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Abstract Shear strength parameters such as cohesion (c) and internal friction angle (ϕ) are 

among the most critical rock properties used in the geotechnical design of most engineering 

projects. However, the determination of these properties is laboring and requires special 

equipment. Therefore, this study introduces several predictive models based on regression and 

artificial intelligence methods to estimate the c of different rock types. For this purpose, a 

comprehensive literature survey is carried out to collect quantitative data on the shear strength 

properties of different rock types. Then, regression and soft computing analyses are performed 

to establish several predictive models based on the collected data. As a result of these analyses, 

five different predictive models (M1–M5) were established. Based on the performance of the 

established predictive models, the artificial neural network-based predictive model (model 5, 

M5) was the most suitable choice for evaluating the c for different rock types. In addition, 

mathematical expressions behind the M5 model are also presented in this study to allow users 

to implement it more efficiently. In this regard, the present study can be declared a case study 

showing the applicability of regression and soft computing analyses to evaluate the c of 

different rock types. However, the number of datasets used in this study should be increased to 

get more comprehensive predictive models in future studies. 

 

Keywords: cohesion, intact rock material, regression, soft computing 

 

1. Introduction 

 

Adopting rock strength criteria is the fundamental basis for designing and evaluating the stability of 

engineering structures in rock mechanics [1,2]. In general, the physical and mechanical properties of 

rocks are principal input parameters in rock mass stability models. These physical and mechanical 

properties depend on rock type and origin, regional tectonism, porosity, water content, grain size, and 

binder properties [3] 

Rocks become damaged under the domination of high-stress and progressive rock weathering 

conditions [4]. Intact rock strength, in this context, is one of the fundamental properties in 

geomechanics and geoengineering [5,6]. For example, the shear strength properties (cohesion (c) and 

internal friction angle (ϕ)) of rocks are among the most critical phenomena that are widely used in 

mining, civil, and engineering geological projects [7−9]. However, referring to the c and ϕ of rocks 

may have two meanings or be evaluated differently. In other words, the c and ϕ can be assessed for 

intact rocks and rock discontinuities [10]. 

The c and ϕ are determined using the shear box testing apparatus for rock discontinuities. On the 

other hand, they are determined mainly for intact rock materials using Hoek cells. It should be noted 

that the shear strength properties of rock discontinuities are of prime importance in rock slope stability 

analyses [11,12]. In addition, the c and ϕ of intact rocks are mainly considered in underground 

excavation analyses or numerical modeling of rock masses [13,14]. Based on the Hoek‒Brown failure 

criterion [15], the c of intact rock materials can be determined using Eq. 1. 
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where a and s are 0.5 and 1 for intact rock materials (GSI = 100), respectively. For general purposes, 

σ3n equals to 
7.5

UCS
 [15,16]. The Hoek-Brown mi parameter can be estimated from Eq. 2 [16]. 

 

0.81 7i

UCS
m

TS
= +                (2) 

where UCS is the uniaxial compressive strength, and TS is the direct tensile strength of rocks. 

 

However, determining shear strength parameters for intact rock materials is labouring and requires 

special equipment such as confining pressure units, Hoek cells, and stiff loading machines. Therefore, 

several theories or relationships have been postulated to estimate these properties. These theories are 

mainly divided into two different groups. The graphic solutions to calculate c of intact rocks are listed 

in Table 1. 

 

Table 1. Table 1. Graphical solution methods to estimate the c of intact rocks. 

 

Graphical solution Reference 

 

 

Wuerker [17] 

 Mohr [18] 

Labus and 

Zang [19] 

 

 

Sulukcu and 

Ulusay [20] 

Gercek [21] 
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In the context of the graphical solutions, the one based on the Mohr-Coulomb failure criterion requires 

triaxial compressive tests. However, the others (e.g., Wuerker’s method and Gercek’s method) depend 

upon uniaxial compressive strength (UCS), direct tensile strength (TS), and Brazilian tensile strength 

(BTS) tests. Apart from the graphical solutions, several empirical relationships to estimate the c of 

intact rocks are also given in Table 2. 

The approaches summarized in Tables 1 and 2 provide a solid basis for quantifying the c of intact 

rocks. It is worth noting that both graphical solutions, except for the one based on the Mohr-Coulomb 

failure criterion and empirical relationships, depend upon the physicomechanical properties of rocks. 

However, most empirical relationships with higher prediction accuracy to estimate the c of intact rocks 

are valid for small-scale datasets. Therefore, they may also have limitations when dealing with broader 

datasets with different rock lithologies. 

As Mehranpour and Kulatilake [22] pointed out, choosing the best method to estimate rock strength 

properties can reduce the risk and cost of rock engineering projects. From this point of view, there is a 

need to establish more comprehensive approaches to evaluate the c of rocks. In this manner, soft 

computing methods would be declared feasible tools to develop more comprehensive relationships to 

evaluate the c of rocks. 

 

Table 2. Some empirical formulae to estimate the c of intact rocks. 

 
Empirical formula Rock type n R2 Reference 

=1.207c BPI  

Andesite, 

Mudstone, 

Diabase, 

Granodiorite, 

Sandstone, Tuff, 

Marble 

200 N.R [20] 

=0.83c BPI  

Limestone, 

Travertine, 

Andesinte, 

Sandstone, Marl, 

Schist. 

11 0.86 [23] 

−= 0.85957.868 ec n  Shale 13 0.85 [24] 

=
+

54.94

7.82 p

BTS
c

V BTS
** 

Tuff, Travertine, 

Andesite, 

Conglomerate, 

Shale, Marl, 

Sandstone, 

Siltstone, claystone 

13 

0.85 

[25] 
= +0.16 0.37c UCS BTS  0.82 

−= 0.75 0.535.12c BTS Vp ** 0.88 

−= 1.4007512.42648 ac w  
Basalt 

7 0.98 
[26] 

−= 0.9103655.97656 ac w  8 0.93 

= +3.427 0.17c UCS  Basalt, Metabasalt, 

Dacite, Limestone, 
37 

0.90 
[27] 

= +7.255 0.85c BTS  0.85 

= +0.0038 3.357pc V * 

Limestone 63 

0.80 

[28] = 0.6960.699c UCS  0.79 

= 0.6303.494c BTS  0.72 

−= 0.803.00 ec n  

Andesite, Dacite, 

Basalt, 

Trachyandesite 

12 0.51 [29] 

= +3.66 0.1862c UCS  Various rock types 123 0.68 

The 

present 

study 

Explanations: Vp: P-wave velocity (*m/s, **km/s), UCS: Uniaxial compressive 

strength (MPa), BTS: Brazilian tensile strength (MPa), BPI: Block punch index (MPa), 

ne: Effective porosity (%), wa: Water absorption by weight (%), n: Number of datasets, 

N.R.: Not reported. 
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For example, Khandelwal et al. [28] proposed a robust model to estimate the c of limestones based 

upon artificial neural networks (ANN). However, the implementation of soft computing tools to 

establish such predictive models used to estimate the c of rocks is quite limited. Focusing on this 

problematic issue, in this study, comprehensive predictive models are introduced to estimate the c of 

different rock types based on regression and soft computing analyses. 

 

 

2. Data documentation 

 

A comprehensive literature survey was carried out to establish several predictive models to estimate 

the c of intact rocks. Accordingly, the datasets considered in this study are summarized in Table 3. 

Unfortunately, a significant number of previous studies could not have been considered due to a lack 

of information about the physicomechanical properties of rocks, which are to be used as input 

parameters. 

 

Table 3. Datasets considered for regression and soft computing analyses in this study. 

 
Rock type ρd (g/cm3) BTS (MPa) UCS (MPa) c (MPa) ϕ (º) n Reference 

Limestone, 

Andesite, 

Travertine, 

Marl, Schist 

N.R N.R 4.1 – 64.5 0.78 – 10.9 N.R 11 [23] 

Travertine, 

Tuff, 

Andesite, 

Shale, 

Mudstone, 

Sandstone, 

Limestone 

N.R 0.7 – 6.3 16.1 – 47.9 3.2 – 9.5 32– 50.4 13 [25] 

Basalt, 

Metabasalt, 

Dacite, 

Limestone, 

Volcanic 

breccia 

N.R 4.4 – 34.4 34 – 197 8 – 36 37 – 56 37 [27] 

Sandstone, 

Siltstone, 

claystone, 

conglomerate, 

shale 

2.56 – 2.79 2.4 – 12.9 29 – 146 10.09 – 36.51 26 – 51 54 [30] 

Sandstone, 

siltstone 
N.R 6.5 – 11 38.5 – 156.5 11.2 – 24.5 35.8 – 56.1 8 [31] 

Granite, 

Granodiorite, 

Tonalite, 

N.R 11 – 16 152 – 231 27.6 – 32.3 47 – 60 3 [32] 

Marble, 

Schist, 

dolomite, 

Quartzite, 

Phyllite 

2.73 – 2.87 6.4 – 23.2 78 – 190 27 – 60 26 – 41 8 [33] 

Explanations: ρd: Dry density, BTS: Brazilian tensile strength, UCS: Uniaxial compressive strength, c: cohesion of intact 

rock, ϕ: Internal friction angle of intact rock, n: Number of samples, N.R: Not reported. 

 

Before performing the regression and soft computing analyses, simple correlations between the 

considered rock properties (i.e., dry density (ρd), UCS, and BTS) and c were revealed through 

Pearson’s correlation coefficient (r) and Spearman’s rho values (Table 4). Accordingly, the ρd, BTS, 

and UCS are associated with the c. Of these parameters, UCS is the most influential parameter for 

evaluating c. 
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Table 4. Correlation matrix of the variables considered in this study. 

 

Parameter ρd BTS UCS 

r 0.504 0.556 0.824 

Spearman’s rho 0.438 0.584 0.885 

n 62 123 134 

 

3. Data analysis methods 

 

3.1. Regression analyses 

 

Linear and nonlinear regression analyses were performed in this section. Based on these analyses, it 

was determined that the single linear regression analyses as a function of ρd and BTS provide 

undulating results in estimating the c of rocks (Table 5). On the other hand, the linear regression model 

as a function of UCS could be used to estimate the c of rocks. The correlation of determination value 

(R2) for this model (Model 3, M3) is 0.68 for 134 datasets (Fig 1).  

 

Table 5. Simple regression analysis results. 

 

Model 

No 
Empirical formula Estimate Std. Error t value n R2 

M1 176.2 75.2 dc = − +  
−176.2 44.4 −3.97 

62 0.26 
75.2 16.6 4.52 

M2 12.58 0.866c BTS= +  
12.58 1.33 9.46 

123 0.31 
0.866 0.12 7.22 

M3 3.66 0.1862c UCS= +  
3.66 1.07 3.42 

134 0.68 
0.1862 0.011 16.93 

 

 
 

Fig 1. Scatter plot of Model 3 (M3). 

Fig 2 shows some predictive models to estimate the c of rocks as function of UCS. Accordingly, the 

M3 model provided higher cohesion values than the other models of Karaman et al. [27] and 

Khandelwal et al. [28]. However, the m3 Model seems limited when considering high-strength rock 

types (Fig 2). Therefore, soft computing tools were attempted to build more comprehensive models to 

estimate the c of rocks. 
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Fig 2. Comparison of some predictive models as a function of UCS. 

 

3.2. Adaptive-neuro fuzzy inference system (ANFIS) 

 

Considering many advantages, researchers have used ANFIS to build predictive models in many 

engineering geological problems [34−36]. The advantage of the ANFIS is that it practices a hybrid 

learning process to estimate the premise and consequent parameters [37]. In this context, the Sugeno 

fuzzy reasoning algorithm based on numerous membership functions is primarily adopted in most 

ANFIS models. 

From this approach, several ANFIS models were created in the MATLAB environment in this 

study. Some illustrations of the established ANFIS model (Model 4, M4) are given in Fig 3. 

Accordingly, the UCS and BTS of rocks were used in this model (Fig 3a). For each input parameter, 

three triangular membership functions were identified. 

 

 
 

Fig 3. Illustrations of the established ANFIS model in the MATLAB environment a) Input parameters 

b) Training process c) ANFIS structure d) Predicted and measured c values for the established ANFIS 

Model. 
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The training of the ANFIS model was based upon the Sugeno fuzzy reasoning algorithm, and root 

mean square error (RMSE) was adopted to minimize the relative errors in the training process (Fig 

3b). Based on the ANFIS structure, nine different if-then rules were described (Fig 3c). The predicted 

and measured c values for the M4 model are also plotted (Fig 3d). Accordingly, the R2 value for the 

M4 model was found to be 0.75 based on 123 datasets. 

 

3.3. Artificial neural networks (ANN) 

 

The artificial neural network (ANN) has been widely adopted to predict several dependent variables 

based on complex datasets. It is a well-accepted method in most engineering geological problems. The 

ability of ANN is that complex datasets can be modeled using such ANN methodologies [38]. In 

practical ANN applications, neural networks have been trained by a feedforward backpropagation 

algorithm [39] to establish empirical formulae based on the weights and biases extracted from neural 

network analyses. 

In this study, the neural network toolbox (nntool) was used to develop several neural networks in 

the MATLAB environment. For this purpose, the database (Table 3) was randomly divided into 

training (70/100) and testing/validating (30/100) parts. Various ANN network architectures, hidden 

layers, and neurons were attempted to determine the most suitable and practical structural 

combination. The ANN architecture adopted in this study is illustrated in Fig 4. The input parameters 

in the developed ANN model were the BTS and UCS of rocks. The number of hidden layers was nine, 

and the output was the c in this model. 

 

 
 

Fig 4. ANN architecture adopted in this study. 

 

Before performing the ANN analyses, the database was normalized between ‒1 and 1 using Eq 3. 

Then, the normalized database was loaded into the MATLAB environment to implement such ANN 

analyses. As a result, a robust predictive model was developed to estimate the c. The mathematical 

expressions of the developed model were revealed by adopting the deterministic approach previously 

described by Das [40]. 

 

 

min

max min

2 1i
N

x x
V

x x

 −
=  − 

− 
             (3) 

where xi is the relevant parameter to be normalized, xmin, and xmax are the minimum and maximum 

values in the database. 

 

Based on the ANN analysis results, the c of rocks can be estimated by model 5 (M5), which is given as 

Eq 4. The sub-equation systems for Eq 4 are also listed in Table 6. The ANN-based predictive model 

(M5) can be easily implemented by coding into any programming language, such as MATLAB. The 

predicted and measured c values are also plotted in Fig 5. Accordingly, the predicted c values are in 

good harmony with the measured ones. 
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9
2

1

28.4 tanh 0.015895 31.6,  0.86ti i

i

E x R
=

 
= + + = 

 
          (4) 

The R2 value of the M5 model is 0.86, showing its relative success. The number of datasets for this 

model is 123, notably more than the other models in Table 2, excluding the study of Sulukcu and 

Ulusay [20]. 

 

Table 6. Sub-equation systems of the proposed ANN model. 

( )1 7.50113tanh 1.30448 15.10103 8.69797n nx UCS BTS= − + −  

( )2 0.117562tanh 51.54395 23.7149 6.61701n nx UCS BTS= − −  

( )3 9.316223tanh 4.75824 14.26506 5.49345n nx UCS BTS= − + +  

( )4 20.39267 tanh 0.562242 3.16274 1.46243n nx UCS BTS= + −  

( )5 1.35tanh 5.421795 4.78142 0.15684= − −n nx UCS BTS  

( )6 13.89389tanh 0.042961 6.762281 1.32204n nx UCS BTS= + −  

( )7 11.82495tanh 4.179516 12.0153 4.54595n nx UCS BTS= − −  

( )8 26.27324tanh 0.51763 4.95209 1.220302n nx UCS BTS= − − +  

( )9 3.760835tanh 3.20586 6.076658 1.844983n nx UCS BTS= − + +  

Normalization functions 

0.0093 1.1498nUCS UCS= −  0.0593 1.0415nBTS BTS= −  

 

 
 

Fig 5. Predicted and measured c values of the proposed model. 
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4. Results and Discussion 

 

Several statistical indicators such as R2, RMSE, and variance accounted for (VAF) were adopted to 

evaluate the performance of the predictive models established in this study. These error metrics target 

different requirements depending on data sets; hence, they can be used together to evaluate the errors 

from different aspects. The mathematical expressions of these statistical performance indicators are 

given in Eqs. 5–7. 

 

( ) ( )

2

2

2 22 2

n xy x y
R

n x x n y y

 
− 

=
 
 − −
 

  

   
          (5) 

( )
2

1

n

i i

i

y x

RMSE
n

=

−

=


             (6) 

( )

( )

var
1 100

var

i i

i

y x
VAF

y

 −
= −   
 

            (7) 

where x is the dependent variable, y is the independent variable, and n is the number of datasets. 

 

Accordingly, the performance evaluations of the models are listed in Table 6. Theoretically, a 

predictive model having the R2 value of 1, RMSE of 0, and VAF of 100 is assumed to have the perfect 

prediction performance. In this regard, the model based on ANN was the most reliable tool for 

evaluating c for different rock types. The R2, RMSE, and VAF values of M5 were found to be 0.86, 

3.43, and 85.69, respectively (Table 7). 

 

Table 7. Performance evaluation of the established models. 

 

Method of 

analysis 

Model No R2 RMSE VAF n 

Regression 

M1 0.26 7.568 25.39 62 

M2 0.31 7.508 30.93 123 

M3 0.68 5.510 67.92 134 

ANFIS M4 0.75 4.539 74.75 123 

ANN M5 0.86 3.430 85.69 123 

 

 

On the other hand, it should be mentioned that the performance of the ANN model proposed by 

Khandelwal et al. [28] is better than the M5 model. The R2 value of Khandelwal’s model is 0.96. 

However, this model was based upon only limestones with 63 datasets. The M5 model is more 

comprehensive than Khandelwal’s model and can save time in estimating the c of intact rocks using 

the rock properties of UCS and BTS. This model can reliably estimate the c of intact rocks without 

performing triaxial compressive tests. 

This model can be used in practical evaluations when the c is desired in engineering designs. Since 

the UCS and BTS tests are occasionally performed in most engineering geological projects, they can 

simultaneously be used to estimate the c of rocks. However, the performance of the M5 model should 

be cross-checked by using other test results in future studies. In this way, this model can be improved 

by adding new test results to the database. 
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5. Conclusion 

 

The present study aims to establish several predictive models for evaluating the c of different rock 

types. For this purpose, a comprehensive literature survey was conducted to collect such datasets 

(Table 3) for regression and soft computing analyses. Based on these analysis results, several 

predictive models (M1-M5) were established based on the ρd, BTS, and UCS of rocks. Accordingly, 

the M5 model with an R2 of 0.86 was found to have the best prediction performance in estimating the 

c of different rock types (Fig 5). 

Furthermore, the mathematical expressions behind the M5 model were also introduced to let users 

implement this model more efficiently. However, the M5 model should be improved using additional 

laboratory test results in future studies. Last but not least, it should be remembered that mathematical 

analyses of laboratory test results and applications of soft computing models are required in mining 

and civil engineering projects. In this manner, advanced methodologies allow one to analyze a large 

number of datasets that can save time and provide practical information on the desired rock 

parameters. Therefore, the present study can be declared a case study on modeling the cohesion of 

intact rock materials as a function of UCS and BTS of rocks. 
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