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A B S T R A C T

COVID-19 was one of the deadliest and most infectious illnesses of this century. Research has been done to
decrease pandemic deaths and slow down its spread. COVID-19 detection investigations have utilised Chest
X-ray (CXR) images with deep learning techniques with its sensitivity in identifying pneumonic alterations.
However, CXR images are not publicly available due to users’ privacy concerns, resulting in a challenge to
train a highly accurate deep learning model from scratch. Therefore, we proposed CoviDetector, a new semi-
supervised approach based on transfer learning and clustering, which displays improved performance and
requires less training data. CXR images are given as input to this model, and individuals are categorised into
three classes: (1) COVID-19 positive; (2) Viral pneumonia; and (3) Normal. The performance of CoviDetector
has been evaluated on four different datasets, achieving over 99% accuracy on them. Additionally, we generate
heatmaps utilising Grad-CAM and overlay them on the CXR images to present the highlighted areas that were
deciding factors in detecting COVID-19. Finally, we developed an Android app to offer a user-friendly interface.
We release the code, datasets and results’ scripts of CoviDetector for reproducibility purposes; they are available
at: https://github.com/dasanik2001/CoviDetector
1. Introduction

The COVID-19 virus, the first case of which is thought to have
emerged in December 2019, has caused 6.9M deaths as of July 02,
2023 [1]. When infected people are coughing or sneezing, viral droplets
can stay in the air for three hours. Respiratory infection harms healthy
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people’s lungs and tissues [2]. COVID-19 variant instances have in-
creased rapidly in recent months [3]. However, some international
researchers think that this increase will decrease by 2024, and the
world may become normal [4]. At present, COVID-19 detection is being
performed using one of the below three tests:
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• Computed Tomography (CT) scans of chest that use three-
dimensional radiographs and are a key diagnostic tool. However,
not every health care institution has the facility of CT scan with
them.

• Ribonucleic Acid (RNA), which can be detected from nasopha-
ryngeal swabs using the Reverse Transcription Polymerase Chain
Reaction (RT-PCR) technique. However, this technology is hard
to get to, and is time consuming.

• Chest X-ray (CXR); the necessary equipment for a CXR is readily
available and is more transferable and quick compared to CT-scan
ones. CXR examinations are also fast as they require only roughly
15 s for each participant.

As COVID-19 continues to sweep the globe, researchers and data
cientists have begun employing deep learning methods for the auto-
ated identification of the virus in humans [5]. Artificial Intelligence

AI)-based computer-aided diagnostics has advanced rapidly in several
omains of medicine because of contemporary advances in the field
f AI [6]. Diseases like cancer can be diagnosed with greater accuracy
hanks to automatic image analysis performed via deep learning and
n more detail Convolutional Neural Networks (CNN) [2]. Therefore,
hese models show promise for enhancing the use of CXR images in the
iagnosis of COVID-19 [7].

AI systems have previously been utilised to correctly identify pneu-
onia from CXR [8]. Differentiating between viral and bacterial pneu-
onia has been performed via the use of deep learning. K-Nearest
eighbour (KNN), Support Vector Machine (SVM), and CNNs are only
few of the AI classification strategies used [9]. Among the machine

earning algorithms for classification tasks, KNN is considered one of
he easiest [10]. The KNN algorithm basically considers the similarity
istance between the new and already available data and classifies the
ew data accordingly [11]. SVM is another classification algorithm,
hat primarily creates the best possible boundary that can separate n-
imensional space into classes with the aim to classify the new data
nto one of the classes [12]. CNN is effective in image classification to
ecognise COVID-19 [13–15]. Multi-layer neural networks, like CNNs,
re the key to the system’s success in recognising visual trends. Various
re-trained CNN models, including AlexNet, VGG16, InceptionV3, and
enseNet are available, among which InceptionV3 demonstrates better
ccuracy and performance for the COVID-19 classification [16].

.1. Motivation

CXR-based identification of COVID-19 patients might be hampered
y a lack of effective and experienced medical experts, especially in
ural areas [17]. So, there is a requirement for a simple and inexpensive
eep learning-based technique to identify COVID-19 patients within a
hort span of time [18]. This model will be available to all patients,
ven though doctors may not be available [19].

CXR of COVID-19-affected lungs show less porosity or visibility
ecause the lungs are stuffed with smooth and dense mucus [20]. While
ultiple algorithms and diagnostic tools based on machine and deep

earning have shown promise, they still fall short of high performance
n terms of precision and error rate [21]. Therefore, healthcare profes-
ionals and the community as a whole would benefit from choosing a
roup of effective deep learning-based analysts.

In this paper, CoviDetector is a machine learning system that utilises
ransfer learning and a deep learning model (InceptionV3) for the early
dentification and diagnosis of COVID-19 by chest X-rays. Moreover,
his system is deployed as an Android Backend. The android application
ser interface (UI) is designed using the React Native framework, which
akes as input of an image and predicts and displays the results on the
creen.

CoviDetector aims to provide an Android application for the user,
hich will allow the user to predict COVID-19 automatically using CXR
mages. In order to have quick, accurate, economical, and hassle-free
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COVID-19 recognition, we compare the performance of various deep
learning models across various metrics, including accuracy, precision,
recall, F-score, and sensitivity, with the ultimate goal of applying the
most effective model on the back-end of an Android app.

1.2. Problem statement

Detection of COVID-19 can be done with a RT-PCR test, which can
only be conducted in a laboratory environment; tests are performed by
taking a swab from the nose. The time required for this test’s results
varies between 8 and 24 h. Therefore, alternative methods, such as
rapid antigen testing, have emerged. However rapid antigen tests are
not accepted by many medical practitioners because of their high false
positive and false negative rates. For this reason, a COVID-19 detection
method that takes as input CXR images is used; this method is both
fast and reliable. In this paper, we propose a smartphone application
that detects COVID-19 using deep learning (DL) and CXR images (as
an alternative to RT-PCR tests). Users can quickly learn if they have
COVID-19 by uploading CXR images to the Android app. We apply
several DL algorithms to CXR images to detect COVID-19. These models
are trained with unbiased and balanced data, so the prediction results
are unbiased and accurate. Experimental results have shown that the
models display high performance in detecting COVID-19.

1.3. Our contributions

The main contributions of this work are:

• an Android application compatible with smartphones that diag-
noses COVID-19 through CXR images. The diagnosis is performed
from CXRs via the proposed semi-supervised method that con-
sists of a Deep Neural Network (DNN) and K-means clustering;
the proposed methodology also utilises transfer learning. Finally,
GradCAM is used to highlight the areas in the CXRs that were the
deciding factors in the method’s decision in detecting COVID-19;

• the DNN model trained with InceptionV3 CNN blocks is the best
performing model for detecting COVID-19.

CoviDetector is an Android app in development with the intention
of providing medical professionals and consumers with an easy way
to check for Covid-19. The proposed App helps patients receive proper
classification results for the Chest X-rays uploaded by them. This would
primarily help the doctors take immediate action without waiting for
reports and start instant treatment. CoviDetector can accurately deter-
mine if a person is COVID-19 positive or negative by analysing only
an image of CXR. This information, as we have previously mentioned,
can be used by doctors to make instant decisions. This would also help
society, as the resources utilised are just an Internet connection with
no manpower or industrial interference.

The rest of the paper is organised as follows: Section 2 presents
related work. Section 3 introduces a proposed methodology, and Sec-
tion 4 presents the experimental setup and results. Finally, Section 5
concludes the paper and highlights future directions.

2. Related work

Over the past several months, a growing body of research has
evaluated the efficacy of deep-learning models for the identification of
COVID-19 in CXR images. This section includes short discussions of a
few of these works that are relevant to our own.

Accuracy of 98.93%, specificity of 98.66%, precision of 96.39%, and
F-1 score of 98.15% were achieved with the approach described by
Mittal et al. [22]. There were a total of 1215 images in their collection,
including 250 from COVID-19. COVIDiagnosis-Net was developed by
Ucar et al. [23], and the precision across all three classes was 98.26%.
The DNN model presented by Ahammed et al. [24] has achieved 94.03

percent accuracy using the CNN. The researchers have used data from
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Table 1
Comparative study of relate works for COVID-19 detection.

Works Dataset used Methodology Accuracy(%) Android app Transfer learning Training data
Size

Xinggang et al. [28] Custom Gathered
Dataset

UNet based 3D
DNN

90.10% ✗ ✓ 229 No-Findings
& 313 Covid-19

Yujin et al. [29] CoronaHack &
Other Datasets

ResNet18 based
FC-DenseNet

91.90% ✗ ✓ 134 No-Findings
& 126 Covid-19
& 94 Others

Ahmed et al. [30] IEEE CovidCXR
Dataset

CNN based
Approach

94.00% ✓ ✗ 1341
No-Findings &
1200 Covid-19

Ozturk et al. [26] CohenJP Dataset DarkNet-19
based CNN

98.08% ✗ ✗ 500 No-Findings
& 125 Covid-19
& 500
Pneumonic

Ucar et al. [23] CovidX Dataset Deep Bayes-
SqueezeNet
based Approach

98.26% ✗ ✗ 1229
No-Findings &
1229 Covid-19 &
1229 Others

Bushra et al. [31] CohenJP & other
datasets

Tensorflow Lite
based CNN

98.65% ✓ ✗ 592 No-Findings
& 592 Covid-19

Taresh et al. [32] COVID-19
Radiography
Database

VGG16 based
CNN

98.72% ✗ ✓ 1140
No-Findings &
820 Covid-19 &
1150 Pneumonic

Ahsan et al. [33] CohenJP &
CovidCXR
Datasets

Feature Fusion
based CNN

99.49% ✗ ✗ 2489
No-Findings &
1584 Covid-19

CoviDetector (This Paper) CovidCXR, NIH
CXR, DLAI3
datasets

InceptionV3
based CNN and
Clustering

99.69% ✓ ✓ 4253
No-Findings &
3160 Covid-19 &
6034 Others
three categories to train the algorithm. In this case, too, the dataset had
a rather low sample size, which is not optimal for trying to train a deep
learning-based system for COVID-19 diagnosis.

The ResNet101 CNN model was also employed by Azemin et al. [25].
The result of their work was a thousand images that were fed into
the pre-trained model. They were just 71.9% accurate at best. Ozturk
et al. [26] combined DarkCovidNet with a collection of 1125 photos,
125 of which were taken from COVID-19 examples, to develop a
framework. An overall accuracy of 98.08 percent was found in a 5-
fold cross-validation of binary tags. Utilising algorithms like ResNet50,
VGG16, VGG19, and DensNet121, Khan et al. [27] constructed a novel
framework for diagnosis of CXR images; VGG16 and VGG19 demon-
strated higher accuracies of approximately 99.3 percent in contrast to
others.

Yujin et al. [29] employed a patch-based CNN technique for a much
lesser amount of trainable parameters for COVID-19 diagnosis, which
they attributed to their use of a segmented network-based approach.
When taking into account the increased sensitivity of their line of work,
the 91.9% correctness they attained is rather impressive. In a related
paper, Fan et al. [34] developed Inf-Net with a parallel partial decoder
to combine characteristics at a higher level. Their method was 97.4
percent accurate while also being 87.1 percent sensitive. To forecast
COVID-19 CT scans, Xinggang et al. [28] also presented a 3D deep
neural network. The precision of their work was 90.1%. One CT volume
from a single patient was processed by the algorithm in just 1.93 s,
making it one of the quickest models ever created.

A further investigation aimed to identify COVID-19 using a transfer
learning strategy and three pertained models was conducted by Loey
et al. [35]. Correctness for all three categories on AlexNet was 85.20
percent using a dataset of over 300 X-ray pictures that included around
70 photos of COVID-19. In order to enhance the ResNet-101 and
ResNet-151’s weights during training, fusion effects were used, and
Wang et al. [36] were able to increase the model’s accuracy to 96.1%.
Mahmud et al. [37] also obtained a success rate of 97.4 percent for
binary classes using a CNN model they devised called CovXNet. A
deep learning method was described by Minaee et al. [38] to identify
3

COVID-19 from CXR. Using data augmentation, they generated modi-
fied pictures of the CXR plates, and their approach had a sensitivity of
98% and a specificity of 90%.

In another study on COVID-19 detection, Chakrabarti et al. [32]
employed ensemble learning in conjunction with a Deep Convolutional
Neural Networks (DCNN) to predict binary classes. They employed an
aggregate of 1006 COVID-19 suspected patient’s pictures (538 pos-
itive and 468 negative) to evaluate the performance of the model.
The degree of precision they achieved was 91.62 percent. Ahmed
et al. [30] also used Tflite to develop a method for developing mobile
applications that relied on CNNs. They found that their method, on
average, was 94% accurate. Ahsan et al. [33] found similar success
with feature fusion and deep learning. The recommended approach
improved accuracy to 99.49 percent, performing better than any single
CNN.

To boost the overall performance of COVID-19 methods of classi-
fication, Tabik et al. [39] used a Smart Data Based network called
COVID-SDNet. Their method had a 97.72 percent success rate. Taresh
et al. [40] utilised transfer learning to identify COVID-19 from CXR
images, so it is possible to do the same. With a 98.72 percent accuracy
rate, their VGG16-based model was superior to the competition.

2.1. Critical analysis

Table 1 compares CoviDetector with existing transfer learning and
DNN models. The accuracy of the aforementioned study works is pretty
high, yet it is also important to put it into practise in a way that could
be accessible to patients in general. Only two of the reported studies
have even investigated using transfer learning in a user interface for an
application supported by the model. A novel framework that enhances
accuracy and implementation in an Android App is required as very
little work has been done to construct a CNN-based Android App,
specifically for COVID-19 diagnosis. The required framework needs to
be proposed in order to (1) facilitate communication between users,
(2) incorporate the most effective method with better precision, and
(3) guarantee the highest level of care for both patients and medical
professionals. To fill these knowledge shortcomings, we propose a
novel system called CoviDetector to improve research and address the
above-mentioned challenges.
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Fig. 1. CoviDetector Architecture: The first portion of the figure depicts the layers in
he System Architecture i.e the basic internal working of the CoviDetector application.
he next portion is the App Architecture which shows the functioning of the Application
I to fetch the inputs from the user and how it is fed to the model for evaluation.
he next and last portion of the image picturises the sequence of layers in the Neural
rchitecture used in the CoviDetector model.

. CoviDetector: Proposed methodology

Methods for accomplishing the goals of the proposed work are
iscussed in detail below, with specific attention paid to the system
rchitecture that was developed to accomplish these goals including
nput preprocessing of the image inputs followed by labelling appropri-
te classes of data, and datasets used, continuing with the extraction of
eatures, to CNN-based classification.

.1. System architecture

CXR images are used as input for the proposed technique for COVID-
9 detection. To begin, this system shifts user-provided photos into the
ore widely used Red–Green–Blue (RGB) colour space. Additionally,

he algorithm only takes into account photos that are comparable to
XR. To begin, a Structural Similarity Index Measure (SSIM) is applied
o the picture in order to determine its structural similarity with a CXR.
f that happens, just that picture will be considered in further analyses.
or example, if the image has a SSIM value greater than the threshold
alue (this value depends on the type of application) with the image
f CXR, then that image will be considered for prediction; otherwise,
hat image will be discarded. The InceptionV3 model is quite effective
n obtaining features and picture classification. The whole model was
mplemented using an Android Front-end made using the React-Native
ramework and TensorflowJS as a backend. The System Architecture
as been visualised in Fig. 1. The system takes CXR images as input,
lassifies them into different classes, and gives the predicted class as
he output.

.2. Input pre-processing

Image pre-processing is a vital step to achieving meaningful and
ccurate classification. Therefore, there is a need to resize all images
o 224 × 224 × 3 pixel resolution and their intensity values to be
ormalised to [−1, 1] (by dividing with 255). Subsequently an 80%–
0% ratio between training and testing sets have been applied to every
ataset.
 m

4

.3. Data augmentation

The dataset included a highly imbalanced number of samples from
arious classes. We first used the data augmentation technique to
ncrease the number of sample images for every class in order to
ddress the class imbalance. Random cropping and horizontal & vertical
lips were applied for the augmentation of existing data. In order to
qualise the number of samples from each class, the following stage
ncluded selecting the class with the fewest images and extracting
andom samples from other classes. The researchers were able to create
more optimal model using the larger sample size. The size of the

raining dataset has been increased by data augmentation. Further,
andom cropping, and horizontal & vertical flips have been applied to
mprove the robustness of the training model.

.4. Model

This section gives an overview about deep learning models used in
his research work.

.4.1. VGG16
The VGG16 network is a CNN model with 1000 outcomes. It has 13

onvolution neural layers and three layers that are fully connected. It is
apable of handling 224 × 224 pixel colour pictures. After that, many
onvolution networks are used to determine if the layer is red, green,
r blue. Both the input and the resultant feature maps have the same
ize in this scenario. The field of reception of any convolution filter
s just 3 × 3 in stride 1. Row and column padding are used following
onvolution to preserve spatial resolution. There are 13 convolution
ayers and 5 max pool layers, as has already been stated. The largest
ooling window is 2 strides by 2 strides. VGG16’s architecture and
rimary feature, transfer learning, are both formed by [41]. For the
urpose of using CNNs as a fixed feature extractor1, a CNN architecture
rained on a large dataset is taken, and its final fully connected layer
s removed. For this new dataset, the remainder of the CNN serves as

fixed-feature extractor. Let us assume that there is a model that is
rained on the basics of one set of databases, like ImageNet and an
pplication that is trained on the basics of some other database, like
ascal. When an image enters the first layer, consider only the edge.
hen it moves to the second layer, which considers corners, curves, etc.
n further moving to the third layer, it considers the features of the
igh-level layer. On further moving more deeper, the domain becomes
ore specific.

.4.2. VGG19
To put it simply, VGG19 is a state-of-the-art convolutional neural

etwork. The visual geometry group at Oxford has put forth this
dea. Including its 16 convolutional layers, 3 fully connected layers,

max pool layers, and 1 softmax layer, the VGG19 model is rather
omplex. This phenomenon has been designated as VGG19. It has
een taught with millions of different photos, giving it a great depth
f understanding. Colour photos of a certain width and height are
cceptable. After that, the pictures go through a series of convolution
etworks, one for each colour channel. Both the input and the resultant
eature maps have the same size in this situation. The receptive field
ize of every convolution filter is exactly 3 × 3 stride 1. Use row and
olumn padding after convolution to keep spatial resolution stable. The
rchitecture of the network consists of 13 convolution layers and 5 max
ool layers, as stated before. The largest allowable pooling window
ize is 2 by 2 steps. VGG19 borrows its model architecture on like
ts predecessor, VGG16. When pitted against VGG16, VGG19 performs
omewhat better. It represents an idea in terms of form, colour, and
rchitecture. If the picture is in the ImageNet database, a pre-trained
ersion of the network can be loaded and used. After being taught, the
etwork can sort photos into one of a thousand distinct categories, each
f which can include commonplace items like a computer keyboard,
ouse, or pencil.
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3.4.3. DenseNet121
The DenseNet121 model is part of the larger DenseNet family

of image classifiers. The DenseNet121 model differs mostly in terms
of its larger size and greater precision. The DenseNet121 model is
considerably bigger than its smaller counterpart. They were originally
developed using Torch, but the authors have since ported them to Caffe.
Pre-training on ImageNet has been done for the DenseNet models.
DenseNet121’s model results are representative of those of an object
classifier applied to a dataset of 1000 classes from the ImageNet
database. A single picture with the coordinates (1, 3, 224) in BGR
order is the input to the simulation. Fewer interconnections between
layers near the input and the ones near the output allow convolutional
networks to be significantly deeper, more precise, and simpler to train,
as proven in recent research [42]. The article employs a feed-forward
neural network architecture called a Dense Convolutional Network
(DenseNet). Layer data for DenseNet121 has been retrieved from [42].
Every level feeds its own feature maps into the layers above it, and
each layer above it feeds its own feature maps into the levels below it.
Using DenseNets has been shown to drastically cut down on the number
of parameters. DenseNets achieves great performance with less memory
and compute while significantly outperforming the latest developments
on the majority of them.

3.4.4. InceptionV3
The InceptionV3 transfer learning method using weights from pub-

licly available ImageNet data will serve as the focus of this research.
There are 230 ‘‘frozen’’ layers in the model, representing parameters
that should not be modified throughout the training process. Develop-
ing a model from preexisting models was shown to be more efficient
than developing a new deep learning model from beginning [43].
Transfer learning allows us to retrain the final layer of an existing
model, resulting in a significant decrease in not only training time, but
also the size of the dataset required. One of the most known models that
can be used for transfer learning is Inception V3. This model was origi-
nally trained on over a million images from 1000 classes on some very
powerful machines, which resulted in highly accurate classification.
Inception V3 mainly centres on consuming less computational power by
modifying the previous Inception architectures. Compared to VGGNet,
Inception Networks (GoogLeNet/Inception v1) have proven to be more
computationally practical, both in terms of the number of parameters
generated by the network and the memory and other resources used.

3.4.5. EfficientNet
EfficientNet, which was first introduced in Tan and Le’s 2019 pa-

per [44], is one of the best algorithms for typical image categorisation
transfer learning tasks and ImageNet, where it has achieved State-of-
the-Art efficiency. In terms of model size, the lowest base model is
competitive with MnasNet, which obtained near-SOTA with a much
smaller model. EfficientNet introduces a heuristic approach to model
scaling, producing a set of models (B0–B7) that strike a good balance
between quickness and precision when the scale is increased or de-
creased. However, numerous factors limit the resolution, depth, and
width options. Resolutions that are not divisible by eight, sixteen,
or twenty-four result in zero-padding along the end points of some
layers, wasting computational resources. This is particularly true for the
model’s smaller variations, which is why the input resolutions for B0
and B1 are set to 224 and 240, respectively. EfficientNet’s construction
blocks require channel sizes to be multiples of eight. When depth and
width can still be increased, memory constraints may stifle resolution.
In this case, increasing depth or width while maintaining resolution

may still increase performance.

5

3.4.6. K-means clustering
Clustering is a popular interactive data analysis method for quickly

understanding how the data is organised. Data clustering is the process
of identifying groupings within a dataset where individual data points
have many similarities but those corresponding to different clusters
have few. Using iterative steps, the K-means approach seeks to divide
the dataset into K distinct, non-overlapping subgroups (clusters), with
each cluster containing a single value. It makes an effort to keep clusters
as dissimilar (far) as practicable while maintaining intra-cluster data
points as closely related as reasonable. The algorithm groups data
points into clusters with the goal of minimising the sum of squared
distances among them and the centroid of the cluster (the mathematical
average of all data points in that group). The homogeneity (similar-
ity) of data points within a cluster increases as inter-cluster variation
decreases.

3.5. Algorithm

In this research, we use transfer learning to train a CNN Model.
The weights that are shared between model layers serve as a means
of information transfer. A Convolutional 2D layer with ReLu activation
and a Dropout layer follow this. This brings the total number of layers
to 5. A MaxPooling Layer comes next, followed by a Flatten Layer
for communication. The necessary number of classes with output is
then sent to a softmax-activated dense layer that serves as the ultimate
output layer. The following phase was to assemble the model with two
primary variables called optimiser and loss. It has become common
practise to use Binary CrossEntropy as the loss function for binary
classification jobs, and Categorical CrossEntropy for multiclass data. It
turned out that a learning rate of 0.0001 yielded the best outcomes
from the RMSprop optimiser. The algorithm for the configuration of
the model is visualised in Algorithm 1.
Algorithm 1 Model Input and Architecture of CoviDetector:
Require: 𝑎 ∶ 𝑑𝑎𝑡𝑎, 𝑏 ∶ labels, 𝑧 ∶ number of images, 𝑚, 𝑛 ∶

image dimensions,
𝑓 ∶ Base Model, 𝑔 ∶ Head Model
𝑓.𝑜𝑢𝑡 ∶ Output Layers of Functional Model

1: for i=0 to z-1 do
2: 𝑏 ⇐ 𝑖𝑚𝑎𝑔𝑒
3: 𝑖𝑚𝑎𝑔𝑒 ⇐ 𝑖𝑚𝑎𝑔𝑒𝑐𝑣𝑡𝑐𝑜𝑙𝑜𝑟
4: 𝑖𝑚𝑎𝑔𝑒 ⇐ 𝑖𝑚𝑎𝑔𝑒𝑟𝑒𝑠𝑖𝑔𝑒(𝑚, 𝑛)
5: 𝑎 ⇐ 𝑖𝑚𝑎𝑔𝑒
6: i++
7: end for

Model(a):
8: 𝑓 ⇐ VGG16,VGG19;DenseNet121;
9: InceptionV3; EfficientNetB4

10: 𝑔 ⇐ f.out(output layer of f)
11: 𝑔 ⇐ Conv2D(g)
12: 𝑔 ⇐ Dropout(g)
13: 𝑔 ⇐ MaxPool2D(g)
14: 𝑔 ⇐ Flatten(g)
15: 𝑔 ⇐ Dense(g)
16: return metric

3.6. The prototype application

In line with the proposed model, an Android-based mobile app has
been created to distinguish between Covid-19 positive and negative
patients. Because of this, anyone may access a CXR picture on their
computer and input it into the programme. The image is then assessed
by the programme using the provided model, and a classification label
is returned. The user interface prototype is shown in Fig. 2 .
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Table 2
Comparative view of data splitting for multiple datasets:.
Dataset Training (70%) Testing (20%) Validation (10%) Used samples

COVID-19 CXRImage Dataset (Research) 1125 321 160 1608 out of 1823
DLAI3 Hackathon Phase3COVID-19 CXR Challenge 762 218 110 1089 out of 5507
COVID-19 RadiographyDatabase 7140 2040 1020 10.2k out of 42.3k
Covid19 Detection 7560 2160 1080 10.8k out of 24.8k
Table 3
Performance metrics 1 (Dataset1).

Model MCC Sensitivity Specificity AUC score Training time (sec/epoch)

VGG16 0.9667 0.9717 1.0000 0.9858 31
VGG19 0.9668 0.9811 1.0000 0.9905 36
DenseNet121 0.9853 1.0000 0.9917 0.9948 30
InceptionV3 0.9876 1.0000 1.0000 0.9959 24
EfficientNetB4 0.7635 0.8361 0.8695 0.8571 40
Semi-supervised 0.9916 0.9958 0.9962 0.9937 20
Fig. 2. The Prototype UI.

.7. GradCAM

GradCAM is a kind of post-hoc attention. The term post-hoc at-
ention means it is a method used for heatmap generation that is
ubsequently applied to a pre-trained neural network after training
s complete and weights are known. GradCAM is a generalisation of
AM (Class Activation Mapping), and it can be applied to any CNN
rchitecture. The basic idea behind the usage of GradCAM over here is
o exploit the spatial information preserved using convolutional layers,
n order to comprehend which parts of the input image played a pivotal
ole in the classification decision. It uses a feature map produced
y the last convolutional layer of a CNN architecture (like CAM).
e have applied GradCAM visualisation to DenseNet21, VGG16, and
6

InceptionV3 algorithms, which were among the top-performing models
for the datasets used. A few more reasons to use GradCAM are: (1) It
does not change the architecture of the model and just gets added to
it, and (2) It is class-discriminative using localisation techniques.

4. Performance evaluation

We have evaluated four different DNN models on the dataset and
then analysed the accuracies obtained using the discussed approach.
We examined the model’s efficiency using a variety of loss functions
and parameter settings before settling on a good one. As a last step, we
integrated the Tensorflow backend into an Android app; the details are
presented next.

4.1. Experimental setup

Accuracy, sensitivity, and specificity were taken into account for
analysis in order to evaluate the effectiveness of several models and
obtain the most effective outcomes. After training for around 20 epochs
using the RMSProp optimiser and a Learning Rate of 0.0001, all of the
CNN models were ready for testing. Model training takes between 31
and 35 s per epoch on VGG16 and VGG19, respectively. In InceptionV3,
the time required for each epoch was around 24 s, but in DenseNet,
the time required was approximately 30 s. EfficientNetB4 took about
40 s per epoch for the same data. Table 2 gives the insight of training
testing and validation ratio of the datasets used. Table 3 summarises
the average training time of the models.

4.2. Configuration settings

We developed the model using Tensorflow 2.2.0 and Python 3.6.
NVIDIA Tesla K80 GPU has been used for the training procedure.

4.3. Dataset used

We used various datasets for experimental purposes. The authors
of the datasets have accomplished the hectic task of gathering and
categorising the CXR Images. There are four datasets on which exper-
iments were performed. Two of them contain data from three classes.
The other two datasets consist of data from 4 and 5 different classes.
The first dataset, COVID-19 CXR Image Dataset (Research) [45] named
as Dataset1 contains classes named COVID, Normal, and Viral. This
dataset was used for initial model testing and validation. However,
various other datasets were utilised to check the competency of the
model. Another other 3 class dataset, DLAI3 Hackathon Phase3 COVID-
19 CXR Challenge [46] named Dataset2 contains COVID, No-FINDING,
ThoraxDisease. This dataset was also used for the validation and
testing of the DNN models. The other dataset, COVID-19 Radiography
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Fig. 3. Confusion Matrix:VGG19 on 5-Folds(0-Normal, 1-COVID19,2-Viral).
atabase [47] named Dataset3 contains 4 classes of data namely
OVID, Lung Opacity, No-Finding, and Viral Pneumonia. The best
odel was trained with these four dataset data points where two classes
ere merged to form a single class of data. This model was further
valuated on the training data and on a 5 class dataset, Covid19 Detec-
ion [48] named Dataset4 which consists of data from COVID, Fibrosis,
ormal, Viral and Pneumonia, to further prove the competency of the
ork. Apart from that, all the datasets were split into training and

esting sets with an 80:20% ratio and used for 5-fold cross-validation.
he performances of four different models applied to these datasets are
hown in Figs. 3–6. As can be seen in Figs. 3–7 the accuracy rate of
he model decreases as the number of fold operations increases. For
xample, the accuracy rates for Figs. 3–5 fold-1 process are 94%,
7.29% and 95.06%, respectively. For the same shapes, these rates
ecrease to 91.71%, 94.02% and 90.95%, respectively, after the fold-5
rocess.
7

4.4. Analysis of results

The findings of the experiments are analysed and discussed below:

4.4.1. Results on 3 class dataset
As soon as it comes to COVID-19 detection, a True Positive (TP)

happens if both the patient’s other investigations and the model agree
that COVID-19 is present, whereas a True Negative (TN) occurs when
both the patient’s other investigations and the model agree that COVID-
19 is not present. If a person does not have COVID-19 but the model
predicts positive, we say that person has a False Positive (FP), whereas
if the person possesses COVID-19, we say that the model gets a False
Negative (FN).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁 (1)

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
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𝑆

Fig. 4. Confusion Matrix:DenseNet121 on 5-Folds(0-Normal, 1-COVID19,2-Viral).
𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(2)

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

(3)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(4)

𝐹 − 𝑆𝑐𝑜𝑟𝑒 = 𝑇𝑃
𝑇𝑃 + (0.5)(𝐹𝑁 + 𝐹𝑃 )

(5)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(6)

𝑀𝐶𝐶 = 𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁
√

(𝑇𝑃 + 𝐹𝑃 )(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃 )(𝑇𝑁 + 𝐹𝑁)
(7)

The data visualisations show a consistent trend, with training and
testing accuracy improving and loss decreasing as the number of epochs
grows.
8

Table 4
Performance metrics 2 (Dataset1).

Model Accuracy Precision Recall F-Score

VGG16 0.9876 1.0000 1.0000 1.0000
VGG19 0.9917 1.0000 1.0000 1.0000
DenseNet121 0.9958 1.0000 0.9917 0.9958
InceptionV3 0.9965 1.0000 1.0000 1.0000
EfficientNetB4 0.7863 0.8026 0.7685 0.7553
Semi-supervised 0.9969 0.9989 1.000 0.9971

Table 3 shows the MCC (Matthews correlation coefficient), sensi-
tivity, specificity, and AUC Score values for each model (see 4.4.3 for
Semi-supervised model). Whereas accuracy, precision, recall and F1
score are also tabulated in Table 4.

Fig. 8 not only depicts the confusion matrix but additionally the
AUC-ROC, or true positive rate (TPR), vs. false positive rate (FPR),
curve for the actual models used. Other Important Metrics include the
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Fig. 5. Confusion Matrix:InceptionV3 on 5-Folds(0-Normal, 1-COVID19,2-Viral).
Accuracy versus Epoch Curve and the Loss versus Epoch curve, which
are visualised in Fig. 9. From Fig. 8, it is analysed that the proposed
algorithm has a very high true positive rate in comparison to a very
high false positive rate, which signifies that the predicted results are
mostly correct for a positive response, whereas Fig. 9 shows the loss
and accuracy the model is having after each epoch to get an optimal
epoch count.

4.4.2. Comparison of different datasets
The results of training and testing various transfer learning models

on three different datasets are visualised in Fig. 10. To further evaluate
the CoviDetector model, the best-performing model, InceptionV3 was
evaluated on a small dataset after being trained on a separate dataset.
9

Moreover, the InceptionV3 model was trained on one Dataset in
which 4 classes were converted into 3 and then the model was further
tested on two other datasets containing 5 classes of data that was
converted into 3 classes. Both the results are visualised in Figs. 12–14.

4.4.3. Semi-supervised ML
Apart from deep learning and transfer learning models, a semi-

supervised method of machine learning was also implemented for
image clustering [49–51]. In this paper, the K-means clustering model
was implemented as a semi-supervised learning algorithm. The K-
means clustering technique works on a specified number of clusters;
in this scenario, the clusters varied from 2 to 20 different clusters. This

method of getting the optimal number of clusters is known as the elbow
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Fig. 6. Confusion Matrix:EfficientNetB4 on 5-Folds(0-Normal, 1-COVID19,2-Viral).
ethod. It was found that three clusters gave the best results out of all
0. The shuffled dataset was passed through the penultimate or second-
ast layer of the InceptionV3 functional model, and the extracted results
ere flattened and appended to a features variable. An instance of K-
eans clustering with three clusters was declared, and the features

ariable was fit using the same. The cluster labels were extracted and
hen compared with the original label data to compute the accuracy.
n the semi-supervised method, we fed the training data through the
est performing DNN i.e. Inception V3 and for each training dataset,
e extracted the features of the penultimate layer. Then, k-means

lustering was performed and k-clusters were extracted. The initial
ccuracy obtained was about 95% with the default hyperparameters
hen test data was passed through the clustering algorithm. A number
f hyperparameters were tuned, like maximum iterations and tolerance,
o further tweak the model. The final accuracy achieved for 3 classes
f data is 99.69% when the clusters were plugged in with testing data.
ig. 11 shows the result for K-means clustering and the inception of
3-based semi-supervised learning on Dataset 1.
10
4.4.4. GradCAM
GradCAM is a form of post-hoc attention, meaning it is a method

that has been devised for producing heatmaps by applying it to a
pre-trained neural network model. The resultant effect is visual expla-
nations from Deep Networks. The CXR image dataset has been used
to train several deep learning models, namely VGG16, VGG19, Incep-
tionV3, DenseNet and EfficientNet B4. As a result, all of them produced
results with different levels of accuracy and precision. GradCAM has
been used for a crystal clear visualisation of the results achieved from
various models. GradCAM results have been laid out side by side in a
comparative manner in Fig. 15.

Based on the data, we may infer that the suggested InceptionV3
model has superior accuracy and consistency. This was mostly due to
the reduction of losses and the improvement in precision. The precision
improved because we switched from using the Sequential CNN model
to the transfer learning model. The InceptionV3 Transfer Learning
Framework. We have also put the model into an Android application,

which is not the case for the majority of transfer learning initiatives.
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Fig. 7. Confusion Matrix:VGG16 on 5-Folds(0-Normal, 1-COVID19,2-Viral).
hile all four transfer learning frameworks performed excellently,
hen comparing Accuracy and AUC Scores, the InceptionV3 model
merges on top. This is why InceptionV3 was chosen as the foundation
or the Android app.

.5. Cross validation

We used K-fold cross-validation and examined the different aspects
f the data to ensure that the CoviDetector model does not overfit or
nderfit and works effectively. Due to the skewed nature of the data,
-fold (K=5) validation was necessary. At any given time, only one
f the five sections of the dataset had been utilised for testing the
odel, while the others were utilised for training. We have performed

he cross-validation on the best-performing model, i.e., InceptionV3.
ig. 16 shows the performance of the InceptionV3 model on various
atasets. 5-fold cross-validation is performed for 3 class, 4 class, and
class classifications whose confusion matrix is shown in Figs. 12, 13

nd 14 respectively.
11
5. Conclusions and future work

Accurate and timely detection of COVID-19 is necessary in today’s
world to prevent the further spread of this disease and timely treatment
to start. In this study, we describe a method for quickly and easily iden-
tify COVID-19 positive patients. DNNs were shown to be effective at
separating COVID-19 positive CXR pictures from Normal CXR images.
In this paper, four techniques have been adopted, and the best overall
has been selected for final classification. With the suggested model,
we were able to attain a 99.65% accuracy in our classifications. As
an added bonus, a specificity of 1.0 was attained. Pre-trained models
can now be easily included in Android apps thanks to technological
advancements. Therefore, we turned our focus to COVID-19 detection
through Android smartphones. The proposed Android Application has
a simple interface to browse through various images and upload one at
a time. Once uploaded, the Android Application will be able to classify
the image as a COVID-19 or Normal image.
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Fig. 8. AUC-ROC curve.

Fig. 9. Accuracy & Loss curves.

Fig. 10. Metrics chart for all models on Dataset1.
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Fig. 11. Result for K-Means Clustering and Inception V3 based semi-supervised learning on Dataset1.
Fig. 12. InceptionV3 results on 3 class Dataset2.
5.1. Possible future directions

In future, CoviDetector can be extended in the following ways:

• Internet of Things (IoT): Deep learning algorithms proposed in
this paper can be implemented in embedded devices such as the
Raspberry Pi or Arduino and can be further used for building
the smart X-ray-based COVID-19 detection [52]. CoviDetector
also allows for the integration of ChatGPT and IoT, both of
which may speed up and enhance patient care. Together, they
form a formidable force that is altering the way we engage with
technological advances and, perhaps, will make our lives better
in generations and decades thereafter [53].

• Web App: Web application can be developed which will use this
proposed deep learning framework in its backend for predicting
the COVID-19 [54].

• Artificial Intelligence (AI): Advanced AI methods like quantum
machine learning can be used to increase the accuracy rate of
detection of COVID-19 [55].

• Edge AI: Since latency is a problem in mobile-based applications,

we will utilise Edge AI in the future to develop an intelligent

13
framework that will offload the latency-sensitive user requests
to the edge node using the latest AI models without any further
delay [56].

• Security: The CoviDetector itself has no built-in security pro-
tections, however, a cryptographic security mechanism might be
added in the future to safeguard sensitive information [57].

Software availability

We released CoviDetector available for free as open source. All
code, datasets, and result reproducibility scripts are publicly available
and can be accessed from GitHub: https://github.com/dasanik2001/
CoviDetector
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Fig. 13. InceptionV3 results on 4 class Dataset3.

Fig. 14. InceptionV3 results on 5 class Dataset4.
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Fig. 15. GradCAM visualisation of InceptionV3-based model on COVID19 and normal condition CXR images.
Fig. 16. Comparison of InceptionV3 on various datasets.
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