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A B S T R A C T

In recent years, the widespread use of the Internet has created many issues, especially in the area of
cybersecurity. It is critical to detect intrusions in network traffic, and researchers have developed network
intrusion and anomaly detection systems to cope with high numbers of attacks and attack variations.
In particular, machine learning and meta-heuristic methods have been widely used for network intrusion
detection systems (NIDS). However, existing studies on these systems usually suffer from low performance
results such as accuracy, F1-measure, false positive rate, and false negative rate, and generally do not use
automatic parameter tuning techniques. To address these challenges, this study proposes a novel approach
based on a logistic regression model trained using a parallel artificial bee colony (LR-ABC) algorithm with a
hyper-parameter optimization technique. The performance of the proposed model is evaluated against state-
of-the-art machine learning and deep learning models on two publicly available NIDS datasets. Comparative
performance evaluations show that the proposed method achieved satisfactory results with accuracy of 88.25%
on the UNSW-NB15 dataset and 90.11% on the NSL-KDD dataset, and F1-measures of 88.26% and 90.15%,
respectively. These findings demonstrate the efficacy of the proposed LR-ABC model in enhancing the accuracy
and reliability, while providing a scalable solution to adapt to the dynamic and evolving landscape of
cybersecurity threats.
1. Introduction

In recent years, the number of people and applications utilizing the
internet has expanded dramatically, owing largely to the development
of smart technology. According to the Data Reportal, which collects
data about internet usage worldwide, approximately one million new
internet users have been added each day, and the total number of in-
ternet users increased by 13% in 2020 compared to previous years [1].
The increased usage of the internet has also brought several security
problems. Cybercrime and threat activities have become a critical part
of our daily lives, and the necessity of cybersecurity has emerged as
a major concern. SonicWall reported that approximately 4.8 trillion
intrusion attempts occurred in 2020, representing a 20% increase over
the previous year [2]. These infiltration attempts are aimed at entering
information systems and stealing or obscuring confidential-sensitive
data. As a result of attacks and intrusions, credit card passwords are
stolen, server systems are infiltrated, and information services are
rendered useless. Numerous technologies are employed to close these
security gaps, such as firewalls, data encryption, and user authenti-
cation. These security mechanisms protect against a wide variety of
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attacks. However, they are incapable of performing in-depth packet
analysis. As a result, they are not sufficiently able to detect enough
attacks or attack types. Therefore, as a result of these concerns, network
intrusion detection systems (NIDS) have been created to compensate for
the deficiencies of the security methods, which monitor the network
continually for malicious attacks and warning users when intrusions
or attacks occur. These systems are commonly used to guard against
network attacks and warn users of abnormal conditions.

In general, NIDS are classified into two categories: signature and
anomaly-based. Signature-based solutions rely on a database of mal-
ware signatures, but they are not preferable owing to the expanding
diversity of attacks; an attacker may easily bypass the system with min-
imal alterations to the attack. Additionally, the signature-based system
is slowing down as it continues to learn new signatures and restrictions.
On the other hand, anomaly-based detection, in contrast, establishes
a pattern without relying on signatures and identifies malware using
the learned model. These models are capable of accomplishing more
in-depth data analysis thanks to their algorithms based on artificial
intelligence and machine learning (ML) approaches.
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Specifically, NIDS uses a variety of ML approaches, including rule
mining, classification, clustering, and deep learning based algorithms.
These strategies are implemented to safeguard the network’s security
by detecting intrusions and attacks with a high rate of accuracy and
F1-measure. While ML approaches offer benefits, they alone are insuffi-
cient and present difficulties; they require additional data preprocessing
steps guided by human expertise to address issues, such as detecting
outliers, a high cost of errors, a semantic gap between the results and
their interpretation, diversity in the generated network traffic, a variety
of attack types, and difficulties with data evaluation [3]. Recently, it
was shown that a variety of critical issues can be handled, such as
massive network traffic, diverse data distribution, and continuously
changing environmental circumstances, by integrating the artificial
bee colony (ABC) approach with ML methods [4]. To this end, the
ABC algorithms provide the following advantages: (i) they need less
previous knowledge about the data and human skills, which allows
the classification process without using particular data preprocessing
techniques [5]. (ii) The hybridization of the ABC approach with ML
techniques is improving the model results [3]. (iii) Unlike many ML
approaches, the ABC method is far less reliant on known labels within
the dataset [6]. (iv) It is distributed by design and performs well in
parallel and distributed computing environments [7].

This study proposes a novel anomaly-based NIDS approach using
logistic regression (LR), known for its simplicity, fast classification in
real-time applications [8], and efficiency. This approach avoids LR’s
tendency to convergence to poor local minima by training it using
the ABC [9] algorithm, which is a nature-inspired swarm intelligence
algorithm, that simulates the foraging behavior of honey bees.

To the best of our knowledge, this study builds the first anomaly-
based NIDS approach that utilizes the parallel ABC as an LR learn-
ing algorithm. The ABC algorithm works well on multimodal and
high-dimensional issues [10,11] and is capable of balanced explo-
ration and exploitation ability, which makes it an attractive candi-
date for anomaly-based NIDS. Additionally, the computational time of
the suggested solution is decreased via the use of parallel computing
techniques, and the Sequential Model-Based Optimization Configura-
tion (SMAC) technique is used to optimize ML algorithms’ hyper-
parameters. The proposed approach is evaluated using two publicly
available network datasets: UNSW-NB15 and NSL-KDD. The perfor-
mance of the proposed model is evaluated with state-of-the-art ML and
deep learning (DL) models, such as decision tree (DT), linear discrim-
inant analysis (LDA), logistic regression (LR), multi-layer perceptrons
(MLP), random forest (RF), support vector machines (SVM), extreme
gradient boosting (XGBoost), deep neural network (DNN), long short-
term memory (LSTM), and gated reccurent unit (GRU). Comparative
experiments on the UNSW-NB15 and NSL-KDD datasets show that the
proposed model outperforms other methods in accuracy, false positive
rate (FPR), and F1-measure for UNSW-NB15, as well as in accuracy,
false negative rate (FNR), and F1-measure for NSL-KDD, while reducing
the training time. The proposed model achieves an accuracy of 88.25%
on the UNSW-NB15 dataset and 90.11% on the NSL-KDD dataset,
and F1-measures of 88.26% and 90.15%, respectively. Additionally,
thanks to GPU parallelization, the proposed model’s training time was
approximately 4.45 times faster than the CPU version of the LR-ABC
approach, indicating a significant improvement in execution speed.
Overall, the major contributions of this study can be summarized as
follows:

• This study proposes an efficient approach based on a logistic
regression model trained by a parallel artificial bee colony algo-
rithm for network intrusion detection systems.

• To overcome the high computational time of the standard lo-
gistic regression (LR) - artificial bee colony (ABC) models, an
efficient LR-ABC model has been developed based on CPU and
GPU parallelization techniques to significantly reduce training
2

time.
• The performance of the proposed approach outperforms the state-
of-the-art machine learning and deep learning models in terms of
accuracy, false positive rate, false negative rate, and F1-measure.

• Comparative performance evaluations are based on the publicly
available UNSW-NB15 and NSL-KDD datasets, which are among
the most comprehensive available datasets. The high performance
of the proposed approach shows that the proposed model is
reliable and robust to detect various attack types, and it provides
a scalable solution for adapting to the dynamic and evolving
landscape of cybersecurity threats.

• The SMAC parameter optimization method has been utilized to
automatically optimize the hyper-parameters of the proposed
logistic regression-artificial bee colony approach, the state-of-the-
art machine learning and deep learning methods.

This study is organized as follows: Section 2 provides an overview
of the current ML-based intrusion detection systems. Section 3 de-
scribes evaluation metrics, available datasets, preprocessing steps and
the hyper-parameter optimization method. In Section 4, the proposed
LR-ABC approach and the parallel computing method are explained.
Section 5 outlines the experimental steps. Section 6 presents the perfor-
mance results of the proposed LR-ABC and other classification methods.
The last section concludes the paper and discusses future research
directions.

2. Related work

In recent years, attackers have been upgrading themselves and the
software that they use and inventing new malicious activities. Until
now, different ML-based NIDS have been developed. Anomaly-based
NIDS are favored for their ability to identify novel attacks types, unlike
signature-based systems. Due to the automated nature of ML tech-
niques, they are able to develop a variety of models without the strong
involvement of human skills [12], which is sometimes a constraint
and costly. For this purpose, many studies are aim to increase the
performance of anomaly-based NIDS for different types of cybersecurity
attacks.

Hajisalem et al. [13] suggest a hybrid method for anomaly-based
NIDS that combines the ABC and Artificial Fish Swarm (AFS) algo-
rithms. This hybrid method generates rules through the use of fuzzy
C-means clustering (FCM) and correlation-based feature selection (CFS)
techniques. They generate if-then rules using the CART technique to
distinguish normal and anomalous records. Qureshi et al. [14] suggest a
NIDS that utilizes a random neural network (RNN) trained with the ABC
algorithm to discover the ideal weights for the neurons, followed by a
comparison to the classic gradient descent-based RNN model. Mazini
et al. [15] suggest a hybrid method that combines an ABC algorithm
for feature selection to select the best subset of related features and an
AdaBoost meta-algorithm for classification. Gu et al. [16] create a NIDS
that uses SVM with the tabu-ABC for feature selection and parameter
optimization at the same time. They adopted the tabu search algorithm
to enhance the neighborhood search of ABC (TABC). TABC-SVM is
utilized for reducing the feature size dimensions, and meanwhile, SVM
parameters are optimized. Finally, the dataset is utilized to train the
SVM classifier model using the appropriate feature subset and hyper-
parameters. Rani et al. [17] use the ABC algorithm for the feature
selection process and a random forest classifier for classification tasks.
Additionally, they demonstrate in other research why feature selection
procedures result in overfitting and are unable to improve classification
accuracy on NIDS [18]. In our previous studies [19], the ABC algorithm
was applied to LR on e-mail spam filtering tasks and then evaluated
on three public datasets. The proposed approach is compared with
other ML algorithms. The suggested methodology outperforms other
approaches in terms of classification accuracy and false positive rate.
The proposed model demonstrates a high degree of effectiveness on un-

balanced and nonlinear spam datasets. However, the suggested method
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has a shortcoming as it requires more training time compared to the
other methods.

On the other hand, several studies on NIDS have focused on differ-
ent preprocessing steps and used individual classifiers such as DT [20],
LDA [21], LR [22], MLP [23], and SVM [24] on the UNSW-NB15
dataset. While these studies provide valuable insights into NIDS, no
have explored LR-ABC classification for anomaly-detection on NIDS. In
this study, the proposed LR-ABC approach is compared to the state-
of-the-art ML and DL algorithms, which include DT, LDA, LR, MLP,
RF, SVM, XGBoost, DNN, LSTM, and GRU classifiers, using the UNSW-
NB15 and NSL-KDD datasets. Additionally, this study emphasizes that
no cleaning process was applied to the datasets, and feature selection
methods were not used. While some preprocessing methods could
potentially increase accuracy, such enhancements are outside the scope
of this study.

Overall, ML and metaheuristic methods have been widely used
for NIDS. However, existing studies on NIDS usually suffer from low
performance results such as accuracy, F1-measure, false positive rate,
and false negative rate. Moreover, current studies generally do not use
automatic parameter tuning techniques. To address these challenges,
this paper proposes a novel approach based on a logistic regression
model trained using a parallel artificial bee colony algorithm with a
hyper-parameter optimization technique. To overcome the high com-
putational time of the LR-ABC models, an efficient LR-ABC model
has been developed based on CPU and GPU parallelized technique to
significantly reduce training time. To the best of our knowledge, this
study proposes the first anomaly-based NIDS approach that employing
the parallel ABC as an LR learning algorithm.

3. Materials & methods

3.1. Evaluation metrics

Accuracy is a essential criterion for evaluating a model’s overall
performance. The major goal of the current research is to increase the
accuracy of NIDS, but the accuracy criterion may not be adequate in
NIDS, especially in anomaly detection. Therefore, in addition to the
accuracy metric, F1-measure, FPR and FNR metrics, training time are
also used to evaluate the classification performance. The FPR measures
the rate of the normal traffic falsely detected as anomalies, while the
FNR indicates the rate of actual anomalies mistakenly classified as
normal. The F1-measure, the harmonic mean of recall and precision,
reflects the model’s sensitivity and robustness. These are important
details to be examined in the NIDS. These performance metrics are
given in Eqs. (1), (2), (3), and (4), respectively. These metrics help to
assess the performance of the model in several aspects. The traditional
confusion matrix is shown in Table 1.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶) = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝐹𝑁

(1)

𝐹𝑃𝑅 = 𝐹𝑃
𝑇𝑁 + 𝐹𝑃

(2)

𝐹𝑁𝑅 = 𝐹𝑁
𝑇𝑃 + 𝐹𝑁

(3)

𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (𝐹1) = 2 𝑇𝑃
2 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(4)

.2. Dataset

The UNSW-NB15 [25] and NSL-KDD [26] are benchmark network
raffic datasets well-known in NIDS research. The goal of the datasets
eneration is to provide a robust and realistic dataset. The UNSW-
B15 dataset provides training and testing datasets separately. This
ataset provides both multiclass and binary class labels. The training
et contains a total of 175,341 samples, of which 56,000 are labeled
‘normal’’ and 119,341 are labeled ‘‘abnormal’’. Similarly, the testing set
onsists of 82,332 samples, of which 37,000 are labeled ‘‘normal’’, and
3

Table 1
Traditional confusion matrix.

Predicted Abnormal Predicted Normal

Actual Abnormal TP FN
Actual Normal FP TN

Table 2
Class distribution of UNSW-NB15 and NSL-KDD datasets.

Dataset Class Training Set Test Set

U
N

SW
-N

B1
5

Normal 56.000 37.000
Fuzzers 18.184 6.062
Analysis 2.000 677
Backdoors 1.746 583
Dos 12.264 4.089
Exploits 33.393 11.132
Generic 40.000 18.871
Reconnaissance 10.491 3.496
Shellcode 1.131 378
Worms 130 44
Total 175.341 82.332

N
SL

-K
DD

Normal 67.343 9.711
Dos 45.927 7.458
Probe 11.656 2.421
U2R 52 200
R2L 995 2.754
Total 125.973 22.544

45,332 are labeled ‘‘abnormal’’ traffic samples. The dataset contains 45
features and abnormal classes containing nine attack types, including
backdoors, analysis, DoS, exploits, fuzzers, generic, reconnaissance,
shell code, and worms. The NSL-KDD is divided into two parts: KD-
DTrain+ and KDDTest+. The training set has 125,973 samples, with
67,343 labeled ‘‘normal’’ and 58,630 labeled ‘‘abnormal’’, including 22
attack types, which is categorized into four attack classes. The test set
has 22,544 samples of which 9711 are labeled ‘‘normal’’, and 12,833
are labeled ‘‘abnormal’’ and including 37 attack types, also grouped
into four attack classes. The distribution of four classes is: denial of
service (DoS) attacks, root-to-local attacks (R2L), user-to-root attacks
(U2R), and probing attacks (Probe). The NSL-KDD dataset contains 41
features. Table 2 shows the class distribution of the UNSW-NB15 and
NSL-KDD datasets.

3.3. One hot encoding

Machine learning algorithms consider the magnitude of numerical
values as the importance or significance of features. In other words,
on the categorical values, it will consider the higher number more im-
portant or superior to a lower number. Therefore, on the UNSW-NB15
dataset, which has categorical features, one hot encoding technique
is applied to transform categorical features to numeric values. For
instance, the ‘state’ feature has nine categorical values: ‘FIN’, ‘INT’,
‘CON’, ‘ECO’, ‘REQ’, ‘RST’, ‘PAR’, ‘URN’, and ‘no’. These were turned
into binary vectors using the one-hot encoding method as follows: [1,
0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0], . . . , [0, 0, 0,
0, 0, 0, 0, 0, 0, 1]. The ‘service’, ‘state’, and ‘proto’ are the three
categorical features in the UNSW-NB15 dataset and after encoding,
the total number of features increases to 199. Similarly, the NSL-KDD
dataset contains categorical features such as ‘protocol type’, ‘service’,
and ‘flag’, which after binary encoding, expand the total feature count
to 122.

3.4. Data normalization

Normalization eliminates the influence of various scales across fea-
tures, thereby reducing the time required to train the model. There are
several normalization approaches. To choose the most suitable one, the

dataset is analyzed for sparsity, a measure indicating how prevalent
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Table 3
Hyperparameter ranges for classification methods for UNSW-NB15 and NSL-KDD
datasets.

Classifier Parameter Lowest Highest

DT Min Samples Split 2 100
Min Samples Leaf 1 100

DL

Batch Size 8 64
Learning Rate 10−6 10−2

Neuron1 1 128
Neuron2 1 128
Neuron3 1 128

LDA Shrinkage 0 1

LR C 10−4 104

LR-ABC

LB −64 0
UB 0 64
Evaluation Number 10.000 160.000
Limit 10 500
P 10 100
MR 0.02 0.5
L2 0 0.1

MLP

Learning Rate 10−8 10−1

Number of Hidden Units 2 40
Batch Size 1 1024
Number of Epochs 1 50

RF Number of Trees 1 200

SVM C 0.001 1

XGBoost Eta 0.1 1
Depth 1 40

zeros are. This metric indicates that max-abs normalization strategies
should be used before classification. This max-abs normalization tech-
nique scales and transforms each feature independently, ensuring that
each feature in the training set has a maximum absolute value of 1.0
and does not center or shift the values, hence preserving any sparsity.
So, the max-abs normalization methods are applied to scale the feature
values into the numeric range between 0 and 1.

3.5. Sequential model-based optimization configuration (SMAC)

In machine learning, there are numerous parameter optimization
strategies that guarantee the model will achieve the best performance
in the given space. For this reason, hyper-parameter selection is a
critical procedure during training the model. The main advantage of
hyper-parameter selection is that it is applicable to handling parameter
tuning of many different models. The parameter tuning process has
a strong impact on the performance or efficacy of a model, but this
usually requires a large number of runs. This makes the tuning process
time-consuming, which is the main disadvantage of hyper-parameter
optimization [27]. The second disadvantage is that how to determine
the parameter value is still challenging. SMAC optimization enables
the search of a larger hyper-parameter space. For each parameter, the
method accepts an interval (i.e., min and max values) and can consider
any value within that interval. Another advantage is that SMAC opti-
mization can be completed in a matter of days for the same search space
and computational resources, whereas standard techniques can take
up to a year [28]. According to the survey [27], the SMAC technique
is currently the most powerful automatic parameter tuning method.
Table 3 shows the hyper-parameter ranges for classification methods
in this study.

4. Proposed LR-ABC method

4.1. Artificial bee colony (ABC) algorithm

The ABC algorithm proposed by Karaboga [9] is an optimization
technique and simulates the foraging behavior of a honey bee popu-
4

lation. There are three sorts of artificial bees in the ABC algorithm:
Algorithm 1 ABC algorithm
1: Determine the number of food source ⟮𝑃 ⟯, maximum evalua-
tion number ⟮𝑀𝐸𝑁 ⟯, limit and the number of parameters to be
optimized ⟮𝑛⟯
2: Randomly create the food source locations
𝑓𝑜𝑟 𝑖 ← 𝑡𝑜 𝑃 ∶
𝑓𝑜𝑟 𝑗 ← 𝑡𝑜 𝑛 ∶

𝑤𝑚𝑖𝑛
𝑗 ← 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑

𝑤𝑚𝑎𝑥
𝑗 ← 𝑢𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑

𝜙𝑖𝑗 ← 𝑟𝑎𝑛𝑑𝑜𝑚⟮0, 1⟯
𝑤𝑖𝑗 = 𝑤𝑚𝑖𝑛

𝑗 + 𝜙𝑖𝑗 × ⟮𝑤𝑚𝑎𝑥
𝑗 −𝑤𝑚𝑖𝑛

𝑗 ⟯

3: Perform local searches around food source locations using
employed bees
𝑓𝑜𝑟 𝑖 ← 𝑡𝑜 𝑃 ∶
𝜙 ← 𝑟𝑎𝑛𝑑𝑜𝑚[−1, 1]
𝑘 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑡[1, 𝑃 ] 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑡ℎ𝑎𝑡 𝑖 ≠ 𝑘
𝑗 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑡[1, 𝑛]
𝜐𝑖𝑗 = 𝑥𝑖𝑗 + 𝜙 × ⟮𝑥𝑖𝑗 − 𝑥𝑘𝑗 ⟯

4: Perform greedy selection
5: Calculate the fitness value for each food source; that is,
evaluate the quality of each solution
𝑓𝑜𝑟 𝑖 ← 𝑡𝑜 𝑃 ∶

𝑓𝑖 ← 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛⟮⃖⃖⃗𝑤⟯

6: Calculate the probability value of each solution proportional
to its quality
𝑓𝑜𝑟 𝑖 ← 𝑡𝑜 𝑃 ∶

𝜌𝑖 ← 0.9 × ( 𝑓𝑖
𝑚𝑎𝑥⟮𝑓 ⟯ ) + 1

7: Onlooker bees select food sources by considering probability
values
𝑖 ← 0
𝑗 ← 0
𝑤ℎ𝑖𝑙𝑒 𝑡 < 𝑃 ∶

𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚⟮0, 1⟯ < 𝑝𝑖 ∶
𝜙 ← 𝑟𝑎𝑛𝑑𝑜𝑚[−1, 1]
𝑘 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑡[1, 𝑃 ] 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑡ℎ𝑎𝑡 𝑖 ≠ 𝑘
𝑗 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑡[1, 𝑛]
𝜐𝑡𝑗 = 𝑥𝑖𝑗 + 𝜙 × ⟮𝑥𝑖𝑗 − 𝑥𝑘𝑗 ⟯

𝑡 ← 𝑡 + 1
𝑖 ← 𝑖 + 1
𝑖𝑓 𝑖 ⩾ 𝑃 ∶

𝑖 ← 0
8: Perform greedy selection
9: Scout bee phase:
If there is an exhausted food source i then:

𝑓𝑜𝑟 𝑗 ← 0 𝑡𝑜 𝑁 ∶
𝜙𝑖𝑗 ← 𝑟𝑎𝑛𝑑𝑜𝑚⟮0, 1⟯
𝑤𝑖𝑗 = 𝑤𝑚𝑖𝑛

𝑗 + 𝜙𝑖𝑗 × ⟮𝑤𝑚𝑎𝑥
𝑗 −𝑤𝑚𝑖𝑛

𝑗 ⟯

employed, onlooker, and scout bees. A food source’s position correlates
to a viable solution. The nectar content of a food source indicates the
solution’s quality. The algorithm’s objective is to locate the food source
that contains the most nectar. The algorithm’s steps are detailed in
Algorithm 1.

Employed bees are responsible for memorizing better regions around
food source placements; employed bees also share this information
about nectar quantities and food source location with onlooker bees
waiting in the dance area. Each onlooker bee chooses a source to
fly to, by observing the employed bees execute their dance. The ABC
algorithm mimics the dance and profitable source selection using a
stochastic selection strategy similar to that of a roulette wheel. The
stochastic approach incorporates positive feedback, such that when a
food source’s nectar content is high, a greater number of onlooker bees

is recruited to the source.
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If the nectar content of a new solution is greater than that of
the present solution, the employed bee saves the new solution in its
memory and forgets about the old solution, during the greedy selection
conducted in stages 4 and 8. Otherwise, it maintains the current answer
in memory and increments the counter associated with it by one.
The counters keep track of how many times a food source has been
exploited and are used during the scout bee phase to determine when
a food source has been exhausted. A solution is considered exhausted
if its counter surpasses a predefined value, referred to as the limit. At
most one employed bee can become a scout bee during each cycle of
the basic algorithm. If more than one employed bee’s food source is
exhausted, the algorithm selects the source with the greatest counter
value and converts this bee into a scout bee. Bees forsake exhausted
sources and scout bees look for undiscovered sources to replace them.

Algorithm 2 Proposed LR-ABC classification method
1: Determine the input parameters: Input matrix 𝑋𝑀×𝑁 , target 𝑦𝑀 ,
number of food sources 𝑃 , position of the food sources 𝑊𝑃×𝐷, maxi-
mum evaluation number 𝑀𝐸𝑁 , lower bound 𝑙𝑏, upper bound 𝑢𝑏, 𝑙𝑖𝑚𝑖𝑡
Output:
1: 𝐷 ← 𝑁 + 1
2: 𝑊𝑃×𝐷 ← 𝑙𝑏 + 𝑟𝑎𝑛𝑑(𝑃 ,𝐷) × (𝑢𝑏 − 𝑙𝑏)
3: 𝑊 ′

← 𝑊
4: 𝑓𝑖𝑡 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑊 )
5: 𝜏 ← 𝑧𝑒𝑟𝑜𝑠(𝑃 )
6: 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟 ← 0
7: while 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟 < 𝑀𝐸𝑁 do
8: Perform employed bee phase
9: ⃗𝑠𝑓𝑖𝑡 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑊 ′ )

10: ⃗𝑖𝑛𝑑 ← ⃗𝑠𝑓𝑖𝑡 > 𝑓𝑖𝑡
11: ⃗𝑟𝑖𝑛𝑑 ← ⃗𝑠𝑓𝑖𝑡 ≤ 𝑓𝑖𝑡
12: 𝜏[ ⃗𝑖𝑛𝑑] ← 0
13: 𝑊 [ ⃗𝑖𝑛𝑑] ← 𝑊 ′ [ ⃗𝑖𝑛𝑑]
14: 𝑓𝑖𝑡[ ⃗𝑖𝑛𝑑] ← ⃗𝑠𝑓𝑖𝑡[ ⃗𝑖𝑛𝑑]
15: 𝜏[ ⃗𝑟𝑖𝑛𝑑] ← 𝜏[ ⃗𝑟𝑖𝑛𝑑] + 1
16: Calculate probability values of all solutions
17: Perform onlooker bee phase
18: ⃗𝑠𝑓𝑖𝑡 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑊 ′ )
19: for 𝑖 ← 1 ∶ 𝑃 do
20: 𝑡 ← ⃗𝑡𝑚𝑝𝐼𝐷[𝑖]
21: if ⃗𝑠𝑓𝑖𝑡[𝑖] > 𝑓𝑖𝑡[𝑡] then
22: 𝜏[𝑡] ← 0
23: 𝑊 [𝑡, ∶] ← 𝑊 ′ [𝑖, ∶]
24: 𝑓𝑖𝑡[𝑡] ← ⃗𝑠𝑓𝑖𝑡[𝑖]
25: else
26: 𝜏[𝑡] ← 𝜏[𝑡] + 1
27: end if
28: end for
29: Perform scout bee phase
30: Memorize best source
31: end while
32: Return global best solution

Algorithm 3 Calculate fitness function
1: procedure 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝜙)
2: 𝑤 ← 𝜙[∶, 1 ∶]
3: 𝑏 ← 𝜙[∶, 0]
4: 𝑝 ← 𝜎(𝑋.𝑑𝑜𝑡(𝑤𝑇 ) + 𝑏)
5: 𝑓 ← 𝑚𝑒𝑎𝑛(( ⃗𝑦𝑀 − 𝑝)2, 𝑎𝑥𝑖𝑠 = 0)
6: 𝑓 ← 1∕(𝑓 + 1)
7: 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟 ← 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟 + 𝑙𝑒𝑛(𝑓 )
8: 𝑟𝑒𝑡𝑢𝑟𝑛 𝑓
9: end procedure
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4.2. LR-ABC classification method

Due to the limitations of the gradient descent algorithm used in
LR, such as the assumption of a continuous cost function, the ABC
algorithm, a successful heuristic, is employed to train the LR model.
In addition to making no assumptions about the function or parameter
search space, the ABC algorithm can successfully search for both local
and global solutions in the search space. When LR is trained using
ABC, the LR model’s weights correspond to the ABC algorithm’s food
source locations. As a result, the method initially generates a population
of starting weights and bias values. The employed bee, onlooker bee,
and scout bee phases then seek the optimal weight set ⟮⃖⃖⃗𝑤𝑖⟯ and bias
value that minimizes the mean squared error at the model’s output.
The algorithm’s steps are provided in Algorithm 2.

After a training set is given {⟮ ⃖⃗𝑥1, 𝑦1⟯,… , ⟮ ⃖⃗𝑥𝑚, 𝑦𝑚⟯}, 𝑦𝑖 ∈ {0, 1} and
⃖⃗ 𝑖 ∈ 𝑅𝑛, 1 ⩽ 𝑖 ⩽ 𝑚, LR-ABC classification model determines the class of
he vector ⃖⃗𝑥𝑖 by using Eq. (5):

𝑝⏐𝑖 =

{

0, 𝑝𝑖 < 0.5
1, 𝑝𝑖 ⩾ 0.5

(5)

here 𝑝𝑖 is computed as seen in Eq. (6) and the function 𝜎 corresponds
o sigmoid function, which is given in Eq. (7). The LR-ABC method’s
bjective is to find the weights ⟮⃖⃖⃗𝑤⟯ that minimize the cost function,
hich is provided by Eqs 8. As can be seen from Eq. (8), the cost

unction includes the mean square error (MSE) function with ridge
egression (L2 regularization) used to avoid overfitting.

𝑖 = 𝜎⟮𝑤1𝑥𝑖1 +𝑤2𝑥𝑖2 +⋯ +𝑤𝑛𝑥𝑖𝑛 + 𝑏⟯ (6)

𝜎⟮𝜃⟯ = 1
1 + 𝑒−𝜃

(7)

𝐶 ⟮⃖⃖⃗𝑤⟯ = 1
𝑚

𝑚
∑

𝑖=1
⟮𝑦𝑖 − 𝑝𝑖⟯

2 + 𝜆
𝑛

𝑛
∑

𝑗=1
⟮𝑤𝑗 ⟯

2 (8)

The LR-ABC algorithm first randomly generates a total of P food
source positions using as described in step 2 of Algorithm 2. Each food
source position corresponds to a weight vector. For each set of weight
vectors, the LR-ABC model computes an output based on these weights
and bias value. The fitness value of a solution is inversely proportional
to the value returned by the cost function for that solution, as given
in Eq. (9). Therefore, a solution with a higher cost value will have a
lower fitness value. This fitness function and selection operator direct
the algorithm to the better locations in the search space and Algorithm
3 demonstrates the calculation of the fitness value.

𝑓𝑙 =
1

1 + 𝐶𝑙
(9)

After evaluating the initial population, the algorithm begins iterat-
ing through the employed bee, onlooker bee, and scout bee phases until
the termination requirements are met. In the employed bee phase, a
local search around each solution in memory is performed, and a new
solution is produced using the third step of Algorithm 1. In Algorithm
2, 𝜏 is a vector that keeps track of the number of times each solution has
failed to be improved, and in the scout bee phase, if there is a solution
in this vector that is higher than the limit value, this solution is replaced
with a new one.

4.3. Computation on GPU

The CPU version of the LR-ABC and state-of-the-art ML methods
are implemented using the NumPy [29] library, which does not sup-
port GPU computations. NumPy is widely used in ML methods, and
the Python community has built packages like Scikit-Learn on top
of NumPy. With the rapid development of GPU technologies over
the last few years, researchers have increasingly focused on parallel
computing to accelerate algorithms. However, the CPU version of the
LR-ABC method still has a limitation due to its high computational
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time. Due to the large size of the training datasets (175,341 × 199 and
125,973 × 122 matrices for UNSW-NB15 and NSL-KDD, respectively),
accelerating our model became imperative. Specifically, by harnessing
GPU parallelization for vectorized loops, we significantly enhanced
overall speed and efficiency. Additionally, we parallelized common ar-
ray operations such as searching, comparing, addition, subtraction, and
matrix multiplications on a GPU. We achieved this using CuPy [30],
an open-source library that accelerates matrix operations using NVIDIA
GPUs. CuPy is compatible with NumPy and enables full use of modern
GPU capabilities through a NumPy-compatible interface. The improved
parallel LR-ABC method was developed with the CuPy library. As a
result, as shown in the performance results in Section 6, the training
time has been dramatically reduced by approximately 4.5 times com-
pared to CPU version of LR-ABC. Detailed implementation of the GPU
version can be accessed in the references [31,32].

5. Experiments

In our experiment, eleven classification algorithms – DT, LDA, LR,
MLP, RF, SVM, XGBoost, DNN, LSTM, GRU, and the proposed LR-ABC
method – were evaluated using the publicly available UNSW-NB15 and
NSL-KDD datasets. In the preprocessing steps for both datasets, the one-
hot encoding technique was applied to transform categorical features
into numeric values. Max-abs normalization methods were used to map
the numeric feature values into the range 0 to 1. The classification
methods were implemented using the SMAC optimization technique,
and optimal hyper-parameters were determined for each classifier with
the run count limit set to 20. Table 3 shows the hyper-parameter ranges
for classification methods for UNSW-NB15 and NSL-KDD datasets. In-
dividual results in terms of accuracy, FPR, FNR, and F1-measure were
obtained for each classifier. Since both the UNSW-NB15 and NSL-KDD
datasets contain separate training and test sets, each model was trained
on the training set and evaluated on the test set.

The DNN, LSTM, and GRU architectures consist of an input layer,
three hidden layers, and an output layer. The number of neurons in the
hidden layers is determined through SMAC optimization. The hidden
layers have a ReLU activation function, and the last layer has a sig-
moid activation function. To prevent overfitting, batch normalization
is implemented after each layer. The training process utilizes the Adam
optimizer with the binary crossentropy loss function. Additionally, an
early stopping mechanism stops model training if the validation loss
does not improve after five epochs, at which point the best model
weights are reinstated. The learning rate and mini-batch size are also
determined through SMAC optimization, with the maximum number of
epochs being set to 100.

All machine learning models were implemented using the Scikit-
Learn library [33], while all deep learning models were implemented
using Keras [34]. The proposed approach was developed in the Python
programming language [35].

6. Performance results

In this study, we experiment the proposed LR-ABC method alongside
seven different machine learning methods (DT, LDA, LR, MLP, RF, SVM,
and XGBoost) and three different deep learning methods (DNN, LSTM,
GRU) for anomaly detection in network traffic using two publicly
available NIDS datasets. Each classifier is trained with hyper-parameter
optimization using the SMAC technique.

Performance results of the proposed and other classification meth-
ods with optimum hyper parameters found by SMAC optimization are
shown in Table 4. Hyper-parameter ranges for classification methods
and optimum parameters found by SMAC optimization are shown in
Table 5. For the UNSW-NB15 dataset, the proposed LR-ABC method
achieved the highest accuracy (88.25%), F1-measure (87.86%) and the
lowest FPR (0.1212) with the following optimum hyper-parameters:
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lower bound (LB) = −20, upper bound (UB) = 10, Evaluation Number
Table 4
Performance results of the proposed and other classification methods with optimum
hyper-parameters found by SMAC optimization on UNSW-NB15 and NSL-KDD datasets

Dataset Classifier Accuracy
(%)

False
Positive
Rate

False
Negative
Rate

F1-
measure
(%)

U
N

SW
-N

B1
5

DT 86.81 0.2642 0.0237 86.5
LDA 80.91 0.4218 0.0023 79.77
LR 80.89 0.3892 0.0292 80.04
LR-ABC 88.25 0.1212 0.1143 88.26
MLP 83.37 0.3500 0.0162 82.72
RF 86.79 0.2679 0.0211 86.47
SVM 81.59 0.4050 0.0035 80.58
XGBoost 86.93 0.2650 0.0210 86.62
DNN 87.81 0.2492 0.0174 87.54
LSTM 85.86 0.0161 0.2946 85.45
GRU 84.64 0.3233 0.0150 84.10

N
SL

-K
DD

DT 82.42 0.0310 0.2851 82.40
LDA 78.70 0.0303 0.3511 78.51
LR 75.67 0.0747 0.3707 75.49
LR-ABC 90.11 0.0756 0.1163 90.15
MLP 85.86 0.0778 0.1894 85.93
RF 84.02 0.0314 0.2569 84.03
SVM 76.53 0.0733 0.3567 76.40
XGBoost 81.46 0.0282 0.3042 81.39
DNN 81.75 0.0475 0.2845 81.74
LSTM 81.75 0.0374 0.2922 81.71
GRU 84.12 0.1398 0.1729 84.19

Table 5
Optimum parameters found by SMAC optimization on UNSW-NB15 and NSL-KDD
Datasets.

Classifier Parameter UNSW-NB15 NSL-KDD

DT M. Samples Split 99 19
M. Samples Leaf 42 3

DN
N

Batch Size 55 60
Learning Rate 0.0052 0.0040
Neuron1 37 9
Neuron2 29 84
Neuron3 127 50

LS
TM

Batch Size 31 20
Learning Rate 0.0028 0.0013
Neuron1 115 73
Neuron2 74 38
Neuron3 118 94

GR
U

Batch Size 44 61
Learning Rate 0.0062 0.0036
Neuron1 28 95
Neuron2 122 94
Neuron3 46 73

LDA Shrinkage 5.26e−05 0.8579

LR C 50 000 48 214.53

LR
-A

BC

LB −20 −2
UB 10 46
Eva 77 885 48 296
Limit 141 196
P 15 10
MR 0.0100 0.40421
L2 2.836e−05 0.0628

M
LP

Learning Rate 0.0714 0.7574
# of Hidden Unit 22 13
Batch Size 527 603
# of Epochs 10 47

RF # of Trees 173 4

SVM C 0.9965 0.7331

XG
Bo

os
t

Eta 0.2305 0.2148
Depth 37 4
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Fig. 1. The proposed LR-ABC method’s accuracy for each different attack type on the UNSW-NB15 dataset.
Table 6
The training time of each classifier in seconds on UNSW-NB15 dataset.

Classifier Best Worst Mean Std.

DT 3.11 3.04 3.09 0.88
LDA 7.57 7.65 7.60 0.02
LR 6.69 6.75 6.73 0.02
LR-ABC (CPU) 541.61 542.51 541.91 0.25
LR-ABC (GPU) 121.38 122.41 121.56 0.28
MLP 436.60 790.39 534.09 109.93
RF 165.30 168.69 166.83 1.12
SVM 1437.91 1559.12 1505.68 53.15
XGBoost 120.21 120.96 120.47 0.25
DNN 129.91 391.74 246.37 82.38
LSTM 827.90 2322.50 1637.03 517.88
GRU 384.75 1130.84 716.75 309.28

= 77885, Limit = 141, population size (P) = 15, mutation rate (MR)
= 0.0100, L2 Regularization (L2) = 2.8368, and with a threshold =
0.8. The class-based performance analysis for the UNSW-NB15 dataset
is shown in Fig. 1. The accuracy for analysis, backdoor, DoS, exploits,
fuzzers, generic, reconnaissance, shellcode, and worms was 91%, 96%,
92%, 92%, 86%, 60%, 98%, 88%, 87%, and 91%, respectively.

For the NSL-KDD dataset, the proposed method obtained the highest
accuracy (90.11%), F1-measure (90.15%), and the lowest FNR (0.1163)
with the following optimum hyper-parameters: LB = −2, UB = 46,
Evaluation Number = 48296, Limit = 196, P = 10, MR = 0.40421, L2
= 0.06280, and with a threshold = 0.8. The class-based performance
analysis for the NSL-KDD dataset is shown in Fig. 2. The accuracy for
Dos, R2L, Probe, and U2R was 94%, 73%, 92%, and 69%, respectively.

The CPU and GPU versions of the LR-ABC algorithm are imple-
mented using the Numpy and CuPy libraries, respectively, to improve
training time. The training time for each classifier was recorded by
running the models 10 times. As shown in Table 6, the average training
times for DT, LDA, LR, CPU version of LR-ABC, GPU version of LR-ABC,
MLP, RF, SVM, XGBoost, DNN, LSTM, and GRU are 3.09 s, 7.60 s,
6.73 s, 541.91 s, 121.56 s, 534.09 s, 166.83 s, 1505.68 s, 120.47 s,
246.37 s, 1637.03 s, and 716.75 s, respectively. Machine learning
algorithms were run on a CPU, while deep learning methods were
executed on a GPU. The training time of the proposed GPU version of
LR-ABC is faster than that of MLP, RF, SVM, DNN, LSTM, GRU, and
is comparable to the XGBoost classifier, with only about a one-second
difference.
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Fig. 2. The proposed LR-ABC method’s accuracy for each different attack type on the
NSL-KDD dataset.

7. Conclusion

Machine learning-based NIDS face several challenges, many of
which arise from the nature of network traffic, such as high dimension-
ality, class imbalance, noise, and outliers. Addressing these challenges
often requires advanced ML techniques capable of learning complex
features from data. In this study, an efficient approach is proposed
based on the LR model trained by a parallel ABC algorithm, which
performs local and global searches in the solution space enabling the
learning of highly nonlinear and high-dimensional data due to its train-
ing algorithm. The LR-ABC algorithm demonstrates high-performance
results, however, it suffers from long training times. This represents a
significant challenge particularly in the context of cybersecurity. Fast
training allows for frequent model updates and iterations, ensuring
that the system can rapidly adapt to the dynamic nature of network
traffic and intrusion tactics. The ability to quickly retrain models is
crucial for maintaining up-to-date defenses against new and evolving
threats. To overcome the high computational time associated with LR-
ABC models, CPU and GPU versions have been developed, significantly
reducing training time. To the best of our knowledge, this is the first
study propose an anomaly-based NIDS approach using the parallel ABC
algorithm as the learning mechanism for an LR classification model.

Furthermore, the proposed approach outperforms state-of-the-art
ML and DL models in terms of accuracy, FPR, and F1-measure on
the UNSW-NB15 dataset, and in terms of accuracy, FNR, and F1-



Computer Standards & Interfaces 89 (2024) 103808B. Kolukisa et al.
measure, on the NSL-KDD dataset. Additionally, the training time of
the proposed approach is faster than that of MLP, RF, and SVM, and
is comparable to the XGBoost classifier, differing by only one second.
The high performance of the proposed approach demonstrates that the
proposed model is reliable and robust in detecting network intrusions.

Overall, this research provides a fresh perspective on NIDS, and
demonstrates that proposed LR-ABC algorithm maintains high-quality
results for anomaly-based NIDS. This approach not only simplifies the
model’s application but also opens avenues for future research where
real-world, raw data can be used directly to secure networks against
the ever-evolving array of cyber threats. Although this study focused
on binary classification, the class-based performance analysis revealed
that the model’s classification performance for some attack types was
low. Therefore, future studies focused on multi-class classification to
improve the performance of these low-performing classes would be
beneficial.
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