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Abstract
Fungal infections concomitant with biofilms can demonstrate an elevated capacity to withstand substantially higher con-
centrations of antifungal agents, contrasted with infectious diseases caused by planktonic cells. This inherent resilience 
intrinsic to biofilm-associated infections engenders a formidable impediment to effective therapeutic interventions. The 
different mechanisms that are associated with the intrinsic resistance of Candida species encompass drug sequestration by 
the matrix, drug efflux pumps, stress response cell density, and the presence of persister cells. These persisters, a subset of 
fungi capable of surviving hostile conditions, pose a remarkable challenge in clinical settings in virtue of their resistance to 
conventional antifungal therapies. Hence, an exigent imperative has arisen for the development of novel antifungal therapeu-
tics with specific targeting capabilities focused on these pathogenic persisters. On a global scale, fungal persistence and their 
resistance within biofilms generate an urgent clinical need for investigating recently introduced therapeutic strategies. This 
review delves into the unique characteristics of Mesenchymal stem/stromal cells (MSCs) and their secreted exosomes, which 
notably exhibit immunomodulatory and regenerative properties. By comprehensively assessing the current literature and 
ongoing research in this field, this review sheds light on the plausible mechanisms by which MSCs and their exosomes can 
be harnessed to selectively target fungal persisters. Additionally, prospective approaches in the use of cell-based therapeutic 
modalities are examined, emphasizing the importance of further research to overcome the enigmatic fungal persistence.
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Introduction

The prevalence of fungal infections induced by pathogenic 
fungi has experienced a significant increase globally, result-
ing in a considerable number of annual deaths (Bongomin 
et  al. 2017; Rokas 2022). Overcoming these infections 
has become progressively more challenging due to the 
high occurrence of immunogenic diseases, malnutrition, 
and aging (Garcia-Cuesta et al. 2014). In recent times, the 
increasing number of immunocompromised individuals, 
coupled with the extensive utilization of medical devices 
and immunosuppressive drugs, has contributed to a surge 

in cases of invasive fungal infections (Rokas 2022). The 
economic impact of fungal diseases is a matter of concern, 
with the United States expending approximately $11.5 bil-
lion in 2019 to address serious fungal diseases, encompass-
ing direct medical costs and productivity losses attributed to 
premature deaths (Benedict et al. 2022). Among the various 
fungal pathogens, Candida albicans stands out as the most 
prevalent agent responsible for causing persistent infections 
(Hawser et al. 1998). Nevertheless, there has been a con-
cerning uptrend in the occurrence of infections instigated 
by alternative Candida species, including Candida auris, 
Candida parapsilosis, Candida glabrata, Candida tropica-
lis, and notably Candida krusei in case of invasive persister 
infections (Hawser and Douglas 1994; Chandra and Mukher-
jee 2015). In an effort to address the urgency of combating 
fungal contagion, the World Health Organization (WHO) 
introduced a catalogue of prioritized fungal pathogens on 
25 October, 2022 (Parums 2022). This catalogue, termed 
“the critical priority group” by the WHO, includes Candida 
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albicans, Candida glabrata, Aspergillus fumigatus, Candida 
auris and Cryptococcus neoformans. Notably, scholarly 
outputs concerning Candida species, particularly Candida 
auris, have shown a progressive increase, as evident from 
PubMed searches conducted between 2018 and 2023.

Treatment options available for managing invasive fun-
gal infections are restricted in scope. Despite developments 
in antifungal pharmaceutical agents, mortality percentages 
pertaining to disseminated candidiasis remain elevated, par-
ticularly among immunocompromised patients (Rex et al. 
1994; Scriven et al. 2017). Natural herbal compounds and 
bioactive agents exhibit intrinsic antimicrobial attributes. 
Garlic extract, as an example of a natural product, can be 
specifically employed for the administration of infections 
arising from multidrug-resistant biofilm-forming strains. 
These natural antimicrobial treatments, like garlic extract, 
have been developed with the intent of countering drug-
resistant polymicrobial biofilm infections associated with C. 
albicans (Ashrit et al. 2022). Even though fungicidal com-
pounds have demonstrated the ability to eliminate fungal 
cultures in vitro, their effectiveness in clinical settings is not 
always satisfactory (Muzny and Schwebke 2015). Treatment 
failure can be attributed to various factors, encompassing 
the presence of resistant isolates that can survive high drug 
concentrations and continue to grow, as well as the adapta-
bility of fungal cells producing biofilms to develop tolerance 
to antifungal drugs (Delarze and Sanglard 2015; Brauner 
et al. 2016). Fungal biofilm refers a dynamic microbial com-
munity capable of thriving and reproducing as a colony, 
which primarily comprise of polysaccharides, consisting of 
50%–90% of the organic component (Sharma et al. 2023). 
These biofilms attach to surfaces and medical devices, sig-
nificantly contribute to heightened resistance against anti-
fungal agents and host immune responses, ultimately cul-
minating in treatment ineffectiveness (Mathé and Van Dijck 
2013). Extensive research has been dedicated to the study 
of bacterial persister cells, yet the investigation into fungal 
persister cells and the potential therapeutic avenues remains 
limited (Balaban et al. 2004; Fisher et al. 2017; Rosenberg 
et al. 2018). Recently, there has been an escalating incli-
nation toward exploring the remedial prospect of MSCs 
for fungal infections, particularly in cases where conven-
tional antifungal drugs have proven ineffective. MSCs have 
been investigated for their outstanding anti-inflammatory 
and immunomodulatory properties which present promis-
ing prospects in addressing the challenges posed by fungal 
infections (Schmidt et al. 2017). However, the precise under-
lying mechanisms responsible for these properties remain 
incompletely elucidated. Further investigations are impera-
tive to devise targeted strategies and therapies for handling 
these fungal infections, most particularly in individuals with 
compromised immune systems. This review aims to provide 
insights into the probable therapeutic attributes of MSCs and 

their exosomes for combating fungal persistence infections 
by targeting various mechanisms of antifungal resistance.

The prominence of fungal persisters 
and their resistance mechanisms 
across various disease scenarios

Persister cells represent a minor subset within microbial 
populations, characterized by their capacity to endure lethal 
concentrations of antimicrobial agents, a phenomenon often 
leading to a biphasic pattern of cell killing (Lewis 2010). 
Compared to planktonic form, biofilm formation proceeds 
through a series of morphological changes in fungal per-
sister cells, an increase in cell numbers, and the synthesis 
of extracellular polymeric substances (EPS), all of which 
collectively influence the ultimate architecture of the mature 
biofilm (Cavalheiro and Teixeira 2018). Fungal persisters 
constitute a distinct subgroup within biofilms that display 
resistance to high concentrations of antifungal agents (Lam-
fon et al. 2004; Vandenbosch et al. 2010). Contrary to bacte-
rial pathogens, which can be targeted with a diverse array 
of antibiotic drug classes, the therapeutic interventions for 
invasive fungal infections revolve around four categories of 
antifungal medications: azoles comprising voriconazole, 
posaconazole and fluconazole; polyenes including nys-
tatin and amphotericin B (AMB); echinocandins such as 
micafungin, anidulafungin and caspofungin; and pyrimidine 
analoques (Jabra-Rizk et al. 2004; Arendrup 2010; Chen 
et al. 2011; Gutiérrez-Correa et al. 2012; Houšť et al. 2020). 
Each of these classes exerts its therapeutic action by target-
ing distinct components within the fungal cell. The polyene 
class acts through interaction with ergosterol, a predominant 
component found in the fungal cellular membrane. Remark-
ably, AMB demonstrates high fungicidal activity against 
Candida species (Kumar et al. 2018). Echinocandins oper-
ate by impeding the synthesis of β-d-glucans situated in the 
fungal cell wall. Notably, echinocandins are fungicidal for 
Candida spp. and fungistatic for Aspergillus spp. (Patil and 
Majumdar 2017). Subsequently, azoles disrupt the ergosterol 
biosynthesis and manifest a fungistatic effect against yeasts 
(Geißel et al. 2018). Lastly, the pyrimidine analogue flucy-
tosine (5-FC) interferes at the nuclear level of the fungal 
cell, impacting both protein and DNA biosynthesis (Houšť 
et al. 2020). Candida species pose a particular challenge in 
treatment due to their proficiency in constructing biofilm 
structures, thereby demanding notably elevated dosages of 
antifungal agents compared to their planktonic counterparts 
(Barantsevich and Barantsevich 2022). Nevertheless, the 
prevailing effectiveness of extant antifungal pharmaceutical 
agents is hindered by several distinct challenges and underly-
ing mechanisms. These impediments encompass, inter alia, a 
scarcity of comprehensive research studies, the development 
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of resistance to antifungal drugs, constraints related to fun-
gal diagnostic methods, the inadequacies in molecular diag-
nostic methodologies, and a prevailing dearth of awareness 
in the field of mycology (AlMaghrabi et al. 2023).

The resistance phenomenon of Candida biofilm was 
first stated in 1995 for C. albicans by Hawser and Doug-
las (Hawser and Douglas 1994), and since then, numerous 
researchers have investigated the capability of Candida bio-
films to withstand high antifungal concentrations (Silva et al. 
2012; Fernandes et al. 2016; Rodrigues et al. 2016). The 
biofilms formed by C. albicans display a natural propen-
sity for intrinsic resistance against a majority of established 
antifungal agents (Lewis 2008). This inherent resistance can 
be attributed to a triad of pivotal factors, which encompass 
drug sequestration by the extracellular matrix (ECM), per-
sister cells characterized by multidrug tolerance, and the 
up-regulation of drug efflux pumps (Fig. 1) (Mathé and Van 
Dijck 2013; Fisher et al. 2022).

Research conducted in the early twenty-first century has 
revealed that biofilm formation contains a complex inter-
play between physiological processes and natural forces. The 
life cycle of fungal biofilms encompasses five main phases: 
(1) initial attachment, which involves both reversible and 
irreversible adhesion of individual fungal cells; (2) fungal 
aggregation; (3) microcolony formation; (4) maturation; and 
(5) dispersion and detachment. These stages collectively 
contribute to the intricate architectural configuration of bio-
films, thereby influencing their antibiotic resistance (Fig. 2) 
(Talapko et al. 2021). The fungal biofilm’s matrix, consisting 
of proteins, carbohydrates, lipids and DNA plays a critical 
role in mediating antifungal drug resistance by facilitating 
drug penetration and promoting biofilm formation (Bail-
lie and Douglas 2000). In the case of C. albicans biofilms, 

the matrix is notably enriched with glucans and mannans, 
reinforcing resistance to antifungal drugs compared to the 
dormant state (Mitchell et al. 2015). This mechanism involv-
ing matrix glucans and mannans appears to be conserved 
among biofilms generated by other Candida species, inclu-
sive of C. auris, C. tropicalis, C. glabrata and C. parapsilo-
sis (Dominguez et al. 2018). Furthermore, the presence of 
biofilms in C. albicans has been correlated with the elevated 
expression of drug-efflux pump genes, specifically MDR1 
and CDR1, substantiating the underlying antifungal drug 
resistance (Prasad et al. 1995). Another specific mechanism 
of drug resistance in biofilms involves the presence of per-
sister cells, which represent a subset of tolerant cells capa-
ble of surviving exposure to high doses of antifungal drugs, 
primarily comprising wild-type variants (Bonhomme and 
d’Enfert 2013). The establishment of surface attachments 
within the biofilm structure has been linked to the occur-
rence of persister cells in fungal biofilms (Lee et al. 2021). 
Fungal persisters possess the ability to withstand high con-
centrations of antifungal agents that stimulate the accumula-
tion of reactive oxygen species (ROS) (Li et al. 2015a, b). 
The resilience of persister cells to antifungals is attributed 
to several factors. First, persister cells exhibit heightened 
expression of superoxide dismutases (SODs), which confer 
protection against ROS production induced by agents like 
miconazole (Bink et al. 2011). Second, a minor heat-shock 
protein, Hsp21, is upregulated in persister cells and plays a 
pivotal role in ROS generation (Li et al. 2015a, b). Third, 
the interaction between the expression of alkyl hydroperox-
ide reductase 1 (AHP1) and persister cells is notably posi-
tive, especially when imposed upon increased AMB levels 
(Truong et al. 2016). Fungal persisters are regulated by vari-
ous factors, including nutrient sensing, glucose starvation, 

Fig. 1  The figure illustrates the 
Candida species commonly 
encountered in biofilms, along 
with their respective resistance 
mechanisms, associated dis-
eases and conditions. The figure 
emphasizes the formidable chal-
lenge posed by the significant 
resistance of biofilm-related 
fungal persisters to conven-
tional antifungal drugs, thereby 
hindering the development of 
highly efficacious therapies



 Archives of Microbiology (2024) 206:11

1 3

11 Page 4 of 12

and increased oxidative stress responses, all of which col-
lectively empower their survival even when confronted with 
elevated concentrations of antifungal agents, resulting in 
the accrual of ROS production (Lopes and Lionakis 2022; 
Brown 2023).

Effectively addressing the challenge of biofilm-associated 
fungal infections holds significant importance in combat-
ing severe diseases, such as periodontal disorders, mucosal 
infections, cystic fibrosis, bronchopulmonary diseases, pneu-
monia, gastrointestinal diseases and urinary tract infections 
(Fig. 1) (Silva et al. 2017). Additionally, the considerable 
antifungal resistance exhibited by fungal persisters poses a 
formidable obstacle to the development of successful thera-
peutic methods. Despite progress in comprehending the 
mechanisms and management of fungal infections, exploring 
alternative treatment approaches specifically targeting fungal 

persisters remains an urgent priority (McCarthy and Walsh 
2017). Recently, emerging evidence have suggested that 
MSCs and their secreted exosomes could serve as promising 
therapeutic options for tackling fungal persister infections.

Harnessing MSCs for immune responses 
against fungal persisters

Pathogenic biofilm formation is accountable for a majority of 
microbial infectious diseases, including superficial mucosal 
infections and severe systemic infections with high mortal-
ity rates. For instance, vaginal yeast infections affect around 
75% of women at least once during their lifetimes while 
certain cases of infections exhibit mortality rates as high as 
47% (Nobile and Johnson 2015; Gulati and Nobile 2016). 

Fig. 2  The figure depicts the sequential phases inherent to the forma-
tion of C. albicans biofilms. Commencing this developmental process 
is the initial attachment of fungus to a substrate surface, a phenom-
enon significantly influenced by the chemical composition and prop-
erties of the encountering material. This adherence event entails a 
molecularly coordinated binding mechanism that is closely associated 
with the aggregation of fungal cells. In the early stages of biofilm 
development, microcolonies emerge as a distinctive feature of this 
process. Subsequently, the biofilm advances with the production of 
an ECM, which plays a fundamental role in the structural integrity of 
the biofilm. As the biofilm matures, a critical phase unfolds involving 
the excretion of signaling factors by the fungal cells that have firmly 
adhered to the substrate. This secretion culminates in the activation 
and expression of genes specific to biofilm development. The struc-

tural configuration of the biofilm itself serves as a triggering factor 
for the accumulation of the ECM. In the concluding stage, fungal 
cells disperse from the mature biofilm to colonize new sites, initiating 
the formation of fresh biofilm communities. This multi-phased pro-
cess underscores the intricate and dynamic nature of C. albicans bio-
film development, with molecular interactions and material properties 
governing the various stages. * The micrographs above show a Scan-
ning Electron Microscope view of C. albicans in vitro biofilm cells. 
This figure is reproduced from PLoS Pathog. 2012; 8(4): e1002585. 
This article is open access and distributed under the terms of the Cre-
ative Commons Attribution License, allowing unrestricted utilization, 
distribution, and reproduction in any format, with attribution to the 
original author and source (Fanning and Mitchell 2012)
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The formation of drug-resistant biofilms by Candida species 
significantly contributes to their involvement in human dis-
eases, as highlighted by Taff et al. (Taff et al. 2013). Despite 
the presence of novel antifungal medications, effectively 
addressing invasive fungal infections continues to pose a 
considerable challenge, largely attributed to the existence of 
fungal persister cells. MSC-based therapy has so far shown 
an attractive avenue for the remedy of diverse tissue and 
immune diseases. While numerous successful applications 
of MSCs have been reported in managing infectious dis-
eases and their associated complications, there is a scarcity 
of literature concerning their specific host response against 
fungal infections (Keshtkar et al. 2022). Therefore, detailing 
the MSCs and their immune response to biofilm-associated 
fungal diseases and elucidating the associated mechanisms 
could pave the way for combating fungal persisters.

MSCs exhibit a versatile capacity for immunomodulatory 
attributes that induce both innate and acquired immunity. 
This immunomodulation is achieved through the secretion of 
bioactive molecules, including interferons (IFN) and inter-
leukins (IL) (Zhang et al. 2020). A wealth of experimental 
and clinical studies has provided compelling evidence sup-
porting the immunosuppressive capacities of MSCs, thereby 
positioning them as magnificent candidates for the thera-
peutic management of various inflammatory and autoim-
mune disorders. These capacities include inhibiting immune 
cell proliferation and function, with specific targeting den-
dritic cells, T and B lymphocytes, as well as natural killer 
(NK) cells (Uccelli et al. 2008). Moreover, MSCs release 
a diverse array of cytokines and chemokines that further 
contribute to their immunomodulatory functions. Notewor-
thy examples of these secreted factors comprise prostaglan-
din E2 (PGE2), interleukin 10 (IL-10), nitric oxide (NO), 
transforming growth factor β (TGF-β), tumour necrosis 
factor-inducible gene 6 (TSG-6), indoleamine 2,3-dioxyge-
nase (IDO), and Chemokine (C–C motif) ligand 2 (CCL2) 
(Nauta and Fibbe 2007; Shi et al. 2010; Choi et al. 2011). 
MSCs play a pivotal role in the immune response during 
fungal infections and injuries by interacting with pathogen-
associated molecular patterns (PAMPs) at the injury site 
or during inflammatory processes where endogenous dan-
ger signals are released (DelaRosa and Lombardo 2010). 
Notably, various membrane-bound immune receptors can 
recognize beta-glucans, the predominant polysaccharide 
structure in human fungal pathogens (Camilli et al. 2018). 
C-type lectin receptors (CLRs) are particularly significant 
in recognizing fungal components, with Dectin-1 being a 
well-studies CLR. Activation of Dectin-1 can induce phago-
cytosis in macrophages and dendritic cells upon stimulation 
with C. albicans or zymosan (Herre et al. 2004). Further-
more, research by Gantner et al. has demonstrated how the 
recognition of zymosan by phagocytes triggers a response 
mediated by Toll-like receptor (TLR) and Dectin-1 (Gantner 

et al. 2003). In this context, the overexpression of Dectin-1 
in macrophages enhances the production of IL-12, mediated 
by nuclear factor kappa B (NF-κB) and TLR-2. Therefore, 
besides its primary role as a phagocytic receptor, Dectin-1 
also interacts with other PAMPs, such as TLR-2, to modulate 
the antimicrobial response of immune cells. Understanding 
how MSCs engage in the immune response against fungal 
infections and the relevant signaling pathways are critical 
for the development of MSC-based therapies in this context.

Some research has provided persuasive insights into the 
role of TLRs in modulating the immunosuppressive prop-
erties of MSCs. Investigations undertaken by Liotta et al. 
(2008) and Opitz et al. (2009) have reported that the inter-
ference of TLRs with MSCs gives rise to divergent effects, 
either augmenting or diminishing their immunosuppressive 
functions (Liotta et al. 2008; Opitz et al. 2009). Conversely, 
other investigations have defined a distinct subset of MSCs 
exhibiting immune-stimulatory effects, with TLRs being 
attributed to the range of their various biological functions 
(Yang et al. 2013). Among of the family of TLR, TLR4 has 
been extensively studied owing to its synergistic interaction 
with IL-17, facilitating the synthesis of pro-inflammatory 
mediators (Waterman et al. 2010). Recent research findings 
have indicated that MSCs possess the capability to directly 
influence the immune characteristics of neutrophils and 
macrophages through the excretion of proinflammatory 
cytokines such as IL-8 and IL-6 (Chow et al. 2020). Simul-
taneously, these MSCs exhibit a concomitant dampening 
effect on the expression of immunomodulatory cytokines 
and chemokines, including IL-4, IDO and PGE2 (Waterman 
et al. 2010). Marx’s research revealed that the secretome of 
equine MSCs exhibits the capacity to impede both the initial 
and mature biofilm formation formed by various bacterial 
strains, including Pseudomonas aeruginosa, Staphylococcus 
aureus, and Staphylococcus epidermidis (Marx et al. 2020). 
Given the noteworthy anti-biofilm properties exhibited by 
MSCs, they were subsequently explored in conjunction with 
chitosan nanoparticles as a promising therapeutic strategy 
targeting multidrug-resistant (MDR) pathogens (Saberpour 
et al. 2020). The formation of biofilms constitutes an effec-
tive mechanism employed by microorganisms, such as S. 
aureus, to confer resistance to antibiotics. Furthermore, the 
author’s findings documented an inhibition of S. aureus 
growth by MSCs (Yagi et al. 2020). Additionally, IL-17 
exerts a noteworthy influence on the immune system’s defen-
sive modalities, effectively combating both extracellular and 
intracellular pathogenic fungi, such as Candida albicans, 
Aspergillus fumigatus and Cryptococcus neoformans (Mat-
suzaki and Umemura 2007; Zelante et al. 2007; Yang et al. 
2013; Schinocca et al. 2021). On the contrary, TLR3 has 
gained the recognition for its role in triggering immuno-
suppressive effects, functioning as a constituent of MSCs 
responsible for immunomodulation (Waterman et al. 2010; 
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Pierce and Kurata 2021). Some research has also revealed 
the presence of a specific IL-17+ MSCs subset that can 
restrain the growth of C. albicans. Yang et al. closely exam-
ined how IL-17, excreted by these specific MSCs, enables 
the activation of the NF-κB pathway. This, in turn, results in 
the downregulation of the TGF-β production within MSCs, 
thereby counteracting the elimination of MSC-based immu-
nomodulation. Thus, this study highlights the presence of 
an IL-17+ subset within MSCs, which not only impedes the 
proliferation of C. albicans but also attenuates MSC-related 
immunosuppression through NF-κB-mediated downregula-
tion of TGF-β (Yang et al. 2013).

Antimicrobial peptides (AMPs) constitute a crucial com-
ponent of the first immunity and allow them diminish the 
virulence factors of pathogens by encouraging the immune 
response (de Oca 2013). The Antimicrobial peptide database 
has classified 153 human peptides as host defence peptides, 
with some of them identified in MSCs (Wang et al. 2016). 
Human AMPs expressed by MSCs display antimicrobial 
activity against various microorganisms such as bacteria, 
viruses and fungi. Among human AMPs, five have been 
identified as antifungal peptides effective against Candida 
species, namely CGA-N46 Peptide, Psoriasin Peptide, 
Human β-Defensins, Histatins, LL-37 Peptide (Perez-Rod-
riguez et al. 2022). For instance, CGA-N46, predominantly 
expressed in neurons, demonstrates antifungal activity 
against pathogenic Candida species, including C. albicans, 
C. parapsilosis, C. krusei, C. glabrata and C. tropicalis by 
impairing yeast cell mitochondria and by disrupting DNA 
synthesis (Li et al. 2015a, b). In a murine model with com-
promised immune responses and subjected to C. krusei 
infection, the administration of CGA-N46 demonstrated 
immunomodulatory effects, ameliorating organ damage 
attributable to the C. krusei infection (Li et al. 2017). Pso-
riasin, initially identified in a patient with psoriasis, plays 
a significant role in reducing susceptibility to skin infec-
tions and decreases the adhesive capacity of C. albicans 
by binding to the β-glucan component on the cell wall of 
pathogenic fungi (Harder and Schröder 2005; Brauner et al. 
2018). Furthermore, psoriasin has potential for targeting 
biofilms by causing cell disaggregation and rendering them 
more susceptible to antifungal agents (Brauner et al. 2018). 
Human β-Defensins, essential for safeguarding the intestinal 
mucosa, contribute significantly to the defence mechanism 
within the lower genital tract of women during C. albicans 
infections (Kotani et al. 2020; Fusco et al. 2021). Histatins 
are integral episodes of the congenital immune response and 
are also responsible for antimicrobial defence within the oral 
cavity (Khurshid et al. 2017). Numerous in vitro experiments 
extensively document the antifungal activity of histatins 
against Candida species. In particular, histatins have exhib-
ited promising antifungal properties and proteolytic stabil-
ity, making them potential candidates for treatment options 

(Konopka et al. 2010; Ikonomova et al. 2020; Moghaddam-
Taaheri et al. 2021). Human cathelicidin LL-37, extensively 
studied among human AMPs, plays a pivotal role in various 
defence responses, including inhibiting microbial adhesion, 
promoting leukocyte chemotaxis, and counterbalancing 
endotoxins (Nijnik and Hancock 2009; Chen et al. 2021). 
While most investigations have predominantly focused 
on LL-37’s ability to combat bacterial infections, it also 
exhibits antifungal activity against the establishment of 
biofilms by Candida strains obtained from vaginal infec-
tions (Scarsini et al. 2015; Rather et al. 2022). Additionally, 
human LL-37, along with its constituent fragments, namely 
LL13-37 and LL17-37, has demonstrated comparable effi-
cacy in inhibiting the proliferation of C. albicans. However, 
the mechanism of cell death within C. albicans cells might 
not be exclusively attributed to the heightened membrane 
permeability induced by LL13-37; it may involve specific 
intracellular targets as well (Wong et al. 2011).

Collectively, these AMPs offer promising avenues for 
therapeutic interventions against Candida infections, high-
lighting the potential of AMP-based strategies for combat-
ing fungal infections. Moreover, subsets of MSCs express-
ing immune-stimulatory agents, such as TLR4 and IL-17+, 
which might be associated with AMPs, could serve as prom-
ising candidates for the host’s antifungal response against 
persistent fungal infections. If substantiated by further 
investigations, these findings could pave the way for a novel 
therapeutic approach to combat fungal persisters.

Therapeutic approaches of MSCs and their 
exosomes against fungal persisters

The emergence of fungal persisters and the alarming mortal-
ity rates associated with fungal infections have encouraged 
extensive research endeavors to identify novel therapeutic 
strategies. MSCs have found extensive application in manag-
ing inflammatory and autoimmune disorders (Zhou and Xu 
2020). There is increasing interest in utilizing exosomes and 
secretomes derived from MSCs as an alternating approach to 
stem cell therapy for combating a diverse array of illnesses. 
Exosomes present an enticing avenue for cell-free therapy, 
given their inherent lack of tumor formation risk and their 
replication. Furthermore, exosomes can undergo steriliza-
tion through filtration procedures and exhibit a prolonged 
shelf-life when compared to intact cells. Their smaller size 
enables efficient systemic circulation, thereby enhancing tar-
geted delivery to injury sites. Additionally, the extended and 
repetitive administration of exosomes does not induce del-
eterious toxic effects (Mendt et al. 2018). Due to advantages 
of exosomes, exosome-based therapies might be considered 
as superior to stem cell therapy.
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Numerous preclinical and clinical studies, including 
those focused on Graft-versus-host disorder, have demon-
strated that exosomes derived from MSCs possess regenera-
tive capabilities comparable to MSCs themselves (Korde-
las et al. 2014; Li et al. 2021; Norooznezhad et al. 2022). 
Subsequently, the field has witnessed rapid advancements, 
with extracellular vesicles (EVs), including exosomes and 
secretomes, being investigated in a multitude of clinical tri-
als for diverse medical indications. Based on information 
sourced from the United States National Institutes of Health 
(NIH) through clinicaltrials.gov, a noteworthy upswing has 
been observed in the quantity of clinical investigations ori-
ented toward EVs within the preceding year. As of August 
2023, a total of 1362 trials focused on MSC therapy have 
been formally recorded in the ClinicalTrials.gov database 
(http:// clini caltr ials. gov). These trials are distributed as fol-
lows: secretome trials amount to 18, exosomes trials to 35, 
and EVs trials to 23 (with the data retrieved on 13/08/2023). 
In Fig. 3A, a comprehensive global overview of trials involv-
ing MSC therapy is presented, incorporating trials focused 
on secretome (18 trials), exosomes (35 trials) and EVs (23 
trials). Within the spectrum of clinical trials registered for 

the MSC-secretome, one was categorized as early Phase I, 
ten as Phase I, ten as Phase II, and one study as Phase III. 
In the context of MSC-exosomes, three trials were listed as 
early Phase I, 18 as Phase I, 21 as Phase II and 4 as Phase 
III trials. Regarding MSC-EVs, two trials were recorded as 
early Phase I, fourteen as Phase I, ten studies as Phase II, and 
one study as Phase III clinical trials (Fig. 3B).

A mounting body of scholarly investigations has high-
lighted the therapeutic prospects associated with exosomes 
derived from MSCs for regenerative and immune therapies. 
These exosomes, originating from maternal cells, offer a 
cell-free therapeutic approach by delivering bioactive mol-
ecules, such as proteins and microRNAs (Ma et al. 2020). 
In the scientific domain, MSC-derived exosomes, denoted 
as MSC-Exo, are garnering attention by virtue of their pro-
nounced anti-inflammatory and immunomodulatory proper-
ties. Numerous studies have amassed data supporting the 
anti-inflammatory properties of MS-Exo in diverse patho-
logical conditions, such as chronic kidney diseases (Nassar 
et al. 2016), atopic dermatitis (Cho et al. 2018; McBride 
et al. 2018), neurodegenerative disorders (Katsuda et al. 
2013; de Godoy et al. 2018), liver fibrosis (Mardpour et al. 

Fig. 3  A comprehensive depic-
tion of the registered clinical 
trials focused on MSC therapy, 
categorized according to their 
respective investigation phases 
and study statuses. A) A Pie 
chart delineating the distri-
bution of these trials across 
different phases of investigation. 
B) Column charts detailing the 
status of the clinical trials under 
scrutiny. All data for this visual 
representation were acquired on 
August 13, 2023

http://clinicaltrials.gov


 Archives of Microbiology (2024) 206:11

1 3

11 Page 8 of 12

2019), among others (Li et al. 2019; Zhao et al. 2020). A 
substantial corpus of empirical data suggests that MSC-Exo 
possess the ability to mimic the advantageous impacts attrib-
uted to their progenitor MSCs, as demonstrated in animal 
models simulating a spectrum of human disorders. These 
encompass instances of multiple sclerosis (Laso-García et al. 
2018), rheumatoid arthritis (Cosenza et al. 2018), insulin-
dependent diabetes mellitus (Jiang et al. 2016; Sun et al. 
2018), and uveitis (Bai et al. 2017). Although numerous pre-
clinical investigations have explored exosomes, the quan-
tity of clinical studies investigating MSC-derived exosomes 
remains limited (Baharlooi et al. 2020; Gowen et al. 2020), 
with ongoing studies yet to be published. Within the realm 
of diverse infectious conditions, the pathogenic mechanisms 
underlying fungal disorders are notably complex, and reports 
on the antifungal activity of MSCs and their exosomes are 
scarce. Notably, MSC-based secretomes have been tested in 
only one clinical trial for fungal infection treatment (clini-
cal trials number: NCT05777213), while three clinical tri-
als based on MSC-based therapy have been conducted for 
fungal infections (clinical trials numbers: NCT05934825, 
NCT04493918 and NCT05777213) (Table 1) (https:// clini 
caltr ials. gov/, data retrieved on 13/08/2023). Furthermore, 
emerging evidence from preclinical models of fungal dis-
eases has demonstrated the potential benefits of MSC-based 
cell therapies. One noteworthy study examined the systemic 
delivery of exosomes acquired from human bone marrow-
derived MSCs (BM-MSCs) within an immunocompetent 
murine model replicating the context of severe intractable 
neutrophilic asthma prompted by the presence of Aspergil-
lus hyphal extract. The study revealed that these exosomes 
mitigated allergic airway inflammation and improved the 
diseases through Th17 inhibition (Cruz et al. 2015). The 
principal objective of the ongoing inquiry exhibited the 
xenogeneic delivery of conditioned medium or EVs derived 
from human BM-MSCs and asserted a conceptual frame-
work depicting Th2/Th17-mediated allergic airway inflam-
mation for refractory asthma. The manifestation of this 
ailment was provoked by recurrent mucosal contingence 
to Aspergillus hyphal extract (AHE) using a murine model 
of the C57Bl/6 strain, characterized by normal immune 
competence. A recent investigation showed the antifun-
gal potential of human cervical stem cells extracted from 
the uterine region, demonstrating efficacy in combatting 

diverse Candida pathogens including C. albicans, C. kru-
sei, C. parapsilosis and C. glabrata (Schneider et al. 2018). 
The application of MSCs and their exosomes to treat fungal 
persisters is confronted with some anticipated limitations 
for clinical implementation. Fungal diseases, compared to 
other microbial infections, exhibit greater complexity in 
their pathogenesis. Fungal pathogens initially subvert the 
host immune system by employing vesicles generated by 
monocytes to transport TGF-β (Halder et al. 2020). Further-
more, the challenges lies in the insufficient production of 
exosomes on a large scale, along with the absence of rapid 
and highly accurate methods for quantifying exosomes and 
determining their precise content (Gowen et al. 2020). Fur-
ther investigations are required to determine the appropriate 
dosage of MSC-exosomes for clinical trials in order to avert 
potential adverse effects. Consequently, the exploration of 
MSC-based therapy for fungal persisters might be consid-
ered as a potential approach for research, even though the 
mentioned obstacles need to be addressed for its successful 
clinical application.

Overall, a substantial body of literature has explored 
the rehabilitative action of MSCs and their exosomes in 
combating fungal persisters. However, the specific impact 
of MSCs and MSC-derived exosomes on fungal diseases 
remains in its early stages, warranting further comprehen-
sive investigations. Given the limited body of research on 
fungal persister cells and the paucity of the published clini-
cal studies in this area, fungal infections characterized by 
both biofilm formation and antibiotic resistance have been 
designated as persistent fungal infections. Consequently, the 
potential application of MSCs for the therapy of such infec-
tions is likely to represent a promising therapeutic avenue. 
Further comprehensive explorations could provide valuable 
insights into the potential therapeutic applications of MSCs 
and exosomes, positioning them as innovative and promising 
therapeutic modalities for enhancing the immune response 
against fungal persistence.

Conclusions and outlook

MSCs and EVs, particularly MSC-Exo, exhibit remarkable 
anti-inflammatory, immunomodulatory, regenerative, and 
antimicrobial characteristics, rendering them efficient in 

Table 1  Clinical trials utilizing 
MSCs-based therapy for fungal 
infections

ClinicalTrials.
gov Identifier

Targeted disease Treatment Study status Study type Phase

NCT05934825 Hidradenitis Suppurative MSCs Recruiting Interventional Phase I-II
NCT04493918 Mycobacterium Tubercu-

losis Infection
MSCs Unknown Interventional Phase II

NCT05777213 Trophic Ulcers MSC-Secretome Completed Interventional Phase I

https://clinicaltrials.gov/
https://clinicaltrials.gov/
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combating various microbial infections. The specific focus 
on MSCs-derived exosomes arises from their advantageous 
characteristics, such as high stability, small size, absence of 
tumorigenicity, ease of storage, and low immunogenicity. 
Incorporating MSC-derived exosomes into clinical appli-
cations offers a promising solution to address the limited 
availability of stem cells for treating microbial infectious 
diseases, thereby transitioning medical practice from con-
ventional cellular therapy to a novel acellular therapeutic 
approach. In the context of antimicrobial activity, MSCs-
derived exosomes are postulated to predominantly contribute 
through immune cell reprogramming and the initiation of 
congenital and adaptive immune responses. Additionally, 
MSCs and their exosomes exhibit antimicrobial effects 
via the secretion of antifungal peptides. MSCs and their 
exosomes hold potential for countering fungal infections, 
presenting them as a promising defense mechanism against 
fungal invasion. Moreover, a comprehensive understanding 
of the functional roles of MSCs and their secreted exosomes 
could maximize their therapeutic potential in fungal infec-
tions, especially in cases involving drug-resistant strains. 
Considering the therapeutic potential of MSCs and MSC-
Exo, and the need for further research, they are likely to 
have the capability to activate the host immune system and 
combat the immunosuppressive mechanisms of fungal per-
sisters, potentially positioning them as promising agents in 
the battle against fungal infections.
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