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Abstract: Electric vehicles have emerged as one of the top environmentally friendly alternatives
to traditional internal combustion engine vehicles. The development of a comprehensive charging
infrastructure, particularly determining the optimal locations for charging stations, is essential for
the widespread adoption of electric vehicles. Most research on this subject focuses on popular areas
such as city centers, shopping centers, and airports. With numerous charging stations available, these
locations typically satisfy daily charging needs in routine life. However, the availability of charging
stations for intercity travel, particularly on highways, remains insufficient. In this study, a decision
model has been proposed to determine the optimal placement of electric vehicle charging stations
along highways. To ensure a practical approach to the location of charging stations, the projected
number of electric vehicles in Türkiye over the next few years is estimated by using a novel approach
and the outcomes are used as crucial input in the facility location model. An optimization technique is
employed to identify the ideal locations for charging stations on national highways to meet customer
demand. The proposed model selects the most appropriate locations for charging stations and the
required number of chargers to be installed, ensuring that electric vehicle drivers on highways do not
encounter charging problems.

Keywords: urban studies; electric vehicle; charging station; time series analysis; facility location

1. Introduction

The use of a wide range of tools by people over the years has simplified everyday life
considerably. Humans have employed various modes of transportation, such as walking,
domestic horses, and bicycles, for purposes such as finding food, conducting business, and
meeting others, for centuries. However, the popularity of faster means of transportation
has increased exponentially over the past two centuries. Internal combustion engine
vehicles, which have been in use since the 19th century, have seen continuous advancements,
with exponential acceleration in their usage. However, air pollution and global warming
have raised questions about the place of fossil fuel-dependent vehicles in our lives [1,2].
Senna and Radwan (2014) suggested an ideal method for creating a precise microscopic
transportation emissions model [3]. This model aims to achieve sufficient accuracy as
a substitute for predicting carbon dioxide (CO2) emissions on limited-access highways,
offering an alternative to the traditional approach of using a traffic model and integrating

Sustainability 2023, 15, 16716. https://doi.org/10.3390/su152416716 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su152416716
https://doi.org/10.3390/su152416716
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-9192-0782
https://orcid.org/0000-0002-5922-6106
https://orcid.org/0000-0002-7339-427X
https://doi.org/10.3390/su152416716
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su152416716?type=check_update&version=1


Sustainability 2023, 15, 16716 2 of 17

the outcomes into an emissions model. Also, Nocera and Cavallaro (2014) introduced a
two-stage process (balancing and valuation) for explicitly incorporating CO2 into mobility
plans [4]. Cavallaro and Nocera (2022) introduced an approach to assess the efficiency of
photovoltaic noise barriers on motorway A22 in Italy [5]. They conducted a cost-benefit
analysis, considering existing policies and comparing the results with a specified benchmark
scenario. Several researchers provided an extensive research synthesis on externalities
related to energy and mobility [6]. In this analysis, they consolidated information from
139 studies to investigate the undisclosed expenses associated with energy. According to
the World Bank, the transportation sector contributed to more than 20% of CO2 emissions
worldwide in 2014 [7]. These adversities have led to opportunities such as the growing
trend of using alternative energy vehicles [8]. Figure 1 illustrates the increase in the number
of these vehicles sold. This trend not only has led to increased sales of such vehicles but
has also accelerated the development of requisite infrastructure and by-products. Electric
vehicles (EVs) are a more viable option for sustainable energy usage in the transportation
industry, particularly those energized with alternative fuels [9]. Therefore, studies on the
infrastructure required for EVs have become one of the main topics of conversation.
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Qian et al. proposed a multi-agent deep reinforcement learning (MA-DRL) approach to
simulate the pricing dynamics in an urban transportation network [11]. This method aims to
establish the best charging prices for an individual electric vehicle charging station. Zhang
et al. proposed an imitative multi-agent spatio-temporal reinforcement learning (RlCharge)
framework designed to intelligently suggest publicly accessible charging stations [12].
This approach considers a combination of different long-term spatio-temporal factors for
more informed recommendations. Moreover, Zhang et.al. (2022) approached the charging
station pricing problem by framing it as a mixed competitive–cooperative multi-agent
reinforcement learning task [13]. Each charging station is treated as an agent, and they
introduce a shared meta generator to create tailored dynamic pricing policies for a wide
range of agents based on extracted meta characteristics. In addition, different studies have
been conducted in the literature for different countries and cities to select charging station
locations for EVs [14–18].

An effective charging station infrastructure is imperative for providing maintenance
and support services to electric vehicles. However, it should be noted that infrastructure
development is still in its emerging stage and priority areas and requirements must be
identified to enable effective management of limited resources to meet the needs of EV
customers. One of the biggest limitations faced by EV users is the lack of adequate charging
stations, which hinders the popularity of alternative fuel vehicles [19–21]. Analyzing
various aspects of charging station identification and location is crucial for developing
an effective plan. Several cases have been analyzed and various methods have emerged,
which are discussed further.



Sustainability 2023, 15, 16716 3 of 17

The rapid pace of technological development in various fields has necessitated the
development of relevant infrastructures to meet people’s daily needs. The use of electric
vehicles has increased significantly, and the installation of charging stations is a crucial
factor in the widespread adoption of these vehicles. Although electric vehicles are becoming
more preferred for inner-city use due to short-distance trips and easy access to charging,
intercity transportation requires charging stations to be placed along highways to spread
the use of electric vehicles. Ensuring user satisfaction by allowing them to charge their EVs
when necessary is essential in this process, as leaving a vehicle stranded on the highway can
cause safety concerns and additional costs. On the other hand, charging service providers
face several costs in establishing charging stations, such as placement costs, infrastructure
costs, and equipment costs. When optimizing the locations of charging stations while
considering the number of EVs, several steps must be taken, such as estimating the number
of future EVs and determining the location of charging stations on highways. This study
aims to address these problems and provide solutions. The findings and results of the
proposed solutions will be presented in more detail.

Various methods used to forecast future situations are examined. The autoregressive
distributed lag (ARDL) model was used to study the relationship between stock market
development and economic growth in Pakistan, finding a bidirectional long-term rela-
tionship and a one-way short-term causality from stock market development to economic
growth [22]. Another study used the ARDL model to examine the long-run demand for
money in Hong Kong, identifying a long-run relationship between various economic fac-
tors [23]. The autoregressive integrated moving average (ARIMA) model was employed to
analyze household electric consumption patterns using daily, weekly, monthly, and quar-
terly time series data, with different ARIMA models selected based on root mean square
error (RMSE) values [24]. An ARIMA model was compared with LSTM for predicting
average stock prices using NASDAQ data and was found to perform better than LSTM
except for daily price predictions [25]. Exponential smoothing (ETS) was utilized for fore-
casting COVID-19 parameters across various countries and outperformed other methods
such as LSTM when assessed using RMSE, MAE, and MSE metrics [26]. Several studies
were conducted by using the generalized linear model (GLM) and its extensions. The ap-
proaches mentioned were used in a study focusing on air pollution and the relative risk of
cardiopulmonary hospital admissions, where the GLM with natural cubic spline performed
better than generalized linear mixed models (GLMMs) with natural cubic spline [27]. In
another example, the GLM was used to investigate the impact of meteorological factors on
the spread of COVID-19 in Africa and revealed that the relationship between virus spread
and meteorological factors varies between countries [28]. Multivariate regression is one of
the most popular prediction methods. A study proposed as an alternative to analytical ap-
proaches to determine the pressure of the bottom of the well in mechanized oil-producing
wells proved to be more functional despite some limitations [29]. Researchers used a
multivariate regression model to study the impact of energy consumption and economic
growth on CO2 emissions in some Middle Eastern and North African countries [30].

The second and main part of this study focuses on the optimal locations of electric
vehicle charging stations. The following literature review highlights various approaches to
improving the service satisfaction of electric vehicle (EV) drivers by optimizing charging
station locations. Qin and Zhang suggested that regulating the schedules and locations
of charging stations can increase satisfaction [31]. They analyzed waiting times and pro-
posed revisions to the locations of charging stations. A case study was conducted South
Korea using actual traffic flow data from the Korean Expressway network. They com-
pared three different methods—multi-rotation, forward myopic, and backward myopic
optimization—and found that the multi-rotation optimization model was the most suitable
for large-scale network problems [21]. Another study aimed to reduce the time lost by
EV drivers when reaching charging stations by considering traffic density and charging
station capacity [32]. The researchers use a genetic algorithm to divide the region into nine
sub-regions and successfully proposed a solution to satisfy EV customers. A research group
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presented a geographic information system (GIS)-based multi-criteria decision analysis
approach for selecting charging station locations [33]. They used the fuzzy analytical
hierarchy process (AHP) for criteria prioritization and the technique for order preference
by similarity to ideal solution (TOPSIS) for ranking potential sites. The study was applied
to the interior city of Ankara, and as a result, alternative site locations were suggested.

The main problem of this study is not merely theoretical but also a matter of global
concern, as already discussed. Companies engaged in related industries, non-governmental
organizations, and even country leaders have weighed in on this widespread issue. Also,
in late 2021, the United Nations Climate Change Conference (COP26) was held in Scot-
land from 31 October to 12 November, focusing on climate change and global warm-
ing. A declaration to manufacture zero-emissions cars and vans by 2035 was signed by
33 countries—including Türkiye—40 cities, 11 automotive manufacturers, and 27 fleet
owners [34].

Another motivation for this study is the investment in EV technology and manu-
facturing by TOGG (Türkiye’s Automobile Joint Venture Group) in Türkiye, with the
manufacturing process set to commence in 2022 [35]. Therefore, the region would observe
a surge in the demand for charging stations. However, there are not many studies on this
topic, particularly those that identify optimal charging station locations in Türkiye, espe-
cially on highways. This study offers a proposal for optimum charging station locations on
highways that can meet the demand of future customers.

Electric vehicle usage in Türkiye is rising exponentially, especially considering TOGG’s
investment and Türkiye’s commitment to phasing out the manufacturing of diesel and
gasoline vehicles by 2035. This study’s central motivation is to develop a suitable, envi-
ronmentally friendly model for efficient electric vehicle infrastructure based on Türkiye’s
future progress in electric cars. To efficiently determine the optimal quantity and location of
charging stations for the best level of customer satisfaction, one must consider estimating
the number of EVs that will exist in the associated regions. However, no studies have been
conducted in this field to predict the future number of EVs in Türkiye, making it relevant
to estimate the number of EVs that will hit the road in the coming years analytically, as
this study aims to do. The number of EVs predicted would provide brief information on
the demand level of future customers and a basis for determining the best locations for
charging stations.

Analyzing the number and locations of charging stations means specifying the ap-
plication area. Although people can usually find adequate daily charging solutions due
to numerous alternative charging stations in urban areas, those traveling between cities
far apart must consider the distances involved. Electric vehicle battery technology has an
average range of 340 km currently [36]. For a trip of about 450 km, such as from İstanbul to
Ankara, vehicles may need two full charges. Hence, when establishing charging stations,
the range covered by an EV should be considered.

All in all, the use of electric vehicles is on the rise globally, driven by concerns about
air pollution, climate change, and the need for sustainable transportation solutions. In
Türkiye, the commitment to abandoning traditional vehicles by 2035, along with significant
investments in EV technology, underscores the importance of developing efficient and
environmentally friendly charging infrastructure. This study is motivated by the urgent
need to address the challenges associated with the increasing demand for EVs and the
necessity of a charging network. By strategically determining the optimal locations and
quantities of charging stations, the aim is to ease range anxiety, enhance customer satisfac-
tion, and contribute to the widespread adoption of EVs in Türkiye. Therefore, the research
question of this study can be framed as follows: In light of variables including future EV
adoption, intercity travel patterns, and environmental sustainability, how can the best
sites and number of electric car charging stations be strategically established in Türkiye to
accommodate the growing demand for electric vehicles?

The establishment of electric vehicle (EV) charging stations, while contributing to
the adoption of sustainable transportation, can potentially have several environmental
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effects. It is crucial to carefully assess and address these impacts to ensure the overall
sustainability of EV charging infrastructure. Some potential environmental effects include
energy source dependency, land use and habitat disruption, resource extraction for infras-
tructure development, visual and noise pollution, grid reliability challenges, and life cycle
emissions. To address these potential environmental effects, it is essential to adopt a holistic
approach, incorporating renewable energy sources, sustainable construction practices, and
comprehensive life cycle assessments into the planning, implementation, and operation of
electric vehicle charging infrastructure.

The chosen locations for electric vehicle (EV) charging stations can have significant
economic impacts, influencing various sectors and aspects of the economy. Potential eco-
nomic impacts associated with the selected locations for EV charging stations include local
business development, tourism and hospitality, real estate value, job creation, technol-
ogy and innovation, utility revenue and grid enhancements, government revenue, and
environmental savings. Careful consideration of these economic impacts when selecting
charging station locations is crucial for maximizing the positive outcomes and ensuring a
well-rounded, sustainable integration of EV infrastructure into the broader economy.

The installation of electric vehicle (EV) charging stations introduces various safety and
security implications that need to be carefully considered and addressed. The potential
safety and security concerns related to the deployment of EV charging infrastructure
include electrical safety, vehicle and pedestrian safety, cybersecurity risks, vandalism and
theft, user authentication and payment security, and natural disasters and climate events.
Addressing these safety and security considerations requires a multi-faceted approach
involving collaboration between stakeholders, adherence to industry standards, ongoing
risk assessments, and the implementation of robust safety protocols. As EV charging
infrastructure continues to expand, staying vigilant and proactive in managing these
concerns is crucial to ensuring the overall safety and security of the system.

In conclusion, although related studies have explored numerous approaches to opti-
mizing charging station locations globally, there is a noticeable gap in the literature about
Türkiye’s specific needs and circumstances. The demands raised for EVs, particularly
with Türkiye’s commitment to zero-emission vehicles, requires a tailored approach that
considers the unique geography, intercity travel patterns, and anticipated growth of EVs in
the region. Additionally, the lack of studies predicting the future number of EVs in Türkiye
poses a significant gap in understanding the potential demand for charging stations. This
study aims to fill this void by providing a comprehensive analysis that addresses the
specific challenges and opportunities associated with developing an optimal EV charg-
ing infrastructure in Türkiye, particularly on highways, where intercity travel demands
efficient charging solutions.

The remainder of this article is as follows. In section two, the forecasting approaches
used to estimate the number of EVs in the Türkiye are shared, along with the results. The
third section includes the mathematical model built to determine the optimal EV charging
station locations and the number of chargers in them, as well as the results received from
these models. In the last part, the fourth and the fifth sections, a conclusion is made and
the future prospects of this study are discussed, respectively.

2. Forecasting
2.1. Data Gathering and Preprocessing

In the literature, to the best of our knowledge, there are no studies that collect EV
sales data with monthly precision and forecast future sales to find optimal charging station
locations. However, charging stations will be used for many years and are expected to
satisfy the charging demands in at least the short and medium terms. For this reason, a
study considering only the recent EVs on the road would be inadequate. Hence, it is crucial
to consider the future number of EVs on the road to procure a realistic and more applicable
approach for the deployment of charging stations. Therefore, monthly EV sales data were
gathered to predict the number of future sales.
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Several sources were used to gather passenger car sales and EV sales data. Although
passenger car sales data are publicly available for Türkiye, collaborations were carried out
with several statistical consultancy companies to gather EV sales data.

The overall passenger car data ended up needing to be reorganized because the shared
datasets were comprised of brands’ monthly sales. Thus, the total sales from a specific
month were determined first and then a new dataset that included overall sales for each
month from January 2011 to December 2021, was created. Fortunately, the EV sales data
that were collected were well organized and prepared, so no action was taken to reformat
them as with those of overall sales.

On the other hand, there has been very limited observation of EV data; since it
is a recently emerging technology, more data are required to make proper predictions.
This dataset is actually a subtraction of EV sales from the overall sales data. This means
that a new dataset, which includes just the internal combustion engine cars sales, was
created by removing the number of EVs from the total number. In the end, there were
three datasets—overall sales, internal combustion sales, and EV sales data—available
for forecasting.

The date ranges of the overall and internal combustion engine car sales datasets were
from January 2011 to December 2021, as stated, and for the EV sales dataset the range was
from January 2018 to December 2021. As a result, 132 rows of observations for overall and
internal combustion engine cars and 48 rows of EV sales data were prepared to use with
the approaches.

2.2. Forecasting Approach

In this study, one of the objectives was to predict the future number of EVs on the
road in a few years. To achieve this objective, time series analysis, which was the best
fitting and necessary approach, was conducted. Time series analyses are conducted with
historical data to predict future circumstances. However, 100 instances of historical data
observations have been suggested to be ideal [37]. The primary reason behind this number
is that it allows for properly catching the seasonality and trends, if they exist. Unfortunately,
as explained in Section 2.1, only 48 instances were available in the EV sales dataset. To
overcome this problem of the lack of data, a different approach needed to be developed for
the prediction of future EV sales numbers. For this reason, a novel approach was introduced
to make the necessary prediction. In this approach, two different forecast models were
developed: one for the overall sales data and the other for the internal combustion engine
car sales data. The logic behind this approach is that when forecasted number of internal
combustion engine cars are removed from the forecasted number of overall car sales, the
remaining number is the future number of EVs. With this method, without using the
insufficient EV sales data, which had the issue of a lack of observation iterations, the future
number of EVs on the roads was forecasted logically.

The forecasting process was carried out with two iterations and four runs in total.
After the COVID-19 pandemic hit Türkiye, people avoided buying items except for vital
requirements, which decreased vehicle sales extraordinarily. The first iteration was carried
out with the entire dataset, and the forecast results seemed to be affected dramatically.
Therefore, the second iteration was completed with the dataset that did not contain the
sales in 2020. Eventually, more logical and foreseen results were obtained.

In addition to all of that, TOGG was expected to start mass production in the first
quarter of 2023, and the number of EVs produced by the end of 2023 was predicted to be
18,000 [38]. Thus, a burst in demand was expected, since the authorized people issued
a sales guarantee. For this reason, the number provided by TOGG was added to the
forecasted EV numbers to achieve better and more applicable results in the second step,
which was charging station deployment. The additional procedure was parallel to the
seasonality of the overall sales. The seasonality coefficient was multiplied monthly by the
number of EVs that TOGG promised.
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Forecasting approaches were trained with the 108 observations and last year’s sales
data were used as the test set. The results are shared below.

Figures 2 and 3 illustrate the results obtained for 24 and 36 months, respectively. The
results provided in the tables below were obtained from the estimation approach carried out
with the GLM. The reason behind choosing the GLM was to observe the minimum sMAPE
and MAE values, which are provided in Table 1. Several fluctuations were monitored in
the forecasted EV sales results, which were expected because of the nature of vehicle sales
in Türkiye. For past sales, usually an extreme increase in the last two months of the year
and a dramatic decrease at the beginning of the year were seen. Correspondingly, the
forecasting approach resulted in a similar pattern. As a result, it is expected that there will
be approximately 115,000 EVs in Türkiye by the end of 2025. The evaluation metrics were
defined and the working principle was explained previously. Here, the error rates obtained
are provided in Table 1.

Sustainability 2023, 15, x FOR PEER REVIEW 7 of 19 
 

In addition to all of that, TOGG was expected to start mass production in the first 
quarter of 2023, and the number of EVs produced by the end of 2023 was predicted to be 
18,000 [38]. Thus, a burst in demand was expected, since the authorized people issued a 
sales guarantee. For this reason, the number provided by TOGG was added to the 
forecasted EV numbers to achieve better and more applicable results in the second step, 
which was charging station deployment. The additional procedure was parallel to the 
seasonality of the overall sales. The seasonality coefficient was multiplied monthly by the 
number of EVs that TOGG promised. 

Forecasting approaches were trained with the 108 observations and last year’s sales 
data were used as the test set. The results are shared below. 

Figures 2 and 3 illustrate the results obtained for 24 and 36 months, respectively. The 
results provided in the tables below were obtained from the estimation approach carried 
out with the GLM. The reason behind choosing the GLM was to observe the minimum 
sMAPE and MAE values, which are provided in Table 1. Several fluctuations were 
monitored in the forecasted EV sales results, which were expected because of the nature 
of vehicle sales in Türkiye. For past sales, usually an extreme increase in the last two 
months of the year and a dramatic decrease at the beginning of the year were seen. 
Correspondingly, the forecasting approach resulted in a similar pattern. As a result, it is 
expected that there will be approximately 115,000 EVs in Türkiye by the end of 2025. The 
evaluation metrics were defined and the working principle was explained previously. 
Here, the error rates obtained are provided in Table 1. 

 
Figure 2. Forecast results for 24 months. 

 
Figure 3. Forecast results for 36 months. 

Table 1. Error rates of the applied models. 

Applied Model sMAPE MAE RMSE 

y = − 0.6145x2 + 136.82x + 571.53

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Es
tim

at
ed

 N
um

be
r o

f 
EV

Estimation Range (Months)

y = 8.9065x2 − 144.65x + 1592.3

0

2,000

4,000

6,000

8,000

10,000

12,000

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536Es
tim

at
ed

 N
um

be
r o

f 
EV

Estimation Range (Months)

Figure 2. Forecast results for 24 months.

Sustainability 2023, 15, x FOR PEER REVIEW 7 of 19 
 

In addition to all of that, TOGG was expected to start mass production in the first 
quarter of 2023, and the number of EVs produced by the end of 2023 was predicted to be 
18,000 [38]. Thus, a burst in demand was expected, since the authorized people issued a 
sales guarantee. For this reason, the number provided by TOGG was added to the 
forecasted EV numbers to achieve better and more applicable results in the second step, 
which was charging station deployment. The additional procedure was parallel to the 
seasonality of the overall sales. The seasonality coefficient was multiplied monthly by the 
number of EVs that TOGG promised. 

Forecasting approaches were trained with the 108 observations and last year’s sales 
data were used as the test set. The results are shared below. 

Figures 2 and 3 illustrate the results obtained for 24 and 36 months, respectively. The 
results provided in the tables below were obtained from the estimation approach carried 
out with the GLM. The reason behind choosing the GLM was to observe the minimum 
sMAPE and MAE values, which are provided in Table 1. Several fluctuations were 
monitored in the forecasted EV sales results, which were expected because of the nature 
of vehicle sales in Türkiye. For past sales, usually an extreme increase in the last two 
months of the year and a dramatic decrease at the beginning of the year were seen. 
Correspondingly, the forecasting approach resulted in a similar pattern. As a result, it is 
expected that there will be approximately 115,000 EVs in Türkiye by the end of 2025. The 
evaluation metrics were defined and the working principle was explained previously. 
Here, the error rates obtained are provided in Table 1. 

 
Figure 2. Forecast results for 24 months. 

 
Figure 3. Forecast results for 36 months. 

Table 1. Error rates of the applied models. 

Applied Model sMAPE MAE RMSE 

y = − 0.6145x2 + 136.82x + 571.53

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Es
tim

at
ed

 N
um

be
r o

f 
EV

Estimation Range (Months)

y = 8.9065x2 − 144.65x + 1592.3

0

2,000

4,000

6,000

8,000

10,000

12,000

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536Es
tim

at
ed

 N
um

be
r o

f 
EV

Estimation Range (Months)

Figure 3. Forecast results for 36 months.

Table 1. Error rates of the applied models.

Applied Model sMAPE MAE RMSE

Generalized linear model 10.4103 8320.3053 11,079.5156
Multivariate regression 11.8479 8408.8946 10,345.3683

Theta 11.9579 8451.3415 10,487.4450
Generalized least square 12.9192 9509.9190 12,028.0517

Random walk (last value naïve) 13.0060 9632.6875 12,560.9452
Random walk (average value naïve) 13.2313 9654.6477 12,169.0684

Random forest regressor 13.3869 9956.4972 12,637.5304
Random walk (constant naïve) 13.3905 9959.4583 12,641.1236
Random walk (seasonal naïve) 13.3908 9610.7083 12,099.2996

ARIMA (7, 2, 4) 13.3908 9959.7083 12,641.4682
Exponential smoothing 13.3908 9959.7327 12,641.5018

Autoregressive distributed lag 13.4503 10,013.4996 12,721.6936



Sustainability 2023, 15, 16716 8 of 17

3. Location Selection Approach

The main objective of this study was to meet the demand of customers, which is to
provide EV charging services between cities, while minimizing the station placement and
charging installation costs. For this purpose, the candidate places to be analyzed were
selected. Therefore, the highways under control of the government, which are Ankara–
stanbul, Aydın–İzmir, Mersin–Adana, and Osmaniye–Şanlıurfa, were chosen. Optimization
approaches were applied. Data gathering and preprocessing, the proposal of the approach,
and the results are discussed in this section.

3.1. Data Gathering and Preprocessing

The selected highways include numerous different entrances that divide them into
several parts. As this study aimed to offer places to deploy charging stations, parts of these
highways needed to be well defined. Parts were determined as stretches of road between
two consecutive gates.

Tables 2–5 show the following information based on each highway part: the daily
average number of passenger cars; the ratio of the daily average number of cars passing
by to the total number of passenger cars, extended to years; the averages of the calculated
ratios; and the expected daily number of EVs traveling. The daily number of cars traveling
between highway parts was retrieved from the General Directorate of Highways’ annual
reports [39–42]. On the other hand, the yearly total number of passenger cars in Türkiye
was used to discover the proportions of cars passing through highways [43–46]. The
calculation of the proportions was carried out by dividing each entry by the total number
of passenger cars. Lastly, the number of expected EVs on the highways was computed by
using the average ratios and the estimated number of total EVs in Türkiye up to 2025, as in
the Forecasting Approach section.

As indicated in the tables above, there are 15, 5, 6, and 12 parts on the Ankara–
İstanbul, Aydın–İzmir, Mersin–Adana, and Osmaniye–Şanlıurfa highways, respectively.
The implication of these numbers is that the candidate locations for charging stations are
between these parts. For better understanding, the following example is provided:

• The last row of Table 5 is the last part of the Osmaniye–Şanlıurfa highway: Suruç–Şanlıurfa;
• The daily average number of passenger cars on this part was 7554 in 2021, and the

total number of passenger cars in Türkiye was 13,710,272 in 2021;
• The daily average of the total number of passenger cars was 0.06%;
• The same procedure applied for 2020, 2019, and 2018;
• The average proportion is the arithmetic mean of the ratios of the years in the same rows;
• The expected number of EVs is the output of multiplying the average proportion and

the forecasted number of EVs, as stated in Section 3 of this study.

Studies in the field of transportation are usually carried out while considering the
rush hours. Therefore, the charging station location problem should be solved based on
the rush hours. To calculate the density during rush hour, the expected daily number of
electric vehicles, as in Tables 2–5, was divided into 24 to find the hourly rate of the number
of EVs passing by. Then, the output was multiplied by two, which is a general assumption
according to TOMTOM of the rush hour density [47]. In addition, people who own an
EV are generally willing to recharge their vehicle when the SoC (state of charge) is below
30% [48]. Because of this, the SoCs of EVs on the highway parts were divided evenly into
four classes: less than 30%, between 30 and 45%, between 45 and 60%, and more than 60%.
The resulting numbers for the SoC of less than 30% indicate the number of EVs that require
charging on the given highway parts, which is demonstrated in Table 6 below. The parts
were numbered based on the numbering in Tables 2–5.
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Table 2. Related dataset of the Ankara–İstanbul highway.

2021 2020 2019 2018

Total Passenger Cars
13,710,272

Total Passenger Cars
13,110,657

Total Passenger Cars
12,504,767

Total Passenger Cars
12,393,329

Highway Parts Daily
Average

Ratio to
the Total

Daily
Average

Ratio to
the Total

Daily
Average

Ratio to
the Total

Daily
Average

Ratio to
the Total

Average
Proportion

Expected
Number of EVs

Doğu İzmit–Sapanca 29,118 0.21% 29,539 0.23% 33,918 0.27% 36,295 0.29% 0.25% 288
Sapanca–Adapazari 28,482 0.21% 28,928 0.22% 33,321 0.27% 35,314 0.28% 0.24% 282
Adapazari–Akyazi 22,771 0.17% 22,847 0.17% 27,024 0.22% 27,046 0.22% 0.19% 223

Akyazi–Hendek 22,445 0.16% 21,652 0.17% 25,617 0.20% 25,569 0.21% 0.19% 213
Hendek–Düzce 21,638 0.16% 20,935 0.16% 24,559 0.20% 23,256 0.19% 0.18% 202
Düzce–Kaynaşli 19,812 0.14% 19,117 0.15% 23,221 0.19% 21,598 0.17% 0.16% 187
Kaynaşli–Abant 19,566 0.14% 18,562 0.14% 22,539 0.18% 20,984 0.17% 0.16% 182
Abant–Bolu Bati 20,032 0.15% 19,203 0.15% 23,417 0.19% 21,450 0.17% 0.16% 188

Bolu Bati–Bolu Doğu 19,335 0.14% 18,574 0.14% 22,457 0.18% 20,518 0.17% 0.16% 181
Bolu Doğu–Yeniçağa 19,844 0.14% 19,194 0.15% 23,166 0.19% 21,262 0.17% 0.16% 186
Yeniçağa–Dörtdivan 19,847 0.14% 19,043 0.15% 22,527 0.18% 20,987 0.17% 0.16% 184
Dörtdivan–Gerede 19,987 0.15% 19,084 0.15% 22,665 0.18% 20,899 0.17% 0.16% 184
Gerede–Çamlidere 15,748 0.11% 14,233 0.11% 17,780 0.14% 15,904 0.13% 0.12% 142
Çamlidere–Çeltikçi 16,241 0.12% 14,806 0.11% 17,712 0.14% 16,327 0.13% 0.13% 145
Çeltikçi–Akincilar 16,807 0.12% 15,420 0.12% 18,338 0.15% 16,872 0.14% 0.13% 150

Table 3. Related dataset of the Aydın–İzmir highway.

2021 2020 2019 2018

Total Passenger Cars
13,710,272

Total Passenger Cars
13,110,657

Total Passenger Cars
12,504,767

Total Passenger Cars
12,393,329

Highway Parts Daily
Average

Ratio to
the Total

Daily
Average

Ratio to
the Total

Daily
Average

Ratio to
the Total

Daily
Average

Ratio to
the Total

Average
Proportion

Expected
Number of EVs

Işikkent–Tahtaliçay 35,670 0.26% 30,451 0.23% 32,322 0.26% 32,711 0.26% 0.25% 292
Tahtaliçay–Torbali 32,789 0.24% 28,122 0.21% 30,578 0.24% 30,092 0.24% 0.24% 271

Torbali–Belevi 24,839 0.18% 20,553 0.16% 23,678 0.19% 23,831 0.19% 0.18% 207
Belevï–Germencïk 20,296 0.15% 18,965 0.14% 19,657 0.16% 19,461 0.16% 0.15% 174

Germencïk–Şevketïye 18,005 0.13% 16,213 0.12% 17,667 0.14% 16,997 0.14% 0.13% 153
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Table 4. Related dataset of the Mersin–Adana highway.

2021 2020 2019 2018

Total Passenger Cars
13,710,272

Total Passenger Cars
13,110,657

Total Passenger Cars
12,504,767

Total Passenger Cars
12,393,329

Highway Parts Daily
Average

Ratio to
the Total

Daily
Average

Ratio to
the Total

Daily
Average

Ratio to
the Total

Daily
Average

Ratio to
the Total

Average
Proportion

Expected
Number of EVs

Serbest Bölge–Tarsus 21,634 0.16% 19,358 0.15% 22,068 0.18% 18,295 0.15% 0.16% 181
Tarsus–Çamtepe 20,275 0.15% 18,266 0.14% 20,758 0.17% 17,100 0.14% 0.15% 170
Çamtepe–Yenïce 21,343 0.16% 19,300 0.15% 21,937 0.18% 18,108 0.15% 0.16% 180

Yenïce–Adana Bati 27,158 0.20% 25,467 0.19% 28,475 0.23% 23,375 0.19% 0.20% 232
Adana Doğu–Ceyhan 20,083 0.15% 16,572 0.13% 18,436 0.15% 17,216 0.14% 0.14% 161

Ceyhan–İskenderun Ayr. Bati 19,389 0.14% 16,222 0.12% 18,058 0.14% 16,887 0.14% 0.14% 157

Table 5. Related dataset of the Osmaniye–Şanlıurfa highway.

2021 2020 2019 2018

Total Passenger Cars
13,710,272

Total Passenger Cars
13,110,657

Total Passenger Cars
12,504,767

Total Passenger Cars
12,393,329

Highway Parts Daily
Average

Ratio to
the Total

Daily
Average

Ratio to
the Total

Daily
Average

Ratio to
the Total

Daily
Average

Ratio to
the Total

Average
Proportion

Expected
Number of EVs

Toprakkale–Osmanïye 14,323 0.10% 11,664 0.09% 12,502 0.10% 11,776 0.10% 0.10% 112
Osmanïye–Düzïçï 15,370 0.11% 12,696 0.10% 13,628 0.11% 12,769 0.10% 0.11% 121

Düzïçï–Bahçe 15,003 0.11% 12,373 0.09% 13,309 0.11% 12,421 0.10% 0.10% 118
Bahçe–Nurdaği 14,035 0.10% 11,505 0.09% 12,363 0.10% 11,543 0.09% 0.10% 110
Nurdaği–Narli 12,054 0.09% 9699 0.07% 10,427 0.08% 9654 0.08% 0.08% 93

Narli–Gazïantep Bat 11,386 0.08% 9034 0.07% 9780 0.08% 8990 0.07% 0.08% 87
Gazïantep Bati–Gazïantep Kuzey 8126 0.06% 6351 0.05% 6466 0.05% 6094 0.05% 0.05% 60

Gazïantep Kuzey–Gazïantep Doğu 8075 0.06% 6097 0.05% 5998 0.05% 5570 0.04% 0.05% 57
Gazïantep Doğu–Nïzïp 10,348 0.08% 8941 0.07% 10,009 0.08% 8860 0.07% 0.07% 85

Nïzïp–Bïrecïk 8436 0.06% 6442 0.05% 7030 0.06% 6243 0.05% 0.05% 62
Bïrecïk–Suruç 7903 0.06% 6046 0.05% 6492 0.05% 5899 0.05% 0.05% 58

Suruç–Şanliurfa 7554 0.06% 5736 0.04% 6185 0.05% 5662 0.05% 0.05% 56
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Table 6. Expected demand of every highway for each part.

Ankara–İstanbul Aydın–İzmir Mersin–Adana Osmaniye–Şanlıurfa

Highway
Parts

Charging
Demand

Highway
Parts

Charging
Demand

Highway
Parts

Charging
Demand

Highway
Parts

Charging
Demand

1 6 1 6 1 4 1 2
2 6 2 6 2 4 2 3
3 5 3 4 3 4 3 2
4 4 4 4 4 5 4 2
5 4 5 3 5 3 5 2
6 4 6 3 6 2
7 4 7 1
8 4 8 1
9 4 9 2
10 4 10 1
11 4 11 1
12 4 12 1
13 3
14 3
15 3

Other necessary information for this study was the ranges of existing EVs. With-
out considering the ranges, the mathematical model and its results would be irrelevant
and useless.

Brands have different strategies for EV batteries. Some seek long-distance coverage,
but several of them aim to offer lighter vehicles. Even the same brand can have different
market plans for different models. Therefore, different brands and models were considered.
In Table 7, it can be seen that the ranges varied within each brand and model [36]. The
ranges had a non-negligible effect on the results: They changed the constraint status, which
also directly affected the customer satisfaction level.

Table 7. Range information of several brands and models [36].

Brand and Model Range (km)

Lucid Air Dream Edition R 685
Mercedes EQS 450+ 640

Tesla Model S Dual Motor 570
BMW I7 XDrive60 510

Audi Q8 E-Tron 55 Quattro 495
Polestar 3 Long Range Dual Motor 490

Volkswagen Id.3 Pro 350
Toyota Bz4x AWD 330

Opel Corsa-E 285
Mini Cooper Se 180
Mazda Mx-30 170

Renault Twingo Electric 130
Smart Eq Fortwo Cabrio 95

3.2. Mathematical Model

In this section, a mathematical model is provided to solve the current problem. The
following content is an explanation of the data, the assumptions made before running the
mathematical model, notations and their definitions, and, finally, the formulation.

3.2.1. Assumptions of the Mathematical Model

A model is a representation of the real world to gain a better understanding of actual
situations [49]. Therefore, to solve a real-world problem, some key assumptions need
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to be made. To solve the problem in this study, several assumptions were made. These
assumptions are as follows:

• Drivers do not have extraordinary driving style;
• EV driving ranges are constant and invariable;
• The average range of the included EV models is applicable for every customer;
• Neither electric trucks nor electric motorcycles exist in the system;
• The electricity in the charging system is not finite and is not interruptible;
• No line forms in front of the charging stations.

3.2.2. Modeling

Sets/Indices
i parts of the highways i = {1, 2, 3, . . ., n},
Data/Parameters
S: cost of construction of a new charging station (USD);
C: cost of a charger installation in a station (USD);
P: penalty cost of an unsatisfied charging demand (USD);
I: maximum number of stations that can be placed;
T: maximum number of chargers that can be installed in a station;
M: a big number;
Di: charging demand on highway part i.
Decision Variables
Xi = {1, if highway part i is selected for an EV charging station; 0, otherwise};
CHi = number of chargers installed at highway part i;
UDi = number of unsatisfied charging demands on highway part i;
NDi = number of updated demands on highway part i.

3.2.3. Formulation

Objective Function

z* = minz = ∑n
i (S · Xi + C · CHi + P ·UDi) (1)

Objective Function (1) is to minimize the total cost, which consists of the construction
of a charging station, the installation of chargers in the given station, and the penalty cost of
unsatisfied charging demands on the given highway. Ordinarily, the most desired outcome
is to have maximum customer satisfaction with minimum cost, which is the first necessity
of the study.

Constraints
M · Xi > CHi ∀i (2)

CHi > Xi ∀i (3)

Constraint (2) defines that no chargers are placed if there are no stations on highway
part i. The reason for this constraint is that no charger can be established intuitively in a
station that has not been selected. Constraint (3) prevents the model from selecting a place
as a charging station that does not have any charging capacity. Constraint (3) also ensures
that decision variable Xi takes a value of 1 if the chargers are located there. On the other
hand, it also archives and lists the chosen locations.

Di − CHi = UDi ∀i (4)

NDi = Di + UDi−1 ∀i(i 6= 1) (5)

NDi − CHi = UDi ∀i (6)
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Constraints (4)–(6) are about demand limitations and updating processes. Constraints (4)
and (6) define unsatisfied charging demands, and the values that these constraints yield
as outputs are kept as results in a database. Constraint (5) updates the demand when the
whole demand for the last part of the highway is not met.

∑n
i Xi 6 I (7)

Xi − Xi−1 6 1 ∀i(i 6= 1) (8)

CHi 6 T ∀i (9)

Constraints (7)–(9) are prevention constraints, where Constraint (7) ensures that the
model does not yield more than the indicated number of candidate locations, Constraint (8)
states that two consecutive parts cannot both have a station, and Constraint (9) prevents the
model from installing more chargers than desired. The existence of Constraint (9) ensures
that the electricity limit of the infrastructure is not exceeded.

Xi ∈ {0, 1} ∀i (10)

CHi, UDi, NDi ∈ N ∀i (11)

Constraints (10) and (11) define variables. These constraints ensure that Xi is a binary
constraint and that CHi, UDi, and NDi can take values as natural numbers, respectively.

3.2.4. Results of the Mathematical Model

The formulation in Section 3.2.3 was examined by using Python software 3.11.3 as an
optimization tool. The formulation and constraints were coded properly to the platform,
runs were taken, and all of the results obtained were optimal.

There were four total runs for the whole process because the number of applicable
highways was four. The obtained results are shared in the following Tables 8–11. The tables
consist of the highway names, part indicators, and decision variable outputs of the model.

Table 8. Results of the variables of the Ankara–İstanbul highway.

Ankara–İstanbul Highway

Parts 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Xi 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0
CHi 0 6 0 7 0 8 0 8 0 8 0 0 0 0 0
UDi 3 0 3 0 4 0 4 0 4 0 4 8 13 19 25
NDi - 6 3 7 4 8 4 8 4 8 4 8 13 19 25

Table 9. Results of the variables of the Aydın–İzmir highway.

Aydın–İzmir Highway

Parts 1 2 3 4 5

Xi 1 0 1 0 0
CHi 6 0 8 0 0
UDi 0 6 2 6 9
NDi - 6 10 6 9

Table 10. Results of the variables of the Mersin–Adana highway.

Mersin–Adana Highway

Parts 1 2 3 4 5 6

Xi 0 1 0 1 0 0
CHi 0 8 0 8 0 0
UDi 4 0 4 1 4 7
NDi - 8 4 9 4 7



Sustainability 2023, 15, 16716 14 of 17

Table 11. Results of the variables of the Osmaniye–Şanlıurfa highway.

Osmaniye–Şanlıurfa Highway

Parts 1 2 3 4 5 6 7 8 9 10 11 12

Xi 0 0 1 0 0 1 0 0 1 0 0 0
CHi 0 0 7 0 0 6 0 0 4 0 0 0
UDi 2 5 0 2 4 0 1 2 0 1 2 3
NDi - 5 7 2 4 6 1 2 4 1 2 3

Throughout the 15 parts of the Ankara–İstanbul highway, the resulting station place-
ment offer was five, whereas the total number of chargers at those stations was 37. With
the construction cost, the charger installation cost, and the penalty for unsatisfied charging
demands, the total cost turned out to be USD 914,550.

The Aydın–İzmir highway, which contained the lowest number of parts, yielded
an offer to construct just two stations. Along with these two stations, 14 chargers were
suggested to be installed, and the end cost was USD 401,900.

The third analyzed highway was the Mersin–Adana highway, and the total cost of
station construction and charger installation and the penalty costs for unsatisfied demands
ended up being USD 392,000. For this highway, the mathematical model suggested con-
structing two stations with eight installed chargers each.

Even though the Osmaniye–Şanlıurfa highway has many parts, low demand occurred
because the number of vehicles using this highway was not many, which led the model
to offer fewer stations to satisfy the charging demand. As shown in Table 11, the number
of stations suggested to be constructed was three, with seven, six, and four chargers,
respectively. As a result, the overall cost turned out to be USD 487,600.

4. Discussion and Future Prospects

In this study, various approaches are presented for the locations of EV charging
stations and the number of chargers required for vehicles expected to need charging on
state-controlled highways. In this process, analyses were carried out on the daily average
number of vehicles using the highway parts. In order to advance these studies, it is planned
to expand the current study with the time stamp data of the number of vehicles entering
and exiting the highways. With this approach, it is considered that more real-life results
will be obtained, since information about short-distance journeys on highways will also
be obtained.

On the other hand, it would be beneficial to include the lengths of the highway
segments and thus add different scenarios about the SoC situations of EVs to the study.
Thanks to these future scenarios, it is foreseen that different alternatives can be created for
charging service providers and steps can be taken to increase the satisfaction of EV users.

Moreover, the current assessment of electric vehicles (EVs) fails to consider individual
range variations; instead, an average is applied uniformly across all models. Nevertheless, a
more nuanced approach can be adopted within the study’s framework by incorporating variable
ranges specific to each EV. This proposed modification promises a more accurate depiction of
the results, enhancing their practicality and reliability for real-world applications.

Another variant could be to apply simulation-based approaches by analyzing the
density of the roads. This way, probabilistic situations can be better observed, and bot-
tlenecks and stochasticity can be considered while offering the best sites for EV charging
stations. Several studies have also explored the development of real-time simulations for
EV stations, employing the high-speed FPGA computation platform [50–54] to assess the
overall operational efficiency [55].

5. Conclusions

In conclusion, this research delves into the critical issue of developing an optimal elec-
tric vehicle (EV) charging infrastructure in Türkiye, with a specific focus on highways and
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intercity travel demands. The increasing global interest in EVs, with Türkiye’s commitment
to phasing out traditional vehicles by 2035, necessitates a specialized approach for Türkiye.
The study’s primary motivation is rooted in the imminent surge in EV usage, especially
with Türkiye’s Automobile Joint Venture Group (TOGG) having been set to commence
mass production in 2023.

This study comprises two main parts: forecasting and location selection. In the fore-
casting phase, a novel approach is introduced to predict future EV numbers by developing
forecast models for overall car sales and internal combustion engine car sales. The results
indicate an expected 115,000 EVs in Türkiye by the end of 2025. This forecasting approach
not only addresses the scarcity of monthly precision EV sales data but also considers the
impact of external factors such as the COVID-19 pandemic and TOGG’s production plans.

The results of the location selection model propose strategic locations and quantities
of charging stations for four state-controlled highways in Türkiye. The optimal placement
and number of stations vary based on the demand patterns and specific characteristics of
each highway. The study recommends constructing 12 charging stations with 37 chargers
on the Ankara–İstanbul highway, 2 stations with 14 chargers on the Aydın–İzmir highway,
2 stations with 8 chargers on the Mersin–Adana highway, and 3 stations with a total of
17 chargers on the Osmaniye–Şanlıurfa highway.

Key findings from this research highlight the importance of adapting charging infras-
tructure optimization approaches to Türkiye’s unique circumstances. The study contributes
not only to the ongoing conversation about sustainable transportation but also offers prac-
tical solutions to meet the growing demand for EVs in Türkiye. As electric vehicle usage
continues to rise, the proposed strategies aim to alleviate range anxiety, enhance customer
satisfaction, and foster widespread adoption of EVs in the country. The research question
(In light of variables including future EV adoption, intercity travel patterns, and environ-
mental sustainability, how can the best sites and numbers of electric car charging stations
be strategically established in Türkiye to accommodate the growing demand for electric
vehicles?) is addressed comprehensively through a multi-faceted analytical approach.
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43. TUIK Bilgi Dağıtım Grup Başkanlığı. Motorlu Kara Taşıtları, Aralık 2018; TUIK, Turkish Statistical Institute: Ankara, Turkiye, 2019.
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