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Abstract: The separate analysis of images obtained from a single source using different camera
settings or spectral bands, whether from one or more than one sensor, is quite difficult. To solve
this problem, a single image containing all of the distinctive pieces of information in each source
image is generally created by combining the images, a process called image fusion. In this paper,
a simple and efficient, pixel-based image fusion method is proposed that relies on weighting the
edge information associated with each pixel of all of the source images proportional to the distance
from their neighbors by employing a Gaussian filter. The proposed method, Gaussian of differences
(GD), was evaluated using multi-modal medical images, multi-sensor visible and infrared images,
multi-focus images, and multi-exposure images, and was compared to existing state-of-the-art fusion
methods by utilizing objective fusion quality metrics. The parameters of the GD method are further
enhanced by employing the pattern search (PS) algorithm, resulting in an adaptive optimization
strategy. Extensive experiments illustrated that the proposed GD fusion method ranked better on
average than others in terms of objective quality metrics and CPU time consumption.

Keywords: general image fusion; Gaussian of differences; multi-focus image fusion; medical image
fusion; infrared and visible image fusion; multi-exposure image fusion; image quality metrics; pattern
search optimization

1. Introduction

The objective of image fusion is to merge the complementary information derived
from multiple source images into a unified image [1–4]. In multi-modal medical image
fusion, two or more images from different imaging modalities are combined [5]. Mag-
netic resonance (MR) and computed tomography (CT) are two different medical imaging
modalities that have complementary strengths and weaknesses. CT images have high
spatial resolution, which makes bones more visible, while MR images have high contrast
resolution, which reveals soft tissues such as organs [6]. Visible and infrared image fu-
sion is a computational technique that includes combined information from infrared and
visible spectrum images to improve the visibility of objects and enhance the contrast of
images, especially for enhanced night vision, remote sensing and pan-sharpening [7–12].
Multi-exposure image fusion involves the integration of multiple images, each captured
at varying exposure levels, to generate a high-dynamic-range (HDR) image. HDR images
retain details in both the dark and bright regions, which enhances image quality, increases
visual fidelity, and improves image analysis in computer vision tasks [13,14]. Multi-focus
image fusion is employed to merge multiple images exhibiting distinct focus levels into a
singular composite image [15–19]. This results in improved overall sharpness, enhanced
depth of field, and enhanced visual perception [20]. These benefits enable more accurate
analysis and interpretation of the fused image in computer vision applications.

1.1. Related Work

Image fusion methods in the literature can be basically divided into two categories:
pixel domain and transformation domain [21]. Pixel-domain (or spatial-domain) tech-
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niques combine the source images directly using their gray-level or color pixel values.
The best-known example of this technique is the arithmetic averaging of source images.
Arithmetic averaging can be used to combine both multi-sensor and multifocal images, but
the biggest disadvantage of this method is that it reduces image contrast [22]. The basic
idea of multi-scale, transform-based image fusion methods is applying a multi-resolution
decomposition to each source image, combining the decomposition results with various
rules to create a unified representation, and finally, applying an inverse multi-resolution
transform [23]. Well-known examples of these approaches include principal component
analysis (PCA), discrete wavelet transform (DWT), Laplacian pyramid (LP), and other
pyramid-based transformations [24]. In recent years, several image fusion algorithms based
on machine learning and deep learning approaches have been proposed [3,25–28]. These
methods are robust and demonstrate superior performance. However, the training phase
requires powerful, high-performance computing systems and plenty of input training data.
Moreover, the trained models can be time-consuming for real-time applications [29].

Pixel level, feature level, and decision level are the three levels at which image fusion
can take place. Pixel-level fusion directly integrates the original data from the source images
to produce a fused image that is more informative for both computer processing and human
visual perception. Compared to other fusion approaches, this approach strives to improve
the visual quality and computing efficiency of the fused image. Li et al. proposed a pixel-
based method by calculating the pixel visibility for each pixel in the source images [30].
Yang and Li proposed a multi-focus image fusion method based on spatial-frequency
and morphologic operators [31]. Typically, in pixel-level image fusion, the weights are
determined based on the activity level of various pixels [32]. In these studies, neural
networks [33] and support vector machines [34] are employed to select pixels with the most
significant activity, using wavelet coefficients as the input features. Ludusan and Lavialle
proposed a variational pixel-based method for image fusion based on error estimation
theory and partial differential equations to mitigate the noise of images [35]. In [36], a
technique for multi-exposure image fusion is introduced which involves two primary
stages: image features, including local contrast, brightness, and color dissimilarity, are
computed to generate weight maps that are further improved using recursive filtering.
Subsequently, the fused image is formed by combining the source images using a weighted
sum based on these refined weight maps. Besides the many pixel-level methods available,
region-based spatial methods that use blocks [37] or adaptive regions [38,39] have also
been proposed to outperform existing methods.

Within the framework of anisotropic diffusion filter (ADF)-based image fusion al-
gorithms, weight map layers are formed via image smoothing, which employs an edge
protection method. These weight map layers undergo subsequent processing prior to
the application of the fusion rule, culminating in the attainment of the final output [40].
Kumar has introduced the cross-binary filter (CBF) method, which takes into account
both the gray-level similarity and geometric closeness of neighboring pixels without anti-
aliasing. The source images are combined according to the weighted average, using the
weights calculated from the detailed images extracted from the source images by the CBF
method [41]. The fourth-order partial differential equations (FDPE) method first applies
differential equations to each source image to obtain approximate images. Then, PCA
is used to obtain optimum weights for the detailed images, which are then combined
to obtain the final, detailed image. The ultimate approximation of the image is derived
by performing an averaging operation on the set of approximate images. Subsequently,
the fused image is computed by merging the final approximation with the detailed im-
ages [42]. The context enhancement (GFCE)-based method preserves the details in the
visible input image and the background scene. Thus, it can successfully transfer important
IR information to the composite image [43]. The gradient transfer fusion (GTF) method,
which is based on gradient transmission and total variation (TV) minimization, tries to
maintain appearance information and thermal radiation simultaneously [44]. The hybrid
multi-scale decomposition method (HMSD) decomposes the source image into very distant
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texture details and edge features using a combination of bilateral filters and the versatile
Gaussian method. This offset allows us to better capture important very sensitive IR spec-
tral features and separate fine texture details from large edges [45]. The infrared feature
extraction and visual information preservation (IFEVIP) method provides a simple, fast,
but effective fusion of infrared and visual images. Firstly, the reconstruction of the infrared
background is accomplished by leveraging quadtree decomposition and Bézier interpola-
tion. Subsequently, the extraction of bright infrared features is performed by subtracting
the reconstructed background from the infrared image, followed by a refinement process
that reduces redundant background information [46]. The multi-resolution singular value
decomposition (MSVD) method is an image fusion technique based on a process that bears
a resemblance to wavelet transform and involves filtering the signal independently using
low-pass and high-pass finite impulse response (FIR) filters, followed by the decimation of
the output of each filter by a factor of two to achieve the first level of decomposition [47].
The VSMWLS approach, designed to enhance the transfer of significant visual details while
minimizing the inclusion of irrelevant infrared (IR) details or noise in the merged image,
represents a multi-scale fusion technique that incorporates visual salience maps (VSM) and
weighted least square (WLS) optimization [48]. Liu et al. proposed an approach based on
deep convolutional neural networks (CNN) for both infrared–visible image fusion [49] and
multi-focus image fusion [50]. They successfully addressed the crucial issues of activity
level measurement and weight assignment in image fusion by using a Siamese convolu-
tional network to construct a weight map by integrating pixel activity information from
two source images [49]. On the other hand, because focus estimation and image fusion are
two distinct problems, traditional image fusion techniques sometimes struggle to perform
satisfactorily. Liu et al. suggest a deep learning method that avoids the requirement for
separate focus estimation by learning a direct mapping between source images and a focus
map [50].

1.2. Contributions of This Study and Advantages of the Proposed Method

To overcome the limitations of the existing image fusion methods, a simple and
efficient general image fusion technique named Gaussian of differences (GD) is proposed.
The unique aspects of the proposed GD image fusion method can be listed as follows:

• The proposed algorithm does not use any transformations and works directly in the
pixel domain. Also, it is based on basic image convolution and linear weighting,
which makes it simple and efficient. It can be implemented on real-time systems and
is suitable for parallel processing.

• The method enhances the high-frequency components of each input image using
simple first-order derivative edge detection. It then uses a Gaussian filter to weight
the contributions of neighboring pixels to the center pixel, with the weight decreasing
with distance.

• The proposed GD method has only two control parameters: the size of the filter and
the standard deviation of the distribution. In addition to making use of predefined pa-
rameters, an optimal solution using the pattern search (PS) algorithm is also proposed
to investigate the adaptability capability of the GD method.

• The method is a general-purpose image fusion algorithm that can be used in a variety
of applications, including multi-modal medical image fusion, infrared and visible
image fusion for enhanced night vision or remote sensing, multi-focus image fusion
for extending the depth of field, and multi-exposure image fusion for high dynamic
range imaging.

• It can combine single-band (gray-level), color (RGB), multi-spectral, and hyperspectral
images due to its generalized structure.

The rest of this paper is organized as follows: the proposed GD fusion method is
briefly introduced, illustrated, and demonstrated in Section 2. Section 3 outlines extensive
experiments with 48 pairs of test images (in total) belonging to four different image fusion
applications. Finally, Section 4 concludes the paper.
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2. Proposed Method

Speed and performance are crucial features of imaging systems. Therefore, one of the
primary factors considered in designing the proposed image fusion method was keeping
the computational complexity low. Another significant concern was the generation of a
single composite image that incorporates meaningful information from images captured at
multiple or diverse wavelengths [51]. The resulting combined image should be suitable for
both human interaction and computer vision applications [52].

Many of the existing fusion methods in the literature employ multi-resolution trans-
forms such as DWT, LP, and discrete cosine transform (DCT) to mitigate the impact of
image misalignments [53]. However, these transformations increase the computational
complexity of the methods. Edge information, which typically contains high-frequency
components, plays a crucial role in determining the importance of pixels in an image.

For the method proposed in this paper, at first, the gradients of each source image
based on the first-degree derivative information are computed. These gradients are then
evaluated along with the neighboring pixels. Linearly, the contribution of each pixel from
different input images to the resulting pixel in the final fused image is determined. The
block diagram of the proposed GD image fusion method is presented in Figure 1.

Entropy 2023, 25, x FOR PEER REVIEW 4 of 33 
 

 

• It can combine single-band (gray-level), color (RGB), multi-spectral, and hyperspec-
tral images due to its generalized structure. 
The rest of this paper is organized as follows: the proposed GD fusion method is 

briefly introduced, illustrated, and demonstrated in Section 2. Section 3 outlines extensive 
experiments with 48 pairs of test images (in total) belonging to four different image fusion 
applications. Finally, Section 4 concludes the paper. 

2. Proposed Method 
Speed and performance are crucial features of imaging systems. Therefore, one of the 

primary factors considered in designing the proposed image fusion method was keeping 
the computational complexity low. Another significant concern was the generation of a 
single composite image that incorporates meaningful information from images captured 
at multiple or diverse wavelengths [51]. The resulting combined image should be suitable 
for both human interaction and computer vision applications [52]. 

Many of the existing fusion methods in the literature employ multi-resolution trans-
forms such as DWT, LP, and discrete cosine transform (DCT) to mitigate the impact of 
image misalignments [53]. However, these transformations increase the computational 
complexity of the methods. Edge information, which typically contains high-frequency 
components, plays a crucial role in determining the importance of pixels in an image. 

For the method proposed in this paper, at first, the gradients of each source image 
based on the first-degree derivative information are computed. These gradients are then 
evaluated along with the neighboring pixels. Linearly, the contribution of each pixel from 
different input images to the resulting pixel in the final fused image is determined. The 
block diagram of the proposed GD image fusion method is presented in Figure 1. 

 
Figure 1. Proposed general image fusion method based on pixel-based linear weighting using the 
Gaussian of differences (GD). 

The steps of the proposed GD fusion method can be summarized as follows: 
1. Edge information is generally related with the information content of an image. The 

first-order derivation (difference of adjacent pixels) of an image simply emphasizes 
the edges. The column and row differences of each input image are calculated: 𝐶𝐷 (𝑖, 𝑗) = 𝐼 (𝑖, 𝑗) − 𝐼 (𝑖, 𝑗 + 1)  𝑅𝐷 (𝑖, 𝑗) = 𝐼 (𝑖, 𝑗) − 𝐼 (𝑖 + 1, 𝑗)  

(1)

where i and j are row and column indexes, CD and RD indicate the column and row dif-
ferences, respectively, and 𝑘 is the input image index. In Figure 2, a face image in the 

Figure 1. Proposed general image fusion method based on pixel-based linear weighting using the
Gaussian of differences (GD).

The steps of the proposed GD fusion method can be summarized as follows:

1. Edge information is generally related with the information content of an image. The
first-order derivation (difference of adjacent pixels) of an image simply emphasizes
the edges. The column and row differences of each input image are calculated:

CDk(i, j) = [Ik(i, j)− Ik(i, j + 1)]2

RDk(i, j) = [Ik(i, j)− Ik(i + 1, j)]2
(1)
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where i and j are row and column indexes, CD and RD indicate the column and row
differences, respectively, and k is the input image index. In Figure 2, a face image in the
visible spectrum is given as I1 and an infrared image of the same scene is given as I2. The
column and row differences of the input images are also visualized.

2. Column and row differences emphasize the edges along vertical and horizontal axes,
respectively. To combine them into a single representation (D), the Euclidian distance
is used, and features related with each pixel based on the edge content are calculated
(visualized in Figure 3):

Dk(i, j) =
√

CDk(i, j) + RDk(i, j) (2)

3. Linear weighting is a well-known approach used to determine the information transfer
of each input image to the output fused image. To determine the contributions of
neighbors of pixels in each image at different input images to the information content of
the respective pixel, the differences are filtered (i.e., weighted) using a 2D Gaussian filter
and the Gaussian of the Differences is obtained (GD), which is visualized in Figure 4.
This representation will be used to calculate the weighting factor of each pixel:

GDk(i, j) =
s

∑
p=−s

s

∑
r=−s

w(p, r)·Dk(i + p, j + r) (3)

where s is the window size, w is a 2D Gaussian filter with a standard deviation of σ:

w =
1

2πσ2 e−(x2+y2)/2σ2
(4)

4. Weighting factors (fw) are determined for the pixels in each input image using GD
proportional to their values, as visualized in Figure 5. Therefore, the sum of the
weighting coefficients of a specific pixel is always equal to one, regardless of how
many input images exist:

f wk(i, j) =
GDk(i, j)

∑ GDk(i, j)
(5)

5. The fused image (F), as demonstrated in Figure 6, is created with the linear weighting
method using weighting factors. Assume that there are two input images in an
application, and for a specific pixel, let the fws be 0.4 and 0.6, respectively. The fusion
result of that specific pixel is summation of 40% of the first input image’s pixel value
I1(i, j) and 60% of the second input image I2(i, j).

F(i, j) = ∑ f wk(i, j)·Ik(i, j) (6)

In the prosed GD fusion method, before calculating the contribution of pixels to the
fused image, the placement of the Gaussian filter (7 × 7 for s = 3) is used to contribute to the
edge information of each pixel. This is given in Figure 7. The pixel of interest in the center
is weighted with the highest coefficient w(0,0) in the Gaussian kernel, and the neighbors
are weighted with smaller coefficients as they move away from the center due to the nature
of the Gaussian kernel.
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tor for the relevant pixel is one, which is the highest ratio, and the blue color indicates that 
the lowest value is zero. When the weighting factor matrix (fw1) of the visible image is 
examined, the outer edges of the lips, nose, and eyes are enhanced. On the other hand, 
when the weighting factor matrix (fw2) of the near-infrared image is examined, details 
such as the iris and nostrils seem to have higher factors. The fused image (F), obtained in 
the fifth step of the method with the weighted average using the weighting factors, is 
given in Figure 6. When the final fused image is examined, it can be seen that the details 
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The fusion results are promising, as shown in the visual steps of the proposed GD
method. In Step 1, the column and row differences are calculated, and the edge content,
which exhibits the high-frequency components of the input images, is obtained, as shown
in Figure 2. In Step 2, the row and column differences are combined with the help of the
Euclidean distance, and the results for the sample images are given in Figure 3. In the third
step of the method, the edge information, obtained using the differences of each pixel, is
convolved with the Gaussian kernel with s = 10 in order to include the contribution of
the neighbors of the relevant pixel. The GDs obtained are shown in Figure 4. In Step 4,
weighting factors are obtained using GDs and visualized in Figure 5 using the jet coloring
map. Here, the red color indicates that the numerical value of the weighting factor for the
relevant pixel is one, which is the highest ratio, and the blue color indicates that the lowest
value is zero. When the weighting factor matrix (fw1) of the visible image is examined,
the outer edges of the lips, nose, and eyes are enhanced. On the other hand, when the
weighting factor matrix (fw2) of the near-infrared image is examined, details such as the
iris and nostrils seem to have higher factors. The fused image (F), obtained in the fifth step
of the method with the weighted average using the weighting factors, is given in Figure 6.
When the final fused image is examined, it can be seen that the details that are present in
the visible image but not in the infrared image, and vice versa, are combined into a single
composite image.

Optimization of GD Parameters

A Gaussian filter is defined by two parameters, as given in Equation (4): the size of
the filter (s) and the standard deviation of the Gaussian distribution σ. Using predefined
values for s and σ may not be suitable for all images. Therefore, an optimal approach to
determine the best parameter set for any input image is proposed in this section.

A block diagram of the proposed optimal scheme is illustrated in Figure 8. As can
be seen in the figure, pattern search (PS) is chosen as the optimizer due to its simplicity
and robustness. Also, PS is a well-known, derivative-free algorithm that does not require a
gradient [55]. The steps of the proposed Gaussian of differences with pattern search (GDPS)
method can be summarized as follows:

1. Define the maximum iteration number of PS and set the initial values of GD parameters.
2. Evaluate the initial solution and calculate its fitness value (overall quality of the

fused image):
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a. Apply all steps of the proposed GD fusion method explained in the previous
section (Equations (1)–(6)).

b. Calculate the fused image quality using an image metric (see Section 3.3).

f itness = Q(F(s, σ)) (7)

where Q is the image quality metric to be maximized, F is the fused image, s is the size of
the Gaussian filter, and σ is the standard deviation of the Gaussian distribution.

3. Apply the operators of PS to find a better GD parameter solution that maximizes the
fused image quality.

4. Repeat Steps 2 and 3 until the maximum iteration number or a predefined stopping
condition is reached.
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3. Experimental Results

For this section, a comprehensive series of experiments were conducted to assess the
performance of the proposed GD method. As explained in Section 2, the GD method has
only two control parameters: the size of the Gaussian kernel (s) and the standard deviation
of the Gaussian distribution (σ). In the experiments, two types of cases were evaluated:

• First, a predefined parameter set for GD was used. s values of 5, 10, and 15 values,
named GD5, GD10, and GD15, respectively, were evaluated. In this case, the second
parameter σ was defined according to the value of the filter size, σ = s/3.

• Second, the parameters of GD were adaptively determined by using the pattern search
optimization algorithm to maximize the image quality. Unreported intensive exper-
iments have shown that using Qabf, Qcb, and Qcv as fitness functions generates the
best results. Therefore, the versions of this case were named GDPSQABF, GDPSQCB,
and GDPSQCV, respectively.

3.1. Image Dataset

To validate the performance of the proposed GD method, four different types of
image fusion cases were selected: multi-modal medical images [56], multi-sensor infrared
and visible images [45], multi-focus images [57], and multi-exposure images [58]. The
specifications of the images used the experiments are summarized in Table 1.
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Table 1. Specifications of the image dataset used in the experiments.

Application Images in Dataset Image Type Resolution

Multi-modal medical 8 Graylevel TIF 256 × 256
Multi-sensor infrared and visible 14 Graylevel PNG 360 × 270, 430 × 340, 512 × 512, 632 × 496

Multi-focus 20 RGB JPG 520 × 520
Multi-exposure 6 RGB JPG 340 × 230, 230 × 340, 752 × 500

Total 48 - -

The multi-modal medical image dataset had eight pairs of images, which are shown
in Figure 9. The multi-sensor infrared and visible image dataset had 14 pairs of images,
which are shown in Figure 10. The multi-focus dataset had 20 pairs of images, which are
shown in Figure 11. And the multi-exposure image dataset had six pairs of images, which
are shown in Figure 12.
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3.2. Experimental Setup

The environmental features of the experiments are summarized in Table 2. Since there
is no training phase in the proposed method, a standard workstation could be sufficient.
In the experiments, the MATLAB library developed by Zhang et al., published openly on
GitHub, was used [59].

Table 2. Specifications of the implemented environment for experiments.

Environmental Feature Description

Operating system Windows 10 Pro
CPU Intel i7-4790K @ 4 GHz
GPU Nvidia GeForce GTX 760
RAM 16 GB

Programming language MATLAB 2023a

The configuration parameters of the fusion methods used in the experiments for com-
parison are summarized in Table 3. For the comparison methods, the default parameters of
the original authors were used. For the proposed GD method, the parameters were deter-
mined by trial and error. Therefore, six different cases of the proposed GD method were
included in the experiments (GD5, GD10, GD15, GDPSQABF, GDPSDQCB, and GDPSQCV)
to emphasize the stability and adaptability of our method.

The experiments were conducted on 48 pairs of images. However, due to lack of
space, only eight image pairs were selected to be visualized and compared in detail in
the following sections. To investigate all results, please see the Supplementary Materials
section at the end of the paper.
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Table 3. Configuration parameters of the fusion methods used in the experiments.

Fusion Method Configuration Parameters

ADF num_iter = 10, delta_t = 0.15, kappa = 30, option = 1
CBF cov_wsize = 5, sigmas = 1.8, sigmar = 25, ksize = 11

FPDE n = 15, dt = 0.9, k = 4
GFCE nLevel = 4, sigma = 2, k = 2, r0 = 2, eps0 = 0.1, l = 2

GTF adapt_epsR = 1, epsR_cutoff = 0.01, adapt_epsF = 1, epsF_cutoff = 0.05, pcgtol_ini = 1 × 10−4,
loops = 5, pcgtol_ini = 1 × 10−2, adaptPCGtol = 1,

HMSD nLevel = 4, lambda = 30, sigma = 2.0, sigma_r = 0.05, k = 2,
IFEVIP QuadNormDim = 512, QuadMinDim = 32, GaussScale = 9, MaxRatio = 0.001, StdRatio = 0.8,
MSVD -

VSMWLS sigma_s = 2, sigma_r = 0.05

CNN type = siamese network, weights_b1_1 = 9 ∗ 64, weights_b1_2 = 64 ∗ 9 ∗ 128,
weights_b1_3 = 128 ∗ 9 ∗ 256, weights_output= 512 ∗ 64 ∗ 2

Proposed GD5 s = 5, σ = 1.6
Proposed GD10 s = 10, σ = 3.3
Proposed GD15 s = 15, σ = 5

Proposed GDPSQABF optimizer = pattern search, algorithm = classic, init_sol = [10; 3.3], lb = [5; 1], ub = [80; 100],
max_iter = 20, fit_fun = −1 ∗ Qabf

Proposed GDPSQCB optimizer = pattern search, algorithm = classic, init_sol = [10; 3.3], lb = [5; 1], ub = [80; 100],
max_iter = 20, fit_fun = −1 ∗ Qcb

Proposed GDPSQCV optimizer = pattern search, algorithm = classic, init_sol = [10; 3.3], lb = [5; 1], ub = [80; 100],
max_iter = 20, fit_fun = Qcv

3.3. Objective Quality Metrics

Except for the visual analysis of the fusion results, objective quality metrics were utilized
to compare the proposed method with other methods quantitatively [60]. The evaluation of a
fused image by visual inspection included steps such as assessing the clarity and sharpness of
the output image and identifying the amount of information transferred from input images to
the source image. Visual evaluation is a very helpful method for comparing performances;
however, visual interpretation is highly subjective. In order to make a fair comparison, the
following image quality criterions were used in the experiments:

Entropy (EN) is a metric that is used the measure the information content of an
image [61]:

EN
(

I f

)
= ∑L

x=0 hI f (χ) log hI f (χ) (8)

where L is the number of gray levels and hI f (i) is the normalized histogram of the fused image.
Mutual information (MI) is a numerical metric that measures the interdependence of

two variables. It is used to measure the amount of information shared by two images. The
MI for two discrete random variables U and V is defined by [62]:

MI(U, V) = ∑vεV ∑uεU p(u, v) log
p(u, v)

p(u)p(v)
(9)

where p(u, v) indicates the probability density function of U and V, and p(u) and p(v) are
the marginal probability density functions of U and V, respectively.

The peak signal-to-noise ratio (PSNR) represents the logarithmic decibel scale ratio be-
tween the maximum potential power of a signal and the power of the noise that introduces
distortion to said signal. A high PSNR value indicates high image quality. L is the number
of colors in the gray level and is taken as 255 [63]:

PSNR ( f , g) = 10 log10

 L2

1
M×N ∑M

f=1 ∑N
g=1(R( f , g)− F( f , g))2

 (10)
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Edge-based similarity (Qabf) is obtained by weighting the normalized edge informa-
tion of both source images [64]:

Qabf =
∑N

n=1 ∑M
m=1 QAF(n, m)wA(n, m) + QBF(n, m)wB(n, m)

∑N
i=1 ∑M

j=1( wA(i, j) + wB(i, j))
(11)

The structure similarity index method (SSIM) is a metric with the purpose of measuring
how much of the structure of the input image is preserved in the fused image [65]:

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (12)

The Chen–Blum metric (Qcb) is a referenceless image quality metric inspired by human
perception [66]. The Qcb value is obtained by calculating the average value of the global
quality map:

Qcb(x, y) = λA(x, y) QAF(x, y) + λB(x, y) QBF(x, y) (13)

Cross entropy (CE) serves as a metric to assess the congruity of the information content
between the input images and the fused image. Reference and fused images including the
same information will have a low CE value [67]:

CE(I1, I2 : I f ) =
CE
(

I1, I f

)
+ CE

(
I2, I f

)
2

(14)

Root mean square error (RMSE) is a measure of accuracy used to realize differences
in estimation errors from different estimators for a variable and is desired to be as low as
possible [63]:

RMSE =

√
1

MN ∑M
i=1 ∑N

j=1(Ia(i, j)− Ib(i, j))2 (15)

Chen Varshney (Qcv) is a quality metric used in image fusion based on regional informa-
tion inspired by human perception [68]. The lower the Qcv, the better the fusion result:

Qcv=
∑N

I=1 ∑L
I=1

(
λ
(

XW1
I

)
D
(

XW1
I , XW1

F

))
∑N

I=1 ∑L
I=1(λ(XW1

I ))
(16)

where X = [X1, X2 . . ., XN] input images and XF is the fused image.
For the EN, MI, PSNR, Qabf, SSIM, and Qcb metrics, higher values indicate better

results. And for CE, RMSE, and Qcv, lower values indicate good performance. In the
following tables, the best result is colored in green, second-best result is colored in dark
red, and the third-best result is indicated by a blue color.

3.4. Medical Image Fusion

For this sub-section, medical images M#2 and M#5, shown in Figure 9, were selected
from eight candidates among the dataset and tested. The visual fusion results of image set
M#2 are given in Figure 13. Input Image A is a computed tomography (CT) slice image
of the human brain, and Image B is a magnetic resonance (MR) image of the same section.
In an ideal case, the bright bone features shown in the CT image and the tissue features
shown in the MR image should be included in the fused image. As can be seen from the
visual results, the GFCE image has obvious noise in the background. The FPDE and MSVD
images lack contrast. The IFEVIP and VSMWSL images resemble mostly Input A (CT) and
ignore Input B (MR). As a result, the ADF, CBF, GTF, HMSD, and proposed GD methods
show better visual performance than others.
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In Table 4, the numerical results of the quality metrics of the comparison methods for
M#2 are given. As can be seen in the table, the VSMWLS, proposed GD15, and proposed
GDPSQCV methods show better performance according to the numerical metrics. On the
other hand, GFGC, ADF, and IFEVIP show the worst performance compared to the others.
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The results of the image set M#5 are given in Figure 14. As can be seen from the results,
ADF, FPDE, GFCE and MSVD show poor visual performance. On the other hand, the CBF,
VSMWLS, and proposed GD methods show better visual performance than other techniques.

In Table 5, the numerical results of the quality metrics of the comparison methods
for M#5 are given. As can be seen in Table 5, the CNN, proposed GD10, and proposed
GDPSQCV methods show better performance according to the numerical results. On the
other hand, MSVD, FPDE, and GFCE show the worst performance compared to the others.

Table 4. Quality metric scores of medical images set M#2, obtained using comparison methods.

EN MI PSNR Qabf SSIM Qcb CE RMSE Qcv

ADF 4.783 2.308 59.298 0.467 1.498 0.363 1.281 0.076 858.898

CBF 5.015 2.494 58.979 0.531 1.496 0.407 1.198 0.082 858.355

FPDE 4.836 2.339 59.397 0.433 1.505 0.348 1.190 0.075 840.941

GFCE 7.615 2.190 53.849 0.474 0.463 0.389 4.502 0.268 1643.875

GTF 4.813 2.248 58.770 0.574 1.486 0.637 0.831 0.086 1154.964

HMSD 4.831 2.286 58.628 0.550 1.488 0.442 0.852 0.089 999.258

IFEVIP 5.153 2.457 57.528 0.484 1.495 0.365 1.352 0.115 1242.540

MSVD 4.823 2.368 57.327 0.471 0.690 0.201 5.933 0.120 813.834

VSMWLS 5.024 2.352 59.033 0.529 1.530 0.469 0.667 0.081 964.498

CNN 4.932 2.337 58.484 0.554 1.505 0.603 0.705 0.092 1016.499

GD5 4.901 2.478 59.209 0.506 1.519 0.389 1.247 0.078 805.711

GD10 4.854 2.463 59.300 0.479 1.522 0.393 1.220 0.076 780.445

GD15 4.819 2.452 59.342 0.464 1.522 0.391 1.208 0.076 773.312

GDPSQABF 4.934 2.471 59.145 0.516 1.514 0.386 1.236 0.079 841.810

GDPSQCB 4.862 2.472 59.280 0.485 1.521 0.390 1.240 0.077 785.127

GDPSQCV 4.796 2.443 59.369 0.456 1.524 0.392 1.145 0.075 781.420

Table 5. Quality metric scores of medical images set M#5, obtained using comparison methods.

EN MI PSNR Qabf SSIM Qcb CE RMSE Qcv

ADF 5.975 2.288 56.459 0.408 1.170 0.503 0.329 0.147 845.674

CBF 5.962 2.571 56.592 0.512 1.289 0.511 0.293 0.143 523.914

FPDE 6.408 2.122 56.007 0.305 1.019 0.475 0.404 0.163 896.311

GFCE 7.311 2.382 54.953 0.447 0.964 0.492 2.920 0.208 751.841

GTF 6.006 2.386 55.932 0.404 1.275 0.431 0.287 0.166 1677.168

HMSD 6.400 2.435 56.376 0.513 1.324 0.519 0.564 0.150 549.287

IFEVIP 6.348 2.554 55.266 0.528 1.338 0.508 0.798 0.193 628.882

MSVD 5.752 2.405 56.837 0.404 1.183 0.386 3.935 0.135 694.471

VSMWLS 6.170 2.659 56.588 0.512 1.355 0.524 0.344 0.143 495.160

CNN 6.913 2.585 56.001 0.571 1.277 0.533 1.427 0.163 449.774

GD5 5.822 2.557 56.906 0.473 1.352 0.467 0.329 0.133 500.209

GD10 5.791 2.574 56.966 0.453 1.371 0.479 0.338 0.131 454.096

GD15 5.776 2.562 56.997 0.436 1.374 0.470 0.340 0.130 454.362

GDPSQABF 5.820 2.553 56.901 0.474 1.349 0.483 0.327 0.133 511.725

GDPSQCB 5.796 2.564 56.954 0.457 1.367 0.481 0.331 0.131 455.932

GDPSQCV 5.782 2.568 56.983 0.444 1.373 0.474 0.339 0.130 452.181
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3.5. Infrared and Visible Image Fusion

Infrared images acquired at wavelengths of 750 nm–1 mm reveal the thermal radiation
of objects in a scene. On the other hand, RGB color images are captured at 400 nm–750 nm
wavelengths, a range which is called the visible spectrum. For this sub-section, infrared
and visible images IV#4 and IV#5, shown in Figure 10, from 14 candidates among the
dataset were selected and tested. The visual fusion results of image set IV#4 are given in
Figure 15. Input Image A is an infrared image of a scene that depicts three people, with a
gun being held by the person on the right. Image B is a visible image of the same scene.
Ideally, both thermal and visible features should be included in the fused image. As can be
seen from the visual results, the contrast of the GFCE image is saturated. The result of the
GTF method is blurry and includes very few features from the visible image input. The
result of the MSVD method has low contrast. On the other hand, the CBF, ADF, VSMWSL,
CNN, and proposed GDPS methods show better performance than the others.
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Figure 15. Infrared and visible image set IV#4 (Images A and B) and their fusion image results,
obtained using comparison methods.

From Table 6, it can be seen that CBF, VSMWSL, and the proposed GD15 and GDP-
SQCB methods show better performance according to the objective metrics. On the other
hand, GFCE, GTF, and MSVD show the worst performance compared to the other methods.

The results of image set IV#5 are given in Figure 16. As can be seen from the results,
CBF, GTF, and all of the GD methods except GDPSQCB show poor visual performance. On
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the other hand, the HMSD and MSVD methods show better visual performance than the
other techniques.

In Table 7, the quantitative fusion results are given. As can be seen, HMSD, MSVD,
FPDE, and GDPSQABF show better performance according to the objective metrics. On
the other hand, GFCE, GTF, and the proposed GD5, GD10, GD15, and GDPSQCV methods
show the worst performance compared to the other methods.

Table 6. Quality metric scores of infrared and visible images set IV#4, obtained using comparison methods.

EN MI PSNR Qabf SSIM Qcb CE RMSE Qcv

ADF 6.132 1.468 60.947 0.470 1.045 0.434 0.790 0.052 118.387

CBF 6.730 1.919 59.715 0.632 1.102 0.473 0.782 0.069 211.646

FPDE 6.159 1.325 60.930 0.481 1.027 0.434 0.740 0.052 119.226

GFCE 7.644 1.231 55.427 0.391 0.465 0.393 2.065 0.186 646.551

GTF 6.161 1.016 60.122 0.311 0.863 0.310 0.575 0.063 160.482

HMSD 6.070 1.485 60.356 0.579 0.998 0.462 0.391 0.060 165.976

IFEVIP 6.869 2.143 59.503 0.670 1.129 0.469 0.891 0.073 206.815

MSVD 6.024 1.578 60.779 0.309 0.944 0.339 5.285 0.054 154.207

VSMWLS 6.297 1.403 60.621 0.617 1.072 0.437 0.494 0.056 145.077

CNN 5.735 1.350 60.244 0.562 0.956 0.424 0.282 0.061 178.710

GD5 6.672 1.791 60.006 0.628 1.135 0.469 0.812 0.065 152.836

GD10 6.670 1.761 60.027 0.632 1.148 0.470 0.798 0.065 146.837

GD15 6.665 1.723 60.052 0.629 1.151 0.469 0.787 0.064 135.276

GDPSQABF 6.671 1.769 60.023 0.632 1.147 0.469 0.802 0.065 148.808

GDPSQCB 6.672 1.763 60.029 0.630 1.146 0.470 0.796 0.065 145.011

GDPSQCV 6.495 1.479 60.470 0.564 1.127 0.463 0.763 0.058 78.475

Table 7. Quality metric scores of infrared and visible images set IV#5, obtained using comparison methods.

EN MI PSNR Qabf SSIM Qcb CE RMSE Qcv

ADF 5.981 2.091 58.438 0.588 1.422 0.415 3.677 0.093 649.629

CBF 6.896 2.822 57.178 0.600 1.227 0.492 2.157 0.125 639.983

FPDE 5.972 2.149 58.439 0.559 1.422 0.418 3.275 0.093 625.309

GFCE 7.230 2.124 57.075 0.558 1.327 0.375 3.706 0.128 80.675

GTF 5.520 1.997 58.210 0.183 1.380 0.323 2.877 0.098 2764.969

HMSD 6.722 2.092 58.250 0.613 1.412 0.368 1.318 0.097 237.620

IFEVIP 6.409 3.898 57.700 0.551 1.362 0.366 0.918 0.110 246.528

MSVD 6.870 2.735 58.210 0.625 1.334 0.459 3.007 0.098 609.813

VSMWLS 6.129 1.800 58.400 0.647 1.408 0.403 5.896 0.094 667.889

CNN 6.781 2.059 57.686 0.743 1.345 0.411 4.080 0.111 256.092

GD5 6.738 2.334 57.497 0.567 1.285 0.497 3.769 0.116 524.444

GD10 6.693 2.349 57.528 0.625 1.351 0.519 3.983 0.115 503.300

GD15 6.677 2.303 57.559 0.652 1.370 0.541 1.177 0.114 496.323

GDPSQABF 6.647 2.169 57.616 0.658 1.383 0.543 1.307 0.113 492.907

GDPSQCB 6.395 1.502 57.954 0.618 1.421 0.535 1.852 0.104 729.452

GDPSQCV 6.677 2.312 57.546 0.630 1.360 0.536 4.001 0.114 487.171
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3.6. Multi-Focus Image Fusion

Images captured using a single lens of scenes containing objects at different distances
have blurry regions. To extend the depth of field, images with different focal lengths are fused.

For this sub-section, multi-focus images F#11 and F#15, shown in Figure 11, from
20 candidates among the dataset were selected and tested. In Figure 17, the fusion results
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of test image F#11 are given. In Input Image A, the near objects (hand and camera) are in
focus, while in Input Image B, the far object (globe) is in focus. An everywhere-in-focus
image is desired, which the fused image provides.

The visual results show that the contrasts of the GFCE and IFEVIP images are saturated.
The GTF result is blurry (hand and camera). The MSVD, ADF, and FPDE results are also
not sharp (globe). On the other hand, CBF, HMSD, VSMWSL, CNN, and the proposed
GDPS methods show better performance than the others.
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Figure 17. Multi-focus image set F#11 (Image A and B) and their fusion image results, obtained 
using comparison methods. Figure 17. Multi-focus image set F#11 (Images A and B) and their fusion image results, obtained

using comparison methods.

In Table 8, the numerical results of the quality metrics of the comparison methods for
F#11 are given. As can be seen in the table, CBF, CNN, and the proposed GD15, GD10,
GDPSQCV, and GDPSQCB methods show better performance according to the numeri-
cal results. On the other hand, GFCE, IFEVIP, and MSVD show the worst performance
compared to the others.
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Table 8. Quality metric scores of multi-focus images set F#11, obtained using comparison methods.

EN MI PSNR Qabf SSIM Qcb CE RMSE Qcv

ADF 7.669 4.513 63.818 0.610 1.654 0.643 0.017 0.027 101.099

CBF 7.681 5.319 63.383 0.752 1.647 0.758 0.019 0.030 20.292

FPDE 7.661 4.401 63.914 0.570 1.663 0.622 0.021 0.026 91.789

GFCE 6.962 2.861 58.590 0.600 1.419 0.527 0.543 0.090 130.958

GTF 7.670 4.585 63.464 0.708 1.637 0.660 0.019 0.029 65.129

HMSD 7.650 4.999 63.173 0.738 1.642 0.742 0.020 0.031 15.926

IFEVIP 7.019 2.661 59.720 0.449 1.500 0.505 0.361 0.069 321.098

MSVD 7.669 4.149 63.421 0.427 1.633 0.616 0.020 0.030 94.007

VSMWLS 7.666 4.424 63.498 0.674 1.655 0.664 0.015 0.029 39.009

CNN 7.668 5.404 63.106 0.757 1.635 0.769 0.030 0.032 14.200

GD5 7.688 4.754 63.655 0.724 1.665 0.710 0.023 0.028 32.352

GD10 7.685 4.747 63.696 0.723 1.667 0.712 0.022 0.028 27.732

GD15 7.684 4.745 63.714 0.722 1.667 0.713 0.022 0.028 26.936

GDPSQABF 7.688 4.756 63.651 0.725 1.665 0.709 0.023 0.028 33.095

GDPSQCB 7.685 4.747 63.696 0.722 1.667 0.712 0.022 0.028 27.694

GDPSQCV 7.683 4.709 63.781 0.714 1.669 0.707 0.022 0.027 26.191

The results of image set F#15 are given in Figure 18. As can be seen from the results,
IFEVIP and GFCE show very poor visual performance. The results of MSVD and GTF
contain blurry regions. On the other hand, CBF, VSMWLS, HMSD, ADF, CNN, and the
proposed GDPSQCB methods show better visual performance than the other techniques.

From Table 9, it can be seen that GTF, CBF, CNN, and the proposed GDPSQCB, GD15,
and GD10 methods show better performance according to the objective metrics. On the other
hand, GFCE, IFEVIP, and MSVD show the worst performance compared to other methods.

Table 9. Quality metric scores of multi-focus images set F#15, obtained using comparison methods.

EN MI PSNR Qabf SSIM Qcb CE RMSE Qcv

ADF 7.611 5.753 68.864 0.748 1.856 0.755 0.009 0.008 3.640

CBF 7.628 6.445 68.394 0.805 1.840 0.815 0.011 0.009 3.873

FPDE 7.614 5.617 68.806 0.744 1.854 0.725 0.013 0.009 3.734

GFCE 7.636 3.140 57.958 0.610 1.396 0.625 0.971 0.105 94.969

GTF 7.623 6.540 69.036 0.791 1.837 0.786 0.011 0.008 5.307

HMSD 7.628 5.958 68.060 0.789 1.836 0.779 0.012 0.010 4.031

IFEVIP 7.632 3.663 60.891 0.627 1.674 0.616 0.321 0.053 158.223

MSVD 7.579 4.972 66.507 0.520 1.784 0.711 0.010 0.015 6.843

VSMWLS 7.626 5.828 68.217 0.787 1.838 0.751 0.012 0.010 3.528

CNN 7.626 6.829 68.088 0.811 1.837 0.829 0.011 0.010 3.618

GD5 7.624 5.941 68.613 0.789 1.847 0.784 0.010 0.009 3.195

GD10 7.623 5.940 68.629 0.787 1.848 0.786 0.010 0.009 3.211

GD15 7.623 5.937 68.636 0.787 1.848 0.787 0.010 0.009 3.225

GDPSQABF 7.624 5.938 68.609 0.789 1.847 0.783 0.010 0.009 3.194

GDPSQCB 7.624 5.940 68.617 0.789 1.847 0.785 0.010 0.009 3.194

GDPSQCV 7.624 5.939 68.613 0.789 1.847 0.784 0.010 0.009 3.207
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3.7. Multi-Exposure Image Fusion

In the last case, image fusion algorithms were compared with regard to their use on
multi-exposure images selected from six candidates among the dataset (images E#5 and
E#6 of Figure 12). For a first example, the visual results of image E#5 are given in Figure 19.
In Input Image A, the inside of the oven is visible, and the remaining objects are saturated.
However, in Input Image B, the background details are in good contrast. Multi-exposure
image fusion helps us create a high-dynamic-range image in which whole regions have
balanced contrast. As can be seen from the results, CBF, HMSD, VSMWLS, CNN, and the
proposed GD methods exhibit good visual performance. Moreover, the IFEVIP, GFCE, and
GTF methods show poorer visual performance than the other techniques.
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In Table 10, the numerical results of the quality metrics of the comparison methods are
given for image set E#5. As can be seen in the table, ADF, FPDE, and the proposed GD15
and GDPSQCV methods show better performance according to the numerical results. On the
other hand, GFCE, IFEVIP, and GTF show the worst performance compared to the others.

The results of image set E#6 are given in Figure 20. As can be seen from the results,
CBF, GTF, and GD5 show poor visual performance. Otherwise, GFCE, VSMWLS, HMSD,
ADF, CNN, and the proposed GDPSQCV method show better visual performance than the
other techniques.
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In Table 11, the quantitative results of the comparison methods are given for image
set E#6. As can be seen in the table, ADF, FPDE, and GDPSQCV show better performance
according to the numerical results. On the other hand, GFCE, IFEVIP, and GTF show the
worst performance compared to the others.

Table 10. Quality metric scores of multi-exposure images set E#5, obtained using comparison methods.

EN MI PSNR Qabf SSIM Qcb CE RMSE Qcv

ADF 6.530 3.440 58.730 0.700 1.719 0.578 0.544 0.087 69.401

CBF 6.704 3.064 58.370 0.674 1.641 0.593 0.537 0.095 99.078

FPDE 6.498 3.433 58.732 0.697 1.720 0.576 0.547 0.087 69.466

GFCE 5.133 2.764 57.641 0.569 1.607 0.469 1.615 0.112 165.118

GTF 6.027 2.950 58.222 0.638 1.670 0.509 0.592 0.098 112.981

HMSD 6.683 3.317 58.387 0.703 1.656 0.675 0.669 0.094 98.335

IFEVIP 5.534 2.471 57.822 0.551 1.601 0.477 0.993 0.108 188.610

MSVD 6.524 3.329 58.690 0.691 1.701 0.582 0.555 0.088 70.008

VSMWLS 6.541 3.278 58.663 0.703 1.700 0.607 0.593 0.089 74.676

CNN 6.539 2.893 58.400 0.702 1.690 0.618 1.241 0.094 92.188

GD5 6.676 3.342 58.618 0.713 1.693 0.600 0.532 0.089 76.043

GD10 6.665 3.334 58.636 0.716 1.699 0.617 0.536 0.089 73.182

GD15 6.655 3.328 58.647 0.716 1.703 0.622 0.539 0.089 72.057

GDPSQABF 6.643 3.349 58.676 0.714 1.708 0.617 0.547 0.088 71.193

GDPSQCB 6.655 3.316 58.647 0.715 1.702 0.624 0.539 0.089 72.086

GDPSQCV 6.606 3.439 58.716 0.707 1.716 0.608 0.533 0.087 68.797

Table 11. Quality metric scores of multi-exposure images set E#6, obtained using comparison methods.

EN MI PSNR Qabf SSIM Qcb CE RMSE Qcv

ADF 6.382 3.912 57.541 0.660 1.510 0.520 0.792 0.115 88.447

CBF 6.674 3.308 56.844 0.680 1.377 0.550 0.881 0.135 168.641

FPDE 6.381 3.904 57.541 0.659 1.509 0.523 0.868 0.115 88.193

GFCE 6.749 2.497 54.457 0.644 1.123 0.510 3.677 0.233 241.984

GTF 5.664 3.065 57.035 0.594 1.431 0.555 0.609 0.129 201.843

HMSD 6.661 3.289 57.130 0.691 1.461 0.521 1.065 0.126 132.652

IFEVIP 6.100 3.716 57.112 0.619 1.458 0.468 1.409 0.126 126.541

MSVD 6.385 3.829 57.518 0.637 1.498 0.521 0.800 0.115 89.599

VSMWLS 6.469 3.650 57.467 0.669 1.477 0.540 0.899 0.117 88.157

CNN 6.372 3.141 57.094 0.704 1.449 0.538 1.912 0.127 125.477

GD5 6.597 3.442 57.200 0.709 1.452 0.550 0.902 0.124 119.147

GD10 6.608 3.489 57.232 0.716 1.475 0.567 0.924 0.123 114.830

GD15 6.613 3.492 57.263 0.716 1.485 0.570 0.829 0.122 111.714

GDPSQABF 6.616 3.486 57.294 0.715 1.490 0.566 0.851 0.121 108.474

GDPSQCB 6.619 3.488 57.277 0.717 1.488 0.570 0.837 0.122 110.358

GDPSQCV 6.487 3.619 57.466 0.687 1.510 0.536 0.903 0.117 95.170

3.8. Overall Comparison

To evaluate the numerical results more easily, the average rankings of the methods
with regards to all of the quality metrics were calculated for all 48 images used in the
experiments. The best ranking was set to first, and the worst ranking was set to sixteenth
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according to the quality metric value of each method, as we have sixteen methods in total.
Each fusion application type is given in a separate table.

Table 12 shows the ranking of each method for the fusion of multi-modal medical
images, including M#1 to M#8. At the bottom of the table, the average ranking of each
method compared to all of the images for medical image fusion is indicated. As can be
seen in Table 12, overall better results in average ranking were obtained with GD10, GD15,
and GDPSQCB, whose average ranking was around sixth. GFCE and MSVD were the two
worst methods with an average ranking of ~12th.

Table 13 shows the ranking of each method for the fusion of infrared and visible
images, including IV#1 to IV#14. As can be seen in Table 13, overall better average rankings
were obtained with HMSD, GDPSQCV, GDPSQABF, and CNN, whose average ranking
was around seventh. ~GTF was the worst method an average ranking of ~11th.

The ranking of each method for the fusion of multi-focus images, including F#1 to
F#20, are given in Table 14. As can be seen from the results, overall better average rankings
were obtained with GD15, GDPSQCV, GD10, CBF, and CNN, whose average ranking was
around sixth. GFCE and IFEVIP were the worst methods with an average ranking of ~14th
average ranking.

The ranking of each method for the fusion of multi-exposure images, including E#1 to
E#6, are given in Table 15. As can be seen from the results, overall better average rankings
were obtained with GDPSQCV, GDPSQABF, and ADF, whose average ranking was around
fifth. GFCE was the worst method with an average ranking of ~13th.

The global average rankings and average CPU time consumptions of the methods
for all 48 images are given in Table 16. As can be seen from the table, the proposed GD
methods take the first three best rankings. The methods can be ordered from best to worst
as GDPSQCV, GD15, GDPSQABF, GDPSQCB, GD10, HMSD, CNN, VSMWLS, ADF, FPDE,
GD5, CBF, MSVD, GTF, IFEVIP, and GFCE. Table 16 also shows the global average CPU time
consumptions of the methods in seconds. The execution time of an image processing method
is directly affected by its complexity and the CPU capacity it is run on, as shown in [69]: the
lower the CPU time, the faster the execution time of the method. According to the numerical
results, IFEVIP, GD5, and GD10 are the fastest methods compared to the others.

Table 12. Average rankings of the methods with regard to their quality metrics for multi-modal
medical images.
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Img. M#1 Rank. 8.78 7.00 7.78 12.89 11.44 6.78 9.00 10.44 7.22 8.78 8.00 7.11 7.78 8.00 6.78 8.22

Img. M#2 Rank. 11.00 6.78 8.33 13.00 9.33 9.44 11.00 12.89 5.78 8.00 7.11 5.89 6.67 7.56 6.67 6.56

Img. M#3 Rank. 6.78 9.56 7.56 11.56 12.22 7.56 7.33 15.22 8.22 6.56 8.89 6.44 7.00 6.78 6.56 7.78

Img. M#4 Rank. 7.67 6.89 8.67 13.78 11.67 5.00 8.22 13.33 9.67 7.89 8.67 6.89 6.89 7.33 6.67 6.78

Img. M#5 Rank. 10.56 6.56 12.33 12.00 11.78 8.22 9.22 12.67 5.78 6.44 7.33 6.00 7.00 7.22 6.44 6.44

Img. M#6 Rank. 15.22 8.22 10.11 11.56 10.11 6.00 5.44 9.78 5.56 8.11 8.11 7.56 6.89 7.44 8.78 7.11

Img. M#7 Rank. 9.56 7.00 9.33 13.56 12.44 8.44 9.89 12.56 5.67 7.56 7.33 6.44 5.67 7.44 6.33 6.78

Img. M#8 Rank. 7.33 10.22 9.67 13.56 12.22 6.11 7.33 13.67 6.11 7.89 9.56 7.11 5.89 7.11 5.67 6.56

Avg. Ranking 9.61 7.78 9.22 12.74 11.40 7.19 8.43 12.57 6.75 7.65 8.13 6.68 6.72 7.36 6.74 7.03
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Table 13. Average rankings of the methods with regard to their quality metrics for infrared and
visible images.
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Img. IV#1 Rank. 5.67 11.33 7.11 11.11 10.00 5.56 10.33 10.11 7.22 5.67 10.33 8.67 8.44 9.11 7.44 7.89
Img. IV#2 Rank. 8.00 11.22 8.33 10.22 10.56 5.78 10.11 8.78 7.33 6.22 10.89 9.33 7.89 7.22 7.33 6.78
Img. IV#3 Rank. 6.11 11.67 7.11 10.44 10.89 5.33 11.00 10.00 6.44 5.67 10.11 8.56 8.00 9.00 8.11 7.56
Img. IV#4 Rank. 7.89 7.33 8.11 13.67 11.56 8.78 8.33 11.11 7.33 10.44 8.22 6.78 6.22 7.33 6.11 6.78
Img. IV#5 Rank. 8.33 9.44 7.78 10.67 11.33 6.44 7.89 7.11 9.44 8.67 10.22 8.89 6.67 6.22 8.56 8.33
Img. IV#6 Rank. 8.78 9.89 7.22 8.22 9.78 6.33 9.33 9.00 7.56 9.78 10.00 8.56 6.89 6.67 11.22 6.78
Img. IV#7 Rank. 7.11 11.56 7.44 9.00 12.22 5.22 9.22 8.67 9.89 5.00 11.56 10.00 8.56 6.00 9.11 5.44
Img. IV#8 Rank. 8.67 10.56 10.78 10.89 10.78 6.22 8.44 10.11 6.78 6.33 10.00 9.00 8.00 6.67 6.56 6.22
Img. IV#9 Rank. 7.89 10.11 7.11 11.22 15.00 7.33 10.67 7.89 5.78 6.44 10.56 7.67 7.00 7.00 6.67 7.67

Img. IV#10 Rank. 7.56 11.22 8.33 8.78 9.33 8.56 9.22 11.78 7.00 7.56 11.22 9.56 8.00 5.33 6.22 6.33
Img. IV#11 Rank. 8.11 11.33 8.11 12.78 7.56 9.67 6.78 6.67 5.33 6.78 10.44 9.78 8.33 6.11 11.33 6.89
Img. IV#12 Rank. 10.44 8.33 10.11 12.00 12.11 7.11 10.11 9.22 9.89 7.22 9.44 6.89 6.00 6.56 5.56 5.00
Img. IV#13 Rank. 7.78 12.33 7.89 7.89 13.00 7.11 5.89 9.00 6.44 6.44 10.11 8.78 7.89 7.56 10.89 7.00
Img. IV#14 Rank. 8.11 12.11 8.11 7.89 11.22 5.67 5.33 9.89 6.22 7.22 10.11 8.89 8.67 7.89 10.67 8.00

Avg. Ranking 7.89 10.60 8.11 10.34 11.10 6.79 8.76 9.24 7.33 7.10 10.23 8.67 7.61 7.05 8.27 6.91

Table 14. Average rankings of the methods with regard to their quality metrics for multi-focus images.
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Img. F#2 Rank. 7.78 6.89 9.78 13.56 9.33 7.44 13.89 9.56 7.89 6.78 7.11 7.22 6.44 7.00 7.56 7.78
Img. F#3 Rank. 9.44 6.56 9.78 13.78 10.89 7.00 13.44 9.56 7.89 7.89 7.67 6.67 5.89 7.00 6.33 6.22
Img. F#4 Rank. 8.11 5.78 9.22 15.44 11.78 10.11 13.67 10.56 7.44 7.11 7.11 5.67 5.56 6.33 6.11 6.00
Img. F#5 Rank. 7.11 6.33 10.00 14.89 9.67 7.67 15.89 9.56 9.33 7.00 6.44 5.78 6.22 7.44 6.67 6.00
Img. F#6 Rank. 7.67 6.89 9.78 13.78 9.56 8.00 13.44 9.00 8.67 8.11 7.44 6.78 6.44 7.22 6.56 6.67
Img. F#7 Rank. 9.11 6.78 9.44 15.22 10.56 7.44 14.22 8.67 7.33 7.00 7.56 6.22 5.67 8.44 7.11 5.22
Img. F#8 Rank. 8.89 6.22 9.44 14.00 7.33 9.56 13.78 12.44 8.44 6.33 6.67 7.22 5.89 6.89 6.89 6.00
Img. F#9 Rank. 9.00 6.78 9.89 12.67 9.89 7.11 13.44 8.89 9.33 8.22 8.00 6.78 6.33 7.00 6.11 6.56

Img. F#10 Rank. 8.11 6.78 9.22 14.22 10.11 6.89 13.44 13.22 6.67 6.89 7.22 6.67 6.00 7.56 6.44 6.56
Img. F#11 Rank. 8.22 6.00 9.00 15.33 9.44 7.44 15.33 12.00 9.11 7.78 6.56 5.78 5.67 6.67 5.89 5.78
Img. F#12 Rank. 8.00 6.11 8.67 15.33 9.78 8.33 13.78 10.22 8.78 7.89 7.89 6.11 5.44 7.56 6.33 5.78
Img. F#13 Rank. 8.67 7.56 9.89 13.67 9.00 8.11 13.78 10.22 9.22 8.22 7.56 6.11 5.56 6.00 6.78 5.67
Img. F#14 Rank. 9.00 6.22 9.67 15.33 8.78 6.89 14.67 10.44 9.11 7.56 7.22 6.33 6.33 6.56 6.11 5.78
Img. F#15 Rank. 7.22 6.78 9.44 14.00 6.56 9.44 13.67 13.22 10.00 6.67 6.56 6.33 6.22 7.11 5.78 7.00
Img. F#16 Rank. 7.22 7.89 8.33 15.22 9.67 9.89 15.44 8.44 7.44 9.44 7.11 5.44 5.78 6.67 6.11 5.89
Img. F#17 Rank. 9.11 6.67 9.56 14.44 9.89 7.22 15.56 9.56 9.22 6.78 7.78 5.67 6.22 6.44 5.78 6.11
Img. F#18 Rank. 7.78 7.78 9.56 14.33 9.33 10.11 13.56 8.22 7.33 7.11 6.67 6.67 6.56 8.11 6.56 6.33
Img. F#19 Rank. 8.67 6.22 9.67 14.11 9.89 7.11 15.44 10.78 9.11 7.22 7.67 6.22 5.00 6.56 5.56 6.78
Img. F#20 Rank. 8.89 5.67 10.22 15.33 10.22 7.11 13.78 8.67 7.67 6.67 7.67 6.33 6.67 7.11 6.67 7.33

Avg. Ranking 8.37 6.58 9.47 14.32 9.58 7.99 14.22 10.31 8.40 7.34 7.27 6.34 6.07 7.02 6.41 6.31
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Table 15. Average rankings of the methods with regard to their quality metrics for multi-exposure
images.

Multi-Exposure
Images A

D
F
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M

SD

IF
EV

IP
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SV

D

V
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W
LS

C
N

N

G
D

5

G
D

10

G
D

15

G
D

PS
Q

A
B

F

G
D

PS
Q

C
B

G
D

PS
Q

C
V

Img. E#1 Rank. 6.11 14.00 5.78 13.78 12.44 7.44 10.56 8.00 7.22 7.89 11.11 8.56 6.78 4.78 6.33 5.22

Img. E#2 Rank. 5.33 10.44 5.44 13.22 11.56 10.78 15.89 7.67 6.56 9.56 8.67 7.67 6.89 5.33 6.33 4.67

Img. E#3 Rank. 6.33 13.22 6.78 11.11 10.44 8.33 9.89 6.00 7.22 10.33 11.67 8.89 8.11 5.56 7.33 4.78

Img. E#4 Rank. 5.00 13.67 5.11 13.56 11.22 6.11 9.11 7.11 9.00 7.56 12.33 9.89 8.33 6.33 6.67 5.00

Img. E#5 Rank. 5.44 10.33 6.00 15.56 13.33 9.00 15.33 7.89 8.56 10.67 7.00 6.00 5.33 5.44 6.22 3.89

Img. E#6 Rank. 5.44 10.78 5.78 13.89 12.22 10.44 12.33 6.33 6.56 12.00 9.11 7.67 5.67 5.78 5.33 6.67

Avg. Ranking 5.61 12.07 5.82 13.52 11.87 8.68 12.19 7.17 7.52 9.67 9.98 8.11 6.85 5.54 6.37 5.04

Table 16. Global average rankings of the methods with regard to their quality metrics and average
CPU time consumptions (s) for all images.

All Images A
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Avg. Ranking 8.09 8.64 8.58 12.79 10.61 7.59 11.41 9.98 7.71 7.62 8.62 7.30 6.72 6.90 7.00 6.44

Avg. CPU Time 0.56 14.08 1.76 1.46 5.63 6.28 0.15 0.57 2.30 22.99 0.16 0.18 0.20 19.65 15.40 21.72

4. Conclusions

In this paper, a general image fusion method based on the GD, linear weighting, and
PS optimization is proposed. The main advantages of the proposed GD method can be
summarized as follows:

• It is based on basic image convolution and linear weighting. Thus, the main algorithm
is very simple and can be implemented on embedded systems and PCs and easily
parallelized on multiple CPU or GPU cores.

• It is a pixel-based image fusion method, and the method does not utilize an image
transform. Moreover, it does not require a training phase. Therefore, the proposed
method is pretty fast compared to state-of-the-art fusion methods.

• The method relies on transferring information from each input image by enhancing
the high-frequency components using simple, first-order derivative edge detection.
Neighboring pixels also contribute to the center pixel’s weighting, proportional to
their distance, using a Gaussian filter.

• The method has only two control parameters. In this paper, we define some predefined
parameter sets and explore their performance. And a simple optimal solution to
determine the adaptively control parameters is also proposed and compared.

• It can be used in any kind of image fusion application, such as multi-modal medical
image fusion, infrared and visible image fusion for enhanced night vision, multi-focus
image fusion for extending the depth of field, and multi-exposure image fusion for
high-dynamic-range imaging.

• It can fuse more than two input images with the help of its generalized structure.
Therefore, it can be used in future studies to fuse multi-spectral and hyperspectral
images with 10–200 input images corresponding to different wavelengths in the visible
and non-visible spectrum.

The proposed GD method with its six different versions has been compared with
10 state-of-the-art image fusion methods by utilizing qualitative and quantitative evaluation.
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In total, 48 pairs of test images were used in the experiments. However, only two pairs
of test images were detailed and visualized for each of the four different types of image
fusion in the experiments. The fusion results of all images in the dataset can be found at
the Supplementary Materials section. In addition to visual subjective evaluations, nine
objective quality metrics were utilized to compare the proposed GD method with other
fusion methods.

Extensive experiments have shown that the proposed GDPSQCV method attained an
average rank of 6.44th among 16 methods, when considering all quality metrics and all
test images, which is the best ranking of all of the methods. Moreover, the average CPU
consumption time of GD15, which is the second best in overall ranking, is about 0.20 s, which
is only 0.05 s slower than IFEVIP (revealed as the fastest method in the experiments). However,
it must be noted that IFEVIPs average ranking is 11.41th. In addition to this, the proposed
GD15 is ~115× faster than the CNN method in terms of average CPU consumption time
for the fusion of 48 image pairs on an Intel i7 CPU clocked @ 4 GHz PC without parallel
programming. Increasing the Gaussian filter size increases the success of the proposed method.
Namely, GD15 obtained better results than GD10, and GD10 obtained better results than GD5.
However, unreported experiments showed that increasing the filter size causes undesirable
visual effects on the fused image. Optimal versions of GD have better performance compared
to their non-adaptive versions such as GD5, GD10, and GD15. However, the CPU computing
times of GDPS versions are much higher.

The main limitation of the proposed method is that it does not guarantee the best
result in a particular application. However, it is capable of being a general fusion scheme
and gives better results in average for any kind of fusion application. In future studies,
optimization algorithm and the fitness function to be optimized may be improved. Meta-
heuristic algorithms are very promising, and multi-objective versions can improve the
overall performance by optimizing two or more quality metrics together. In addition to
this, GPU computing techniques may be utilized to speed up the optimization process. As
a result, although it may not achieve the overall best result in all tests, the proposed GD
method can be used as a simple and effective general image fusion method.

Supplementary Materials: The following supporting information can be downloaded at: https://github.
com/rifatkurban/GDfusion, fused images and numerical results of input image pairs in the dataset.
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MATLAB codes of the proposed GD method will be released at: https://github.com/rifatkurban/GDfusion.
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