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Abstract
The Internet of Things (IoT) has revolutionized the functionality and efficiency of 
distributed cyber-physical systems, such as city-wide water treatment systems. How-
ever, the increased connectivity also exposes these systems to cybersecurity threats. 
This research presents a novel approach for securing the Secure Water Treatment 
(SWaT) dataset using a 1D Convolutional Neural Network (CNN) model enhanced 
with a Gated Recurrent Unit (GRU). The proposed method outperforms existing 
methods by achieving 99.68% accuracy and an F1 score of 98.69%. Additionally, the 
paper explores dimensionality reduction methods, including Autoencoders, General-
ized Eigenvalue Decomposition (GED), and Principal Component Analysis (PCA). 
The research findings highlight the importance of balancing dimensionality reduc-
tion with the need for accurate intrusion detection. It is found that PCA provided 
better performance compared to the other techniques, as reducing the input dimen-
sion by 90.2% resulted in only a 2.8% and 2.6% decrease in the accuracy and F1 
score, respectively. This study contributes to the field by addressing the critical need 
for robust cybersecurity measures in IoT-enabled water treatment systems, while 
also considering the practical trade-off between dimensionality reduction and intru-
sion detection accuracy.
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1 Introduction

The Internet of Things (IoT) is a technology that enables the connection of every-
day devices, such as appliances, vehicles, and industrial equipment, to the inter-
net. This allows these devices to communicate with one another and with other 
systems, and to be controlled and monitored remotely. The increased connectivity 
provided by IoT has had a significant impact on industrial control systems, which 
were previously closed off from the outside world. In the past, industrial control 
systems (ICS) were primarily used to control and monitor industrial processes 
within a single facility or on a small scale. With the advent of IoT, however, these 
systems can now be connected to the internet, enabling remote monitoring and 
control. This allows for city-wide or nationwide distributed systems to work col-
laboratively and efficiently, with the ability to share information and coordinate 
actions across different locations. Although connectivity has many benefits, it 
also brings the danger of cyberattacks. An attacker can access the communication 
channel and control the system and implement an attack. The attack may have 
various effects from simply unavailability of service to catastrophic system fail-
ure. As industrial control systems become connected to the internet, they become 
more vulnerable to cyberattacks.

There are examples of cyberattacks targeting industrial control systems (ICS) 
in recent years. In 2000, a former employee maliciously commanded SCADA 
(Supervisory Control and Data Acquisition) radio-controlled sewage [1]. He 
caused hundreds of thousands of raw sewerages to spill out around various parts 
of the city in Australia. One of the most well-known examples of an ICS cyber-
attack is the Stuxnet worm [2], which was discovered in 2010. The worm spe-
cifically targeted the software used to control industrial processes at an Iranian 
nuclear facility. The attack caused physical damage to the centrifuges used to 
enrich uranium, setting back the facility’s operations. In 2015 a malicious cyber-
attack targeted the Ukraine power grid [3], causing widespread power outages 
across the country. The attackers used spear-phishing emails to gain access to the 
network and then used malware to disrupt the operations of the power plants.

WannaCry is a ransomware computer worm that employs the RSA and AES 
encryption algorithms to encrypt files on the victim’s computer. This notorious 
ransomware attack had a widespread impact, affecting thousands of computers, 
including industrial control plants [4]. The worm gains access to a computer by 
exploiting a vulnerability in the Server Message Block (SMB) protocol, which 
enables remote code execution [5]. Triton malware, which specifically targeted 
the industrial control systems used to operate critical infrastructure, was discov-
ered in 2017 [6]. The malware manipulated the Triconex Safety Instrumented 
System (SIS) controllers, which are used to monitor and control industrial pro-
cesses in facilities such as oil refineries and chemical plants. Although the full 
extent of damage caused by these attacks is not publicized, they resulted in sig-
nificant outages in a petrochemical plant, posing the potential risk of chemical 
releases [7]. Attacks on ICS can range from simple disruption of service to cata-
strophic failures that can have major physical consequences. Given the potential 
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consequences of successful attacks, it is important to take the necessary steps 
to protect industrial control systems, especially critical infrastructure. Therefore, 
organizations that deploy IoT-enabled industrial control systems need to be aware 
of these security risks and take appropriate measures to protect against them. This 
includes implementing robust security protocols, monitoring for and responding 
to potential security threats, and providing employee education and training to 
raise awareness of security risks. One common practice of protecting ICS is the 
use of an intrusion detection system (IDS). Researchers have proposed various 
IDSs to identify and detect intrusions and secure cyber-physical systems. How-
ever, the efficiency and effectiveness of IDSs can be improved through feature 
selection and feature reduction algorithms.

In this research, we propose a method for securing the Secure Water Treatment 
(SWaT) dataset by implementing an IDS using a one-dimensional Convolutional 
Neural Network (CNN) model enhanced with a Gated Recurrent Unit (GRU). Addi-
tionally, we explore various dimensionality reduction techniques, such as autoen-
coders, Generalized Eigenvalue Decomposition (GED), and Principal Component 
Analysis (PCA). The goal of the paper is to determine the optimal feature subset that 
can improve the efficiency of the model without compromising its accuracy.

In light of the above, the contributions of the paper are as follows:

• A novel IDS approach based on a 1D CNN model enhanced with a GRU for 
securing the SWaT dataset, which outperforms traditional IDS methods in terms 
of accuracy and robustness.

• Evaluates the impact of dimensionality reduction techniques.
• Provides insights into the trade-off between feature reduction and detection accu-

racy and demonstrates the importance of balancing these two factors for effective 
intrusion detection in cyber-physical systems.

The rest of this paper is organized as follows. Section 2 provides a brief background 
on the SWaT dataset and CNN. Section 3 presents the proposed method and imple-
mentation details. Section  4 includes experimental results and further discussion 
on the timing analysis of the approach, as well as an exploration of its limitations. 
Section  5 consists of a conclusion summarizing the findings and potential future 
research directions.

1.1  Related work

Rule-based anomaly detection is a widely used method for identifying unusual activ-
ity in a system based on predefined rules. These rules can be based on patterns and 
characteristics of known malicious activity, and if a known pattern is observed, it is 
considered an anomaly. The rules can also be based on the normal behavior of the 
system, such as setting threshold values for specific parameters. If these values are 
exceeded or not met, an alarm is triggered.
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Adepu and Mathur [8] proposed a novel method for distributed attack detection 
by utilizing process invariants derived from Piping and Instrumentation Diagrams (P 
&IDs) based on physical properties of the system. The authors applied this method 
to a SWaT system, which has chemical processes as well, but due to the nonlinearity 
of these processes, only physical invariants were used. Although the method does 
not produce any false alarms, it fails to identify some attack types like denial of 
service. Furthermore, the process of deriving the invariants is currently a manual 
process, which may limit the scalability of the method. Future research should focus 
on automating this process to improve the overall performance of the method.

Another example of rule-based anomaly detection is Logical Analysis of Data 
(LAD) which was implemented by Das et al. [9]. This method allows for near-real-
time processing with low computational power, making it an efficient and cost-effec-
tive way to detect some types of cyberattacks. However, it is important to note that 
reliance on predefined rules alone can be circumvented [10], highlighting the need 
to supplement rule-based methods with other security measures such as behavio-
ral analysis and machine learning. Al-Dhaheri et. al [11] proposed hybrid intrusion 
detection system. Rule-based IDS that checks limits and safety values, model-based 
monitoring that implements physical model, and data-driven approach for nonlinear 
modeling.

Aboah et al. [12] proposed a neural network with a one-class objective function 
(NN-One-class) which improves the detection performance compared to some of the 
previous methods. However, the training time can be quite extensive, taking up to 
110 min with an NVIDIA Tesla T4 GPU and a RAM of 32GB. Given the complex-
ity of the data, this represents a significant amount of resources.

Kravchik and Shabtai [13] proposed a 1D Convolutional Neural Network (CNN) 
to identify cyberattacks on the SWaT dataset. They implemented dedicated anomaly 
detectors for each stage of the SWaT system to improve the performance. The results 
showed that independent analysis of each stage outperforms a single model for the 
whole system. However, as the stages of the SWaT system are dependent on each 
other, it is important to also investigate the inter-stage dependencies in order to fur-
ther improve the performance of the detection system.

Xie et  al. [14] investigated Stacked Denoising Autoencoders (SDA) with 1D 
Convolutional Neural Networks and Gated Recurrent Units (GRUs) to leverage cor-
relations and dependencies between variables. The approach achieved successful 
detection of various attack types but encountered training challenges due to the large 
number of model parameters.

Goh et al. [15] proposed an unsupervised learning approach that utilizes a Long 
Short-Term Memory (LSTM) and Cumulative Sum (CUSUM) for anomaly detec-
tion. The method goes beyond traditional anomaly detection by specifically iden-
tifying the sensor that was targeted in the attack. However, it is important to note 
that this approach was only deployed in the first stage of the SWaT system, which 
consists of six stages.

Zhou et. al. [16] suggested to use temporal and spatial correlation as temporal 
correlation alone is not beneficial for high dimensional data. They have implemented 
Graph Attention Network (GAT) with Multihead Dynamic Attention (MDA). The 
implementation leverages of relationship between various sensors thanks to MDA.
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Nedeljkovic and Jakovljevic [17] implemented semi-supervised IDS by using 
CNN-based auto regression. They applied Finite Impulse Response (FIR) filter to 
remove high frequency noise.

Dillon et. al [18] showed that design knowledge increases the efficiency of the 
IDS. One reason behind that is when data consist of binary values and analog 
ones, machine learning algorithms can be biased toward binary ones and ignore 
them. Experimental results show a 5% increase in the detection by using design 
knowledge.

There are also research papers that implement dimension reduction. Li et. al. [19] 
proposed a method called "end-to-end anomaly detection" for detecting anomalies 
using a digital twin. The proposed method uses a multidimensional deconvolu-
tional network and attention mechanism with PCA to detect anomalies quickly in 
real-time. However, the performance of the method, F1=0.94, is not acceptable for 
critical infrastructure. Alimi et al. [20] applied PCA to various supervised learning 
algorithms. They achieved the best performance for the SWaT dataset with the J48 
decision tree classifier; however, the F1 score was 0.814. Priyanga et al. [21] pro-
posed a hyper-graph-based anomaly detection technique. The proposed algorithm 
involves two phases: dimensionality reduction using enhanced principal component 
analysis (EPCA) and anomaly detection with HG-based convolution neural network 
(CNN). El-Nour et al. proposed framework [22] involving two isolation forest mod-
els and PCA. In another study, Yazdinejad et al. [23] applied LSTM to get benefit of 
long-term dependancy of SWaT data and autoencoders to reduce number of features, 
achieving an accuracy of 96.3%. Although these methods implemented dimension-
ality reduction algorithms, they do not emphasize on dimensionality reduction. This 
article explores the limitations of current dimensionality reduction methods and dis-
cusses the importance of dimensionality reduction.

2  Background

2.1  Secure water treatment (SWaT) dataset

The Secure Water Treatment (SWaT) dataset [24], which is widely used as a testbed 
for water treatment, is used in this experiment. The SWaT system produces filtered 
water at a rate of 5 gallons per hour and was designed under the supervision of Sin-
gapore’s Public Utility Board. It contains six stages labeled as P1 through P6 as 
shown in Fig. 1. Each stage is operated by a PLC (e.g., PLC 1 controls stage P1) 
using a distributed control strategy.

The system can be divided into two levels: Level 0 and Level 1. At Level 0, Pro-
grammable Logic Controllers (PLCs) acquire data from local sensors such as an 
acidity analyzer, water level sensor, and flow meter, and handle the actuators such 
as valves and pumps. At Level 1, the PLCs communicate with each other using a 
separate network, which connects all six stages to the Supervisory Control and Data 
Acquisition (SCADA) system.

PLC 1 controls the flow of raw water by opening or closing the valves connected 
to the inlet and outlet of the raw water tank in Stage 1. After chemical dosing in 
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Stage 2, the water is fed to Stage 3 for the Ultra Filtration (UF). From there, the UF 
feed pump forwards the water to the Reverse Osmosis (RO) feed tank in Stage 4. 
Before entering the RO process, the water passes through an ultraviolet (UV) de-
chlorinator to remove any free chlorine. In Stage 5, the RO process removes inor-
ganic impurities from the de-chlorinated water. The filtered water produced by the 
RO process is stored in the permeating tank in Stage 6 for distribution, and Stage 6 
also handles the cleaning of the UF membranes through the backwash process.

The dataset comprises a total duration of 11 days, with the initial seven days 
being free from any attacks. It consists of 946,722 samples, each containing 51 
attributes. Figure 2a presents the raw data, displaying three features to ensure clarity 
of presentation.

Various methods can be employed to carry out attacks, including physical access 
to the system, unauthorized network access to the SCADA infrastructure, and the 
installation of malicious firmware on the Programmable Logic Controllers (PLCs). 
The attacks on the SWaT dataset were implemented at Level 1, where the PLCs 
communicate with the SCADA system. At this level, data packets are manipulated, 
and malicious messages are transmitted to the SCADA system.

In Fig. 2b, a specific attack scenario is illustrated, involving tampering with the 
water level (LIT301) in a water tank. The normal behavior dictates that the water 
level should remain between the predefined Low (L) and High (H) levels. However, 
in this attack scenario, the water level gradually decreases at a rate of 0.5 mm per 

Fig. 1  Process flowchart of SWaT system



1065

1 3

Comparative analysis of dimensionality reduction techniques…

second. As a consequence, after a certain period of time, the water level drops below 
the Low level, potentially causing damage to the system.

2.2  Convolutional neural network and gated recurrent unit

Feature extraction is a crucial step in data classification, and it can be done manu-
ally or automatically. Deep learning systems, particularly Convolutional Neural Net-
works (CNNs), are widely used as automatic feature extraction methods and often 
outperform manual feature extraction techniques. CNNs excel at capturing local 
information due to their convolutional and pooling operations. The convolution 
operation where filters are convolved with the input data to produce feature maps 
can be defined as follows:

where G[n] represents the output of convolution operation (feature maps), f and h 
are the input data and the convolutional filter (kernel), respectively.

Equation 1 calculates the weighted sum of the convolution between the filter h 
and the input f, where the filter is shifted across the input data by the index k.

After the convolutional operations, the feature maps obtained in CNNs are passed 
through nonlinear activation functions like Rectified Linear Unit (ReLU) to intro-
duce nonlinearity into the network. Pooling layers, such as max pooling or average 
pooling, are commonly used to reduce the spatial dimensions of the feature maps 
while retaining important features.

To capture more complex and abstract representations, CNNs stack multiple 
convolutional and pooling layers. As the network deepens, it learns increasingly 
complex features. Toward the final layers, fully connected layers are typically 

(1)G[n] = (f ∗ h)[n] =

∞
∑

k=−∞

h[k] ∗ f [n − k]

Fig. 2  a SWaT raw data including non-attack and attack (tampering water level – LIT301) along with b 
visual representation of data
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employed to map these high-level features to specific output classes or predic-
tions, enabling the network to make accurate classifications or predictions based 
on the learned representations.

However, when dealing with sequential data such as the SWaT dataset, CNNs 
alone may not effectively capture temporal dependencies. Recurrent Neural Net-
works (RNNs) are better suited for modeling sequences due to their ability to 
retain information over time. Specifically, Gated Recurrent Units (GRU) and 
Long Short-Term Memory (LSTM) are commonly used RNN variants.

The SWaT dataset contains time-series data representing the state of an indus-
trial control system at different time points. To analyze this sequential data, vari-
ous neural network architectures can be employed. While a 1D Convolutional 
Neural Network (CNN) is commonly used to identify patterns and anomalies, 
it is worth noting that Recurrent Neural Networks (RNNs) are better suited for 
capturing temporal dependencies inherent in time-series data.

GRU and LSTM networks are two types of RNN variants specifically 
designed to address the vanishing gradient problem. While both models address 
this issue and capture long-term dependencies, there are key differences. GRU 
has a simpler architecture, combining the forget and input gates of LSTM into 
a single update gate and removing the output gate. This simplification reduces 
computational complexity and training difficulty. The equations governing the 
GRU update and reset gates are as follows:

where xt is the input at time step t and Ht is the hidden state at time step t. Ur , Wr , 
Uu , and Wu are the weight matrices specific to the reset and update gates and � is the 
sigmoid activation function.

rt is the reset gate that determines the extent to which the previous hid-
den state should be forgotten or reset. It influences the amount of information 
retained from the past by considering both the current input ( xt ) and the previ-
ous hidden state ( Ht−1).

Ut is an update gate that controls the flow of information from the previous 
hidden state ( Ht−1 ) to the current hidden state ( Ht ). It determines the degree to 
which the previous hidden state should be combined with the candidate activa-
tion (generated from the current input) to update the current hidden state.

Indeed, the equations for determining the reset gate ( rt ) and update gate ( ut ) 
in the GRU architecture have a similar structure. The weight matrices ( Wr , Wu , 
Ur , and Uu ) differentiate the equations.

By leveraging the strengths of both CNNs and RNNs, a hybrid model can 
effectively capture local patterns and long-term dependencies, leading to 
improved anomaly detection, reliability, and security in industrial control 
systems.

(2)
rt = �(xt ∗ Ur + Ht−1 ∗ Wt)

ut = �(xt ∗ Uu + Ht−1 ∗ Wu)
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2.3  Dimensionality reduction techniques

In machine learning, dimensionality reduction is a common technique used to 
reduce the number of features in a dataset. Feature reduction techniques can help 
to reduce the complexity of a dataset, remove noise, and improve the efficiency of 
machine learning algorithms. We have explored the most common dimensionality 
reduction techniques including Principal Component Analysis (PCA), General-
ized Eigenvalue Decomposition (GED), and Autoencoders.

2.3.1  Principal component analysis (PCA)

Principal Component Analysis (PCA) is a commonly used statistical technique for 
dimensionality reduction in data analysis and machine learning. The main goal of 
PCA is to identify patterns and structure in high-dimensional data by reducing 
the number of variables and retaining the most important information.

Once the principal components are identified, data can be projected onto a 
lower-dimensional subspace by selecting a subset of the principal components. 
This new subspace retains the most important information from the original high-
dimensional dataset while reducing the number of variables.

2.3.2  Generalized eigenvalue decomposition (GED)

Generalized Eigenvalue Decomposition (GED) is a dimension reduction tech-
nique that is used to reduce the dimensionality of high-dimensional data while 
preserving the information contained in the original data. GED finds a linear 
transformation of the original data that maximizes the ratio of between-class vari-
ance to within-class variance.

2.3.3  Autoencoders

An autoencoder is a neural network that can be used for dimensionality reduction 
by compressing high-dimensional data into a lower-dimensional latent represen-
tation as shown in Fig. 3. The autoencoder consists of an encoder that maps the 
input data to the latent layer, a bottleneck layer that represents the compressed 
data, and a decoder that reconstructs the original data from the latent representa-
tion. By training the network to minimize the difference between the input and 
reconstructed output, the network learns to identify the most important features in 
the data and discard the less important ones.

The size of the latent space is an important consideration when designing an 
autoencoder, as it determines how much information will be retained after com-
pression. If the latent space is too small, the autoencoder may lose important 
information and result in the poor reconstruction of the input data. On the other 
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hand, if the latent space is too large, the autoencoder may overfit and memorize 
the training data, resulting in poor generalization to new data.

3  Proposed method and experiment

3.1  Proposed method

In this research, a novel approach has been employed to enhance the performance 
of the One-dimensional Convolutional Neural Network (1D CNN) combined 
with GRU. The proposed approach aims to enhance performance by utilizing the 
strengths of both 1D CNN and GRU as presented in Fig. 4. This integration allows 
for the learning of spatial and temporal features of input data, facilitating the captur-
ing of complex patterns in time-series data.

In the proposed 1D CNN model, we introduced three convolutional layers with 
different kernel lengths (2, 3, and 5) operating in parallel, as depicted in Fig.  4a. 
This design allows us to extract diverse features from the data, as each kernel size 
has the potential to capture distinct patterns. By limiting the features to a length of 5, 
we specifically chose kernel sizes that are smaller or equal to 5 to ensure the extrac-
tion of local features while considering the reduced feature space. The resulting fea-
ture maps obtained from each convolutional layer are concatenated to form a unified 

Fig. 3  Architecture of the autoencoder used in this experiment
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layer. This merging of feature maps serves the purpose of combining the learned 
features from various levels of abstraction into a cohesive representation. Therefore, 
the model can leverage both local and global features, enhancing its ability to extract 
meaningful patterns and representations from the input data.

The concatenated layer is then fed into a max pooling layer, which reduces the 
spatial dimensions of the tensor by taking the maximum value within a specified 
window. This helps to extract the most salient features from the input sequence 
while reducing the computational cost of the network.

Batch normalization is then applied to normalize the output of the previous 
layer, which helps to speed up training and improve the generalization of the model. 
Finally, the ReLU activation function is applied elementwise to the output of the 
batch normalization layer, which introduces nonlinearity to the model and helps to 
extract more complex features.

As shown in Fig.  4b, after the two blocks of the CNN, the output is fed into 
GRU layers, which can capture longer-term dependencies in the input sequence. To 
tackle the vanishing gradients problem, the output of the GRU layer is then passed 
through a dense layer, facilitating more effective gradient propagation throughout 
the network.

3.2  Parameter selection and experimental setup

In order to achieve optimal performance of the proposed method, it is impor-
tant to carefully tune its hyperparameters. Hyperparameters are settings that are 

Fig. 4  a Architecture 1D CNN block used in the experiment along with b the whole architecture includ-
ing GRU layers
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not learned during training but are set before training and can have a significant 
impact on the performance of the model.

The number of epochs is an important hyperparameter that determines the 
number of times the entire dataset is used to train the model. In this research, 
we conducted an epoch analysis to determine the optimal number of epochs for 
training the 1D CNN-GRU model on the SWaT dataset. We trained the model for 
different numbers of epochs ranging from 1 to 100 and evaluated its performance.

Figure 5 illustrates the trends of validation loss and accuracy as a function of 
the number of epochs. The optimal epoch number is located at epoch number 10, 
where the minimum validation loss and maximum validation accuracy intersect.

Other hyperparameters such as batch size, learning rate, and optimizer can 
significantly impact the performance of a deep-learning model. Therefore, it is 
important to optimize these hyperparameters to achieve the best possible perfor-
mance. In this study, we selected a batch size of 32, a learning rate of 0.001, 
and the Adam optimizer based on their effectiveness in previous studies and our 
experimentation on the SWaT dataset.

4  Results and discussion

The proposed method is compared with the state-of-the-art techniques on the 
SWaT dataset to demonstrate its effectiveness. Additionally, the results of our 
dimensionality reduction analysis using PCA, GED, and autoencoders are pre-
sented to show the impact of feature reduction on the performance of the intru-
sion detection system.

Fig. 5  Determining the optimal number of epochs for model training using validation loss and accuracy
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4.1  Evaluation method

The proper testing of an Intrusion Detection System (IDS) is a crucial step in evalu-
ating its effectiveness. To ensure the accuracy and reliability of the proposed IDS 
model, we conducted a comprehensive analysis of its performance.

Our proposed model employs a binary classifier to differentiate between authentic 
messages and potential attacks. As a result, there are four possible outcomes: false 
negative (FN), false positive (FP), true negative (TN), and true positive (TP). A true 
positive occurs when an attack is correctly identified by the system, while a true 
negative occurs when an authentic message is correctly accepted as such. In con-
trast, a false positive occurs when an authentic message is labeled as an attack, and a 
false negative occurs when an attack is labeled as an authentic message.

To assess the performance of our proposed IDS model, we calculated the values 
for FN, FP, TN, and TP. These values provide important insights into the system’s 
accuracy and effectiveness in detecting potential attacks. Additionally, we calculated 
several key metrics such as accuracy, precision, and recall values.

The accuracy, Eq. (3), metric evaluates the percentage of correct predictions made 
by the model, whereas the precision metric assesses the percentage of true positives 
among all positive predictions. Recall metric evaluates the percentage of true posi-
tives detected by the system among all actual attacks. By considering all of these 
metrics, we can assess the overall performance of the IDS model and determine its 
efficiency in detecting potential attacks.

Precision, Eq. (4), is a performance metric used in evaluating the effectiveness of an 
Intrusion Detection System (IDS). Specifically, precision evaluates the percentage 
of true positive predictions made by the system out of all positive predictions. It pro-
vides an important measure of the system’s ability to accurately identify potential 
attacks while minimizing the number of false positives.

Recall (also known as sensitivity or detection rate), Eq. (5), is a performance met-
ric used in evaluating the effectiveness of an IDS. Specifically, recall measures the 
percentage of true positive predictions made by the system out of all actual positive 
cases.

The F1 score, Eq.  (6), is defined as the harmonic mean of recall and precision, 
where a higher score indicates better performance. By taking the harmonic mean, 

(3)Accuracy = (TP + TN)∕(TP + TN + FP + FN)

(4)Precision = TP∕(TP + FN)

(5)Sensitivity(Recall) = TP∕(TP + FN)
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the F1 score places more emphasis on the lower of the two metrics, meaning that a 
model with high precision but low recall (or vice versa) will have a lower F1 score 
than a model with both high recall and high precision.

4.2  Comparison with the state‑of‑the‑art techniques

As many researchers use this dataset, it serves as a common benchmark for evaluat-
ing and comparing the performance of different methods. The proposed method is 
compared with other state-of-the-art methods.

Table  1 presents the performance metrics for the proposed method along with 
other state-of-the-art proposals. There is a trade-off between Precision and Recall. 
These two metrics measure different aspects of a classifier’s performance, and opti-
mizing one metric often comes at the expense of the other.

Table 1 depicts that some models achieved high precision scores but lower recall 
scores (e.g., CNN–FIR), while others achieved higher recall scores but lower preci-
sion scores (e.g., EPCA-HG-CNN). The proposed CNN-GRU model achieved the 
best overall performance, achieving an impressive accuracy score of 0.9968, F1 
score of 0.9869, precision of 0.9855, and recall of 0.9882.

4.3  Dimensionality reduction

Dimensionality reduction is a commonly used technique in machine learning for 
reducing the number of features in a dataset. It helps in reducing the complexity of 
the dataset, removes noise, and improves efficiency. In this research, we explored 
the effectiveness of three commonly used dimensionality reduction techniques: 

(6)F1 = (2 ∗ (Precision ∗ Recall))∕(Precision + Recall)

Table 1  Comparison of methods 
that use the SWaT dataset

Best results are bold

Reference Accuracy F1 Precision Recall

CNN-GRU-SDA [14] – 0.91 0.99 0.85
CNN-FIR [17] 97.846 0.902 0.988 0.830
1D CNN [13] 97.195 0.871 0.968 0.791
NN-PCA [25] 97.408 0.885 0.911 0.860
Monitoring System [11] – 0.925 1 0.861
STAE-AD [26] – 0.880 0.960 0.815
NN-one class [12] – 0.870 0.940 0.820
EPCA-HG-CNN [21] 98.02 0.9805 0.9771 0.9839
Digital-twin [19] – 90.59 0.923 0.961
DIF [22] 97.375 0.882 0.935 0.835
1D CNN-GRU (This Paper) 0.9968 0.9869 0.9855 0.9882
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Generalized Eigenvalue Decomposition (GED), Autoencoders, and Principal Com-
ponent Analysis (PCA) for improving the performance of the proposed IDS.

4.3.1  Generalized eigenvalue decomposition

The magnitude of the eigenvalues obtained through GED can provide important 
information about the quality of the dimensionality reduction. Figure 6 presents the 
Magnitudes of eigenvalues for eigenvectors.

Table  2 presents experimental results for GED. The accuracy increases from 
0.9692 for 5 eigenvectors to 0.9950 for 25 eigenvectors. Similarly, the F1 score con-
sistently increases from 0.8681 to 0.9793. The precision of the IDS also increases as 
the number of eigenvectors increases, with the highest precision of 0.9843 achieved 
with 20 eigenvectors. The recall of the IDS is highest for 25 eigenvectors with a 
value of 0.9781, indicating that the IDS with 25 eigenvectors is better at detecting 

Fig. 6  Magnitudes of eigenvalues for eigenvectors

Table 2  Performance analysis of generalized eigenvalue decomposition

# of eigen-
vectors

Accuracy F1 Precision Recall TP TN FP FN

5 0.9692 0.8681 0.8993 0.8391 9122 78092 1021 1749
10 0.9927 0.9700 0.9687 0.9713 10559 78772 341 312
15 0.9947 0.9781 0.9834 0.9727 10575 78935 178 296
20 0.9949 0.9789 0.9843 0.9735 10583 78945 168 288
25 0.9950 0.9793 0.9805 0.9781 10633 78901 212 238
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true positive cases. The true positive (TP) values increase with the number of eigen-
vectors, while the false negative (FN) values decrease, indicating that the IDS is 
more capable of detecting true positive cases with a higher number of eigenvectors. 
However, the false positive (FP) values slightly increase as the number of eigenvec-
tors increases, which suggests that increasing the number of eigenvectors may result 
in a higher rate of false alarms.

4.3.2  Autoencoder

Choosing the appropriate number of latent layers can be a challenging task, and it 
often requires experimentation and tuning to find the optimal number for a given 
problem. Typically, the number of latent layers is determined by balancing the trade-
off between model complexity and performance on the validation set.

Table 3 presents the performance analysis of an autoencoder with different num-
bers of latent layers (n). The accuracy of the model increases with the number of 
latent layers, reaching its highest value of 0.9965 with 25 latent layers. Similarly, 
the F1 score, precision, and recall increase with the number of latent layers, with the 
highest values being 0.9855, 0.9823, and 0.9881, respectively, for 25 latent layers.

4.3.3  Principal component analysis

PCA aims to retain the most important information from the original high-dimen-
sional dataset while reducing the number of variables. The number of principal 
components that should be retained depends on the amount of variance they explain. 
Figure 7 shows the variance of each principal component and accumulated one. It 
is observed that the first principal component explains the most variance, followed 
by the second and third principal components. As more principal components are 
added, the amount of explained variance gradually decreases. In this specific case, 
it seems that retaining the first 5 principal components can capture a significant 
amount of the variation in the data, as they explain over 99.5% of the variance.

Table  4 depicts the performance analysis of the proposed method using PCA 
for different numbers of components. The result shows that the performance of the 
intrusion detection model does not degrade significantly even when the number of 
principal components is reduced by 90.2%. Specifically, when the number of princi-
pal components is reduced to 5, the model achieves an accuracy of 0.9909 and an F1 

Table 3  Performance analysis of autoencoder

# of latent 
layer (n)

Accuracy F1 Precision Recall TP TN FP FN

5 0.9849 0.9479 0.9868 0.8864 9637 78984 129 1234
10 0.9932 0.9714 0.9918 0.9518 10347 79028 85 524
15 0.9926 0.9685 0.9926 0.9455 10279 79036 77 592
20 0.9921 0.9665 0.9887 0.9452 10275 78996 117 596
25 0.9965 0.9855 0.9823 0.9881 10742 78925 188 129
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score of 0.9613. When the number of principal components is increased to 20, the 
model achieves an accuracy of 0.9969 and an F1 score of 0.9873.

The analysis reveals an interesting trend regarding the trade-off between true 
positive and false negative values. As the number of components increases, the 
true positive values consistently increase while the false negative values decrease. 
This finding suggests that the proposed method becomes more capable of correctly 
detecting positive cases as the number of components increases. In contrast, the 
false positive values remain relatively low across all component numbers, indicat-
ing that the proposed method can maintain a low rate of false alarms even with an 
increased number of components.

4.4  Discussion and limitations

Our findings, summarized in Table 5, suggest that carefully balancing dimensional-
ity reduction with the need for accurate intrusion detection is critical for achiev-
ing optimal performance. It is found that PCA was the most effective dimension 

Fig. 7  Variance of PCA components

Table 4  Performance analysis of PCA

# of com-
ponent

Accuracy F1 Precision Recall TP TN FP FN

5 0.9909 0.9613 0.9892 0.9351 10165 79002 111 706
10 0.9967 0.9863 0.9857 0.9869 10729 78957 156 142
15 0.9967 0.9862 0.9839 0.9886 10747 78937 176 124
20 0.9969 0.9873 0.9832 0.9915 10778 78929 184 93
25 0.9961 0.9839 0.9781 0.9898 10760 78873 240 111
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reduction technique among the three methods evaluated, as it resulted in the best 
balance between the number of dimension and accuracy. PCA can slightly improve 
the accuracy and F1 score of CNN-GRU architecture with 20 components. On 
the other hand, reducing the input features by 90.2% using PCA resulted in only 
a 2.6% decrease in the F1 score of the intrusion detection system. When the num-
ber of components is decreased, the pure CNN-GRU model outperforms all experi-
mented dimensionality reduction methods. This suggests that there may be trade-
offs between reducing dimensionality and maintaining accuracy and that each 
situation may require a different approach depending on the specific goals and con-
straints of the system being used. Overall, the findings suggest that careful consid-
eration and testing of different dimensionality reduction techniques is necessary for 
optimization.

4.4.1  Timing analysis

In addition to the critical balance between dimensionality reduction and accurate 
intrusion detection discussed in the previous sections, it is essential to consider the 
aspect of time when evaluating the performance of dimensionality reduction tech-
niques. It is important to note that latency is dependent on hardware capabilities. In 
this research, the performance evaluation was conducted on the Google Colabora-
tory ("Google Colab," n.d.) cloud service, utilizing the following system configura-
tion at runtime: an Intel(R) Xeon(R) CPU @ 2.2 GHz, Nvidia Tesla T4 GPU, and 12 
GB of RAM.

The time cost of the proposed CNN+GRU model with the full 51-feature set and 
the reduced 5-feature set is summarized in Table 6. The results indicate that reduc-
ing the feature set leads to enhanced efficiency, resulting in reduced processing time 

Table 5  Comparison of the dimensionality reduction techniques with 1D CNN-GRU 

Method Accuracy F1 Precision Recall TP TN FP FN

1D CNN-GRU 0.9968 0.9869 0.9855 0.9882 10743 78955 158 128
Autoencoder 0.9965 0.9855 0.9823 0.9881 10742 78925 188 129
GED 0.9950 0.9793 0.9805 0.9781 10633 78901 212 238
PCA 0.9969 0.9873 0.9832 0.9915 10778 78929 184 93

Table 6  Time analysis of proposed CNN+GRU model

Hardware Model Train (sec/batch) Test (sec/batch)

CPU
(Intel(R) Xeon(R) 

CPU @ 
2.20GHz)

CNN+GRU - with reduction (5 features) 0.004241 0.001734
CNN+GRU - without reduction (51 features) 0.012813 0.003462

GPU
(Tesla T4)

CNN+GRU - with reduction (5 features) 0.008120 0.002221
CNN+GRU - without reduction (51 features) 0.008548 0.002481



1077

1 3

Comparative analysis of dimensionality reduction techniques…

per batch for both the CPU and GPU. This improvement in computational efficiency 
highlights the advantages of employing dimensionality reduction methods.

However, it is worth noting that alongside the reduction in processing time, the 
accuracy may decrease. This trade-off between speed and accuracy should be care-
fully evaluated and considered when selecting a dimensionality reduction technique 
for the intrusion detection system. While faster processing times can be advanta-
geous for real-time applications, the impact on accuracy should not be overlooked, 
as maintaining high detection performance is paramount in intrusion detection 
systems.

Furthermore, it is important to consider the time required for transforming 
data from a high-dimensional feature space to a low-dimensional feature space. In 
Table  7, the reduction times for different dimensionality reduction techniques on 
both CPU and GPU are presented. The result indicates that GED is the most effi-
cient technique in terms of reduction time compared to PCA and Autoencoder. PCA 
has considerably lower reduction times compared to the Autoencoder method, which 
requires significantly higher epochs for training.

4.4.2  Limitations

Although promising results were achieved by the proposed method in securing the 
SWaT dataset, there are several limitations that should be acknowledged. Firstly, 
the research focused on detecting known attack types within the specific context of 
the SWaT dataset. The system’s effectiveness in detecting new and emerging attack 
types remains unknown. As cyber threats constantly evolve, it is crucial to regularly 
update and enhance the IDS to address new attack vectors and techniques that may 
arise in the future.

Furthermore, the transferability of the proposed IDS to other industrial control 
systems or real-world deployments should be considered. Evaluating the perfor-
mance of the IDS on different datasets or real-world scenarios is necessary to assess 
its generalizability and applicability in diverse environments.

Lastly, the time to detect attacks is a critical aspect that was not addressed in the 
study. While achieving high accuracy is important, the effectiveness of an IDS also 
relies on its ability to detect attacks in a timely manner. Further investigations should 
explore the system’s response time and consider optimizing the detection process to 

Table 7  Time analysis of feature 
reduction methods

Hardware Reduction method Reduction time (sec)

CPU
(Intel(R) Xeon(R) 

CPU @ 2.20GHz)

PCA 4.34250
GED 0.41328
Autoencoder 2206.18420

GPU
(Tesla T4)

PCA 4.76829
GED 0.43418
Autoencoder 4369.23116
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minimize the time gap between attack occurrence and detection, thereby reducing 
potential damages or consequences.

5  Conclusion

This research explored the application of a 1D CNN and GRU model on the SWaT 
dataset with the aim of improving its performance by leveraging the strengths of 
both models. The findings clearly demonstrate that the fusion of the 1D CNN and 
GRU models leads to substantial enhancements in accuracy compared to using each 
model individually.

Furthermore, the study emphasizes the crucial role of dimensionality reduction 
in optimizing the model’s performance. It highlights the significance of selecting 
relevant features, as this process can have a profound impact on the effectiveness of 
the intrusion detection system. Through an analysis of various dimensionality reduc-
tion techniques such as PCA, GED, and autoencoders, the research demonstrates 
that reducing the number of features while preserving critical information can lead 
to enhanced performance.

While the results obtained from this study are promising, there are still opportu-
nities for further improvements in the current system. Future work should focus on 
investigating the feasibility of implementing the proposed method in real-time sce-
narios, enabling continuous monitoring and early detection of potential cyberattacks 
on critical infrastructure systems.

Furthermore, it is recommended to extend the scope of research beyond the 
SWaT dataset. Evaluating the effectiveness of the proposed method on other data-
sets related to critical infrastructure, such as power grids or transportation systems, 
would provide valuable insights into the generalizability and applicability of the 
approach in diverse contexts.
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