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ABSTRACT

This paper proposes a model-free continuous integral sliding mode controller
for robust control of robotic manipulators. The highly nonlinear dynamics of
robots and load disturbances cause control challenges. To achieve tracking con-
trol under load disturbances and nonlinear parameter variations, the controller
is constructed with three continuous terms including an integral term that acts
as an adaptive controller. The proposed controller is able to accomplish a non-
overshoot transient response, a short settling time, and strong disturbance rejec-
tion performance for robotic manipulators. The developed model-free control
method is implemented on the PUMA 560 robotic manipulator, and its perfor-
mance is compared with the proportional-derivative (PD) plus gravity controller.
Numerical results under measurement noise and load disturbances are provided
in order to show the efficacy, validity, and feasibility of the method.
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Günyaz Ablay
Department of Electrical-Electronics Engineering, Abdullah Gül University
Kayseri, Türkiye
Email: gunyaz.ablay@agu.edu.tr

1. INTRODUCTION
The main issues in robot control problems include accurate reference tracking, load disturbance re-

jection and robustness to parameter variations. When all these relatively important requirements are taken
into account, the high-precision robot control problem presents some challenges due to the coupled nonlinear
dynamics of robotic systems. Various control schemes that may be divided into model-based and model-free
control categories have been designed and implemented for robot manipulators to tackle with these challenges.
The model-based controller designs include sliding mode control (SMC) [1], [2], computed torque control [3],
robust control [4], adaptive control [5], model predictive control [6] and backstepping control [7]. The model
uncertainties stemming from frictions, parametric uncertainties and load disturbances are the inherent issues
of the model-based controllers. To eliminate the effects of these uncertainties, robust, adaptive and machine
learning techniques have been used in the model-based control designs [8]–[10]. Specifically, many forms of
SMC approaches have been designed for robot manipulators including traditional SMC [11], integral SMC
[12], fuzzy SMC [13], backstepping SMC [7], [14], terminal SMC [15], [16], second-order SMCs [17], non-
singular terminal SMC [18], fast terminal SMC [19], time-delay estimation based SMC [20] and adaptive SMC
[21], [22], but these approaches require an accurate robot model to assure a good control response.

In recent years, some model-free control approaches have also been designed for robot manipula-
tors. Since, in general, a model (or model accuracy) is not considered in the control designs, the model-free
control methods offer some advantageous alternative approaches for robot control problems. The PD and PD
plus gravity controllers are the most common and highly effective model-free or minimum model requiring
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controllers for the industrial robotic manipulators [23], [24]. Machine learning-based controllers including
neural networks and fuzzy logic approaches are also designed in this context [25]. A data-driven observer-
based model-free adaptive discrete-time terminal SMC [26], an extended state observer-based controller [27],
the PID control [28], [29] and an intelligent proportional-derivative SMC [30] have also been designed as
model-free controllers. The designed model-free controllers mostly consist of a controller plus estimated robot
dynamics, i.e., the alternative model-free controllers have virtually the same structure as the PD plus gravity
controller, but they have more complicated control design procedures and their control performances are not
significantly better than the PD plus gravity controller.

In this study, a model-free integral SMC is proposed for robust control of robot manipulators without
any need for the system model. The inherent robustness of SMC can properly cope with the highly coupled non-
linear dynamics of robot manipulators. Many SMC forms have been designed for robot manipulators, but these
approaches require a robot model to assure a good response or otherwise can exhibit poor tracking performance.
In this work, a three-term model-free continuous integral SMC is designed in order to assure high tracking
accuracy, fast convergence, and strong robustness against disturbances. The input–output information of the
robot without using any model parameters is utilized in the proposed controller design. The numerical results
in both joint-space and task-space implementations are provided for the PUMA-560 robotic arm to illustrate
the performance of the proposed controller. The results of the method are compared with the industrial PD plus
gravity controller. The proposed control method is able to provide a short settling time, non-overshoot response,
zero steady-state error, and robustness under the existence of load disturbances and parameter variations.

The study is organized as follows. A model-free integral SMC design for both joint-space and task-
space controls is presented in sections 2 and 3, respectively. Section 4 presents an application of the control
method to the PUMA 560 robot, and section 5 concludes the paper.

2. JOINT-SPACE ROBOT CONTROL WITH A MODEL-FREE INTEGRAL SMC
The closed-form dynamic equations of an n-DOF robotic manipulator can be given by (1):

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ (1)

where the joint parameters are defined with n-dimensional joint position vector q(t), joint velocity vector q̇(t)
and joint acceleration vector q̈(t). The actuation torques for each joint are given by τ ∈ Rn. The positive
definite and symmetric matrix M(q) ∈ Rn×n is the inertia matrix, C(q, q̇) ∈ Rn×n is the Coriolis/centripetal
term, and G(q) ∈ Rn is the vector of gravitational forces. The inertia matrix is bounded with mlI ⩽ M(q) ⩽
muI where ml and mu denote positive constants and I is the identity matrix. The robotic manipulators satisfy
the skew-symmetric relationship, i.e.,

qT (Ṁ(q)− 2C(q, q̇))q = 0 (2)

For all q ∈ Rn, the Coriolis/centripetal term is bounded by a quadratic function as (3):

∥C(q, q̇)q̇∥ ⩽ c0∥q̇∥2 (3)

where c0 is a known scalar function (or a positive constant). The gravity vector is also bounded with ∥G(q)∥ ⩽
g0 for a finite constant g0 > 0.

The control purpose of the robotic manipulator is trajectory tracking control (or reference regulation
as its special case). Designing joint-space controllers with smooth joint-space trajectories is the most common
approach. Consider a tracking error vector with a position control objective as (4):{

e = q − qd : lim
t→∞

e = 0
}

(4)

where qd is a reference signal vector. The control problem is to find a suitable actuation torque τ such that the
position error goes to zero, e → 0 as t → ∞. The control system must achieve this control objective with a good
transient response to reference changes, and it should reject load disturbances and tackle measurement noise.
The common industrial controllers include the PD control or PD plus gravity control methods for providing
desired control goals for robot manipulators. Hence, the PD plus gravity controller will first be revisited, then
a model-free controller will be introduced, and finally, the results will be provided comparatively.
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2.1. Revisiting the industrial PD plus gravity controller
Reference regulation of robotic manipulators is commonly accomplished by independent joint PD

control law with a gravity compensation term [23]. It is well-known that a full compensation of gravity vector
is not fully possible for degree-of-freedom (n-DoF) rigid manipulators, while the control performance can
significantly be improved with the gravity term. The PD plus gravity controller has the form of (5).

τ = −Kpe−Kdė+ Ĝ(q) (5)

where the control matrices Kp ∈ Rn×n and Kd ∈ Rn×n are positive-definite and diagonal matrices and
Ĝ ∈ Rn is an approximate value of the gravity vector G(q). Substituting (5) into (1), the closed-loop system
can be written as (6):

M(q)q̈ + C(q, q̇)q̇ + G̃(q) +Kdė+Kpe = 0 (6)

where G̃ = G − Ĝ. If the reference is a constant, then the PD plus gravity controller is quite effective. For
stability analysis, consider a positive-definite Lyapunov function as (7):

V =
1

2
q̇TM(q)q̇ +

1

2
eTKpe (7)

The time-derivative of (7) is negative definite for a constant reference signal q̇d = 0 and the skew-symmetric
robot property q̇T (Ṁ − 2C)q̇ = 0, namely,

V̇ ⩽ −λmin(Kd)∥q̇∥2 + ∥G̃∥∥q̇∥ (8)

where λmin is the smallest diagonal element of Kd. Thus, the stability is assured with V̇ ⩽ 0 if λmin(Kd)∥q̇∥ ⩾
∥G̃∥. The steady-state error approaches to zero, but not becoming zero because the equilibrium point of the
closed loop system ref6 is found as (9):

G̃(qe) +Kpee = 0 ⇒ ee = G̃(qe)/Kp (9)

where qe and ee denote equilibrium points. Since ∥G̃∥ ⩽ g̃0 for a constant g̃0 > 0, the error is bounded.
In addition, in practical implementations, the term Ĝ(q) is replaced with Ĝ(qd) (known as PD plus desired
gravity compensation), where qd is the reference signal. Therefore, the PD plus gravity controller requires
large proportional control gains to drive the error to the close vicinity of zero, which might excite measurement
noise and high-frequency system dynamics [23].

2.2. A model-free integral SMC design
The SMC provides robust control solutions, but the reaching and sliding phases may require a long

time and high control effort due to the conservative bounds of the model uncertainty. To ensure high control
performance, fast convergence, and robustness against disturbances and robot manipulator variations, a three-
term model-free integral SMC can be defined by (10):

τ = −K0s−K1|s|αsgn(s)− τ0

τ̇0 = K2|s|αsgn(s)
s = ė+Ke

(10)

where tracking error e is defined as e = q − qd for a reference signal qd, control gain matrices are de-
fined with positive diagonal components as K0 = diag{k01, . . . , k0n}, K1 = diag{k11, . . . , k1n}, K2 =
diag{k21, . . . , k2n} > 0, K = diag{k1, . . . , kn} > 0, and 0 ⩽ α ⩽ 1. The function, |s|αsgn(s), is defined in
the component-wise form as (11):

|s|αsgn(s) = [|s1|αsgn(s1), . . . , |sn|αsgn(sn)]T (11)

where sgn(si) = si/|si|. To facilitate the operations, a virtual reference vector q̇r is defined as (12):

q̇r = q̇ − s (12)
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Substituting the control law (10) into the robot equation (1), the closed-loop system dynamics are obtained as
(13):

Mṡ = τ −Mq̈r − Cq̇r −G(q)− Cs (13)

Consider a positive definite Lyapunov function for stability analysis of the closed-loop system as (14):

V =
1

2
sTM(q)s (14)

The time-derivative of (14) can be written as (15):

V̇ = sTMṡ+
1

2
sT Ṁs

= sT [τ −Mq̈r − Cq̇r −G]− sTCs+
1

2
sT Ṁs

= −sTK0s− sT∆−
n∑

i=1

k1i|si|α+1

≤ −
n∑

i=1

[k0i|si|+ k1i|si|α − |∆i|]|si|

(15)

where sT (Ṁ − 2C)s = 0 due to the skew-symmetric property, and ∆ = Mq̈r + Cq̇r +G+ τ0. The stability
is achieved with V̇ ⩽ 0 if (k0i|si|+ k1i|si|α) ⩾ |∆i|. For α = 0.5, a solution of this condition yields (16):

|si| ⩾
1

2k20i
[k21i + 2k0id0 − k1i(k

2
1i + 4k0id0)

1/2] (16)

where |∆i| ⩽ d0. Thus, the control signal drives the robot states into the bounded set (16) in finite time. Since
V̇ ⩽ 0, the system is stable, and the trajectory reaches the sliding surface in finite time and stays in a very close
neighborhood of it. The bounded set can be designed to be very small with large control gain choices, i.e., the
robustness and practical stability of the controller are assured when k1i > d0 and k0i > 0. Once the robot
trajectory reaches this bounded set, then all the state variables will virtually have their steady-state values. For
a constant reference signal qd, a unique steady-state solution of the closed-loop system (13) is found by setting
all derivatives to zero as (17):

G(qe) = −K2

∫ ∞

0

|se|αsgn(se)dt (17)

where qe and se denote equilibrium points. This implies that the term ∆ in (15) will approach zero, d0 → 0
with t → ∞, and thus, the bounded set (16) will go to zero |si| → 0. Due to the fact that the differentiable
function V (t) has a finite limit as t → ∞, and V̇ (t) is uniformly continuous, V (t) → 0 as t → ∞ according
to Barbalat’s lemma [31]. This means that the error functions e and ė tend to zero as time goes to infinity.

There are five control parameters to be determined. The features of these control parameters are as
follows. The positive diagonal control gain matrices K0 and K1 must be selected large enough to guarantee
system stability. The integral term of the controller acts as an adaptive controller as seen in equation (17), and
is used to compensate for the static system parameters and disturbances. Hence, the disturbance compensation
speed of the controller is determined from the value of the gain matrix K2, which can be selected as k2i ⩾ g0
(upper bound of gravity vector). The control parameters K determine the speed of the transient response of
the control system. The parameter α is selected as α = 0.5 for good robustness and noise rejection features.
Finally, the controller may encounter the chattering phenomenon, so the discontinuous switching function,
sgn(·), may be replaced with its smooth approximates (e.g., sigmoidal or saturation functions) in practical
applications with guaranteed uniform ultimate boundedness of errors.

2.3. Task-space robot control with model-free integral SMC
The joint-space control method describes robot movements using the torque and angular positions and

velocities that are necessary to complete the task. While the joint-space control is designed by default, it needs
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inverse kinematics to calculate the desired joint-space reference trajectories for completing a task, which pos-
sesses some difficulties. An alternative approach is the task-space (or Cartesian-space) control, in which
the forward kinematics and Jacobian matrix calculations are used to transform between joint-space variables
(q1, . . . , qn) to task-space variables (x1, . . . , xm). The task-space control is commonly designed with the in-
verse Jacobian or transpose Jacobian regulators to deal with a mechanical impedance of the robot end effector
[32], [33]. The advantage of the task-space control approach is to operate directly on the task-space variables,
but the effects of singularities and redundancy cannot easily be managed, and it may become computationally
demanding if velocities and accelerations are of concern [34].

The forward kinematics is used to find the pose of the end-effector. Given the joint angles q ∈ Rn,
the end-effector pose x ∈ Rm is defined by (18).

x = f(q), f : Rn → Rm (18)

The differential relationship between the joint displacements and the resulting end-effector motion is repre-
sented by the Jacobian matrix as (19):

ẋ = J(q)q̇, J(q) = ∂f(q)/∂q (19)

where J(q) ∈ Rm×n is the analytical Jacobian matrix standing for the mapping from joint space to task space.
The transpose of the Jacobian is also used to describe the torque and force relations by (20),

τ = J(q)TF (20)

where F ∈ Rm is the applied force at the end-effector in task space. The Jacobian transpose method eliminates
the issues related to the Jacobian inversion and singularity problems, and thus it is used to obtain the robot
model in the task space as (21),

M(x)ẍ+ C(x, ẋ)ẋ+G(x) = F (21)

where M(x) = J−TM(q)J−1, C(x, ẋ) = J−TC(q, q̇)J−1 − J−TM(q)J−1J̇J−1 and G(x) = J−TG(q).
It is assumed that the Jacobian matrix is nonsingular, but if it is singular then the system has re-

dundancy for the given task in the task space. The task-space robot equation has the similar properties to
joint-space robot equation, including the skew-symmetric property ẋT (Ṁ −2C)ẋ = 0 and boundedness of the
other robot equation terms [35]. Therefore, the joint-space controllers can also be designed in a similar form
for the task-space representations.

In task space a tracking error vector with a position control objective is defined as (22):{
e = x− xd : lim

t→∞
e = 0

}
(22)

where xd is a reference signal vector. To achieve this tracking control goal for (21), similar to (10) a model-free
integral SMC can be defined as (23):

F = −K0s−K1|s|αsgn(s)− f0

ḟ0 = K2|s|αsgn(s)
s = ė+Ke

(23)

where e = x − xd for a reference signal xd. Similar to the joint-space controller analysis, for a Lyapunov
function, V = 0.5sTM(x)s, we can show that its time-derivative is negative definite as V̇ ⩽ 0 under the
controller (23). Namely, the error functions e and ė tend to zero as time goes to infinity.

The general task-space control and joint-space control schemes are illustrated in Figure 1. There are
different pros and cons to trajectory planning and control in joint space or task space. For example, joint-space
trajectories have smooth actuator motion and have no problem with singularities, while inverse kinematics are
needed to generate joint-space references. On the other hand, task-space trajectories are easier to visualize and
the motion in task-space is more predictable, but it is prone to singularities and the actuator motion is more
difficult to verify.
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Joint-space control scheme Task-space control scheme

Figure 1. Model-free control implementations in joint-space and task-space of robotic manipulators

3. CONTROL IMPLEMENTATIONS TO PUMA 560 ROBOT
The explicit dynamic model of the PUMA 560 robot is given by [36]:

M(q)q̈ +B(q)q̇iq̇j + C(q, q̇)q̇2i +G(q) = τ − τl (24)

where τl is the load torque, B(q) is the matrix of Coriolis forces, C(q) is the matrix of Centrifugal forces, and
i ̸= j for i, j = 1, . . . , 6. The PUMA 560 robot matrix/vectors can be defined by M = [mij ], B = [bijk],
C = [cij ], G = [Gi], whose components are given by [36],
m11 = Im1+I1+I3CC2+(I7+I21+2I15)SS23+(I10+2I22)SC23+I11SC2+2C2[I5S23+I12C23+I16S23]
m12 = I4S2 + I8C23 + I9C2 + I13S23 − I18C23

m13 = I8C23 + I13S23− I18C23

m22 = Im2 + I2 + I6 + 2[I5S3 + I12C2 + I15 + I16S3]
m23 = I5S3 + I6 + I12C3 + I16S3 + 2I15
m33 = Im3 + I6 + 2I15
m35 = I15 + I17
m44 = Im4 + I14
m55 = Im5 + I17
m66 = Im6 + I23
m21 = m12, m31 = m13, m32 = m23

b112 = 2[−I3SC2+(I5+I16)C223+(I7+2I15+I21)SC23−I12S223]+(I10+2I22)(1−2SS23)+I11(1−2SS2)
b113 = 2[(I5 + I16)C2C23 + (I7 + 2I15 + I21)SC23 − I12C2S23 + I22(1− 2SS23)] + I10(1− 2SS23)
b115 = 2[−SC23 + I15SC23 + I16C2C23 + I22CC23]
b123 = 2[−I8S23 + I13C23 + I18S23]
b214 = I14S23 + I19S23 + I20S23

b223 = 2[−I12S3 + I5C3 + I16C3]
b225 = 2[I16C3 + I22]
b235 = 2[I16C3 + I22]
b314 = I20S23 + I14S23 + I19S23

b412 = −b214
b413 = −b314
b415 = −I20S23 − I17S23

b514 = −b415
c12 = I4C2 − I8S23 − I9S2 + I13C23 + I18S23

c13 = 0.5b123
c21 = −0.5b112
c23 = 0.5b223
c31 = −0.5b113
c32 = −c23
c51 = −0.5b115
c52 = −0.5b225
G2 = g1C2 + g2S23 + g3S2 + g4C23 + g5S23

G3 = g2S23 + g4C23 + g5S23

G5 = g5S23
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where Si = sin(qi), Ci = cos(qi), Cij = cos(qi + qj), Sijk = sin(qi + qj + qk), CCi = cos(qi)
2 and

CSi = cos(qi) sin(qi), and all other elements of the matrices are zero. The PUMA 560 robot arm constants
and DH parameter values are provided in Tables 1 and 2, respectively.

Table 1. Inertial (kg/m2) and gravitational (Nm) constants
No Inertial (kg/m2) Gravitational (Nm) constants No Inertial (kg/m2) Gravitational (Nm) constants
1 I1 1.43 18 I18 0.000431

2 I2 1.75 19 I19 0.0003
3 I3 1.38 20 I20 −0.000202

4 I4 0.69 21 I21 −0.0001

5 I5 0.372 22 I22 −0.000058
6 I6 333 23 I23 0.00004

7 I7 298 24 Im1 1.14

8 I8 −0.134 25 Im2 4.71
9 I9 0.0238 26 Im3 0.827

10 I10 −0.0213 27 Im4 0.2

11 I11 −0.0142 28 Im5 0.179
12 I12 −0.011 29 Im6 0.193

13 I13 −0.00379 30 g1 −37.2

14 I14 0.00164 31 g2 −8.44
15 I15 0.00125 32 g3 1.02

16 I16 0.00124 33 g4 0.249

17 I17 0.000642 34 g5 −0.0282

Table 2. PUMA 560 arm DH parameters
Link i qi αi ai di

1 q1 -90 0 0
2 q2 0 0.4318 0.14909
3 q3 90 0.0203 0
4 q4 -90 0 0.43307

The PUMA 560 robotic arm has six axes, but the last three axes form only a spherical wrist as seen in
Figure 2. The control results are provided when the last three axes (q4, q5, q6) of the robotic arm are locked,
and thus results corresponding to the first three axes (q1, q2, q3) are provided. The torque constraints of the
PUMA 560 robot are taken into consideration in joint-space and task-space control designs, which are given
by |τ1| ⩽ 97.6, |τ2| ⩽ 186.4, |τ3| ⩽ 89.4, |τ4| ⩽ 24.2, |τ5| ⩽ 20.1 and |τ6| ⩽ 21.3 Nm. In numerical studies,
the contributions from measurement noise and load disturbances are considered. It is assumed that the angular
position and angular velocity measurements are exposed to normally distributed measurement noise with a
mean of µ = 0 and a standard deviation of σ(q) = 0.172 deg (or ±0.5 deg in magnitude) and σ(q̇) = 0.5 deg/s
(or ±1.43 deg/s in magnitude). Step load disturbances with τl = 10 Nm magnitude (around 10% of the first
three joint torque limits) are added to system torque inputs at t = 5 s for evaluating load disturbance rejection
performances of the controllers.

Figure 2. Schematic diagram of the PUMA 560 robotic manipulator
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3.1. Joint-space control results
Joint-space control results are provided in Figure 3 to Figure 8 for both PD plus gravity and the

proposed model-free integral SMC controllers. The control gains are selected such that controllers provide
non-overshoot responses and take into account the torque constraints of the PUMA 560 robotic manipulator.
The PD plus gravity controller gain matrices are taken as Kp = 500 I3 and Kd = 100 I3 where I3 ∈ R3×3 is
the identity matrix. The model-free integral SMC controller gain matrices are chosen as K0 = 60 I3, K1 = 50
I3, K2 = 200 I3, K = 5 I3 and α = 0.5. It should be noted that the discontinuous function of the controller is
approximated as sgn(si) ≈ sat(si/5) in the implementations to avoid possible chattering in the torque control
inputs. The control parameters are selected such that both controllers can have very close performances for
comparison targets.

Performances of the controllers for constant references, qd = (π/4, π/2,−π/4), are illustrated in
Figures 3 to 5. Figure 3 shows that both controllers have non-overshoot transient responses and reach the
steady-state conditions in less than 0.5 s with zero steady-state error under no-load conditions. Figure 4 shows
the torque control signals of the controllers, in which both controllers produce almost the same torque inputs.
Load disturbance rejection performances of the controllers are assessed for a step load τl = 10 Nm (less
than 10% of the joint torque limits) added to system torque inputs at t = 5 s as seen in Figure 4. Under the
load disturbance, Figure 5 shows that the model-free integral SMC controller quickly eliminates the effects of
the load disturbance and provides zero steady-state errors. However, the PD plus gravity controller provides
an erroneous performance under load disturbance. Hence, the proposed model-free integral SMC controller
provides robustness to the robotic manipulator control against load disturbances.

Figure 6 shows the disturbance estimation performance of the controller. The integral term τ0 of
the controller acts as an adaptive controller and compensates for the static system terms and disturbances.
Under no-load conditions, it is seen in the figure that the integral control components approach to the gravity
components, τ01 → G1, τ02 → G2, and τ03 → G3. When a step load τl = 10 Nm is added to system torque
inputs at t = 5 s, the integral control components approach to the total values of static terms, i.e., τ01 →
G1 + τl1, τ02 → G2 + τl2, and τ03 → G3 + τl3. The gain matrix K2 determines the disturbance compensation
speed of the controller, i.e., the larger the gain, the faster convergence is observed, but an oscillation in the robot
trajectory can be seen with large integral control gain values. Hence, there is a trade-off between controller
performance and disturbance rejection response speed.

 

 

 

 

PD plus gravity controller

Model-free integral SMC controller

Figure 3. Constant reference tracking control performances for joint positions and velocities under τl = 10
Nm load torque
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PD plus gravity controller Model-free integral SMC controller

Figure 4. Control torque signals for each joint for constant references

 

PD plus gravity controller Model-free integral SMC controller

Figure 5. Constant reference tracking errors under τl = 10 Nm load torques

Figure 6. Disturbance estimation with an integral term of the model-free integral SMC controller

Figures 7 to 9 show the performances of the controllers for sinusoidal reference signals. Figure 7
displays non-overshoot transient responses and less than 0.5 s settling time with zero steady-state error in joint
positions and velocities for both controllers under no-load disturbances. When a step load τl = 10 Nm is added
to system torque inputs at t = 5 s as seen in Figure 8, the PD plus gravity controller provides a constant steady-
state error. On the other hand, the proposed model-free integral SMC controller quickly recovers the effects of
load disturbances. The load disturbance rejection performances of the controllers can easily be seen in Figure
9. The phase-plane portraits (x vs y) are plotted when a step load τl = 10 Nm is added to system torque inputs
at t = 0 s as seen in Figure 9. It is clear that there is an offset error for the PD plus gravity controller. Similar
to the constant reference case, the model-free integral SMC controller rejects the load disturbance and provides
zero steady-state error and robustness to the robotic manipulator.
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PD plus gravity controller

Model-free integral SMC controller

Figure 7. Sinusoidal reference tracking control performances for joint positions and velocities under τl = 10
Nm load torque

 

PD plus gravity controller Model-free integral SMC controller

Figure 8. Control torque signals for each joint for sinusoidal references

 

 

 

 

PD plus gravity controller

Model-free integral SMC controller

Figure 9. Sinusoidal reference tracking errors under τl = 10 Nm load torques
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3.2. Task-space control results
For task-space control design, the forward kinematics and its Jacobian matrix are needed as seen in

Figure 1. Forward kinematics of the PUMA 560 robot obtained from the DH parameters given in Table 2 when
the last three axes (q4, q5, q6) are locked is given by (25):

x = C1(a2C2 + a3C23 + d4S23)− d2S1

y = S1(a2C2 + a3C23 + d4S23) + d2C1

z = a2S2 + a3S23 − d4C23

(25)

where S1 is used for sin(q1), C1 is used for cos(q1), S23 is used for sin(q2+q3), and C23 is used for cos(q2+q3).
The robot parameters are d2 = 0.1491, d4 = 0.4331, a2 = 0.4318 and a3 = 0.0203. The Jacobian matrix of
the robot is obtained as J = [jij ] ∈ R3×3 with (26).

j11 = −S1(a2C2 + a3C23 + d4S23)− d2C1

j12 = C1(−a2S2 − a3S23 + d4C23)

j13 = C1(−a3S23 + d4C23)

j21 = C1(a2C2 + a3C23 + d4S23)− d2S1

j22 = S1(−a2S2 − a3S23 + d4C23)

j23 = S1(−a3S23 + d4C23)

j31 = 0, j32 = d4S23 + a3C23 + a2C2

j33 = d4S23 + a3C23

(26)

Task-space control results for the PUMA 560 robotic manipulator are shown in Figures 10 to 12 for both PD
plus gravity and the proposed model-free ISMC controllers. The PD plus gravity controller gain matrices
are taken as Kp = 5000I3 and Kd = 1000I3 where I3 ∈ R3×3 is the identity matrix. The model-free
ISMC controller gain matrices are chosen as K0 = 600I3, K1 = 500I3, K2 = 2000I3, K = 5I3 and
α = 0.5. To eliminate possible chattering in the torque control inputs, the signum function is approximated
as sgn(si) ≈ sat(si/5) in the control implementations. Again, as in joint-space control designs, the control
parameters are selected such that both controllers can have very close performances for comparison goals. In
addition, non-overshoot responses for both controllers are targeted.

 

 

 

 

PD plus gravity controller

Model-free integral SMC controller

Figure 10. Task-space tracking control performances for joint positions and velocities under τl = 10 Nm load
torque
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Task-space references are taken as xd(t) = 0.25+0.1 sin(t), yd(t) = 0.25+0.1 cos(t) and zd(t) = 0.
Figure 10 displays task-space tracking control performances for joint positions and velocities under τl = 10
Nm load torque applied at t = 5 s. It is obvious that both controllers have non-overshoot transient responses and
reach the steady-state conditions in less than 0.5 s for both position and velocity reference signals. Figure 11
shows that both controllers produce almost the same torque control signals. Under the load torque disturbances,
Figure 12 clearly shows that the model-free integral SMC controller quickly rejects the load disturbance effects
and provides a zero steady-state error. However, the PD plus gravity controller is not able to eliminate the load
disturbance completely. Similar to the joint space control application results, the proposed model-free integral
SMC controller provides robust and highly satisfactory trajectory tracking performance in task-space control
of the PUMA 560 robotic arm.

 

PD plus gravity controller Model-free integral SMC controller

Figure 11. Task-space control torque signals for each joint

 

 

 

 

PD plus gravity controller

Model-free integral SMC controller

Figure 12. Task-space tracking errors under τl = 10 Nm load torques

4. CONCLUSION
A model-free continuous integral sliding mode control approach is proposed for controlling robotic

manipulators for providing robust and high control performances. The integral term of the controller has the
working principle of adaptive control and dynamically eliminates the effects of static terms such as gravity
terms and load disturbances. The controller is completely model-free and utilizes the robustness feature of the
sliding mode control for the global stabilization of robotic manipulators. The proposed controller is designed
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for both joint-space control and task-space control implementations. The performance of the controller is
illustrated on the PUMA 560 robotic manipulator and compared with the performance of the PD plus gravity
control approach. The numerical results show that the model-free control method is capable of providing a
non-overshoot response, fast settling time, zero steady-state error under load disturbance and measurement
noise, and is robust under bounded uncertainties.
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