011.

Software available at

https://www.csie.ntu.edu.tw/~cjlin/libsvm/ (published on 15

July 2018). DOI: 10.1145/1961189.1961199.

[15]. Z. Wen, J. Shi, Q Li, B. He, and J. Chen,

“ThunderSVM: A Fast SVM Library on GPUs and CPUs”,

Journal of Machine Learning Research, vol. 19, pp. 1-5,

2018. Software available at

https://thundersvm.readthedocs.io/en/latest/ (published on 2

November 2017).

[16]. S. F. Altschul, T. L. Madden, A. A. Schaffer, J.

Zhang, Z. Zhang, W. Miller, and D. J. Lipman, "Gapped

BLAST and PSI-BLAST: a new generation of protein

database search programs", Nucleic Acids Res. 25 (17),

3389-3402, (1997). Software available at

https://blast.ncbi.nlm.nih.gov/Blast.cgi (published on 30

May 2019). DOI: 10.1093/nar/25.17.3389.

[17]. M. Remmert, A. Biegert, A. Hauser, and J. Söding,

"HHblits: Lightning-fast iterative protein sequence

searching by HMM-HMM alignment", Nat. Methods, 9 (2),

173-175, (2011). Software available at

https://github.com/soedinglab/hh-suite (published on 27

February 2019). DOI: 10.1038/nmeth.1818.

[18]. NCBI, URL: https://www.ncbi.nlm.nih.gov (first

published on Nov. 4, 1988).

[19]. Protein Data Bank (PDB), https://www.rcsb.org

(published on 23 April 2019).

[20]. D. T. Jones, “Protein secondary structure prediction

based on position-specific scoring matrices”, Journal of

Molecular Biology, vol 292, no. 2, 195-202, 1999. Software

available at http://bioinf.cs.ucl.ac.uk/psipred/ (published on

26 June 2009). DOI: 10.1006/jmbi.1999.3091.

[21]. DSSP, URL:

https://swift.cmbi.umcn.nl/gv/dssp/DSSP_1.html, (first

published in 1983).

[22]. Python, https://www.python.org (published on 22

February 2014).

[23]. F. Bulut, “Sınıflandırıcı Topluluklarının Dengesiz

Veri Kümeleri Üzerindeki Performans Analizleri”, Bilişim

Teknolojileri Dergisi, 9(2), 153, 2016. DOI:

10.17671/btd.81137.

[24]. Artnome,

https://www.artnome.com/news/2018/11/8/inventing-the-

future-of-art-analytics (published on 12 November 2018).

[25]. F. Bulut, “Çok katmanlı algılayıcılar ile doğru

meslek tercihi”, Anadolu Üniversitesi Bilim Ve Teknoloji

Z. AYDIN Academic Platform Journal of Engineering and Science 8-1, 01-14, 2020

14

Dergisi A-Uygulamalı Bilimler ve Mühendislik, 17(1), 97-

109, 2016. DOI: 10.18038/btda.45787.

[26]. Multi-layer perceptron,

https://www.oreilly.com/library/view/getting-started-

with/9781786468574/ch04s04.html (published on 4 August

2016).

[27]. S. Fourati et al., “A crowdsourced analysis to

identify ab initio molecular signatures predictive of

susceptibility to viral infection”, Nature Communications,

vol. 9, no. 1, pp. 1-11, 2018. Challenge web site:

https://www.synapse.org/#!Synapse:syn5647810/wiki/3991

03 (first published on 17 May 2016). DOI: 10.1038/s41467-

018-06735-8.

[28]. C. M. Bishop, Neural Networks for Pattern

Recognition, Oxford University Press, 1996.

[29]. Convolutional neural network,

https://en.wikipedia.org/wiki/Convolutional_neural_networ

k (first published on 31 August 2013).

[30]. Optical character recognition,

https://en.wikipedia.org/wiki/Optical_character_recognition

(first published on 7 December 2005).

[31]. A comprehensive guide to convolutional neural

networks, https://towardsdatascience.com/a-comprehensive-

guide-to-convolutional-neural-networks-the-eli5-way-

3bd2b1164a53 (published on 15 December 2018).

[32]. notMNIST dataset,

http://yaroslavvb.blogspot.com/2011/09/notmnist-

dataset.html (published on 8 September 2011).

[33]. MNIST dataset,

https://en.wikipedia.org/wiki/MNIST_database (first

publised on 17 August 2013).

[34]. Using notMNIST dataset from Tensorflow,

http://enakai00.hatenablog.com/entry/2016/08/02/102917

(published on 2 August 2016).

[35]. X. Glorot and Y. Bengio, “Understanding the

difficulty of training deep feedforward neural networks”,

Proceedings of the 13th International Conference on

Artificial Intelligence and Statistics (AISTATS), 249-256,

(2009). Available at

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf.

[36]. Support vector machine,

https://en.wikipedia.org/wiki/Support-vector_machine (first

published on 27 July 2002).

[37]. W. Yu, T. Liu, R. Valdez, M. Gwinn, and M. J.

Khoury, “Application of support vector machine modeling

for prediction of common diseases: the case of diabetes and

pre-diabetes”, BMC Medical Informatics and Decision

Making, vol. 10, no. 1, 2010. DOI: 10.1186/1472-6947-10-

16.

[38]. J. A. Bilmes,

http://melodi.ee.washington.edu/~bilmes/pgs/index.html

(published on 04 June 2018).

[39]. Dynamic Bayesian network,

https://en.wikipedia.org/wiki/Dynamic_Bayesian_network

(first publised on 4 December 2004).

[40]. Hidden Markov model,

https://en.wikipedia.org/wiki/Hidden_Markov_model (first

published on 3 October 2002).

[41]. Protein structure prediction,

https://en.wikipedia.org/wiki/Protein_structure_prediction

(published on 21 March 2007).

[42]. J. A. Cuff and G. J. Barton, “Evaluation and

improvement of multiple sequence methods for protein

secondary structure prediction”, Proteins, 34(4), 508–519,

1999. Dataset is available at

http://www.compbio.dundee.ac.uk/jpred/legacy/data/ (first

published in 1999).

[43]. I. Y. Y. Koh, V. A. Eyrich, M. A. Marti-Renom, D.

Przybylski, M. S. Madhusudhan, N. Eswar, O. Graña, F.

Pazos, A. Valencia, A., and B. Rost, “EVA: Evaluation of

protein structure prediction servers”, Nucleic Acids

Research, 31(13), 3311–3315, 2003. DOI:

10.1093/nar/gkg619.

[44]. Z. Aydin, A. Singh, J. Bilmes and W. S. Noble,

“Learning sparse models for a dynamic Bayesian network

classifier of protein secondary structure,” BMC
Bioinformatics, 12:154, 2011. DOI:

https://doi.org/10.1186/1471-2105-12-154.

[45]. Z. Aydin, N. Azgınoglu, H. I. Bilgin, and M. Celik,

“Developing Structural Profile Matrices for Protein

Secondary Structure and Solvent Accessibility Prediction”,

accepted to Bioinformatics, 2019. DOI:

10.1093/bioinformatics/btz238.

[46]. TRUBA,

https://www.truba.gov.tr/index.php/en/main-page/ (first

published in 2003).

[47]. TRUBA wiki page,

http://wiki.truba.gov.tr/index.php/Ana_sayfa (first published

on 1 December 2013).

[48]. UhEM, http://www.uhem.itu.edu.tr (published in

2016).

[49]. İTÜ UhEM wiki page,

http://wiki.uhem.itu.edu.tr/w/index.php/Sarıyer_sistemine_i

ş_vermek (first published on 19 October 2016).

[50]. CompecTA, https://www.compecta.com.tr (first

published in 2007).

[51]. Abdullah Gul University, http://www.agu.edu.tr

(first published in 2015).

