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Abstract. This computational study investigates a class of singularly perturbed
second-order boundary-value problems having dual (twin) boundary layers and simple
turning points. It is well-known that the classical discretization methods fail to resolve
sharp gradients arising in solving singularly perturbed differential equations as the
perturbation (diffusion) parameter decreases, i.e., ε → 0+. To this end, this paper
proposes a semi-analytic hybrid method consisting of a numerical procedure based
on finite differences and an asymptotic method called the Successive Complementary
Expansion Method (SCEM) to approximate the solution of such problems. Two
numerical experiments are provided to demonstrate the method’s implementation and
to evaluate its computational performance. Several comparisons with the numerical
results existing in the literature are also made. The numerical observations reveal
that the hybrid method leads to good solution profiles and achieves this in only a few
iterations.
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1 Introduction

Differential equations in which the highest-order derivative term(s) are con-
trolled by (a) small positive parameter(s), 0 < ε ≪ 1, are called singularly per-
turbed differential equations (SPDEs). As the perturbation parameter tends to
zero, i.e., ε → 0+, the solution of the problem exhibits rapid changes because
the order of the differential equation decreases. The thin region resulting from
the existence of the small parameter is called the inner region or boundary
layer. The region where the solution exhibits mild changes is called the outer
region [10].

One encounters singularly perturbed problems frequently in natural and
engineering sciences, such as power systems [36], electromagnetics [5], fluid
mechanics [6, 9], quantum field theory [8], celestial mechanics [29], chemical
kinetics [38], financial mathematics [12], etc. In studies by Kumar and Mit-
tal [25] and by Kadalbajoo and Gupta [20], the classical methods used for
solving singularly perturbed problems are analyzed in detail. One can also
refer to the excellent books by Cousteix and Mauss [10], Hinch [15], Kevorkian
and Cole [22], Verhulst [39], and Nayfeh [33] for more on the theoretical and
applied considerations regarding SPDEs.

Numerous studies are available in the literature based on various numerical
methods and techniques for solving singularly perturbed boundary-value prob-
lems with a turning point, such as the finite elements [37], finite differences [40],
collocation methods [1, 30], reproducing kernel methods [13], and initial value
techniques [39]. For a detailed review of the asymptotic and numerical methods
developed in four decades (1970–2011) for solving singularly perturbed turn-
ing point and interior-layer problems, the interested readers are referred to the
study by Sharma et al. [35].

A brief literature review is provided in the following lines and paragraphs.
An exponentially fitted first-order scheme is constructed by Vulanovic and Far-
rell [40] for solving dual-layer problems in the following form

εy′′ (x) + xka (x) y′ (x)− b(x)y(x) = f(x), x ∈ [s, 1] ,

with suitable Dirichlet boundary conditions, where k ∈ N, s = −1 or s = 0.
Here, and in the remaining part of this study, unless otherwise stated, the terms
y′ and y′′ denote the first- and second-order spatial derivatives with respect to
x, respectively.

The SPDEs in the form of

εy′′ (x) + a (x) y′ (x)− b(x)y(x) = f(x), x ∈ [−1, 1] , (1.1)

with suitable Dirichlet boundary conditions were studied by Natesan and Ra-
manujam [32]. They proposed a numerical method combining exponentially-
fitted differences with classical numerical methods. For solving problems having
the form of Equation (1.1), Natesan and Ramanujam [31] used an initial-value
technique originally developed for solving non-turning point problems. A nu-
merical method based on cubic splines was employed on a non-uniform mesh by
Kadalbajoo and Patidar [19] for solving SPDEs in the form of Equation (1.1).
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In [30], the authors proposed a finite difference scheme for solving turning point
problems on a piecewise uniform Shishkin mesh.

Kadalbajoo and Gupta [18] proposed a parameter-uniform B-spline colloca-
tion method for solving Equation (1.1). Kadalbajoo et al. [17] considered prob-
lem (1.1) by proposing a B-spline collocation method with artificial (numerical)
viscosity. A reproducing kernel method was employed for solving Equation (1.1)
by Geng and Qian [13]. Munyakazi and Patidar developed a fitted-mesh finite
difference method with Richardson extrapolation in [28]. For solving Equa-
tion (1.1), a fitted-operator scheme was constructed by Phaneendra et al. in [34]
using nonsymmetric finite differences for the first-order derivatives. Becher
and Roos employed a finite difference scheme with Richardson extrapolation
for solving the model problem on a piecewise-uniform Shishkin mesh [2]. Ku-
mar [24] proposed a parameter-uniform B-spline collocation method for solving
one-dimensional stationary turning point problems exhibiting interior layers.

In this paper, we develop an efficient and straightforward hybrid method for
solving problems in the form of Equation (1.1). This hybrid method consists of
an asymptotic method introduced in [27] and a numerical method based on a
sixth-order finite-difference scheme with a four-stage Lobatto IIIa formula [23].
We modify the Successive Complementary Expansion Method (SCEM) em-
ployed for solving several types of SPDEs before (see [7] and the references
therein) for solving dual-layer problems. In order to apply the method, we
first divide the problem domain (interval) into an appropriate number of sub-
intervals and then utilize a stretching (local) variable transformation. Later, we
employ the numerical procedure for solving the initial/boundary-value prob-
lems arising from the SCEM process.

In this present method, there is no need for any matching procedure as
opposed to the well-known classical approach called the Method of Matched
Asymptotic Expansions. Beyond that, the SCEM yields approximations that
satisfy the boundary conditions exactly but not asymptotically. For more on
the SCEM, the interested readers are referred to [6, 9]. On the other hand,
one can refer to the materials in [4,26] for further details on asymptotic series,
expansions, and approximations.

In the next section, we review the singularly perturbed turning point prob-
lems and give some theorems on the existence and uniqueness of the solutions.
Section 3 contains the necessary definitions for asymptotic approximations and
a description of the hybrid method. In Section 4, we examine two test examples
in detail to show the implementation of the hybrid method. Finally, in the last
section, some comments on the results are made, and possible future works are
discussed.

2 Singularly perturbed turning point problems

Consider the following singularly perturbed second-order ordinary differential
equation:

εy′′(x) + a(x)y′(x)− b(x)y(x) = f(x), x ∈ Ω = (−1, 1), (2.1)
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where 0 < ε ≪ 1 is a positive small parameter. The Dirichlet boundary
conditions associated with Equation (2.1) are given as follows:

y(−1) = α, y(1) = β, (2.2)

where α, β ∈ R. The functions a(x), b(x), and f(x) are assumed to be suf-
ficiently smooth. The points satisfying the condition a(x) = 0 are called the
turning points of Equation (2.1). In this paper, we assume that Equation (2.1)
has only one turning point, x0, and call it the simple turning point.

The behavior of the solution, y(x), near the turning point, i.e., x = x0,
depends both on ε and the parameter γ, which is defined as [17]:

γ = b(x0)/a
′(x0).

If γ < 0, then the solution of Equations (2.1)–(2.2) is smooth near the turning
point x0, and if γ ⩾ 0, then there is an interior layer, where the solution exhibits
rapid changes around it. In the following parts of this study, we only consider
the case γ < 0, i.e., it is assumed that the solution to Equations (2.1)–(2.2)
does not possess interior-layer(s).

Certain assumptions should be made on the boundary-value problem given
by (2.1)–(2.2) so that it has unique solution having dual boundary layers of
exponential type at the endpoints of the closure of the domain Ω = (−1, 1),
Ω = [−1, 1]:

� a(x0) = 0, a′(x0) ⩽ 0 (the problem has a turning point at x = x0, no
interior-layer),

� |a(x)| ⩾ a0 > 0, 0 < δ ⩽ |x| ⩽ 1 for some δ,

� b(x) ⩾ b0 > 0, ∀x ∈ Ω (the maximum principle),

� |a′(x)| ⩾ |a′(x0)|
2 , ∀x ∈ Ω (uniqueness of the turning point at x = x0).

We divide the interval into four sub-intervals as follows:

Ω−1−= [−1,−δ/2] , Ω−1+= [−δ/2, 0] , Ω1−= [0, δ/2] , Ω1+= [δ/2, 1] ,

where Ω = Ω−1− ∪ Ω−1+ ∪ Ω1− ∪ Ω1+ . Since the symmetry property of the
turning point problems considered in this study leads to symmetric approxi-
mations (and naturally to symmetric errors) under the following theorems and
lemmas, we only consider sub-intervals Ω−1− ∪Ω−1+ .

Remark 1. The reason we divide the interval into four parts (intervals) is that
the model problem given by Equations (2.1)–(2.2) has a single (simple) turning
point and behaves symmetrically over the intervals on either side of that point.
Therefore, the closure of the problem domain, Ω, is divided into two sub-
intervals yielding a boundary value problem for each interval.

Lemma 1 [Minimum Principle]. Let y(x) ∈ C2(Ω) with y(−1) ⩾ 0, and
y(1) ⩾ 0 such that Ly(x) ⩽ 0, ∀x ∈ Ω. Under these conditions, y(x) ⩾ 0,
∀x ∈ Ω.

Math. Model. Anal., 28(1):102–117, 2023.
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Proof. In contrast, let us assume that for some x̂ ∈ Ω, y(x̂) = min
x∈Ω

y(x) < 0.

It means that y′(x̂) = 0 and y′′(x̂) ⩾ 0; thus, one finds

Ly(x̂) = εy′′(x̂) + a(x̂)y′(x̂)− b(x̂)y(x̂) > 0,

which is a contradiction. As a result, one can obtain y(x) ⩾ 0, ∀x ∈ Ω. ⊓⊔

Lemma 2. If y(x) is the solution to the problem (2.1)–(2.2), then there exists
a constant C ∈ R+ such that:

|y| ⩽ C [max {|a|, |b|}+ |f |/b0] , ∀x ∈ Ω,

where |g| = max
x∈Ω

|g(x)|.

A proof for Lemma 2 can be found in [24].
The following theorem states that the solution y(x) is smooth away from

the endpoints of the problem domain and the near vicinity of the turning point
x = x0.

Theorem 1. Let y(x) be the solution to the problem (2.1)–(2.2), and a(x),
b(x), and f(x) belong to the set Cm(Ω), m ⩾ 0, then the bounds

|y(i)(x)| ⩽ C

[
1 + ε−i exp

(
−a0

x+ 1

ε

)]
, i = 1, 2, . . . ,m,m+ 1, x ∈ Ω−1− ,

|y(i)(x)| ⩽ C

[
1 + ε−i exp

(
−a0

1− x

ε

)]
, i = 1, 2, . . . ,m,m+ 1, x ∈ Ω1+

are valid for any δ > 0. Here, a0 and C are positive real constants independent
of ε and x.

For the proof of Theorem 1, the interested readers are referred to [21].

Theorem 2. Let γ = b(x0)
a′(x0)

< 0 and y(x) be the solution to the problem (2.1)–

(2.2) satisfying the existence and uniqueness conditions given above. If a(x),
b(x), f(x) ∈ Cm(Ω) and m ≥ 0, then

|y(i)(x)| ⩽ C, i = 1, 2, . . . ,m, ∀x ∈ Ω−1+ ∪Ω1−

for sufficiently small δ > 0.

For the proof of Theorem 2, the interested readers are referred to [3].
The theory mentioned above also works for the following singularly per-

turbed turning point boundary-value problems for which the solution exhibits
dual boundary layers:

Lu(x) ≡ εu′′(x) + a(x)u′(x)− b(x)u(x) = f(x), 0 < x < 1, (2.3)

subject to the Dirichlet boundary conditions given as

u(0) = α, u(1) = β. (2.4)

The theoretical considerations given for problem (2.3)–(2.4) can be obtained in
the same manner as shown for problem (2.1)–(2.2). Under the above-mentioned
theoretical considerations, we describe the hybrid method in the following sec-
tion.
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3 The semi-analytic hybrid method

The SCEM approximation, in its regular form, can be given as follows [10]:

yscemn (x, x, ε) =

n∑
i=0

δi(ε) [yi(x) + Ψi(x)] ,

where δi (ε) are asymptotic sequences and Ψi(x) are the complementary func-
tions depending on the stretching (zoom) variable x. The functions yi(x) are
the outer approximations which only depend on x. If the functions yi(x) and
Ψi(x) also depend on the perturbation parameter, ε, then the uniformly valid
SCEM approximation is called the generalized SCEM approximation and is
given as follows:

yscemng (x, x, ε) =

n∑
i=0

δi(ε) [yi(x, ε) + Ψi(x, ε)] . (3.1)

If only one-term SCEM approximation is desired, then one seeks a uniformly
valid SCEM approximation in the following form:

yscem0 (x, x, ε) = y0(x, ε) + Ψ0(x, ε). (3.2)

Remark 2. To improve the accuracy of (generalized) SCEM approximations,
Equation (3.2) can be iterated using Equation (3.1) [10]. It means that suc-
cessive complementary terms are added to the approximation given by Equa-
tion (3.2).

Then, in the light of Remark 2, the second SCEM approximation, yscem1 (x, x, ε),
can be given in the following form:

yscem1 (x, x, ε) = y0(x, ε) + Ψ0(x, ε) + ε (y1(x, ε) + Ψ1(x, ε)) .

Cousteix and Mauss [10] established some error estimates for the first and
second SCEM approximations as |y − yscem0 | < εK0 and |y − yscem1 | < ε2K1,
respectively, where K0 and K1 are positive constants independent of ε. As a
consequence, the SCEM yields uniformly valid approximations [9, 11].

Remark 3. Although the number of iterations can be increased until the desired
precision is achieved depending on the perturbation parameter, the first two
SCEM approximations appear to yield quite good solution profiles and are
adopted in this study (see also [7]).

The second complement (numerical part) of the hybrid method is from
the well-known family of numerical methods for solving differential equations,
the so-called Runge–Kutta (R–K) methods. This numerical complement is
employed for solving the ordinary differential equations (ODEs) for comple-
mentary functions arising from the SCEM process. Some basic definitions are
given in the following lines.

Math. Model. Anal., 28(1):102–117, 2023.
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Definition 1. Let bi, aij ∈ R and ci =
i−1∑
j=1

aij with i = 2, 3, . . . , s. An s-stage

R–K method is given as follows:

u1 = u0 + h

s∑
i=1

biki, (3.3)

where

ki = f
(
x0 + cih, u0 + h

s−1∑
j=1

aijkj

)
. (3.4)

Remark 4. Notice that the terms y(x0) = u0 given in (3.3)–(3.4) refers to the
initial condition associated with the differential equation under consideration.
The point x0 should not be confused with the turning point, here.

Definition 2. Let c1, c2, . . . , cs ∈ R, and they all be distinct (generally 0 ⩽
ci ⩽ 1). The collocation polynomial y(x) of degree s is a polynomial satisfying
the following properties:

y(x0) = u0, y′(x0 + cih) = f (x0 + cih, u (x0 + cih)) ,

for i = 1, 2, . . . , s, and the numerical solution of the collocation method is given
as u1 = y (x0 + h).

The node-points are the zeros of the following equation:

ds−2

dxs−2

(
xs−1 (1− x)

s−1
)
= 0

and the order of the quadrature is p = 2s − 2. The corresponding collocation
methods are called the Lobatto IIIa methods for historical reasons [14]. For
s = 2, one reaches the well-known implicit trapezoidal rule. The interested
readers are referred to the material in [14,16] for further details.

In summary, we employ a combination of the methods above in our compu-
tations: an efficient and straightforward hybrid method consisting of an asymp-
totic approach, the so-called SCEM [27], and a numerical method based on a
sixth-order finite-difference scheme with a four-stage Lobatto IIIa formula [23].

4 Test computations

In this part of the study, two numerical experiments are given to illustrate the
implementation and show the computational characteristics of the proposed
method on homogeneous and non-homogeneous dual-layer problems with sim-
ple turning points. All computations are performed in Matlab environment.

4.1 A homogeneous problem

Consider the following singularly perturbed homogeneous turning point prob-
lem [26,32]:

εy′′(x)− 2(2x− 1)y′(x)− 4y(x) = 0, x ∈ Ω = (0, 1) (4.1)
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with Dirichlet boundary conditions

y(0) = 1, y(1) = 1. (4.2)

The exact solution to the problem is available and given as follows:

y(x) = exp (−2x(1− x)/ε) .

The problem has a simple turning point at x0 = 1
2 , and the solution to the

problem exhibits dual boundary layers at both endpoints of the interval Ω =
(0, 1). Let us divide the closure of interval Ω as

Ω0− =

[
0,

1− δ

2

]
, Ω0+ =

[
1− δ

2
,
1

2

]
, Ω1− =

[
1

2
,
1 + δ

2

]
, Ω1+ =

[
1 + δ

2
, 1

]
.

We start with assuming that the outer approximation is in the following
form:

yout(x, ε) = y0(x, ε) + εy1(x, ε) (4.3)

for the interval Ω0+ =
[
1−δ
2 , 1

2

]
. Substituting(4.3) into (4.1), one obtains

ε (y′′0 (x, ε) + εy′′1 (x, ε))− 2 (2x− 1) (y′0 (x, ε) + εy′1(x, ε))

− 4 (y0 (x, ε) + εy1(x, ε)) = 0.

Balancing the terms of orders O(1) and O(ε), we obtain the following initial-
value problems:

− 2 (2x− 1) y′0 (x, ε)− 4y0 (x, ε) = 0, y0 (ε/2) = 0,

y′′0 (x, ε)− 2 (2x− 1) y′1(x, ε)− 4y1(x, ε) = 0, y1 (ε/2) = 0,

and the solutions are easily obtained as

y0 (x, ε) ≡ y1 (x, ε) ≡ 0.

Then, the first SCEM approximation is sought as

ysceml
0 (x, x, ε) = 0 + Ψ0 (x, ε) = Ψ0 (x, ε) ,

where the boundary conditions are given as follows:

ysceml
0 (0, 0, ε) = 1, ysceml

0

(
1

2
,
1

2ε
, ε

)
= 0.

Here, the stretching variable, x, is defined as x = x
ε for the left boundary layer.

The term ysceml
0 denotes the first SCEM approximation found for the left part

of interval [0, 1]. One can reach the boundary conditions for the complementary
functions as follows:

Ψ (0, ε) = 1, Ψ

(
1

2ε
, ε

)
= 0.

In order to obtain the complementary functions, let us propose the following
expansion for interval Ω0− =

[
0, 1−δ

2

]
:

Ψ (x, ε) = Ψ0 (x, ε) + εΨ1 (x, ε) . (4.4)

Math. Model. Anal., 28(1):102–117, 2023.
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Substituting Equation (4.4) into (4.1) and using the chain rule, i.e.,

d

dx
=
dx

dx

d

dx
=

1

ε

d

dx
, (4.5)

d2

dx2
=

d

dx

d

dx
=

1

ε2
d2

dx2 , (4.6)

and balancing the terms of orders O(1) and O(ε), we obtain the following
boundary-value problems:

Ψ ′′
0 (x, ε)− 2(2x− 1)Ψ ′

0 (x, ε) = 0,

Ψ0 (0, ε) = 1 and Ψ0 (ε/2, ε) = 0,

and

Ψ ′′
1 (x, ε)− 2(2x− 1)Ψ ′

1 (x, ε)− 4Ψ0 (x, ε) = 0,

Ψ1 (0, ε) = 0 and Ψ1 (ε/2, ε) = 0.

Consequently, since y0 (x, ε) ≡ y1 (x, ε) ≡ 0, we find the first two iterations of
the uniformly valid SCEM approximation using the following expression:

ysceml
1 (x, x, ε) = Ψ0 (x, ε) + εΨ1 (x, ε) .

By adopting a stretching variable of the form x̃ = (x− 1)/δ (ε), we can follow
a similar to that used for the left symmetric interval to obtain yscemr, where
δ (ε) is an order function, typically, δ (ε) = ε.

Figure 1. Comparison of the analytical solution and SCEM approximations in solving
left symmetric problem for Equations (4.1)–(4.2); ε = 0.01. The exact solution and SCEM

approximations are almost identical.

In Figure 1, the exact solution and the SCEM approximations are shown.
The difference in the results is almost indistinguishable.

Figure 2 shows the absolute errors in the SCEM approximations for ε =
10−2. The two-term SCEM approximation is clearly better than the one with
one term.

In Tables 1 and 2, the results are compared for ε = 10−3 and ε = 10−4,
respectively. Notice that only the half interval

[
0, 1

2

]
is considered since the
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Figure 2. Absolute errors in SCEM approximations ysceml
0 and ysceml

1 in solving left
homogeneous problem (4.1)–(4.2); ε = 0.01. The second SCEM approximations is slightly

better, as expected.

Table 1. Comparison of the analytical solutions and SCEM approximations for solving
Equations (4.1)–(4.2); ε = 0.001.

x Exact yscem0 yscem1 Error in yscem1 Error [32]

0.0000 1.00000000 1.00000000 1.00000000 0.00000000 0.00000000
0.0001 0.81874713 0.81891126 0.81874700 1.23544e− 7 5.46502e− 7
0.0003 0.54891043 0.54924068 0.54891013 2.96916e− 7 1.09895e− 6
0.0005 0.36806343 0.36843265 0.36806306 3.66251e− 7 1.22790e− 6
0.0007 0.24683875 0.24718555 0.24683839 3.57688e− 7 1.15264e− 6
0.0009 0.16556689 0.16586609 0.16556659 3.04402e− 7 9.93833e− 7
0.0010 0.13560622 0.13587857 0.13560595 2.69712e− 7 9.04345e− 7
0.0030 0.00252377 0.00253904 0.00252381 3.57799e− 8 5.03922e− 8
0.0050 0.00004773 0.00004821 0.00004773 5.26713e− 9 1.58514e− 9
0.0070 0.00000092 0.00000093 0.00000092 3.18869e− 10 4.25595e− 11
0.0090 0.00000002 0.00000002 0.00000002 1.39981e− 11 1.06632e− 12
0.0100 0.00000000 0.00000000 0.00000000 2.73735e− 12 1.66385e− 13
0.5000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

errors are the same (symmetric) for the other half interval
[
1
2 , 1

]
. Besides that,

it is seen in these tables that the boundary conditions are exactly satisfied.
It is observed from the tables that the absolute errors in the two-term

SCEM approximations are smaller than those reported in [32], particularly for
the points where boundary layers occur. Around the turning point, even if the
current results show similar trends to those obtained in [32], the results of [32]
are slightly better in terms of absolute errors.

4.2 A non-homogeneous problem

Consider the following singularly perturbed non-homogeneous turning point
problem [32]:

εy′′(x)− 2(2x− 1)y′(x)− 4y(x) = 4 (4x− 1) , x ∈ Ω = (0, 1) (4.7)

Math. Model. Anal., 28(1):102–117, 2023.
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Table 2. Comparison of the analytical solutions and SCEM approximations for solving
Equations (4.1)–(4.2); ε = 0.0001.

x Exact yscem0 yscem1 Error in yscem1 Error [32]

0.00000 1.00000000 1.00000000 1.00000000 0.00000000 0.00000000
0.00001 0.81873239 0.81874879 0.81873242 2.45926e− 8 5.45561e− 8
0.00003 0.54882151 0.54885450 0.54882157 5.02838e− 8 1.09710e− 7
0.00005 0.36789784 0.36793469 0.36789789 5.73031e− 8 1.22569e− 7
0.00007 0.24662113 0.24665572 0.24662119 5.50188e− 8 1.15028e− 7
0.00009 0.16532567 0.16535548 0.16532572 4.86479e− 8 9.91402e− 8
0.00010 0.13536235 0.13538947 0.13536240 4.48692e− 8 9.01905e− 8
0.00030 0.00248322 0.00248471 0.00248322 3.56050e− 9 4.96264e− 9
0.00050 0.00004563 0.00004567 0.00004563 1.66720e− 10 1.51945e− 10
0.00070 0.00000084 0.00000084 0.00000084 6.40360e− 12 3.91413e− 12
0.00090 0.00000002 0.00000002 0.00000002 2.15862e− 13 9.27455e− 14
0.00100 0.00000000 0.00000000 0.00000000 3.76910e− 14 1.39978e− 14
0.5000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

with Dirichlet boundary conditions

y(0) = 1, y(1) = 1. (4.8)

The exact solution to the problem is available and given as follows:

y(x) = −2x+

[
erf

(
(2x− 1)/

√
2ε
)

erf
(
1/
√
2ε
) + 2

]
exp

(
−2x(1− x)

ε

)
,

where erf(x) denotes the error function.
The problem has a simple turning point at x0 = 1

2 , and the solution to the
problem exhibits dual boundary layers at both endpoints of the interval Ω =
(0, 1) . Let us divide the closure of interval Ω as

Ω0− =

[
0,

1− δ

2

]
, Ω0+ =

[
1− δ

2
,
1

2

]
, Ω1− =

[
1

2
,
1 + δ

2

]
, Ω1+ =

[
1 + δ

2
, 1

]
.

Substituting (4.3) into Equation (4.7) for Ω0+ , one obtains

ε (y′′0 (x, ε) + εy′′1 (x, ε))− 2 (2x− 1) (y′0 (x, ε) + εy′1(x, ε))

− 4 (y0 (x, ε) + εy1(x, ε)) = 4(4x− 1).

Balancing the terms of orders O(1) and O(ε), we obtain the following initial-
value problems:

− 2 (2x− 1) y′0 (x, ε)− 4y0 (x, ε) = 4(4x− 1), y0 (0.5, ε) = −1,

y′′0 (x, ε)− 2 (2x− 1) y′1(x, ε)− 4y1(x, ε) = 0, y1 (0.5, ε) = 0,

and the solutions are easily obtained as

y0 (x, ε) = −2x, y1 (x, ε) ≡ 0.
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The first SCEM approximation is sought as

ysceml
0 (x, x, ε) = −2x+ Ψ0 (x, ε) ,

where the boundary conditions are prescribed as

ysceml
0 (0, 0, ε) = 1, ysceml

0 (1/2, 1/2ε, ε) = −1.

Here, the stretching variable, x, is defined as x = x
ε for the left boundary

layer. The term ysceml
0 denotes the first SCEM approximation found for the

left part of interval [0.0, 1.0]. One can reach the boundary conditions for the
complementary functions as follows: Ψ (x = 0, ε) = 1, Ψ (x = 1/2ε, ε) = 0.

In order to obtain the complementary functions, let us propose the asymp-
totic expansion given by (4.4) for interval Ω0− =

[
0, 1−δ

2

]
. Substituting (4.4)

into Equation (4.7) and employing the chain rule (see Equations (4.5)–(4.6)),
one can obtain

(Ψ ′′
0 (x, ε) + εΨ ′′

1 (x, ε))− 2(2x− 1) (Ψ ′
0 (x, ε) + εΨ ′

1 (x, ε))

− 4ε (Ψ0 (x, ε) + εΨ1 (x, ε)) = 4ε(4x− 1). (4.9)

Balancing the terms of orders O(1) and O(ε), we obtain the following boundary-
value problems:

Ψ ′′
0 (x, ε)− 2(2x− 1)Ψ ′

0 (x, ε) = 0,

Ψ0 (0, ε) = 1 and Ψ0 (1/2ε, ε) = 0,

and

Ψ ′′
1 (x, ε)− 2(2x− 1)Ψ ′

1 (x, ε)− 4Ψ0 (x, ε) = 4(4x− 1),

Ψ1 (0, ε) = 0 and Ψ1 (1/2ε, ε) = 0.

Consequently, since y0 (x, ε) = −2x and y1 (x, ε) ≡ 0, we compute the first two
iterations of the uniformly valid SCEM approximation as follows:

ysceml
1 (x, x, ε) = −2x+ Ψ0 (x, ε) + εΨ1 (x, ε) .

In Figure 3, the exact solution and the SCEM approximations are compared
for ε = 10−2. The difference in the numerical solutions is almost indistinguish-
able. Figure 4 shows the absolute errors in the SCEM approximations for
ε = 10−2. The two-term SCEM approximation is clearly better than the one
with one term.

In Table 3, the results are compared for ε = 10−3. Note that only the half
interval

[
0, 1

2

]
is considered because the errors are the same (symmetric) for the

other half
[
1
2 , 1

]
. Furthermore, it is obvious from Table 3 that the boundary

conditions hold exactly.

Math. Model. Anal., 28(1):102–117, 2023.
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Figure 3. Comparison of the analytical solution and SCEM approximations in solving
left symmetric problem for Equations (4.7)–(4.8); ε = 0.01. The analytical solution and

SCEM approximations are almost identical.

Figure 4. Absolute errors in SCEM approximations ysceml
0 and ysceml

1 around the
boundary layer in solving non-homogeneous problem (4.7)–(4.8); ε = 0.01. The second

SCEM approximation is superior over the first one.

Table 3. Comparison of the analytical solutions and SCEM approximations for solving
Equations (4.7)–(4.8); ε = 0.001.

x Exact yscem0 yscem1 Error in yscem1 Error [32]

0.0000 1.00000000 1.00000000 1.00000000 0.00000000 0.00000000
0.0001 0.81854713 0.81871126 0.81854700 1.23651e− 7 1.69213e− 5
0.0003 0.54831043 0.54864068 0.54831013 2.97120e− 7 9.98939e− 5
0.0005 0.36706343 0.36743265 0.36706306 3.66469e− 7 1.85214e− 4
0.0007 0.24543875 0.24578555 0.24543839 3.57883e− 7 2.42936e− 4
0.0009 0.16376689 0.16406609 0.16376658 3.04561e− 7 2.68995e− 4
0.0010 0.13360622 0.13387857 0.13360595 2.69853e− 7 2.71846e− 4
0.0030 −0.00347623 −0.00346096 −0.00347619 3.57762e− 8 4.50719e− 5
0.0050 −0.00995227 −0.00995179 −0.00995227 5.26714e− 9 2.32929e− 6
0.0070 −0.01399908 −0.01399907 −0.01399908 3.18873e− 10 8.56591e− 8
0.0090 −0.01799998 −0.01799998 −0.01799998 1.39983e− 11 2.67941e− 9
0.0100 −0.20000000 −0.20000000 −0.20000000 2.73738e− 12 4.56511e− 10
0.5000 −1.00000000 −1.00000000 −1.00000000 0.00000000 0.00000000

5 Conclusions

A hybrid method has been developed to solve singularly perturbed turning
point problems with dual boundary layers with a turning point. In this hybrid
method, the domain of the original problem is split into sub-intervals first, and
the asymptotic approach, SCEM, is employed. Later, a numerical technique is
used to approximate the solution to the problem on these sub-intervals. One
homogeneous and non-homogeneous problem is provided to test the method’s
capabilities.

The proposed method performs slightly better near the boundary layers
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than it does around the turning points for homogeneous problems, according to
the results of the test computations. Regarding the non-homogeneous problem,
the current method yields good approximations for both regions. Consequently,
the present method is numerically efficient and well-suited for singularly per-
turbed dual boundary layers problems with simple turning points.

The hybrid method studied in this work can be modified to solve singu-
larly perturbed turning point problems containing partial or fractional-order
derivatives.
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