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ABSTRACT 

MACHINE LEARNING METHODS FOR DETECTING 

GENETIC AND INFECTIOUS DISEASES 

Yunus Emre IŞIK 

Ph.D. in Electrical and Computer Engineering 

Advisor: Assoc. Prof. Zafer AYDIN 

March 2024 

 

Completion of the whole human genome in the 2003 has led to various advances in 

many fields, particularly in biology, genetics, health sciences, treatment, and 

pharmacology. In the following years, spread of faster and cheaper sequencing 

technologies has enabled us to extract and analyze genetic profiles of individuals digitally. 

Consequently, individual-specific forecasting and personalized treatment and precision 

medicine-, what once seemed like science fiction, have become more and more real. In 

both approaches, one of the crucial steps is identifying the presence of diseases using 

individual-specific genetic data. This thesis aims to comprehensively and comparatively 

evaluate the predictive performance of machine learning methods for Behçet’s disease 

and respiratory infections. Additionally, feature selection methods were employed to 

identify the genetic factors (such as SNPs and genes) associated with disease presence for 

both diseases. Furthermore, the usability of selected features depending on biological 

pathway-driven active subnetworks listed in the literature was analyzed for the prediction 

of Behçet's disease. For the respiratory infection prediction problem, on the other hand, 

the prediction performance of features calculated by single-sample gene set enrichment 

analysis (ssGSEA) was evaluated using different machine learning methods. As the data 

types used in both experiments were different (genome-wide association studies data, 

gene expression profiles), the performance of machine learning approaches on different 

data types was also observed. It is hoped that the findings of both experiments will 

contribute to future machine learning based disease prediction studies. 

 

Keywords: Disease prediction, Machine Learning, Behçet's Disease Prediction, 

Respiratory Infection Prediction, Feature Selection and Representation 
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ÖZET 

GENETİK VE ENFEKSİYON HASTALIKLARININ TESPİTİ 

İÇİN MAKİNE ÖĞRENMESİ YÖNTEMLERİ 

Yunus Emre IŞIK 

Elektrik ve Bilgisayar Mühendisliği Anabilim Dalı Doktora 

Tez Yöneticisi: Doç. Dr. Zafer AYDIN 

Mart 2024 

 

2003 yılında insan genomunun tamamen dizilenebilmesi, başta biyoloji ve genetik 

bilimi olmak üzere sağlık bilim, tedavi ve farmakoloji gibi birçok farklı alanda yeni 

gelişmelerin ortaya çıkmasına neden olmuştur. İlerleyen yıllarda hızlı ve daha ucuz 

dizileme teknolojilerinin yaygınlaşmasıyla bireylerin genetik profillerinin çıkartılarak 

dijital ortamda işlenebilmesi mümkün hale gelmiştir. Böylelikle eski zamanlarda bilim-

kurgu gibi görünen, bireylere özgü tahmin ve tedavi belirlenmesi, başka bir deyişle 

kişileştirilmiş ve hassas tıp yaklaşımı hız kazanmıştır. Her iki yaklaşımda da en önemli 

aşama ise hastalığın bireye özgü genetik veriler kullanılarak belirlenmesidir. Bu tez 

çalışması Behçet hastalığı ve solunum yolu enfeksiyonu olmak üzere iki farklı türde 

hastalık için makine öğrenmesi yöntemlerinin tahmin performansını kapsamlı ve 

karşılaştırmalı olarak değerlendirmeyi amaçlamaktadır. Ayrıca öznitelik seçme 

yöntemleriyle hastalık tahmininde önemli rol oynayan genetik faktörler (SNP, Gene) her 

iki hastalık içinde ayrı ayrı belirlenmeye çalışılmıştır. Bunun yanı sıra Behçet hastalığının 

tahminlenmesinde literatürde yer alan biyolojik yolak temelli aktif-ağlar kullanılarak 

seçilen özniteliklerin kullanılabilirliği analiz edilmiştir. Öte yandan solunum yolu 

enfeksiyon tahmin probleminde ise, örneklem bazında uygulanan gen seti zenginleştirme 

analizi sonrası elde edilen skorların, örneklemlerin temsil edilmesinde ne kadar başarılı 

olduğu makine öğrenmesi kullanılarak ortaya koyulmuştur. Her iki deneyde kullanılan 

veri tipleri de farklı olduğu için (genom çapında ilişkilendirme çalışmaları verisi, gen 

ifadesi profilleri), makine öğrenmesi yaklaşımlarının farklı veri türlerindeki 

performansları da gözlemlenmiştir. Her iki deney sonucunda elde edilen çıktıların makine 

öğrenmesi temelli hastalık tahminleme çalışmalarına katkı sağlayacağı umulmaktadır. 

Anahtar kelimeler: Hastalık tespiti, Makine Öğrenmesi, Behçet Hastalığı Tahmini, 

Solunum Yolu Enfeksiyon Tahmini, Öznitelik Seçimi ve Temsili  
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Chapter 1 

Introduction 

The sequencing of the entire human genome in 2003 as part of the Human Genome 

Project has profoundly altered the perspective on biological science and marked the 

beginning of a new era in genomic research. Although the project lasted more than a 

decade, involved thousands of scientists from many fields, and reached a cost of 3 billion 

dollars, it is priceless in the potential opportunities it holds for human health. The human 

genome is the collection of DNA that exists in every cell of our body. The DNA is 

arranged into structures called chromosomes, and each chromosome contains numerous 

genes. Genes are similar to individual chapters in our entire DNA, and they are 

responsible for everything about us such as height, eye color, and even our susceptibility 

to diseases.  In other words, the genome, and genes' genetic reflection of us makes us 

unique and deduce how our bodies respond to biological influences. Hence sequencing 

of all the human genome has paved the way for a lot of opportunities in biology, medicine 

and healthcare such as understanding biological processes better, determining effective 

treatment strategies, revealing the underlying grounds for genetic differences. Following 

the announcement of the completion of the Human Genome Project, the National Human 

Genome Research Institute (NGHRI) launched a $70 million DNA sequencing 

technology initiative with the goal of a $1,000 cost per human genome in 10 years, and a 

flurry of high-throughput sequencing (HTS) technologies emerged [1]. 

Following years, the rise of next-generation sequencing (NGS) with increasing 

computing power and storage capacity has significantly reduced the cost of genetic 

sequencing. It has also brought about a paradigm shift in genomics research, providing 

unprecedented capabilities for the analysis of DNA and RNA molecules and leading to 

the emergence of new “omics” data [2]. The “omics” data refers to large-scale data 

generated from different-level biological processes such as genomics, transcriptomics, 

proteomics, and metabolomics since these processes provide unique types of information, 

expressed with specific names. For instance, genomics data relates to the DNA sequence 
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of organisms, while transcriptomics indicates expression levels of genes in a particular 

cell or tissue. Proteomics data is associated with proteins produced by an organism, while 

metabolomics focuses on small molecules or metabolites within a cell, tissue, or 

organism, such as sugars, amino acids, lipids, etc. In addition, post-genomic advances in 

biology and medicine in recent years have led to the emerge of new omics type such as 

pharmacogenomics (effect of drugs on the host and host's response), nutrigenomics (a 

fast-growing discipline that focuses on identifying the genetic factors that influence the 

body's response to diet and studies how the bioactive components of food affect gene 

expression), phylogenomics (analysis using genomic data and evolutionary 

reconstructions, especially phylogenetics) [3]. 

As the NGS technologies progressed and attracted the interest of researchers, the 

amount of genetic data generated by several omics studies continued to grow enormously, 

and led to the emergence of new ideas in medicine, treatment, biology and diagnosis such 

as uncovering genetic characteristics of diseases, and forecasting susceptibility to specific 

diseases. But on the other hand, the increase in data volume also highlighted insufficiency 

of traditional biological and genetic analysis because handling data generated by high-

throughput technologies is a time-consuming and labor-intensive process, especially if 

the data is complex and large-scale. For instance, predicting the presence of a disease in 

an individual using traditional methods may be possible if the disease depends on only 

one or a few genes. But what if hundreds or thousands of expressed genes from both 

controls and patients need to be evaluated and analyzed together and comparatively to 

predict the presence of a disease? In such a scenario, traditional approaches, such as 

simple statistical analysis, would presumably demonstrate low-accuracy prediction about 

disease presence, due to the fact that it cannot uncover hidden patterns or associations. 

As a consequence, there is a need for advanced computational approaches that can analyze 

large amounts of genetic data more efficiently and quickly to yield meaningful results, 

such as machine learning algorithms [4]. 

Machine learning (ML) is a branch of computer science and artificial intelligence 

(AI) that uses algorithms to learn from data and then make decisions or predictions based 

on that learning. ML algorithms can be broadly divided into two categories: supervised 

and unsupervised. While supervised learning attempts to map input samples to their 

respective outputs, unsupervised learning identifies hidden patterns in unlabeled data [5]. 

Since this approach can take genetic data as input and has the ability to detect patterns by 
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learning from the input, it is widely used for genetic data in the fields of disease diagnosis, 

medicine and other medical activities, especially in prediction and classification tasks. In 

addition, owing to the development of open source ML packages and  active research  in  

this field, researchers can easily implement ML models to build predictive models of 

complex data [6].  

The advancement and the easy of application of ML-based models have paved the 

way for personalized and precision medicine approaches to become widespread. 

Personalized medicine, also referred to as individualized medicine, simply means the 

prescription of specific treatments and therapeutics best suited for an individual taking 

into consideration both genetic and environmental factors that influence response to 

therapy. Precision medicine, on the other hand, is defined as cutting-edge molecular 

profiling that helps determine precise diagnostic, prognostic, and therapeutic strategies 

are precisely tailored to each patient’s requirements [7]. Although both terms are used 

interchangeably personalized medicine is more related to the integration of diagnosis with 

therapy, screening, prevention, prognosis, and monitoring of treatment as future trends in 

medicine, while precision medicine helps establish accurate diagnostic, prognostic, and 

therapeutic approaches  [8].  

A common step both in personalized and precision medicine is same, the diagnosis 

of disease, i.e. the prediction of its presence using AI-based methods . This is because, 

while many diseases show symptoms in early stages, some of them such as cancer, kidney 

damages remain unidentified in their developing stages. The earlier a disease is predicted, 

the easier it becomes to cure it and even prevent it. Hence, predictive modeling provides 

a huge step forward in medical science in preventing diseases [9]. In addition, prediction 

of disease presence, progression or diagnosis should be based on individual signals such 

as genetic and clinical profiles, according to both precision and personalized medicine. 

Hence, AI-based approaches such as machine learning fill the gap in the need for cutting-

edge methods that can handle the large amount of data for diagnosing diseases, predicting 

the presence of diseases, or identifying factors affecting diseases. 

This thesis includes comprehensive experiments to investigate the performance of 

artificial intelligence-based approaches such as machine learning and feature selection in 

predicting the presence of disease and identifying the factors that have an impact on the 

prediction of disease, which is an important stage in personalized and precision medicine. 
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Although this problem has been studied in the literature for many different diseases, most 

studies have focused on the performance of a particular algorithm. In contrast, our work 

includes a comprehensive and a comparative analysis of both machine learning and 

feature selection algorithms in disease prediction problem. Furthermore, our study cover 

two types of diseases: genetic and infectious. Behçet's disease was chosen as genetic 

disease. The motivation for choosing this disease is that the studies  for predicting 

Behçet's disease are quite limited in the literature.  Additionally, the availability of a large 

data set for Behçet's disease has provided opportunities to compare different methods. 

The second study, on the other hand, is related to the prediction of respiratory diseases, 

which have affected human history in many periods and are still not completely cured. 

Especially after the COVID-19 pandemic, one of the greatest disasters since the turn of 

the millennium, the prediction of respiratory diseases has become even more important. 

An Interesting side of respiratory infection is that while most infections result in mild 

symptoms such as runny nose, sore throat, and headache, some individuals remain 

asymptomatic despite exposed to same respiratory viruses. Hence, in the experiments of 

this thesis, we aimed to develop predictive models that can predict both the presence of 

infection and whether an individual develops symptoms after exposure to respiratory 

viruses. For this purpose, a public dataset titled GSE73072 is used, which provides a 

variety of information, such as different virus types, infection onset/offset and symptom 

presence. In addition to developing machine learning models that can predict the disease 

status, in silico experiments have been performed on this dataset to identify genetic factors 

that influence infection and symptom development. Besides these aims, we used existing 

community-based information or knowledge for disease prediction by proposing some 

feature representation and feature selection approaches depending on the experiment type. 

The rest of this thesis is structured as follows. The second chapter provides detailed 

explanations of genetic and infectious diseases separately. It also discusses the factors 

that affect both diseases and the reasons why artificial intelligence-based models are 

needed for prediction of both diseases. Chapter 3 explains the materials and methods used 

in the experiments of the thesis. Since our analyses include several machine learning and 

feature selection methods, as well as various feature representations and hyperparameter 

optimization, each of them is described and explained in detail in this chapter. In Chapter 

4, machine learning experiments on a genetic data set and on an infectious disease data 

set are explained and the results are presented. Finally, Chapter 5 includes a conclusion 
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and a brief summary containing the main findings and experiment-specific outcomes. 

Future prospects are also included in this chapter. 
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Chapter 2 

Genetic and Infectious Diseases  

2.1 Genetic Disease Prediction 

The “genome” refers to the complete set of genetic material, i.e. DNA sequence, 

that contains all the DNA information that contains the instructions for the functions, 

regulation, development, and growth of the body.  Some parts of the genome contain 

genes, or a unit of our genetic mechanism, that enable proteins to be synthesized, thus 

ensuring a healthy life. However, mutations or abnormalities may occur in the DNA or 

genes due to hereditary factors, environmental influences, or other factors.  In some cases, 

when these changes affect the function of the genes, genetic diseases may occur that 

adversely affect an individual's health. 

Genetic diseases can be categorized into 3 different types as  monogenic, 

multifactorial and chromosomal based on hypothetical or known nature of genetic defects 

underlying diseases [10]. Monogenic diseases are usually caused by a mutation in a single 

gene or a DNA base pair. For example, a mutation in DNA may cause the production of 

valine amino acid instead of glutamic acid. When this mutation occurs in the HBB gene, 

and an abnormal hemoglobin is produced. This inhibits the ability of hemoglobin to carry 

oxygen [11]. Cystic fibrosis, Huntington's disease, Fragile X syndrome, Tay-Sachs 

disease are other common monogenic diseases. Multifactorial genetic diseases, on the 

other hand, result from the joint action of many genes or genetic variants, each have a 

small or moderate effect, and often interacting with environmental triggers such as diet, 

lifestyle, exposure to toxins. Some heart diseases, diabetes, some types of cancers, 

psychiatric disorders are some examples for multifactorial genetic disease. 

Due to having complex pathology, a wide range of symptoms, and unique 

mechanisms that are not yet fully understood, the diagnosis of a genetic disease can be 

challenging. Nevertheless, thanks to breakthroughs in genetic research and profiling 
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technologies of human genetics (DNA sequencing, gene expression profiling, etc.) 

genome information and health-related indicators can be extracted for individuals. 

However, keeping in view the complex nature of DNA data, the number of features, and 

the volume of data, manual prediction is laborious, error-prone, and inefficient for 

diagnosis [12]. Furthermore, the identification of genetic factors having an association 

with the disease needs advanced techniques that can analyze large genome data. 

At this point, AI-based solutions such as machine learning methods, feature 

selection approaches, etc. can fulfill this need as they have shown great potential for 

prediction and forecasting in the last decades. Such models are trained on large amounts 

of genomic and clinical data, identify relationships or patterns between genetic material 

and disease, and depending on the sensitivity and importance of the task, perform assistive 

functions for medical experts, which are not by human experts at first sight. This has the 

potential to have a significant impact in the field of precision medicine, facilitating the 

development of tailored treatment approaches based on an individual's genetic profile. 

One of the most known and extensively studied genetic disease is Alzheimer's 

Disease (AD). Briefly, AD is a neurological disease that affects memory, thinking, and 

social behaviors. It typically starts with mild memory loss and causes inability to carry a 

conversation and respond to the environment. Exact cause of AD is still not fully 

understood and there is no cure for it. Therefore, researchers have deeply focused the 

prediction of Alzheimer disease as well as finding key factors that cause this disease. Lee 

et al. compared the predictive performance of 5 classifiers and 5 feature selection methods 

on the 3 publicly available AD datasets ADNI, ANM1 and ANM2, all of which contains 

gene expression profiling samples derived from blood. As feature, differentially 

expressed genes (DEG), derived by variational autoencoder (VAE), TF-related genes 

from TRANSFAC database, hub genes associated with gene-gene interactions, and genes 

selected by Convergent Functional Genomics (CFG) score were used. Prediction results 

obtained by performing 5-cross validation within each dataset showed that AUC values 

of 0.65, 0.80 and 0.85 was obtained in the ADNI, ANM2 and ANM1 datasets, 

respectively. Among five feature selection approaches, on average, the DEG provided the 

best performance in ADNI and ANM1. Combination of DEG and CFG, on the other hand, 

was the best feature set for the ANM2 dataset. Additionally, study suggested that gene 

expression data is useful for the predicting of AD [13]. In another study, gene expression 

and SNP data were evaluated separately for the prediction of Alzheimer's disease using 
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the XGBoost classifier. Using gene expression features only, the model achieved an AUC 

of 0.64, while SNP data only achieved an AUC of 0.56 [14]. A stacked machine learning 

model consisting of RF, DT, SVM, and LR algorithms was also proposed for prediction 

of AD. Using a GWAS dataset with 398 samples and 411077 SNPs, the proposed model 

was able to discriminate AD samples with an accuracy of 93% [15].  

Diabetes, especially type 2, is another common genetic disease that threatens public 

health. It has a complex etiology involving genetic, environmental, and lifestyle factors 

in the development of clinical conditions and pathology. Therefore, many researchers 

have endeavored to develop predictive models for diabetes, specially type 2. For example, 

Kälsch et al. examined associations between liver injury markers and diabetes using an 

RF classifier-based diabetes prediction model based on HbA1c (blood glucose levels), 

Adiponectin, and body mass index (BMI). The results of the experiment showed that  the 

model that uses  only the HbA1c value reached an AUC of 0.83, while the  model that 

uses  all the features achieved an AUC of 0.85 [16]. Shigemizu et al. used the Cochran-

Armitage trend test, asymptotic Bayes factor (ABF) and sure independence screening 

methods to find the most significant SNPs for type 2 diabetes in Japanese individuals. 

They identified nine significant SNPs and then evaluated them using a Lasso-based 

prediction model. The results showed that these SNPs were able to classify diabetes 

samples with an AUC value of 0.806 [17].  Gene expression [18], Metabolome and 

Proteomics [19] data were also utilized for the diabetes prediction with several machine 

learning algorithms. 

Similarly, machine learning approaches have been proposed for some other genetic 

diseases such as heart disease [20], obesity [21], Chron's disease, inflammatory bowel 

disease [22] etc. Although machine learning methods employed in these studies vary, the 

experimental procedures generally involve predicting whether the samples are at risk, 

carriers of the disease, etc., using genetic and clinical data as input. In addition, significant 

factors associated with the disease are evaluated according to their predictive 

performance. As part of the thesis, we addressed the prediction of Behçet's disease as the 

genetic disease using machine learning approaches and the identification of genetic 

factors affecting the disease. 
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2.1.1 Behçet’s Disease 

Behçet's disease (BD), also known as Behçet's syndrome, is a chronic, multisystem 

inflammatory disorder that affects almost every organ system because it can affect both 

arteries and veins of any size, resulting in significant organ-threatening morbidity and 

mortality [23]. The disease was named after a Turkish dermatologist, Hulusi Behçet, who 

described three cases of patients with recurrent oral-genital ulcers and hypopyon uveitis. 

Since then, Behçet's disease (BD) has been considered a widespread vasculitis due to the 

involvement of the central nervous system, large vessels (veins and/or arteries), heart, and 

rarely the gastrointestinal tract or kidneys [24].  

Even though BD occurs in many populations around the world, it is much more 

common in countries living along the ancient Silk Road, spanning East Asia, the Middle 

East and the Mediterranean, and is apparently rare in northern Europe. This is why it is 

known as the “Silk Road Disease”. The geographic distribution of BD can provide 

important clues to the etiology of BD. This is because it is unlikely that genetic differences 

between ethnic/racial populations are sufficient to explain variations in the incidence of 

complex diseases. Therefore, geographic and environmental differences may lead to some 

of the variations that cause BD [25]. The highest prevalence of BD was observed in 

Turkey, with an estimated 421 cases per 100,000 inhabitants. The prevalence in the 

Middle East countries such as Iran, Israel, Jordan, Iraq follows Türkiye with the estimated 

to be 31.8 cases per 100,000 inhabitants [25-26]. 

Like other autoimmune and auto inflammatory syndromes, the exact etiology of BD 

remains to be elucidated. However, the most probable hypothesis is that the viral and 

bacterial inflammatory reactions triggered by environmental effects and the genetic 

tendency plays important roles in the development of BD [27]. This hypothesis, i.e. 

contribution of the genetic and environmental factors to cause the BD, have been 

supported with many studies. The very first susceptibility genetic factor to be reported as 

having a strong association with BD was the human leukocyte antigen (HLA) region, 

particularly the HLA-B51 allele, with its identification dating back to the early 1970s 

[28]. This factor was also confirmed in different studies derived from multiple 

populations [29,30]. 

Outside the HLA region, genome-wide association studies (GWAS) which allowed 

evaluation and statistical interrogation of additional genetic variants in complex disease 
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[31], has enabled the researchers to reveal other genetic susceptible factors including the 

interleukin 23 receptor (IL23R), interleukin 10 (IL10) [32], ERAP1, CCR1, KLRC4, 

STAT4 genes [33]. 

Due to the wide-range of symptoms, the confirmation of diagnosis can be difficult 

for BD. There are no gold standard tests to diagnose BD, and as such, diagnosis is based 

on clinical criteria. Moreover, the symptoms of BD might vary from person to person. 

According to the International Criteria for Behçet's Disease (ICBD), patients must have 

recurrent oral ulcerations at least three times within 12 months.  Painful oral ulcers in the 

tongue, pharynx, buccal and labial mucosal membranes appeared in 98% of cases. 

Patients should also have evidence of two of the recurrent genital ulcers, eye lesions, skin 

lesions and pathergy.  In addition to the ICBD, several tests such as blood and urine tests, 

skin biopsy and pathergy may be necessary to make a final decision.  

Considering all these difficulties in diagnosing BD, alternative solutions, such as 

artificial intelligence-based approaches, may be able to predict the presence, severity, 

and/or progression of BD more swiftly. Delayed diagnosis can lead to irreversible damage 

to organs such as the eyes, brain, and blood vessels. On the contrary, as early diagnosis 

can help prevent or reduce the severity of relapses and complications, it is crucial for an 

effective treatment of BD.  

Despite the potential of AI-based solutions for diagnosis, the majority of studies on 

BD in the literature have focused on identifying genetic material or other disease-

influencing factors. Especially, many studies have focused on population-based factors 

related to being in a particular region such as Türkiye, Iran, Jordan, Japan, etc. Moreover, 

the association of BD with the nervous system, pregnancy, and even COVID-19 has also 

been investigated. However, there is a lack of machine learning-related studies to predict 

the presence or progression of disease. Nevertheless, some machine learning models with 

different types of input data (e.g. proteomics data, radiology-based images, etc.) have 

been proposed in the literature for predicting the presence of BD. 

Hammam et al. compared XGBoost, Extra Tree Classifier, RF, SVM, and MLP 

methods for the detection of vision threatening Behçet's disease (VTBD) using 1,049 

subjects from the Egyptian College of Rheumatology (ECR) BD cohort. The input values 

consisted of 26 clinical and demographic features that were routinely and easily 
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measurable in a clinical setting. The dataset was split into 80% training and 20% test set, 

and then five different machine learning algorithms, XGBoost, RF, SVM, ANN and MLP 

were compared on the dataset. The results showed that the XGBoost model performed 

the best in the test samples with an AUROC value of 0.85, outperforming the other 

methods. In addition, higher disease activity, thrombocytosis, history of smoking and 

daily steroid dose were identified as the most important factors associated with the risk 

of VTBD [34]. 

Kim et al. developed a deep learning model for the classification of intestinal 

Behçet's disease (BD), Crohn's disease (CD) and intestinal tuberculosis (ITB) using 

colonoscopy images. The dataset consisted of 6617 images from 211 CD, 299 BD and 

217 ITB patients. Each sample was labelled by two experienced endoscopists and 

annotated for the presence of a typical pattern. The results showed that the proposed CNN 

model achieved high performance with an AUROC value of 0.85 in discriminating BD 

and CD images. On the other hand, an AUROC value of 0.78 was obtained when only 

CD and ITB images were classified. It was also reported that the CNN model was able to 

predict the ulcer type with high performance even when it was only partially observed in 

the image [35]. 

In another study, a Multi-Layer Perceptron (MLP)-based prediction model for the 

detection of ocular Behçet's disease was proposed. The experiments used ophthalmic 

arterial Doppler signals as a dataset derived from 106 subjects, 54 of whom had ocular 

Behçet's disease, and the rest were healthy subjects. Doppler signals refer to the 

ultrasound signal frequency measured by ultrasound pulses scattered by red blood cells. 

These frequency values were then converted to power spectral density using spectral 

analysis to produce data as input for the prediction model. Results showed that the 

proposed model is able to predict subjects suffering from ocular Behçet’s disease with a 

93.75% accuracy rate. Healthy subject was classified with 96.43% accuracy [36]. 

The association of gut microbiome composition with BD, as well as its potential 

role in the development of this disease, was also investigated using metagenomic analysis. 

A dataset consisting of 32 active BD patients and 74 healthy control samples was analyzed 

for this study. Metagenomic analysis identified 17,896 microbial genes that were 

significantly different between patients and controls. Relative abundance profiling then 

identified 13 metagenomic species (MGS), of which 11 were enriched in the BD group 
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and 2 in the healthy control group. Using these 13 MGSs as features, a random forest 

model obtained a mean classification error of 0.18 and an AUC value of 0.811. It is also 

reported that analysis of a large sample is needed to confirm whether these markers are 

useful in the diagnosis of BD [37]. 

Proteomics is a field that examines a large of proteins in biological systems, 

enabling the identification of an ever-increasing number of proteins and providing useful 

information about genetic information. Tang et al. conducted an exploratory study on 26 

BD patients and 26 healthy control samples using proteomics-based tandem mass tags 

(TMTs) and parallel reaction monitoring (PRM) analysis to identify potential serum 

biomarkers for BD. Using differentially expressed proteins (DEPs), and clinical 

information (age, gender) a random forest model was built to select features. Two proteins 

TPM4, FLNA and age were selected as independent predictors for the BD by the model. 

Furthermore, each variable’s discriminative power was then evaluated with a logistic 

regression model on an external validation set comprising of 16 control and 13 BD 

patients. Finally, single features FLNA, TPM4 and age obtained an AUC value of 0.741, 

0.683 and 0.73, respectively. However, when all of  the three features were used, the 

model achieved an increased AUC value of 0.862 [38]. 

2.2 Infectious Disease Prediction 

Diseases caused by infectious agents have a profound impact on human history and 

biology. Infectious agents are microorganisms or pathogens including bacteria, viruses, 

fungi and parasites. Although many of them live in and on our bodies and they are 

normally harmless or even helpful, some organisms may cause disease and infection 

under certain circumstances such as temperature change [39]. From a demographic 

perspective, infectious diseases have probably caused more deaths than all wars, non-

infectious diseases, and natural disasters combined, including both massive epidemics 

such as the plague and smallpox, that devastated human populations from ancient to 

modern times, as well as less dramatic, obscure viral and bacterial infections that cause 

high infant mortality [40]. For example, the Spanish flu that occurred at the beginning of 

the 20th century was estimated to have caused almost 500 million infections (a third of 

the world's population at the time) and at least 50 million deaths.  
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Figure 2.1 An example of how the bird influenza virus is transmitted, the factors 

influencing it and how it is adopted by humans [41]. 

The key feature that makes infectious diseases so effective, spreadable, and 

destructive is the dynamics of propagation capability. Therefore, these diseases are also 

called as “communicable diseases”. Their causative agents can be transmitted from 

person to person (or between animals and people, or animals and animals), leading to 

sustained transmission. Moreover, infectious agents can be transmitted through a variety 

of routes, including water, air, food, insect bites and sexual intimacy, depending on the 

type of disease. For example, HIV virus is only transmitted through close physical 

contacts such as sexual or blood transmission, while influenza is spread through airborne 

droplets after a person sneezes, coughs, or talks. The transmissible nature of infections 

also means that, for most infectious diseases, the impact of any single case and its public 

health and economic consequences may go beyond those attributable to the loss of quality 

of life and risk of death to that individual [42]. The dramatic increase in travelling also 

makes it easier for infections to spread around the world in much less time than ever 

before, leading to global pandemics and epidemics. The most devastating example of this 

situation is the COVID-19 outbreak, which we have recently overcome but which 

continues to have far-reaching effects. According to the WHO, the number of COVID-19 
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cases worldwide has reached 775 million. Although originated from China, it had been 

spread rapidly around the world via air travel and caused millions of deaths. 

In addition to the human toll, infectious diseases affect human well-being, social-

life and global economy on a global scale. According to another report by the World 

Health Organization and the World Bank, the economic impact of a pandemic could be 

as high as 4.8% of global GDP [43]. Routine infectious diseases that occur outside of 

pandemics or epidemics can lead to a reduction in labor supply, increased treatment and 

healthcare costs, and a decline in tourism and trade. This devastating impact of infectious 

diseases is a forceful reminder of the vulnerability of infectious diseases to governments, 

policymakers and scientists, and prompt them to find some health strategies such as 

prevention, mitigation, or containment of disease transmission. Even before these 

strategies, the most effective solution is early detection. This is because even if the signal 

of disease propagation or spread is weak, early detection enables to figure out trends 

before they become significant and important. However, early detection is not an easy 

task as infectious diseases usually have multiple factors that affect the process of infection 

and transmission. Therefore, there is a need for cutting-edge AI-based solutions, such as 

machine learning, to analyze, interpret and predict signals. This is because AI models 

allow machines to act or react to inputs in a way similar to humans, by performing 

cognitive functions and making decisions about inputs [41].  

There are many studies in the literature where machine learning models have been 

utilized for infectious disease problems, including diagnosis, drug resistance, 

transmission and risk prediction. For example, Sun et al. proposed a system to predict the 

risk of influenza infection in patients by analyzing their vital signs, such as respiratory 

rate, heart rate, and facial temperature. The proposed system consists of a neural network 

and a fuzzy clustering method (FCM) with a self-organizing map (SOM) and classify 

individuals into three groups (higher-risk, lower-risk, and non-influenza). The 

experimental results indicated that the proposed system achieved high sensitivity (97.1%) 

and high negative predictive value (97.5%) in identifying high-risk influenza patients 

within 10 seconds, by outperforming traditional thermography-based screening methods. 

The authors also stated that such systems serve as potential tools for rapid screening of 

infectious diseases and can be used as a first step for screening [44]. Another infectious 

disease, tuberculosis (TB), was predicted perfectly with an AIRS model developed by 

Saybani et al. Artificial Immune Recognition Systems (AIRS) are specialized machine 
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learning methods that originally use some pre-processing steps and the kNN algorithm as 

the background classifier. However, the authors have improved the standard AIRS model 

by using SVM instead of kNN as the classifier. Experimental results showed that the 

proposed method, RAIRS2, achieved a perfect performance in classifying TB samples, 

with an accuracy of 100%, sensitivity of 100%, and specificity of 100% [45]. [45]. In 

another study, several machine learning algorithms were compared to predict COVID-19 

mortality. As a feature set, clinical features such as smoking, oxygen therapy, etc. were 

used as input to the models. Experimental results showed that the random forest algorithm 

outperformed the others with an accuracy of 95.03%. In addition, dyspnea, ICU 

admission, and oxygen therapy were selected as the most discriminative features to 

predict mortality after COVID-19 infection [46]. DNA-based genetic materials have also 

been widely used with machine learning models to predict whether individuals are 

infected with an infectious virus. In the study [47], feature selection techniques and the 

XGBoost classifier were used to predict hepatitis B (HBV) and hepatitis C (HCV) related 

hepatocellular carcinoma (HCC) using gene expression profiling data. Using feature 

selection, 17 genes were selected as significant for discriminating HBV and HCV. In 

addition, the XGBoost algorithm achieved 97.1% accuracy in predicting HCC samples. 

Tai et al. investigated an individual's susceptibility to developing malaria using risk scores 

derived from the cumulative effects of SNPs.  To find susceptibility SNPs, Logistic 

Regression and Recursive Feature Elimination (LR-RFE) based feature selection was 

applied to the SNPs dataset and the most contributing features to disease development 

were identified. XGBoost, LightGBM and Ridge Regression algorithms were also 

compared and LightGBM achieved the highest model performance with an MAE score 

of 0.0373 in predicting weighted genetic risk scores [48]. 

Predicting the spread, number of cases and onset of infectious diseases are other 

beneficial applications of machine learning models to public health issues. Especially 

since the COVID-19 pandemic, attempts to predict any pandemic or epidemic have 

received more attention from researchers. For example, Nawi et al. conducted a study to 

develop a forecasting model for pandemic cases with a hybrid model consisting of 

ARIMA and SVM algorithms. In their experiment, a daily number of confirmed cases, 

fatalities, and recoveries of COVID-19 in Malaysia were used as input data for the 

predictor model. The results show that the proposed hybrid model was 63% more accurate 

than the standard ARIMA model in predicting new positive cases. This rate was 60.46% 
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for daily new deaths and 73.12% for daily new recovered cases [49].  In another study, 

the performance of the autoregressive statistical model, XGBoost, random forest, multi-

layer perceptron, and encoder-decoder model were compared in forecasting three 

different infectious disease incidences across different countries and time intervals. In the 

short-time-interval forecasting problem (2-5 months) XGBoost model showed the best 

performance for campylobacteriosis and typhoid diseases [50]. Ajith et al. compared 

naive Bayes, random forest, and adaptive boosting methods in forecasting the occurrence 

of The West Nile virus (WNV). Experiments showed that the random forest model 

achieved nearly 70% accuracy in predicting the possibility of the presence of WNV [51]. 

Drug-related studies have also been conducted by researchers. For example, 

machine learning algorithms were used in rapid in silico predictions of tuberculosis drug 

resistance, with the goal of a reliable and cost-effective alternative to in vitro assays [52]. 

Rajput et al. take advantage of machine learning algorithms such as artificial neural 

network, support vector machine and random forest algorithms to predict small molecule 

inhibitors of Ebola virus, i.e. identify potential anti-Ebola compounds. As a result of their 

experiment, the ANN model outperformed others with a Pearson correlation coefficient 

of 0.65 in the validation dataset [53]. 

In addition to these diseases, a large number of machine learning-based prediction 

studies on other infectious diseases are available in the literature. Moreover, some studies 

include the detection of both environmental and genetic factors, known as “biomarkers”, 

which have an impact on disease prediction and can be identified using feature extraction 

methods. However, among infectious diseases, respiratory viral infections are the most 

prominent in terms of disease severity, contributing to significant morbidity, mortality 

and economic losses worldwide. 

2.2.1 Respiratory Infection Prediction 

Respiratory infections (or respiratory tract infections) are the leading cause of acute 

illnesses and deaths worldwide in both adults and children from past to present. 

According to a report by the World Health Organization [54], respiratory-related 

infections cause nearly four million deaths per year. It is also one of the major diseases 

that threaten human health with high morbidity, severity, and medical costs [55]. 

Estimated cost of respiratory infections are estimated to be responsible for approximately 
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$15 billion in direct treatment costs in United States [56]. The numbers are even higher 

especially in undeveloped and developing countries due to inadequate healthcare systems. 

Geographic differences and socioeconomic factors of the populations also affect the 

variation in viral etiology and the number of cases across countries (Liu et al., 2015). It's 

been reported that the case-fatality rate for respiratory infections is significantly higher in 

temperate regions of the world, especially among impoverished populations in tropical 

regions [57]. For example, respiratory illnesses are responsible for  an approximate death 

rate of 1 in every 5 children according to a study conducted in the Rwanda [58]. 

Similar to other infectious diseases, numerous pathogens such as bacteria, fungi, 

mycoplasma, etc. can cause a respiratory-related disease. However, a large proportion of 

respiratory infections are caused by viruses. There is a wide range of respiratory viruses 

that have been identified to date including Human Rhinovirus (HRV), Respiratory 

Syncytial Virus (RSV), Influenza A and B, Adenoviruses, Coronaviruses, Parainfluenza 

virus and Parvovirus. Among these viruses, HRV has been identified as the virus most 

commonly associated with respiratory diseases, accounting for about 40% of infections. 

Influenza viruses, RSV, and Coronavirus follow HRV in terms of frequency [59]. 

Clinical manifestations of respiratory infections are familiar and well-known. Most 

infections result in mild symptoms such as runny nose, sore throat, and headache. 

Although clinical symptoms depend on the type of virus, the site of infection (e.g. 

sinusitis, bronchitis, rhinitis, etc.), the patient's age, general health, comorbidities, 

immunity and whether the infection is primary or secondary, most of the symptoms of 

respiratory viruses overlap [60]. However, different virus infections might require 

completely different treatments. Otherwise, severe pneumonia may develop, which can 

cause mortality or some complications. 

Another noteworthy aspect of respiratory infections is that some people remain 

asymptomatic despite exposure to respiratory viruses, while others become symptomatic 

[61,62]. It is interesting because the penetration of viruses may be similar, but the immune 

response, or the body's defense mechanism, varies from person to person. This was 

commonly reported by people during the period of COVID. Some COVID patients went 

through the disease with severe symptoms despite being in the best of health before 

infection, while some chronically ill elderly people showed no symptoms [63,64]. 

Notwithstanding, this is contrary to what might be expected, i.e. elderly people being 
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symptomatic. These variations on being infected evidenced that the host response 

following exposure is linked to genetic predisposition, disruption of the individual’s 

microbiome [65], being in high-risk group [66] and effective immune surveillance. 

However, the variation in the physiological responses of people to viral exposure is poorly 

understood. The lack of understanding about the precise physiological or genetic factors 

delays the detection of infection, which leads to the spread of virus and thereby increasing 

the death toll. As mentioned in the previous section, the main solution for preventing 

unwanted effects of infectious diseases are to forecast or predict them as soon as possible. 

But forecasting a disease is not an easy job using traditional methods as there are a large 

number of factors such as environmental, genetic, geographical etc. that have impact on 

infection. That's why an advanced & intelligent system such as a machine learning system 

is needed in the field of respiratory infections. Some studies in the literature focused on 

the forecasting of respiratory infections. For instance, Lim et al. proposed an ensemble 

Gradient Boosting Machines (GBM) classifier-based model to predict respiratory burden 

using average daily polyclinic attendances [67].  

However, most of the other studies focused on the idea of using both statistical and 

in silico methods to find out predictors of respiratory infection and make forecasting for 

individuals, including our thesis. After all, if an individual's susceptibility and resistance 

to infection can be predicted, then a predictive model can be developed and the 

biomarkers responsible for infection can be found. Thus, several studies to predict 

infection or the development of symptoms in individuals have been carried out. Barlacchi 

et al. conducted a study to predict the future presence of flu-like and cold symptoms in 

individuals using past mobility activities such as total distance travelled, total 

displacement, number of different places visited, etc. In their experiment, these mobility 

activities were used as input for three machine learning models including logistic 

regression, random forest and gradient boosted trees (GBT), and then the presence of 

symptoms was predicted. The best result was obtained by an AUROC value of 0.62 by 

the GBT algorithm [68]. Elbasi et al. compared several machine learning algorithms on 

the classification of influenza H1N1 and COVID-19 patients. Different types of data 

information such as patient age, gender, blood or tissue sample results, and risk factors 

were used to represent patients for ML models. Results showed that multilayer perception 

(MLP) algorithm achieved the highest accuracy with an accuracy of 99.31% [69]. 
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Bongen et al. [70] applied a meta-analysis to several data sets and observed that the 

expression of the KLRD1 gene in blood decreased after influenza virus infection. They 

were also able to predict the symptomatic and asymptomatic samples with an area under 

the receiver operating characteristic (AUROC) value of 0.91 in a validation set of H3N2 

influenza samples. Barral-Arca et al. [71] found 17 characteristic genes for RSV by 

applying logistic regression to 296 infected and 266 healthy samples from different 

datasets. ORA of these genes showed that immunological pathways such as the innate 

immune system and the adaptive immune system are closely associated with RSV. In 

another study by Xu et al. [72], the OTOF and SOCS1 genes were identified as 

discriminators of HRV infections in machine learning experiments on gene expression 

profiles. 

In a comprehensive study, different machine learning and feature selection methods 

were compared using three different datasets containing RSV-, HRV-, and influenza-

infected samples [73]. The proposed model included a modified minimum Redundancy—

Maximum Relevance (mRMR) method and a naïve Bayes classifier that achieved an 

average accuracy of 91% when the number of gene expression features is 40. The authors 

also applied an ORA on the top-50 genes selected by the best feature selection method 

and reported that all genes are related to the immune response to viral infection. 

Hung et al. developed and compared machine learning algorithms to predict 

influenza infection using clinical features. The dataset in their experiment included 2189 

patients, of whom 1104 tested positive for influenza. Their results show that the XGBoost 

algorithm outperformed other known ML algorithms as well as some deep learning 

models with two, three and four layers, with an AUROC value of 0.82 [74]. 

Verma et al. analyzed gene expression levels in both infected and uninfected 

individuals to identify potentially effective genes and to predict the state of respiratory 

virus infection. As a dataset GSE73072 containing H1N1, H3N2, RSV, and HRV 

samples, also identical to our thesis experiment, was used in 10-fold cross-validation 

settings. In addition, this dataset contains time points of samples before and after the 

exposure. Experiments showed that the SVM algorithm using the RBF kernel achieved 

an accuracy of 82.83% in 10-fold settings. In addition, the genes IFIT1, DDX58, and 

PLSCR1 were selected as the most significant biomarkers according to the random forest 

importance score [75].  
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Recently, the prediction of respiratory virus infection has become popular using 

models based on deep learning. To predict whether an individual will develop symptom 

prior to exposure to influenza A virus, Zan et al. [76] proposed a six-layer deep neural 

network (DNN) model. The model outperformed the SVM, the RF and the convolutional 

neural network, achieving a cross-validated AUPRC of 0.758 for the DEE3 H1N1 

experiments and an AUPRC of 0.901 for the DEE2 H3N2 experiments, respectively. 
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Chapter 3 

Materials and Methods 

3.1 Data Resources for Disease Prediction 

Bioinformatics studies still face many challenges related to the collection, 

protection, and integration of domain-related data.  One of these challenges is the 

difficulty of sequencing DNA or RNA data from individuals, which is a standard data 

source in a wide range of applications in genetics, proteomics, and personalized medicine 

studies [77]. The high cost of sequencing two decades before could have been the main 

reason. But today, the sequencing cost of DNA has fallen to $300, which is an affordable 

price. However, device cost for genome sequencing is still high, especially in 

undeveloped and developing countries. In addition, finding volunteers to participate in 

genetic studies to have their DNA or gene-related material extracted is particularly 

challenging, as it requires extensive engagement efforts, concerns about privacy and data 

security [78]. The collection of genetic data poses significant challenges because of these 

issues. On the contrary, one of the most important factors in artificial intelligence-based 

learning algorithm is data quantity and quality. The predictive ability of AI models is 

directly related to the volume and discriminative power of the data. This has necessitated 

quality data, particularly for local institutes and researchers, including biostatisticians, 

computer scientists, etc., who cannot collect genetic data. Nevertheless, thanks to the 

connected world and the decreasing cost of both internet technologies and storage, online 

data repositories which contains genetic data derived for several diseases are fully open 

to researchers. These repositories that are frequently used by the community and that 

contain a large amount of data can be listed as follows: 

Gene Expression Omnibus (GEO): GEO is a public repository of high-throughput 

gene expression and other functional genomics data submitted by scientists. It was 

launched by the National Center for Biotechnology Information (NCBI) in 2000 for 
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expression data, but with the rapidly changing needs of the bioinformatics field, it now 

accepts other types of data, including genome methylation, chromatin structure, and 

genome-protein interactions [79]. As a report published in 2024, GEO resource contains 

over 200000 studies and 6.5 million samples, all of which are indexed, searchable and 

downloadable [80].   

- Single Nucleotide Polymorphism Database (dbSNP): dbSNP is a free public 

genetic variation resource for single nucleotide variations, microsatellites, and 

small-scale insertions and deletions.  Similar to GEO, dbSNP is maintained by 

NCBI to satisfy the need for a comprehensive resource of genomic variation for 

large-scale sampling designs required by association studies, gene mapping, and 

evolutionary biology [81]. 

- The European Genome-Phenome Archive (EGA): EGA is another genetic 

repository that stores and distributes genetic, phenotypic and clinical data derived 

from biomedical studies with the mission to re-use data, enable reproducibility 

and accelerate biomedical and translational research. Unlike other repositories, 

the EGA has several strict protocols for data security, and therefore data is 

consented for specific uses that require approval but is not fully open. According 

to a 2021 study, the EGA has archived over 4500 studies with 6800 datasets, 

totaling almost 15 PB of sensitive human data [82]. 

- The Cancer Genome Atlas (TCGA): The Cancer Genome Atlas (TCGA) is a 

large-scale cancer genomics collaboration maintained by National Cancer 

Institute (NCI) and the National Human Genome Research Institute (NHGRI) to 

map the genomic and epigenomic changes in several types of human cancer [83]. 

Data on the TCGA are centralized and stored in databases when they are available, 

making them quickly accessible to researchers. It is estimated that TCGA 

repository keeps nearly 2.5 petabytes of genomic, epigenomic, transcriptomic, 

and proteomic data derived from 20000 cancer samples. 

In addition to these databases, there are several other less popular repositories 

available to researchers, such as ArrayExpress [84], miRbase [85] and MGnify [86], 

which contain different levels of biological and genetic data. These data sources fill a 

critical need for genetic, bioinformatic, biostatistical and other researchers who struggle 
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to find data.  Our secondary study, the prediction of infectious disease, was also an 

analysis of data from GEO, which is also one of these sources. 

3.2 Machine Learning Algorithms 

Through the use of statistical techniques, mathematical algorithms, and 

computational power, machine learning algorithms can analyze given features of data in 

order to identify patterns and predict an output with remarkable accuracy [87]. Although 

the output(s) varies depending on the nature of the problem being addressed, 

bioinformatics studies can typically infer information about individuals or living 

organisms, including the presence of disease, disease severity, disease prediction, and 

factors contributing to disease (e.g. bacteria, virus, genes, SNPs, etc.) 

One of the main objectives of our thesis is to predict whether an individual has a 

particular disease or not using genetic profile information. However, prediction 

performance can vary significantly depending on the machine learning algorithms 

employed. Therefore, instead of using a specific machine learning method, we have 

comprehensively examined a total of eight different algorithms to reveal how algorithms 

with different statistical characteristics behave for the prediction of genetic and infectious 

diseases.  

3.2.1 Logistic Regression 

Linear regression is the fundamental regression algorithm used in mathematics and 

statistics to figure out the relationship between a dependent and independent variable(s). 

In the machine learning field, it is used to predict continuous output using independent 

variables, i.e. feature values [88]. Mathematically, the training step of linear regression 

tries to estimate coefficients, which are assigned to each independent variable 

individually, with a minimum of error between predicted and actual dependent values. 

Logistic regression (LR), on the other hand, is a transformation of linear regression for 

classification problems using the logistic function (also known as the sigmoid function) 

[89]. Simply, the output of the linear regression is fed into the logistic function to limit 

its range between 0 and 1. This allows the logistic regression to perform a binary 

classification by setting a threshold. For multi-class problems , the SoftMax function is 

used instead of the sigmoid. Mapping linear combination of input data to a probability 
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between 0 and 1 allows non-linear relationships to be modeled. One of the main 

disadvantages of logistic regression is that it tends to overfit as the number of independent 

variables increases. Regularization techniques have been developed to overcome this 

problem. Briefly, regularization is a term that expresses the addition of a penalty to the 

loss function according to a norm of the weight vector to prevent an excessive increase in 

model weights. 

3.2.2 Support Vector Machine 

Support Vector Machine (SVM) is a supervised learning algorithm widely used for 

classification and regression tasks. It was developed by Vapnik et al. [90] and is 

fundamentally based on statistical learning theory. Conceptually, the basic principle of 

SVM is to find the optimal separating hyperplanes, which linearly separates the two class 

labels. Using the determined hyperplane, a new unseen sample is classified into one of 

the two classes depending on which side of the hyperplane it falls. Suppose we have 

training samples with a binary output y= {-1,+1} and our data can be separated linearly. 

The goal is to select the hyperplane 𝐻 that best separates the classes. Consider the 

hyperplane 𝐻 defined by the function 𝑓(𝑥) = 0 below, 

 𝑓(𝑥)  =  𝑊 ∙ 𝑋 + 𝑏  (3.1) 

where 𝑤 is the weight vector that is perpendicular to the hyperplane and the sign of 𝑓(𝑥) 

indicates the position (or label) of point 𝑥 with respect to the hyperplane. The SVM tries 

to find the hyperplane that maximizes the margin, which is the distance between the 

hyperplane and the nearest data point of either class, according to formula (3.2): 

 𝐻∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝐻 γH  (3.2) 

where γH = min
𝑖=1…𝑛

γ𝑖 corresponds to the margin of the nearest point to 𝐻.  However, the 

optimal hyperplane may not always be found at a given dimension, especially if the data 

is non-linear. For these situations, SVM maps the input data into a high-dimensional 

feature space using a kernel function such as a radial basis function (RBF), polynomial 

or sigmoidal function [91]. 

Although SVMs have built-in noise protection and overfitting control, they can be 

computationally intensive, especially when dealing with large training datasets. In 
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addition, SVMs are primarily designed for binary classification, but they can be extended 

to handle multi-class problems using techniques such as one-vs-one or one-vs-all [92].  

3.2.3 K-Nearest Neighbors (kNN) 

kNN is another simple and intuitive algorithm used for classification tasks [93]. The 

basic idea of the standard kNN algorithm is predicting the class label of the given sample 

with the majority class of its most similar training data points in feature space [94]. In 

other words, kNN assumes that data points that are close together in feature space are 

likely to be in the same class. Therefore, there is no actual training process to do any 

generalization. Instead, the method simply  stores all training data samples in the memory 

instead [95]. Therefore, this algorithm is also called a lazy learner. Moreover, it is a type 

of non-parametric algorithm due to not having any assumption about data distribution. To 

calculate the similarity between data points, a distance metric is used such as Euclidean 

or Manhattan. After calculating the distance, the new sample will be assigned to the class 

label for which the number of neighbors is maximal. 

3.2.4 Random Forest 

The decision tree (DT) is another non-parametric algorithm that evaluates the 

importance of features in the dataset and splits it into subsets based on the value of the 

feature until a certain termination criterion is met, e.g., reaching a maximum depth or 

when further splitting does not improve prediction accuracy. The idea behind this 

algorithm is divide and conquer, searching for optimal split points within a tree greedily 

[96]. However, this greedy search can cause overfitting when a decision tree becomes too 

complex due to capturing noise or irrelevant patterns, and therefore an ensemble method 

called Random Forest was developed. 

Random Forest (RF) is an ensemble method that includes many decision trees 

where each tree makes a prediction individually and then the  final prediction for a sample 

is chosen  as the class label with the most frequent votes [97]. The idea behind random 

forest is “the wisdom of crowds” which means multiple random and uncorrelated trees 

can act as a group to overtake the result of any separate constitute model [98]. This is 

because uncorrelated multiple trees may lead to correct direction by correcting each 

other's prediction error.  
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Random forest algorithm begins with bagging, or bootstrap aggregation, which 

generates random subsets of data by sampling with replacement where the number of 

samples in each subset is equal to the number of samples in the training set, and each 

subset is used as input to a decision tree model. Decision tree uses impurity criteria for 

deciding how to split data at each node. The impurity measures the quality of a split and 

is used to determine which feature and split point to choose at each node. Gini index and 

entropy criteria such as information gain and gain ratio are examples of criteria used in 

the impurity calculation at this stage. After the training process, prediction for a new 

sample is computed by averaging the predictions from all trees. 

3.2.5 Boosting Algorithms 

Boosting is another popular ensemble learning approach that builds a strong 

classifier by combining several basic learners, similar to the bagging approach mentioned 

above [99]. However, these approaches have some differences in what they produce and 

how they handle the training data. Bagging essentially reduces variance and improves 

stability by using multiple base classifiers simultaneously on a random subset of the 

dataset, thus increasing prediction performance. Boosting, on the other hand, is an 

iterative technique that involves multiple weak leaner models like bagging, but the models 

are trained sequentially by correcting the error made by the previous model to build a 

stronger classifier [100]. 

For example, suppose there is a dataset 𝐷 =  {𝑠1, 𝑠2, 𝑠3 … 𝑠𝑛} with 𝑠𝑖 = (𝒙𝒊, 𝑦𝑖) 

where 𝒙𝒊  ∈  𝑿 and 𝑦𝑖  ∈  {−1, +1}. The boosting approach initially generates a subset 𝐷1 

by randomly choosing samples from dataset and this subset is uset do train a base learner 

to form a predictor model 𝐻1. In the next iteration, a subset 𝐷2 is generated the same way 

but misclassified samples of 𝐻1 have higher probability of being selected and 𝐻2 is 

formed by training a base learner using 𝐷2. In the next stage, a subset consisting of the 

higher proportion of misclassified samples from models 𝐻1and 𝐻2 are used to train the 

base learner and the 𝐻3 model is generated. Boosting briefly combines these predictors 

iteratively to produce the final classifier using majority voting [101]. The strong idea of 

boosting approaches have lead to have lead improved version of boosting-based 

algorithms such as gradient boosting. 
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Unlike the traditional boosting, gradient boosting tries to find an approximation by 

minimizing the expected value of a given loss function. The algorithm is initialized with 

a constant α approximation of 𝐻∗(𝑥) as formula (3.3), where 𝑁 is the number of samples. 

 𝐻0(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛α ∑ 𝐿(𝑦𝑖 , α)𝑁
𝑖=1  (3.3) 

Subsequent models are expected to minimize loss as in formula (3.4) where 𝜌𝑚 is the 

weight of the 𝑚𝑡ℎfunction of ℎ𝑚(𝑥). 

 𝑎𝑟𝑔𝑚𝑖𝑛𝜌,ℎ =  ∑ 𝐿(𝑦𝑖 , 𝐻𝑚−1(𝑥𝑖) +  𝜌𝑚ℎ𝑚(𝑥𝑖))𝑁
𝑖=1  (3.4) 

 

The algorithm trains each model ℎ𝑚 instead of solving the optimization problem directly 

and calculates residuals 𝑟𝑖𝑚 by formula (3.5) and the value of 𝜌𝑚 is subsequently solved 

by a line search optimization algorithm [102]. 

 𝑟𝑖𝑚 =  − [
𝜕𝐿(𝑦𝑖,𝐻(𝑥𝑖))

𝜕𝐻(𝑥𝑖)
]

𝐻(𝑥)=𝐻𝑚−1

, 𝑖 = 1,2, … 𝑛 (3.5) 

 

Finally, the new model is added to the ensemble using the following formula (3.6), 

 

 𝐻𝑚(𝑥) = 𝐻𝑚−1(𝑥) +  𝜈𝜌𝑚ℎ𝑚(𝑥) (3.6) 

The value of 𝜈 which is also called the shrinkage parameter enables to control 

overfitting by shrinking the contribution of gradient descent in each iteration.  

3.2.5.1 Ligth Gradient Boosting (LightGBM) 

LightGBM is an extended version of traditional gradient boosting that proposes 

some additional variants, especially in the splitting procedure, to make the models  

computationally more efficient [103]. Traditional GBM scans all data samples and 

examines possible splitting features, which is slows down the model running time. 

LightGBM proposes two new features to prevent these drawbacks: Gradient-based One-

Side Sampling (GOSS) and Exclusive Feature Bundling (EFB). 

GOSS is a subsampling technique that relies on retaining data instances based on 

their gradients during the down-sampling process. Instances with large gradients 

contribute more to the information gain criteria. Therefore, it is expected that keeping 
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instances with large gradients while randomly dropping instances with small gradients 

can lead to more accurate gain estimation than uniform random sampling. EFB, on the 

other hand, refers to the reduction of sparse features using a greedy approach that bundles 

mutually exclusive features. This technique reduces sparse features to a single feature and 

thus speeds up the model without losing any information. 

3.2.5.2 Extreme Gradient Boosting (XGBoost) 

XGBoost (eXtremeGradientBoosting) is an improved version of GBM including 

additional techniques to control overfitting, split finding and handling missing values 

during training [104]. It also provides a more generalized model to control complexity by 

adding regularization term as in equations (3.7) and (3.8), 

  𝛺(ℎ𝑚) =  γ𝑇 + 
1

2
 𝜆 ‖𝑤‖2) (3.7) 

 𝐿𝑥𝑔𝑏 = ∑ 𝐿(𝑁
𝑖=1 𝑦𝑖 , 𝐻(𝑥𝑖)) + ∑ 𝛺(ℎ𝑚)𝑀

𝑚=1   (3.8) 

 

where 𝑇 is the number of leaf nodes, providing a varying number of leaves instead of a 

fixed number, 𝑤 are the output scores of the leaves and γ, 𝜆 are coefficients for 

regularization, which is allow controlling the complexity in each iteration separately. One 

of the main advantages of XGBoost is that it is designed to be highly scalable. It allows 

parallel learning of the model , resulting in faster results. 

3.2.6 Naïve Bayes 

Bayesian classifiers are probabilistic approaches that use Bayes decision theory to 

make predictions or estimates for a given sample and prior expectations. This technique 

is based on the assumption that the decision problem is formulated in probabilistic terms 

and that all relevant probability values are given [105]. Naive Bayes algorithm can be 

defined as the simplest Bayes classifier. Main characteristic of this algorithm is the very 

strong (i.e., naïve) assumption that the features are conditionally independent with respect 

to the class label [106]. This assumption simplifies the calculation of likelihood when 

estimating their probabilities. Although this assumption may not hold in all cases, or even 

when the assumption is poor, Naive Bayes classifiers have been shown to be remarkably 

effective [107].  For a given sample  𝑋 =  {𝑥1, 𝑥2 … 𝑥𝑛}, the formula of the Bayes 

classifier is: 
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 𝑁𝐵 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑖∈𝐶  𝑃(𝑐𝑖) ∏ 𝑃 (𝑥𝑖  | 𝑐𝑖)𝑖   (3.9) 

 

where  𝑐𝑖 represent class label and 𝑃(𝑐𝑖) is prior probability of 𝑐𝑖. Depending on 

likelihood and prior probabilities, NB selects the target class label with the highest 

probability. 

The Naive Bayes classifier is known for its robust performance, performing well 

even with relatively small training datasets. This makes it a valuable method in 

bioinformatics, where datasets may be limited due to collection difficulties. Given the 

small number of samples in our secondary experimental study, we also wanted to observe 

the results of the Naive Bayes algorithm. 

3.3 Feature Selection  

Measuring the changes, activations, or intensities of genetic materials such as gene 

expression levels that occur in humans typically generates thousands of data values. For 

example, with the revolution in next-generation DNA sequencing, some array 

technologies are capable of genotyping up to 1 million polymorphic variations for each 

sample in a single experiment [108].  Alternatively, more than ten thousand gene 

expression intensities can be measured with current profiling microarrays [109]. In these 

cases, a sample (or individual) was represented with thousands to millions of parameters. 

Each parameter is called a “feature” in the field of artificial intelligence, which can be 

measured and expresses the characteristic properties of a sample. These features can be 

helpful or informative in understanding the underlying molecular mechanism for in vitro 

experiments. However, data may contain redundant and highly noised features caused 

due to collection technology, the nature of biological data, etc. [110]. In general, only a 

small subset of these features is relevant, depending on the problem being addressed. 

Furthermore, using irrelevant or redundant features causes the curse of dimensionality 

and makes it difficult to discover potential markers [111]. Conversely, eliminating the 

redundant features often leads to increased model accuracy and decreased running time 

[112], which are also evidenced empirically [113]. One way to remove noise and 

redundancy is dimensionality reduction (DR), where usually the feature space is 

reconstructed by combining the original features. This technique results in losing the 
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effectiveness of each feature on the problem outcome. Alternatively, instead of combining 

existing features to generate new features, a subset of biological features can be 

considered to identify effective drug response markers associated with cancer [114,115].  

 

Figure 3.1 Brief illustration of the feature selection process. The original data set may 

contain a large number of features, most of which may be irrelevant. Feature selection 

reduces the number of features by keeping the significant ones [116]. 

But how do we figure out the significant features of genetic input material that have 

an impact on disease development, viral infection, or other phenotypic conditions ? For a 

dataset with N features, there is 2𝑁 unique candidate feature subsets. Considering the 

huge number of features that arise due to the nature of biological data, finding the perfect 

subset is very costly in terms of computational time. Moreover, the subset should be 

"necessary" and "sufficient" to describe the target concepts, while representing the 

patterns of samples [117] . Alternatively, feature selection may also provide an 

approximation to the optimal subset of features. 

Feature selection (FS) is a technique where an optimal subset of features related to 

phenotype or outcomes is found according to certain relevance evaluation criteria [118]. 

Unlike other dimensionality reduction techniques that distort the original feature 
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representation, FS preserves the semantic integrity of the data [119]. Furthermore, the 

optimal subset following feature selection that is used as input to a predictive model 

typically assumed to be functionally associated with a disease etiology [116,120]. Hence, 

feature selection makes it possible to identify significant features, such as genes 

responsible for a disease, and to interpret them straightforwardly. 

 

 

Figure 3.2 An illustration of the three main types and process of feature selection 

approaches - filtering, wrapper and embedded [121]. 

In the machine learning environment, feature selection approaches are divided into 

three main categories, namely filtering, wrapper, and embedded, according to their 

interaction with data or a learning algorithm (see Figure 3.2). In addition, ensemble and 

hybrid approaches have also been proposed in the literature, where different methods are 

combined or cooperated in an appropriate layout to reveal the best-performing feature 

subset. Moreover, recent studies have used integrative methods that take advantage of 

pre-defined domain knowledge, particularly in the fields of bioinformatics and 

computational biology, where domain knowledge plays a crucial role in the interpretation 

of results and can improve performance. Each of these approaches is described in detail 

in the next section. 

3.3.1 Filtering Approach 

Filtering approaches simply filter out features based on a certain performance 

metric calculated directly from the data, without using a prediction algorithm. The 

evaluation of the performance metric, which is known as the relevance score, is an 
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indicator of how relevant the subset is to the problem being addressed. In addition to some 

algorithmic procedures, the score is usually calculated with an information-theoretic 

measures that measures the absolute differences of the values depending on the class 

labels, such as the chi-square, information gain, mutual information or fisher-score [122]. 

These scores then are used to rank and select best performing features. The independence 

of these metrics from a prediction algorithm makes filtering more computationally 

efficient and practical, especially for high-dimensional datasets. Conversely, the lack of 

interaction with a training model may have the effect of not improving the performance 

of the machine learning model. 

Filter-based methods are divided into univariate and multivariate methods, 

depending on how they handle feature associations [123]. Univariate approaches usually 

evaluate informativeness of each feature individually, rank them using the relevance score 

and final feature subset is determined by establishing a threshold value or specifying the 

number of features to retain [124]. Therefore, univariate methods assumes that features 

are independent to each other. Fisher score, Gini index and Chi-square can be counted 

among the best known and most widely used univariate methods. Multivariate methods, 

on the contrary, take into account the interdependencies of features to figure out how they 

effect as a group [125]. The rationale for the multivariate approach is that features which 

are individually irrelevant may become relevant when used in combination. Relevance 

scores of a feature are also dependent to other features that are to be selected or not. 

ReliefF, mRMR and MIFS could be considered as well-known multivariate methods. 

Although multivariate approaches appear to be better at selecting features, it is not 

possible to say that one approach is better than another. This is because feature selection 

methods are highly dependent on the data. For example, univariate models rank the 

features with the highest correlation with the output, and it would be assumed that the top 

N features from the sorted list are the best at discriminating the target or class label. 

However, it ignores the possibility that related features may be more discriminating when 

used together.  Multivariate, on the other hand, ignores the isolated discriminative power 

of each feature. However, multivariate methods are also used as “ranker” as they provide 

a relevance score for each feature, although scores are calculated jointly. Therefore, the 

choice of the optimal filtering approach should be based on the data set used. 

Nevertheless, univariate methods are preferable in terms of computational efficiency as 

they are much faster than multivariate methods.  
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3.3.1.1 Fisher Score 

The Fisher Score algorithm is a widely used univariate feature selection method 

that searches for optimal features using within-class and between-class distances. The key 

idea of Fisher Score to find a subset such that the distance within-class points are 

minimized while different-class points are maximized in data space spanned by selected 

features [126]. Normally, for a given subset 𝑍 ∈  𝑅𝑚∗𝑛 includes selected 𝑚 feature from 

input dataset 𝑋 ∈  𝑅𝑑∗𝑛 where 𝑛 is sample size and 𝑑 is number of all features, Fisher 

score calculated as follow: 

 𝑓𝑠(𝑍) = 𝑎
𝑡𝑟(𝑆𝐷)

𝑡𝑟(𝑆𝑊)
  (3.10) 

where 𝑡𝑟() function denotes trace of a matrix, 𝑆𝐷 and 𝑆𝑊 are different-class and within-

class data point matrices [127]. However, as there are (𝑑
𝑚

) candidate to form 𝑍, calculating 

fisher score is became a very challenging optimization problem. To address this difficulty, 

a heuristic strategy is employed in computing score of each feature individually based on 

some criteria. Thus, it enabled to shrink computational space of each feature 𝑗 to 𝑥𝑗 ∈

 𝑅1∗𝑛. Then, fisher score of feature 𝑗 is calculated with: 

 𝑓𝑠(𝑗) =
∑ 𝑛𝑘(µ𝑘

𝑗
− µ𝑗)

2
𝑐
𝑘=1

∑ 𝑛𝑘(𝜎𝑘
𝑗

)
2

𝑐
𝑘=1

  (3.11) 

where µ𝑗 , µ𝑘
𝑗
 and 𝜎𝑘

𝑗
 are mean of the samples, mean and standard deviation of 𝑘. 𝑡ℎ class 

corresponding to 𝑗. 𝑡ℎ feature, respectively. Given that the numerator and denominator of 

the fraction in formula (3.11) indicate between-class and within-class data points, 

respectively, 𝑓𝑠(𝑘) represents the discriminant ability of the 𝑗.th feature. The higher 

fisher score, the more discriminative power the feature has. Since the method assumes 

that each feature with high scores has good discriminative ability separately, it ignores 

the improvement ability of using them in combination [128]. 

3.3.1.2 Relief-F Algorithm 

The Relief algorithm is a multivariate filtering method that iteratively computes the 

weights of features, considering the other samples in the dataset [129]. Algorithm starts 

with defining n-long weight (W) vector of zeros and taking randomly a sample from the 

dataset. Using the feature vector of the selected sample, "nearest neighboring" belongs 
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the same class and the “nearest neighboring” belongs to the different class samples are 

determined by using Euclidean distance.  

 𝑊𝑖 = 𝑊𝑖 − (𝑋𝑖 − 𝐻𝑖)2 + (𝑋𝑖 − 𝑀𝑖)
2 (3.12) 

Then, weight vector is updated via formula (3.11), where 𝑊 indicates initialized 

zero-valued weight vector, 𝑋 randomly selected sample, 𝐻 same-class nearest neighbor 

sample to 𝑋, 𝑀 difference-class nearest neighbor sample to 𝑋, and 𝑖 i.th feature of the 

vector. This process is repeated to 𝑚 times iteratively, and finally relevance vector is 

obtained by dividing each value of the weight vector by 𝑚. The number 𝑚 can be chosen 

randomly but usually equal to the sample number. 

Thus, if a feature value changes while the same feature of another same-class 

sample does not change similarly, the weight of the feature is reduced on the assumption 

that the feature has no effect on the class. Conversely, joint changes of both the feature 

and feature of same-class sample signalize the feature is discriminative to the class label 

and therefore weight of that feature is increased [130]. 

Relief-F an extended version of Relief for multi-class problems that is also more 

robust and can deal with incomplete and noisy data [131]. Instead of just one nearest 

sample, Relief-F considers k of its nearest neighbors from the same class, and k nearest 

neighbors from each of the different classes, which may prevent redundant and noisy 

features to affect the selection of the nearest neighbors. In addition, Relief-F uses the 

Manhattan distance to find the nearest samples rather than the Euclidean distance. Rest 

of algorithmic process are almost same. 

The main advantage of relief-based algorithms is that they retain the generalized 

strengths of the filtering approach, such as relatively fast, selected features not dependent 

on the predictor algorithm, and flexibility in terms of individual feature weighting [132].  

3.3.1.3 Minimum Redundancy Maximum Relevance (mRMR) 

When performing feature selection on a dataset, the main purpose is obviously to 

find the most representative features according to their relation to the class label or 

phenotype [133]. Because it is trusted that selecting the most relevant features is the best 

way to figure out important parts of the whole dataset and maximize predictive 

performance. This is right, but it is not enough. For instance, suppose there are two 
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distinct features each of which has the same and high discriminative power to sample to 

the class labels. Standard feature selection, such as a univariate method, solve selection 

problem by selecting both of them. However, since both of them carry the same 

information choosing just one of them should be sufficient. Therefore, while selecting 

features based on their relevance score, redundancy should also be avoided which appears 

when two highly relevant variables are closely associated with each other.  

mRMR is a mutual information-based method that considers both relevance and 

redundancy of features when selecting them [134]. It attempts to form best feature subset 

by maximizing relevance of feature to the class label while minimizing feature 

redundancy which measures the similarity between features. Therefore, relevance and 

redundancy of each feature in candidate subset should be calculated. Measuring relevance 

is relatively easier, because “maximum dependency” between 𝑥𝑖 and class label 𝑐 can be 

calculated using mutual information (MI), as shown in formula (3.13) where 𝑝(𝑚) and 

𝑝(𝑛) are marginal probabilities and 𝑝(𝑚, 𝑛) joint probability of given two variables. 

 𝐼(𝑀; 𝑁) =  ∑ 𝑝(𝑚, 𝑛) log
𝑝(𝑚,𝑛)

𝑝(𝑚)𝑝(𝑛)𝑚,𝑛  (3.13) 

Since mRMR aims to maximize relevance, maximum value of MI between a feature 

set 𝑆 and class should be selected, therefore relevance score of set 𝑆 calculated using 

formula (3.14), where |𝑆| is the size of features subset 𝑆. 

 max 𝐷(𝑆; 𝑐); 𝐷 =  
1

|𝑆|
 ∑ 𝐼(𝑥𝑖 , 𝑐)𝑥𝑖 ∈ 𝑆  (3.14) 

The larger value of MI indicates that the feature has higher discriminative 

information. In this way, iteratively maximum relevant features can be added to optimal 

subset 𝑆. However, selecting features based only on maximum relevance can lead to high 

redundancy in the subset [135]. While choosing each next optimal feature (i.e. high 

relevant), redundancy between features in iteratively formed subset 𝑆 should be 

considered.  

 min 𝑅(𝑆); 𝑅 =  
1

|𝑆|2  ∑ 𝐼(𝑥𝑖 , 𝑥𝑗)𝑥𝑖,𝑥𝑗∈ 𝑆  (3.15) 

This need can be solved employing MI criteria because of the fact that it also 

measures amount of information between features using the formula (3.15), where 𝑥𝑖 , 𝑥𝑗 
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indicates two different features. if the value of MI increases when the next feature is 

added, it means that the duplicate information increases, and the feature can be discarded. 

 max
𝑥𝑖 ∉ 𝑆

= [𝐼(𝑥𝑖 ; 𝑐) − 
1

|𝑆|
 ∑ 𝐼(𝑥𝑗 , 𝑐)𝑥𝑗 ∈ 𝑆 ]  (3.16) 

mRMR feature selection method optimizes these evaluation criteria relevance D 

and redundancy R simultaneously, as following formula (3.16). Iteratively increment 

procedure to increase number of features in set S as follows [136]: 

1- The optimal feature 𝑥𝑖 with the highest mutual information between features is 

determined using 𝐼(𝑥𝑖; 𝑐) and added to the empty feature subset 𝑆. 

2- Then, the subsequent highest information carried feature 𝑥𝑗 is selected which 

satisfies formula (3.16). 

3- Step 2 is repeated until the stopping criteria, such as the number of selected 

features, is reached. 

For example, some coding part of a gene contain multiple probe intensities while 

measuring with a microarray. Originally, all these probes are associated with the same 

gene. Therefore, the effect on the class label activity might be similar. mRMR is one of 

the best methods that perceives the redundancy among them. In fact, the mRMR approach 

was first proposed as a gene selection method [137]. It is therefore widely used in 

computational biology, genetics and multi-omics studies. 

3.3.2 Wrapper Methods 

Discarding the prediction algorithm during feature selection may result in poor 

prediction performance. Filtering algorithms select features based on their correlation 

with class labels, without using a classifier or predictor. Therefore, the selected subset 

may not contain the features that are most important for improving the performance of 

the predictor algorithm.  If the main purpose of performing feature selection is to improve 

predictive performance, the relevant feature subset will reflect the classifier 

characteristics should be selected [138]. To meet exactly this need, a wrapper approach 

has emerged. 
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Wrapper approach relies on the utilize predictive power of a chosen machine 

learning algorithm as an evaluation metric to aid optimum feature subset. Technically, 

prediction score of each iteratively generated subset that evaluated with the algorithm 

reflects the quality of the subset. Feature dependencies, interactions and redundancies 

have been considered during the selection of the subset. Thus, wrappers enable to 

identifying best-performing features in terms of prediction performance even though 

selected ones not have grounded association with class label. However, assessing the 

possible feature combination is computationally intractable, especially high-dimensional 

data like SNPs or gene expression [139]. To keep wrapper method feasible, number of 

generated subset or iteration should be reduced using a search strategy. The search 

strategy is a way to find a subset with the highest evaluation score, using a heuristic 

function to guide it [140]. These methods start with a randomly generated subset and 

iteratively move one step closer to the best solution [141].  Heuristic approaches are 

usually categorized as sequential and randomized search. There are 2 flavors of sequential 

methods: forward selection and backward selection. 

Starting with an empty set, forward selection (i.e., sequential forward selection, 

SFS) algorithms iteratively add each candidate feature that is not already in the subset. 

Each addition proceeds by evaluating the subset score.  This cycle continues until a 

specified number of features have been selected or no improvement is observed after a 

specified number of iterations [142]. In contrast, backward selection (i.e. Sequential 

Backward Selection, SBS) iteratively eliminates the least promising feature from a set 

consisting of all candidate features. Similar to SFS, the pruning process continues by 

checking the subset prediction score one by one until a certain number of features remain 

or the subset score decreases [143]. 

Although the sequential methods are easy to implement and provide a better way 

than exhaustive search, they often tend to get trapped in a local optimum [144]. For 

example, due to 5 times consecutive non-improvement in performance might be stopped 

the elimination of features in SBS. To avoid trapping in local optima problem and 

accelerate the running time, randomized search strategy is introduced. As the name 

implies, randomized search aims to select features at random within a specific logical 

framework such as an evolutionary algorithm. For each iteration of this approach, a 

random subset is generated or iteratively modified with the aim of maximizing prediction 

performance [145]. These methods usually employes or combine an existing heuristic 
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algorithm such as Genetic algorithm [146], simulated annealing or Artificial Bee Colony 

(ABC) [147]. Thus, well-developed optimization algorithms are utilized to avoid from 

getting trapped in local optima. Besides maximizing the prediction performance, the main 

advantage of wrapper algorithms is that there is no need to specify or determine the 

threshold for selecting the number of features. The optimal subset is obtained immediately 

after running a wrapper. However, it is not known which features are relatively more 

important within the set, as wrappers do not calculate a score for each feature. 

3.3.3 Embedded Methods 

In most machine learning studies, the main goal is to maximize the predictive 

performance of the model. Among the feature selection approaches that provide a way to 

improve predictive performance, filtering is not associated with a predictor, so 

performance can be poor. Wrapper, on the other hand, directly evaluates each subset 

separately with an algorithm, but it has a major drawback, which is high runtime [148]. 

Therefore, there is a need for an approach that both uses an algorithm to enhance 

predictive performance and runs relatively faster than Wrapper.  

Similar to wrapper, embedded methods also incorporate a machine learning 

algorithm during feature selection process. However, wrappers are actually utilize the 

predictive performance of a given algorithm, not learning process. In contrast, feature 

selection is a part of learning algorithms in embedded methods. In other words, features 

are selecting during the training process of the algorithm. Therefore, embedded methods 

consider the dependencies amongst features, as well as the relationship between the input 

feature and the output [149]. Moreover, advantage of interacting with the learning 

algorithm during training results in simultaneous selecting features and thus reducing 

computational time compared to wrapper methods. The embedded approaches usually 

grouped under two categories regularization and tree-based [150]. 

3.3.3.1 Regularization-based Embedded Methods 

Machine learning essentially aims to extract a pattern from input data. When the 

same data are trained repeatedly, not only features but also noise are learned. In this case, 

the model will not be able to accurately make predictions for new samples or other data 

sets. The reason for this is the exact adaptation, or fit, to the data. In other words, the 

model has become over-fitted. Regularization is a technique that have ability to limiting 
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complexity and preventing the occurrence of overfitting in a model by suppress learning 

coefficients [149].  

 𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑑 𝐿𝑜𝑠𝑠 =  ∑ (𝑦𝑖 −  𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗
𝑚
𝑗=1 )

2
+𝑛

𝑖=1  𝜆 ∑ |𝛽𝑗|𝑚
𝑗=1  (3.17) 

This technique is mostly used in linear models and basically adds a penalty value 

to the loss function to control over-raising of coefficients, as seen Lasso in formula (3.17) 

where 𝑛, 𝑚, 𝛽 and 𝜆 indicates sample size, feature size, coefficient, and regularization 

parameter respectively.  If the model is overfitted by over-weighting or under-weighting, 

the loss value will also be high because the penalty term is also high. The model will 

therefore tend to shrink the coefficients as low as possible.  

Coefficients are not directly related to the importance of features because they have 

different scales or ranges.  This means that it cannot be concluded from a feature is 

significant if the coefficient is high. Nevertheless, if a coefficient is 0, this is evidence 

that the feature has not affect the outcome due to the nature of linear regression. 

Consequently, features having zero coefficients could be marked as redundant and 

removed. Hence, regularization techniques can be used as feature selection to remove 

some features from the model and make it more robust, less complex, and 

computationally faster.  

There are 2 well-known regularization-based embedded techniques, Lasso and 

Ridge.  Both use Linear Regression, but the penalty terms for the loss function differ. 

While Lasso (i.e. L1 norm) penalized with the absolute value of each feature coefficient, 

Ridge (i.e. L2 norm) penalized by the squared magnitude of each feature coefficient.  

Since quadratic form of the Ridge penalty term, a small number of coefficients will be set 

exactly zero.  On the other hand, Lasso penalty term leads many parameters to equal zero 

rigorously due to linear form, resulting in efficiently discarding redundant features [151]. 

3.3.3.2 Tree-based Embedded Methods 

Tree-based methods, which build trees iteratively by recursively partitioning the 

data by features, are the most popular and powerful prediction algorithms. In the 

determination of the features of the partition samples, each feature is calculated in 

accordance with some specific standards, and the most important feature is selected as 

the feature of the partition samples each time [152].Thus, tree-based methods have an 



41 

 

inherent feature selection process, as the splitting features are selected based on their 

discriminative power.  

One of the early implementations of the tree algorithm, ID3 proposed by Quinlan 

[153], used information entropy to measure the importance of each feature. It is expected 

that the entropy will be lower when a system has a stable processing. Therefore, the 

decision tree is constructed based on these using information gained from features and 

the feature of maximum entropy reduction is selected to divide the data. Since the 

standard ID3 algorithm can only deal with discrete features, an improvement version of 

it was proposed called as C4.5 algorithm [154]. C4.5 uses the information gain rate. 

Information gain is the amount of knowledge gained from a particular decision or action. 

It is calculated by comparing the entropy of the original set with the weighted sum of the 

entropies of the subsets created by splitting the data on a particular feature. In the 

following years, Gini Index was proposed as the measurement of the features [155]. The 

differences among feature measurement techniques have also led to emerge of different 

feature selection methods depending on measurement during splitting such as information 

gain based or gain ratio based feature selection.  

There are also ensemble tree-like feature selection methods that follow the same 

procedure but combine multiple decision trees through processes such as bagging or 

boosting, such as the XGBoost or LightGBM feature selection techniques. However, as 

there are multiple trees, the importance scores of features are calculated for each tree, 

then averaged across all trees and finally normalized to sum up 1 [156]. 

3.3.4 Hybrid Methods 

Conventional feature selection methods typically yield different optimal feature 

subsets. This is because each method has a different statistical or computational 

underlying theory. For example, the Relief method makes calculations based on sample 

similarity within and between classes, while the Fisher score focuses on the significance 

of each feature to the class label. The Wrapper approach, on the other hand, decides the 

importance of a subset in a completely different way, using the predictive power of a 

machine learning model. As each approach has its own theoretical background, they offer 

some advantages or disadvantages in different aspects.   A comparison of the strengths 

and weaknesses of each approach is shown in Table 3.1. Searching a way to use strengths 
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sides of each approach to obtain best-performing feature subset led to emerge of hybrid 

perspective. 

Table 3.1 Taxonomy of three feature selection approaches with advantages and 

disadvantages [157]. 

Approach Advantages Disadvantages 

Filtering 

Univariate 

Fast Ignores feature dependencies 

Scalable Ignores classifier interactions 

Independent of the classifier 
 

Multivariate 

Consider feature dependencies Slower than univariate methods 

Independent of the classifier Less scalable than univariate methods 

Better in computational compexity than 

wrapper  Ignores classifier interactions 

Wrapper 

Simpler than Filtering methods Risk of over fitting 

Interacts with the classsifier Classifier dependent selection 

Considers feature dependencies Computationally intensive 

Embedded 

Interacts with the classsifier Classifier dependent selection 

Less intensive complexity than Wrappers 
 

Consider feature dependencies   

Hybrid methods are essentially a combination of different feature selection methods 

in sequential steps, taking advantage of each method [158]. The first step usually starts 

with applying a filtering approach to the dataset, since filters are simple and run quickly. 

It also allows features to be sorted by importance and the number of features to be reduced 

by a threshold. However, filters do not account for the effects of feature correlations on 

predictive performance. To account for dependencies between features, a wrapper method 

can be performed on the sorted features. In this way, the most important features are 

considered, both in terms of individual feature values and prediction performance. 

Moreover, some heuristic and evolutionary algorithms have also been utilized to 

determine the best feature subset within hybrid methods. For example, Butler-Yeoman et 

al. have shown that combining a hybrid approach with particle swarm optimization 

outperforms filtering while being less computationally complex than wrappers [159]. 

Because they can be easily combined with a variety of methods and ideas, hybrid methods 

offer a flexible solution to the challenge of finding the optimal feature subset. 
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3.3.5 Integrative (Knowledge-Based) Methods 

Feature selection methods have been in search of new ways to find the best subset 

as the number of data and features representing the samples increased. Primitive 

approaches rely on rules or expert opinion to find important properties of the data, while 

current approaches like filtering, wrappers and embedded depend on data-driven analysis. 

Being "data-driven" in feature selection means determining relevant features that 

contribute to predictive performance based solely on the data presented, without any 

external source [160]. 

Besides theoretical and academic contribution, data-driven approaches offer many 

practical utilities in various fields, such as text mining and image processing, where data 

is principal. However, due to the complex and multifaceted nature of biological systems, 

it may not be sufficient adhere to only the input data in biological or genetic experiments 

to obtain coherent results with the biological domain. This is because some feature 

selection approaches may identify some important parts, e.g. genes, but these may only 

have been selected based on prediction performance and have no real association with 

phenotype.  If the experiment is designed solely to improve prediction performance, the 

biological aspect of the results may not be valuable. Conversely, if a logical connection 

with the biological domain is sought, integrative methods should be used. 

Integrative feature selection refers to the process of combining multiple sources of 

knowledge in subset selection. Particularly in bioinformatics studies, the incorporation of 

additional sources and the integration of prior knowledge about the underlying biology 

allows for more accurate interpretation and improves the reliability of findings [161].  

One of the most common ways in integrative approaches is to use the information 

in knowledgebase repositories derived as a result of various experiments. For example, 

in study [162], the authors used biological relationships of genes provided in the Gene 

Ontology (GO) repository to rank genes for a cancer-related microarray dataset. GO 

Annotations were used both to correct inaccurate measurements of the microarray 

technology and to detect redundancies between genes. Integrative use of GO annotation 

led to more accurate results, as reported.  
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3.3.6 Ensemble (Aggregation) Methods 

Ensemble learning, also known as committee-based learning, briefly combines 

multiple learners to solve a problem being addressed [163] . The rationale behind 

ensemble learning is to use multiple methods and then combine them or their outputs to 

achieve better results, treating them as a 'committee' of decision-makers [164]. In this 

way, the advantages of different models are utilized. The effectiveness and efficiency of 

that approach has also been proven in many prediction studies through recent years 

[165,166]. 

Despite the fact that idea of ensemble learning usually to be associated with 

classification problems, it can be used to improve other machine-learning disciplines like 

feature selection [167]. Since each feature selection method has a special statistical or 

computational background for evaluating subsets, selected features are varying from 

method to method. In addition, the selected features may also vary depending on the parts 

of the same dataset. Ensemble selection provides a solution by aggregating the outputs of 

many selector methods, usually improving performance, and freeing the user from having 

to choose a single method. 

Ensembles for feature selection are usually divided into 2 approaches. If the 

selection methods are all the same, but the training data varies over several nodes, it is 

called a “homogeneous” approach. Otherwise, i.e. feature selector methods are changing, 

it is called as "heterogeneous" approach [168]. A heterogeneous approach takes into 

account the strengths and weaknesses of each method. Therefore, if a method fails to 

select important features, it reduces the overall performance of selecting optimal subset. 

Nevertheless, it is likely to yield a more discriminating subset because it combines 

selected features from different methods. 

3.3.7 Domain Knowledge Based Subset Selection (DKSS) 

As mentioned above, integrative feature selection methods have become more 

popular in recent years in favor of being able to utilize community knowledge in the 

selection process. For the second experiment of this thesis, about Behçet’s Disease, we 

have proposed an integrative feature selection method that uses biological networks in 

SNPs selection.  
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A biological network is a graphical representation of genes, proteins or other 

biological molecules that contains physical/functional interactions and helps to 

understand cellular processes and disease mechanisms. These interactions can be 

represented in terms of nodes and edges, with the nodes keeps the biological molecules 

and the edges express the interactions between them. By studying biological networks, 

researchers gain insight into the complex web of relationships within living organisms. 

When analyzing a biological network, identifying active sub-networks becomes crucial 

as it allows researchers to focus on the most relevant genes and their interactions. 

An active sub-network is the connected subgraph of a biological network that 

comprises genes that are significantly associated with disease-predisposing single 

nucleotide polymorphisms (SNPs), based on genotypic p-values.  These SNPs are genetic 

variations that have been linked to an increased risk of developing a particular disease. 

Understanding of the mechanisms of disease development can be gained from the genes 

in an active sub-network and their interactions. Thus, active sub-networks could be used 

to predict disease [169]. 

 

Figure 3.3 Steps of of proposed DKSS methods as a feature selection approach for the 

prediction of Behçet’s Disease problem [170]. 

DKSS is theoretically based on the idea that selecting SNPs within the same active 

network would be more biologically meaningful, as these SNPs are already related to 
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each other. This is because standard feature selection methods either evaluate each feature 

independently, or a combination of several, but evaluated according to a class label. This 

can provide a more biologically accurate evaluation of the results obtained, even if it does 

not improve classification performance. 

The idea behind DKSS is that a SNP is selected if the gene associated with that SNP 

is included in an active subnetwork. Figure 3.3 shows general workflow of DKSS method. 

Table 3.2 Domain Knowledge Based Subset Selection Pseudo Code. 

 
Input: Subnetworks:  List contains predefined active sub-networks 

 Data: GWAS data where features are SNPs. 

 Min_SN:  Minimum number to be chosen subnetworks 

 Max_SN: Maximum number to be chosen subnetworks 

 Classifier: A base learner 

 RepeatCount: Number of repeat times (100 default) 

Min_SN & Max_SN: Numbers to be selected Minimum and Maximum 

subnetworks 

Output: List of Selected SNPs 

 Function: getBestSNPList(Data,Subnetworks,Min_SN,Max_SN,Classifier,RepeatCount) 

1 for i= Min_SN : Max_SN 

2  SelectedSN = choose i active networks from Subnetworks) 

3  snpList = union SNPs from SelectedSN 

4  Rearrange Data by filtering on SNPs in snpList 

5  ACC = Train and Evaluate Accuracy of classifier using Rearranged Data 

6  If ACC > prevACC: 

7   BestSNPs = snpList 

8 return BestSNPs 

The first step in DKSS is to define the minimum and maximum number of 

subnetworks to be selected. The active sub-networks are then randomly chosen from the 

pool of sub-networks and the SNPs associated with the genes in the selected sub-network 

are selected. A base learner is used to calculate the classification score of samples with 

selected SNPs. This process is repeated 300 times, whereby the number of trials can be 

specified as a parameter. The SNPs that yield the highest classification score are kept as 

the final set of SNPs.  In this way, the biological information contained in the active 

subnetworks of BD, the associated proteins, genes, and SNPs are integrated with the 

statistical methods. Pseudo code of DKSS method is given in Table 3.2. 



47 

 

3.4 Enrichment Analysis 

Advanced technologies in information systems have enabled to accelerate studies 

of computational biology and genetics, as in many other fields.  In addition, the falling 

cost of storage devices has made it possible to store vast amounts of genomic data 

generated by high-throughput sequencing technologies.  This allows researchers to 

analyze genetic data from thousands of samples across hundreds of diseases and identify 

biomolecules, such as genes, that are involved in disease development.  However, 

interpreting the outcomes is a challenge for computational studies. For example, although 

a computational analysis may show that a particular gene is highly expressed after 

infection, the gene may be completely meaningless when interpreted alone.  Furthermore, 

even though all differentially expressed genes are extracted, it needs to be known relation 

between them to understand effecting mechanism of the infection.  At this point, further 

analyses are needed to uncover biological themes associated with outcomes and to 

interpret them appropriate to domain knowledge. 

 

Figure 3.4 Types of Functional Pathway Analyses, ORA, FCS, and PT [172]. 

Enrichment analysis is a computational method for determining whether certain 

functional categories, biological processes, or features are overrepresented in a particular 

group of genes, genomic regions, or other types of molecular materials. The main 

principle of enrichment analysis is to compare the observed genes (or genetic material) 

within a predefined target set with the expected occurrences based on a reference by 
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identifying statistically significant. It can reveal how these entities collectively function 

and interact in a biological context by mapping findings to existing knowledge of 

biological sets (gene sets, pathways, etc.) [171]. Hence, results of enrichment analyses 

help researchers to gain a deeper understanding the underlying molecular mechanisms 

involved in disease.  

The enrichment approaches are usually split into three categories, over-

representation analysis (ORA), functional class scoring-based methods (FCS) and 

pathway topology-based methods (PT) [173]. While ORA has a simple theoretical 

background relying only on overlap between the list, FCS methods try to use all the 

information in gene expression values. On the other hand, PT methods consider the 

topological importance and relationships of genes in a pathway [174]. In our thesis 

experiments we have used most-known types, ORA and GSEA. 

3.4.1 Over Representation Analysis (ORA) 

ORA is a simple, easy-to-implement and statistically well-established gene set 

analysis method that makes it possible to performing single-gene analysis on a set of 

genes [175]. It basically evaluates the fraction of given list of genes in pre-defined gene 

sets using a statistical test. Although binomial distributions or chi-squared tests are also 

used in the literature, the hypergeometric distribution is most commonly used way to test 

for over-or under-representation in a given gene list. 

 𝑃(𝑋 ≥  𝑘) =  ∑
(𝐾

𝑘)(𝑁−𝐾
𝑛−𝑘 )

(𝑁
𝑛)

𝑥
𝑘=0    (3.18) 

Performing ORA requires only main three inputs, a collection of gene sets (or 

pathways), an observed gene list of interest, and reference set of genes. Reference set 

usually microarray platform of collection for gene expression profiles such as Affymetrix 

HGU133. As an enrichment scoring, the statistic of interest is the probability of observing 

k or more genes in the set or pathway by chance. Therefore, probability of observing at 

least 𝑘 genes in a set by chance is calculated by formula (3.18) where 𝐾 and 𝑘 denote size 

of gene list of interest and number of genes of interest that are also in given pre-defined 

gene sets, 𝑛 is size of genes in pre-defined set, and 𝑁 the size of background reference 

set. As the hypergeometric is a discrete distribution, a one-tailed statistic is the sum of 
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probability mass functions calculated at a set of values equal to or more extreme than the 

value of interest [176]. 

3.4.2 Gene Set Enrichment Analysis (GSEA) 

Despite practicality and widespread usage, ORA has some drawbacks that affect 

the reliability of results. ORA treats each given gene independently, and thus it evaluates 

them equally in terms of effect to biological process by ignoring intensities. Additionally, 

biological studies tend to consider only differentially expressed genes, which are often 

selected by applying a p-value cut-off. However, biomolecules such as genes and proteins 

interact together and constitute sets and pathways even if p-values are slightly greater due 

to complexity of biology. Contrary to ORA, FCS based methods tries to use whole 

expression information including all genes, gene intensities etc. by solving invalid 

equality and independence assumption of ORA [172]. 

Gene Set Enrichment Analysis (GSEA) is one of the most widely used FCS method 

that is a statistical method to evaluate whether a predefined set of genes (or proteins) 

derived from a biological, biochemical, or computational analysis can provide 

information on the differences between two different biological states [177]. The method 

briefly compares gene expression patterns between two groups and identifies pre-defined 

gene sets, or pathways, that are significantly enriched in one group compared to the other. 

These groups, often called phenotypes, represent the different classes or groups of 

samples such as male-female, green-blue-eyed, or healthy-infected. On the other hand, 

gene sets often represent specific biological processes, molecular functions, or cellular 

pathways, providing valuable association information.   

GSEA results allow researchers to explore similarities between phenotypes 

associated with particular disease gene lists or pathways, thereby identifying functional 

associations to shed light on the underlying biological mechanisms. For example, if gene 

sets associated with skin cancer are over-enriched in samples belonging to the “green-

eyed” phenotype, it can be argued that there is a biological link between “green-eyed” 

individuals and skin cancer. Hence, GSEA can help researchers prioritize genes and 

pathways for further investigation, leading to a better interpretation of the experimental 

results [178]. Furthermore, analyzing the enrichment of gene sets across multiple datasets 

may allow to reveal of pathways or biological processes that may be involved in 



50 

 

seemingly unrelated events. Nonetheless, it should be noted that these inferences stem 

solely from data-driven results and necessary confirmation through biological 

experiments. 

 

Figure 3.5 Steps of the GSEA. Genet Set S express the pre-defined gene set and ES(S) is 

the value of representation degree of given set S on the dataset. 

GSEA mainly consists of 3 steps. Initially, the mean expression value of each gene 

is calculated according to each phenotype using a metric such as Wilcoxon test, t-test, or 

signal-to-noise ratio (default), which represents the association degree between the gene 

and the phenotype. As a result of the calculations, each gene is assigned a score indicating 

how much the gene is related to the first or second phenotype. A positive correlation 

indicates that the gene is more related to the first phenotype, while a negative correlation 

indicates that is more related to another phenotype. Subsequently, the genes are sorted in 

descending order based on these scores to form ranked list 𝐿.  

The second step is to calculate the enrichment score (ES) between the ranked gene 

list L and a predefined gene set 𝑆. The genes in the set 𝑆 can consist of genes that are 

associated with a biological pathway, that are curated as a result of an experiment, or that 

are independently collected genes.  If the set S is related to a phenotype, e.g. infected 

individuals, then genes in the set 𝑆 will tend to have a higher association score than genes 

in gene sets not related to the phenotype. The proportion of genes in 𝑆 ranked at the top 

of list 𝐿 is expected to be larger than the proportion of others [179]. Thus, the difference 

in the cumulative proportions of genes present in set 𝑆 and not present in set 𝑆 can be 
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used to assess the degree of association or enrichment of set 𝑆 on list 𝐿, while walking 

down the ranked list 𝐿. In other words, If the 𝑖.th gene in the 𝐿 list is also included in the 

𝑆 set, the “hit” score, otherwise the “miss” score increased, and the ratio of these scores 

indicates the enrichment score up to the 𝑖.th gene. Eventual ES of the set S is the maximum 

deviation from zero observed during this walking down process, as shown in Figure 3.5.  

 𝑃ℎ𝑖𝑡(𝑆, 𝑖) =  ∑
|𝑟𝑗|

𝑝

𝑁𝑅
𝑔𝑒𝑛𝑒𝑗∈ 𝑆,𝑗≤𝑖  , 𝑁𝑅 =  ∑ |𝑟𝑗|

𝑝
𝑔𝑒𝑛𝑒𝑗∈ 𝑆  (3.19) 

 𝑃𝑚𝑖𝑠𝑠(𝑆, 𝑖) =  ∑
1

(𝑁−𝑁𝐻)𝑔𝑒𝑛𝑒𝑗 ∉ 𝑆,𝑗≤𝑖  (3.20) 

 𝐸𝑆(𝑆) = max (|𝑃ℎ𝑖𝑡(𝑆, 𝑖) − 𝑃𝑚𝑖𝑠𝑠(𝑆, 𝑖)|) (3.21) 

Mathematically, the enrichment score up to the 𝑖.th gene in the ranked list 𝐿 is equal 

to the difference of 𝑃ℎ𝑖𝑡 and 𝑃𝑚𝑖𝑠𝑠  , shown in formula (3.19) and formula (3.20), 

respectively, where 𝑟𝑗 expresses the correlation score of 𝑔𝑒𝑛𝑒𝑗, 𝑁 number of genes in the 

ranked list 𝐿, 𝑁 − 𝑁𝐻 number of genes in the list 𝐿 but not in the set 𝑆, and 𝑝 is a weighting 

factor that allows to reducing score for gene sets enriched near the middle of the ranked 

list 𝐿. Starting at the top of the list 𝐿, running sum is calculated by increasing the 𝑃ℎ𝑖𝑡 if 

gene is present in set, otherwise 𝑃𝑚𝑖𝑠𝑠. This process is repeated for each element in 𝐿. 

Finally, maximum absolute value of 𝑃ℎ𝑖𝑡  − 𝑃𝑚𝑖𝑠𝑠 at a point during running sum gives the 

enrichment score for set 𝑆.  

 

Figure 3.6 Calculation of final ES Score of GSEA method with P-value. Real ES express 

the obtained enrichment score when original dataset is used. Other ES scores obtained 

when the dataset permutated. 
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This score indicates the degree of enrichment of 𝑆, but another problem is whether 

or not this value is statistically significant. Therefore, the final step is to estimate the 

significance value of the calculated ES. Since each ES can be obtained using a random 

class distribution, the statistical significance level of the ES for a gene set 𝑆 is crucial for 

evaluating the performance of GSEA.  

In order to show significance, P-value is calculated through a permutation-based 

approach. The p-value provides a quantitative measure for the observed enrichment score 

due to random chance, assuming the generated null hypothesis that there is no association 

between the gene set and the phenotypes. To do this, the class labels of the dataset are 

randomly assigned to the samples, thus permutated version of the dataset 𝐷𝑛𝑢𝑙𝑙 is 

generated. Then, 𝐸𝑆𝑛𝑢𝑙𝑙 of 𝐷𝑛𝑢𝑙𝑙 is calculated as explained above. After repeating this 

process T times (1000 by default), a histogram is created that includes frequency 

distribution of 𝐸𝑆𝑛𝑢𝑙𝑙, as seen in Figure 3.6. The ratio of the ES frequency obtained from 

real data to the total number of permutations shows the p-value, which shows significance 

degree of the ES score. The lower the P value, the less likely the results are to be random. 

Therefore, gene sets with high P values should not be considered when interpreting the 

results. In the literature, a 0.05 cut-off is generally accepted as the confidence level for 

the P value [180]. 

3.4.3 Single Sample Gene Set Enrichment Analysis (ssGSEA) 

The classical GSEA utilize pre-defined sets to find out which sets are more enriched 

on the given samples and thus it enables to dig underlying associations of genes for 

phenotypes. In other word, GSEA results can be assessed on phenotype level or about 

entire dataset given for analysis. Therefore, the GSEA cannot provide an insight about 

gene associations of only an individual. Because the GSEA cannot be applied directly to 

a gene expression data of sample due to the fact that it requires at least 2 phenotypes, and 

each sample must be belonged to only one phenotype or class label. To overcome that 

problems, Single Sample Gene Set Enrichment Analysis (ssGSEA) is emerged.  

Single Sample Gene Set Enrichment Analysis (ssGSEA) is an extension of the 

GSEA that allows for the estimation of pathway or gene set enrichment for individual 

samples. It is particularly useful when working with single samples or when the focus is 
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on characterizing the activity of gene sets within a specific sample rather than comparing 

gene sets between different conditions.  

Unlike standard GSEA, ssGSEA uses gene expression values directly in the gene 

ranking phase, since each given sample belongs to only one specific phenotype. For a 

given sample 𝑚, sorted gene list 𝐿𝑚 is formed using expression values. 

 𝑃𝑆
𝑤(𝑆, 𝑚, 𝑖) = ∑

|𝑔𝑒𝑛𝑒𝑗|
𝑝

∑ |𝑔𝑒𝑛𝑒𝑗|
𝑝

𝑔𝑒𝑛𝑗 ∈ 𝑆
𝑔𝑒𝑛𝑒𝑗 ∈ 𝐺,𝑗≤𝑖    (3.22) 

 𝑃𝑁𝑆(𝑆, 𝑚, 𝑖) = ∑
1

(𝑁−𝑁𝐻)𝑔𝑒𝑛𝑒𝑗 ∉ 𝑆,𝑗≤𝑖  (3.23) 

 𝐸𝑆(𝑆, 𝑚) =  ∑ [𝑃𝑆
𝑤(𝑆, 𝑚, 𝑖) − 𝑃𝑁𝑆

(𝑆, 𝑚, 𝑖)𝑁
𝑖=1 ] (3.24) 

For each 𝑔𝑒𝑛𝑒𝑖 in 𝐿𝑚, the “hit” score is calculated according to formula (3.22) if 

the 𝑔𝑒𝑛𝑒𝑖 is also within 𝑆, otherwise the “miss” score is calculated according to formula 

(3.23), where 𝑚 is sample, 𝑝 is the damping factor that controls weight of expression 

value, 𝑁 and 𝑁𝐻 represent size of 𝐿𝑚 and pre-defined gene set 𝑆. Similar to standard 

version, all genes in 𝐿𝑚 are processed using the formulas sequentially starting from 

highest expression-valued gene. Eventually, a histogram that shows running sum 

enrichment scores is generated. Maximum deviation from zero, i.e. highest point of 

running sum is marked as 𝐸𝑆(𝑆, 𝑚) of the given sample 𝑚.  In addition to being able to 

apply at the sample level, another major advantage of ssGSEA is that it allows samples 

to be represented in different feature spaces. For example, each sample in a given dataset 

can be represented in a vector containing only gene sets or pathways associated with a 

cancer type. This could improve the prediction performance or forecasting about the 

individual sample. 

3.5 Hyper-Parameter Optimization 

One of the factors that lead to high predictive performance for machine learning 

methods is the proper tuning of hyper-parameters. When the hyper-parameters of an 

algorithm are tuned properly, the prediction accuracy can be increased. Machine learning 

algorithms usually have two types of parameters: model parameters and tuning 

parameters. Model parameters are initialized and updated during the learning process, 

such as coefficients in linear regression [181]. Algorithms already optimize these 
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parameters internally. The tuning parameters or hyperparameters, on the other hand, are 

parts architecture of the statistical background of the algorithm and have to be defined 

before starting of the learning process. Therefore, building an optimal machine learning 

model also relies on exploring the range of all possible hyperparameters of the algorithm. 

The traditional way to tune hyperparameters is manual testing which is composed of 

defining a set of candidate values and estimating the model utility over the candidate 

values [182]. However, the hyperparameter settings of the algorithm should be well-

known to tune the parameters manually. Moreover, manual testing is practically infeasible 

due to several factors, including non-linear interaction, a large number of parameters, and 

the complexity of the model. These factors have led to the emergence of hyperparameter 

optimization (HPO) techniques as grid search, random search, and Bayesian optimization 

[183]. 

 

Figure 3.7 Illustration of grid, random and Bayesian search based hyperparameter 

optimization. The red star indicates the optimal parameter set. 

Grid Search (GS) is a systematic search method that exhaustively evaluates all 

possible combinations given the predefined configuration grid [184]. The range of values 

of each hyperparameter is discretized and models are evaluated using all possible 

combinations. Although it has a simple implementation, parallelization, and certain 

guarantees, the computational cost increases exponentially with the number of 

hyperparameters. Therefore, it is not efficient in experiments with high-dimensional data. 

Random Search (RS) overcomes the limitations of grid search by randomly 

selecting candidate values between the upper and lower bounds of predefined 

hyperparameters. The theoretical basis of RS is that given a sufficiently large 

configuration space, it is possible to find the global optimal solution or at least its closest 
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approximate solution [185]. Independent evaluation of each randomly selected parameter 

set allows flexible resource allocation, making random search more feasible in terms of 

computational cost than grid search.  In addition, experimental results show that random 

search gives better results both theoretically and empirically regarding hyperparameter 

tuning [181].  

Both of RS and GS techniques evaluate the candidate parameter set independently. 

Candidate parameters do not guide models on how to limit the search space to ensure 

optimal search, although they provide feedback parameter optimality through 

performance metrics. Thus, searching on poorly performing parameter bounds leads to 

massive time wastage. This need is addressed by advanced optimization techniques like 

Bayesian optimization. 

Bayesian optimization is a prominent technique frequently employed in artificial 

intelligence applications and other disciplines where a function with an unknown analytic 

form needs to be optimized [186]. Unlike GS and RS, the Bayesian approach considers 

prior trials to guide the next search for optimal points by integrating a surrogate model 

and acquisition function. Surrogate model, such as Gaussian process, fits available data 

points and provides a posterior distribution over the objective function. Then, this model 

is utilized to the next candidate parameter point to evaluate based on an acquisition 

function. Acquisition function quantifies the value of sampling a specific point in the 

search space, considering both the predicted function value at that point (exploitation) 

and the uncertainty of the prediction (exploration) [186]. Typical acquisition functions 

include Expected Improvement (EI), Probability of Improvement (PI) and Upper 

Confidence Bound (UCB).  Whereas exploration indicates candidate points within 

unexplored space where the prediction uncertainty is high, exploitation involves sampling 

candidate points in the current search region where the global optimum is most likely to 

occur based on the posterior distribution [185,187] . The key inspiration of BO is to 

balance the processes of exploration and exploitation. In this way, optimal regions for 

hyperparameter candidates, including missing better regions, can be discovered. The main 

drawback of the BO approach is the parallelization of the tuning process since the model 

depends on previously tested values. However, it is more efficient than other approaches 

because updating the surrogate model after each candidate point evaluation leads to a 

search over the optimal region. 
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3.6 Performance Evaluation Metrics 

In the majority of studies on the application of machine learning, the primary 

objective is to predict true sample outcome(s) as accurately as possible. Accuracy is an 

indicator of “success” how well the model is able to learn patterns from the data to be 

used in the prediction of samples. However, the definition of “success” may vary 

depending on the nature of the problem, the data to which the model is applied, the 

expected outcomes, and the risks. For instance, consider a dataset in which 90% of the 

cases are noncancerous and 10% are cancerous. A model that predicts non-cancer cases 

for each case would achieve 10% accuracy even though it does not identify cancer cases, 

which is the critical goal in cancer prediction. In this scenario, high accuracy does not 

necessarily indicate a good cancer prediction model. Therefore, different metrics can be 

used to measure the 'success' of the model, depending on the problem being addressed. 

 

Figure 3.8 The confusion matrix in testing a predictor. All the testing samples are divided 

into four categories, according to the real labels and the prediction results [188]. 

There are four main counts that are used to form metrics, true positive (TP), true 

negative (TN), false positive (FP) and false negative (FN), as shown in Figure 3.8. True 

positive occurs when both the actual and predicted labels of a sample are positive, while 

if both are negative, it is called a true negative [188]. These numbers signify the number 

of truly predicted samples. When the actual label is positive but predicted as negative, 

this count known as false negative. Conversely, the inverse of this scenario is called as 

false positive. Based on these counts, basic performance metrics such as Recall (i.e. True 
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Positive Rate), Precision (i.e. positive predictive rate) and False Positive Rate (FPR) are 

calculated as following formulas (3.25), (3.26) and (3.27). 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ,  (3.25) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (3.26) 

  𝐹𝑃𝑅 =   
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (3.27) 

 

The recall indicates how many of the actual positive samples were correctly 

predicted to be positive by the model. Thus, a high hit rate means that the model is 

effective in predicting actual positive samples. On the contrary, The FPR is similar to the 

recall, but pertains to negatively labelled samples. On the other hand, the precision metric 

expresses the proportion of samples that the model predicted for the relevant class that 

were actually relevant. Although both metrics provide useful information about different 

aspects of outcomes, they are threshold dependent as they depend on the choice of 

decision threshold. Therefore, the need to simplify them into a single term has led to trade-

off curves becoming the preferred method of evaluation for binary classification models 

[189]. In fact, curves are graphical technique depict trade-offs between metrics such as 

precision and recall on the different axes across all threshold points.  Idea behind use of 

curves as performance indicator of the model relies on integral of area underneath the 

entire plotted curve. When the primary goal is to achieve good discrimination so that 

cases are efficiently classified into binary classes such as infected and healthy, AUROC 

and AUPRC are the preferred measures [190]. 

AUROC is one of the most common curves that plots the recall value against the 

FPR value at different thresholds. If the AUROC value is 0.5, it means that the classifier 

is not able to discriminate the class label and is predicting a random class or a constant 

class for all the samples. On the contrary, equality of AUROC value to 1 indicates that 

classifier predict all samples perfectly.  AUPRC, on the other hand, is an alternative curve 

for assessing model performance that shows the trade-off between precision and recall 

metrics. Instead of AUROC, AUPRC focuses on the predictive ability of the diseased, i.e. 

positively labelled, samples by ignoring the correctly classified healthy (TN) samples 

[191]. Because most bioinformatics-based studies often experiment with genetic data 
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collected from individuals, and collection is more difficult than in other fields, the datasets 

tend to have an unbalanced class distribution. Therefore, most bioinformatics studies use 

curve-based metrics to demonstrate the actual model performance. 
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Chapter 4 

Experiments 

4.1 Experiments on Behçet’s Disease Prediction 

4.1.1 Dataset 

The Behçet's disease GWAS dataset consists of 1215 affected and 1278 unaffected 

(control) samples from the Turkish population. Human CNV370-Duo v1.0 and Human 

CNV370-Quad v3.0 chips had been used to type DNA samples. Subsequently, SNPs had 

been refiltered according to strict quality control standards using call rate (>95%), minor 

allele frequency (>1%) and Hardy-Weinberg equilibrium (>0.00001) criteria, resulting in 

311,459 SNPs. For each SNP, the dataset included a genotypic p-value, which indicates 

the significance of a SNP for disease. These genotypic p-values are calculated by 

comparing the genotypic frequencies of the SNPs between cases and controls. A chi-

squared test had been performed to obtain p-values in the BD GWAS analysis. Detailed 

information about the dataset and pre-processing during data collection can be found in 

the original paper [32]. Once the raw data had been obtained, some pre-processing was 

performed to make it suitable for our analyses. 

In the raw version of the data set, each SNP reading can take one of the following 

four values, i.e. “A_A”, “B_B” and “A_B” that represent the type of variant, i.e. 

homozygous reference, homozygous variant and heterozygous variant, respectively. 

Furthermore, some SNPs may not be assigned to any zygosity due to bit read errors. These 

unread SNPs are indicated as “?_?”, denoting missing value. In order to prepare the 

dataset as input for machine learning algorithms, a common strategy is applied to the 

features in which each of the non-numeric SNP readings is converted to numeric values, 

such that “A_A” is mapped to 0, “A_B” to 1, “B_B” to 2, and “?_?” to 3. This strategy 

may capture the additive effect of minor alleles when the codes are used as numerical 

features [192]. 



60 

 

 

Figure 4.1 Number of missing SNPs with the number of samples, after P-value criteria 

applied. 

As a result of conversation process, count of “A_A” values is 14,082,566 

(30.569%), count of “B_B” values is 15,924,781 (34.568%), count of “A_B” values is 

16,016,797 (34.768%), and the count of “?_?” values is 44,003 (0.0955%). Note that the 

proportion of missing values is quite small compared to the others. In addition, Figure 4.1 

shows a bar chart of the number of samples with the number of missing SNPs in a given 

range, for samples after applying the P value <0.05 criterion. Although there are a few 

samples with more than 200 missing SNPs, the majority of samples have less than 25 

missing SNPs. Since the rarity and randomness of the missing values is not expected to 

bias the prediction models, it is not considered a falsity to convert the “?_?” values to 3. 

4.1.2 Experimental Design 

The Behçet's disease experiments mainly consist of 2 main phases, where the 

difference between the phases is number of used SNPs (features). When running the 

feature selection and machine learning models, all features, i.e. 311459 SNPs, were used 

in the first phase, whereas in the second phase, SNPs were filtered according to the 

genotyping p-value. Genotypic p-values (GWAS p-value) represent the significance of 

the odds ratio for the putative disease-associated variant (a measure of whether it could 

occur by chance) [193]. Although in GWA studies the traditional strict p-value threshold 

is 5 ∗ 10−8, it has been reported in the literature that a p-value of less than 0.05 indicates 

a mild association between a SNP and disease [194]. Therefore, we set the genotypic p-

value threshold at 0.05. As a result of filtering depending on P-value, the dataset of second 

phase contained 2493 samples and 18479 features to be used as input for our models. The 

distribution of genotypic p-values of SNPs is shown in Table 4.1.  
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Table 4.1 Counts of the SNPs in the Behçet’s Disease dataset according to P-value ranges. 

Lower Bound of P-value Upper Bound of P-value Number of SNPs 

10−46 10−43 2 

10−43 10−40 2 

10−40 10−25 2 

10−25 10−20 5 

10−25 10−15 3 

10−15 10−10 34 

10−10 10−5 170 

10−5 10−4 142 

10−4 10−3 506 

10−3 10−2 3526 

10−2 10−1 14087 

The rest of the flow of both phases is practically identical, as can be seen in Figure 

4.2, with the exception of some additional feature selection methods and parameter 

optimization in the second phase. Nonetheless, our experiments mainly focused on the 

dataset generated after filtering P-value, since the accuracy obtained with the all-feature 

dataset was quite low.  Therefore, the rest of this section explains the experimental flow 

of the second phase. 

 

Figure 4.2 General flow and steps for Behçet’s Disease prediction experiment. 

In the next step, the data set was divided into 10 subsets using the k-Fold Cross 

Validation Python package from Scikit-Learn [195]. One subset was stored as the test set 

for the final models and the rest was used as the training set.  Feature selection methods 

were then applied separately to kept only significant features of each fold subset. 
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Figure 4.3 10-Fold cross validation settings with feature selection step used during the 

Behçet’s Disease Prediction experiment. 

In order to compare the effectiveness of different feature selection approaches in 

predicting Behçet's disease, we employed several methods: Fisher Score, ReliefF, F-

Score, Trace Ratio, T-Score, Gini Index, Information Gain, Gain Ratio, Robust Feature 

Selection (RFS), Chi Square, LR Lasso and Extra Decision Tree. Since the CFS also 

requires a search algorithm, best-first, genetic and greedy search approaches were 

combined with CFS. WEKA software [196] was used to implement CFS, gain ratio and 

information gain as attribute evaluators and best-first, genetic and greedy as search 

methods.  

Table 4.2 Number of SNPs selected by feature selection methods for each fold of cross-

validation. 

Fold 
CFS 

Genetic 

CFS 

BestFirst 

CFS 

Greedy 
DKSS 

Extra 

DT 

LR 

Lasso 

Wrapper 

Greedy 

1 3691 188 190 7942 7754 1975 27 

2 4109 215 217 8062 7704 1976 27 

3 3680 199 200 8121 7888 2008 26 

4 5118 214 217 7936 7769 1965 36 

5 3689 207 208 8027 7726 1997 31 

6 3205 209 213 8028 7797 1945 21 

7 4444 203 206 8192 7718 2020 24 

8 4445 174 176 7976 7772 1992 32 

9 3681 192 195 8233 7714 1998 14 

10 3205 189 192 7473 7759 1960 32 

AVG 3926.7 199 201.4 7999 7760.1 1983.6 27 

The embedding methods (i.e. Lasso and Extra Trees) are implemented with feature 

selection package from the Scikit-Learn Python library. Remaining feature selection 

methods were implemented through Python Scikit-Feature library [197]. In addition to 

these known methods, our proposed “DKSS” approach was also applied to the subset of 
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each fold in this step. As DKSS methods require a list of active subnetworks as input, we 

used networks identified for Behçet's disease in study [198]. Using the proposed DKSS 

method, an average of nearly 8,000 SNPs were selected within the chosen subnetworks 

in the 10 cross-validation folds. Therefore, the number of selected features in the ranking 

methods was set to 8,000 to ensure a fair comparison. However, it is worth noting that the 

embedded and wrapper approaches resulted in a different number of features due to their 

inherent selection processes. The number of features for each fold following the selection 

process performed by wrapper and embedded can be found in Table 4.2. 

Once the significant features were identified, the training and test sets were 

rearranged, and then optimization phase was launched. As detailed in Section 3.5, the 

high predictive performance of machine learning methods may also be related to the 

setting of the hyperparameters. Therefore, each machine learning model was optimized 

before the final classification. For this purpose, 40% and 20% of the training subset is 

randomly chosen to create the validation training and validation test sets, respectively 

(see Figure 4.3). Subsequently, the hyperparameters were tuned using Bayesian 

optimization techniques considering the parameter ranges given in Table 4.3. Finally, the 

last classifier with tuned parameters was trained on the first training set and evaluated on 

the test set. 

Table 4.3 Optimized hyper-parameters of each classifier with lower and upper bounds 

for Behçet’s Disease prediction. 

Classifier Parameter Lower Bound Upper Bound 

XGB 

Learning Rate 0.005 1 

Number of Estimators 10 800 

Gamma 0.01 2 

LR Regularization (C) 0.0001 215 

SVM Regularization (C) 0.0001 215 

kNN k – Number of Neighbors 10 800 

RF Number of Estimators 10 800 

In this experiment we preferred 5 well-known machine learning algorithms LR, 

SVM, kNN, RF and XGB. Additionally, voting of these algorithms was also used as an 

ensemble method. The following performance metrics are used to evaluate the predictor 

performance: overall accuracy (Acc), area under the ROC curve (AUC) and area under 

the precision and recall curve (AUPRC). For these metrics, the averages over the 10 folds 

of cross-validation were calculated. 
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4.1.3 Results 

Table 4.4 shows the prediction performance of 5 machine learning and 5 feature 

selection methods applied to the full dataset of 311459 SNPs. The column “Number of 

features” indicates how many features were selected after applying the respective feature 

selection method. For the ranking approaches, this number was set to 18479. This is 

because make an appropriate comparison with the values resulting from the “P-value 

filtering” results in subsequent tables. 

Table 4.4 Results of machine learning methods when feature selection methods were 

applied to all features (i.e. 311459 SNPs). Dash ("-") represents models in which no 

feature selection was performed. 

Classifier Feature Selection Number of Features ACC AUC AUPRC 

LR 

- 311459 0.6210 0.6730 0.6551 

DKSS 8076.4 0.9699 0.9957 0.9960 

Fisher Score 18479 0.6218 0.6646 0.6353 

ReliefF 18479 0.6129 0.6499 0.6316 

LR Lasso 4685.1 0.6446 0.7029 0.6837 

Extra DT 32188.9 0.6266 0.6869 0.6680 

SVM 

- 311459 0.6274 0.6763 0.6583 

DKSS 8076.4 0.9699 0.9958 0.9960 

Fisher Score 18479 0.6210 0.6704 0.6426 

ReliefF 18479 0.6286 0.6742 0.6630 

LR Lasso 4685.1 0.6414 0.7029 0.6840 

Extra DT 32188.9 0.6507 0.7099 0.6908 

KNN 

- 311459 0.5271 0.5327 0.5218 

DKSS 8076.4 0.7068 0.7897 0.7905 

Fisher Score 18479 0.5680 0.6002 0.5875 

ReliefF 18479 0.5351 0.5624 0.5514 

LR Lasso 4685.1 0.5945 0.6249 0.6127 

Extra DT 32188.9 0.5536 0.5754 0.5631 

RF 

- 311459 0.5680 0.6058 0.5896 

DKSS 8076.4 0.6948 0.7497 0.7660 

Fisher Score 18479 0.6342 0.6934 0.6876 

ReliefF 18479 0.6141 0.6570 0.6385 

LR Lasso 4685.1 0.6599 0.7050 0.6985 

Extra DT 32188.9 0.6302 0.6748 0.6616 

XGB 

- 311459 0.6374 0.6840 0.6896 

DKSS 8076.4 0.6948 0.7575 0.7680 

Fisher Score 18479 0.6579 0.6981 0.7014 

ReliefF 18479 0.6298 0.6761 0.6692 

LR Lasso 4685.1 0.6474 0.7039 0.7030 

Extra DT 32188.9 0.6334 0.6942 0.6933 
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In the scenario where all SNPs were used, even the best model (XGB) could only correctly 

predict 63% of the samples. When existing feature selection was applied, a slight 

improvement was achieved, and the accuracy increased to 65%. Nevertheless, it can be 

concluded that using all SNPs or not performing any initial filtering (such as P-value 

filtering) hinders the improvement of model performance, with the exception of 

specialized techniques like DKSS. The DKSS approach achieved an accuracy of more 

than 96% and an AUPRC of 0.996 using nearly 8076 SNPs, meaning that almost all 

positive samples were correctly classified. Consequently, it is observed that the proposed 

DKSS method is better at improving the prediction performance for Behçet's disease, 

especially in contrast to conventional feature selection techniques. Due to the large 

number of features, only fast selection methods were preferred for the full dataset. Other 

traditional feature selection methods were not tried further due to the poor initial results 

and the experiments were continued in the second phase. 

Table 4.5 Results of LR and SVM classifiers with different feature selection methods on 

dataset generated after P-value criteria was applied. 

Feature 

Selection 

Logistic Regression Support Vector Machines 

ACC AUC AUPRC Train Time Test Time ACC AUC AUPRC Train Time 
Test 

Time 

CFS BestFirst 0.6458 0.7083 0.6847 64.306 0.090 0.6462 0.7148 0.6962 83.238 0.949 

CFS Genetic 0.9687 0.9919 0.9894 186.925 1.305 0.9683 0.9959 0.9955 187.877 3.786 

CFS Greedy 0.6510 0.7075 0.6819 73.354 0.091 0.6558 0.7180 0.7090 84.269 1.114 

Chi Square 0.8841 0.9583 0.9578 236.401 2.406 0.8877 0.9581 0.9573 173.679 4.820 

DKSS 0.9691 0.9930 0.9910 279.953 2.689 0.9683 0.9954 0.9950 316.216 7.614 

Extra DT 0.9743 0.9946 0.9939 274.086 2.540 0.9739 0.9971 0.9969 305.412 9.777 

F Score 0.7666 0.8230 0.8074 145.748 1.092 0.7674 0.8481 0.8412 328.877 11.771 

Fisher Score 0.7641 0.8319 0.8167 149.273 1.034 0.7662 0.8433 0.8357 293.585 11.333 

P-value Filter 0.9956 0.9999 0.9998 554.026 5.770 0.9956 0.9999 0.9999 556.862 21.810 

Gain Ratio 0.9767 0.9951 0.9946 361.083 2.752 0.9795 0.9975 0.9973 357.367 12.082 

Gini Index 0.8472 0.9175 0.9106 327.397 2.802 0.8524 0.9221 0.9206 264.927 8.238 

Info. Gain 0.9847 0.9963 0.9962 396.885 4.123 0.9787 0.9973 0.9970 293.447 9.244 

LR Lasso 0.7654 0.8167 0.7990 103.278 0.445 0.7625 0.8452 0.8382 209.474 7.839 

ReliefF 0.9727 0.9943 0.9938 236.141 1.739 0.9735 0.9963 0.9959 316.088 10.145 

RFS 0.9382 0.9743 0.9725 137.530 0.865 0.9370 0.9906 0.9904 295.368 10.834 

T Score 0.7690 0.8262 0.8126 195.870 1.234 0.7706 0.8462 0.8380 289.787 10.110 

Trace Ratio 0.7634 0.8302 0.8090 154.848 1.053 0.7650 0.8460 0.8374 331.891 11.504 

Wrapper Greedy 0.6458 0.6927 0.6741 66.283 0.056 0.6478 0.6951 0.6757 64.931 0.314 

Table 4.5 to Table 4.7 shows the performance metrics of the classifiers for the data 

set consisting of filtered SNPs according to the P-value threshold.  
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Table 4.6 Results of kNN and RF classifiers with different feature selection methods on 

dataset generated after P-value criteria was applied.  

Feature 

Selection 

k-Nearest Neighbors Random Forest 

ACC AUC AUPRC Train Time Test Time ACC AUC AUPRC Train Time 
Test 

Time 

CFS BestFirst 0.6595 0.7156 0.6973 0.257 72.971 0.6619 0.7218 0.6987 242.851 2.054 

CFS Genetic 0.8568 0.9443 0.9352 5.003 546.888 0.7421 0.8299 0.8186 997.010 12.234 

CFS Greedy 0.6522 0.7122 0.6916 0.259 80.582 0.6687 0.7259 0.7018 258.676 2.144 

Chi Square 0.7633 0.8678 0.8489 10.976 1147.815 0.6960 0.7693 0.7576 1443.386 16.277 

DKSS 0.8688 0.9677 0.9656 9.567 988.006 0.7369 0.8220 0.8196 1407.542 19.635 

Extra DT 0.8744 0.9517 0.9469 9.487 991.586 0.7136 0.8056 0.7946 1432.645 16.974 

F Score 0.6626 0.7652 0.7453 10.767 1114.953 0.6755 0.7372 0.7290 1491.833 15.910 

Fisher Score 0.6803 0.7845 0.7599 10.037 1015.376 0.6695 0.7337 0.7135 1308.551 15.021 

P-value Filter 0.9326 0.9914 0.9906 21.522 2189.197 0.7485 0.8449 0.8390 2266.199 30.690 

Gain Ratio 0.8291 0.9291 0.9065 11.394 1161.505 0.7332 0.8255 0.8160 1556.403 21.644 

Gini Index 0.7200 0.8332 0.8078 10.712 1111.711 0.6871 0.7633 0.7452 1546.853 21.355 

Info. Gain 0.9322 0.9342 0.9188 20.061 2013.611 0.7561 0.8235 0.8139 2193.064 32.227 

LR Lasso 0.7469 0.8222 0.8045 2.295 268.013 0.6855 0.7451 0.7306 622.732 6.572 

ReliefF 0.8849 0.9517 0.9460 11.182 1105.847 0.7112 0.8012 0.7943 1574.588 15.852 

RFS 0.8881 0.9702 0.9682 11.125 1082.181 0.7316 0.8084 0.8094 1609.311 23.488 

T Score 0.6626 0.7705 0.7470 10.274 1033.935 0.6787 0.7336 0.7161 1460.893 16.150 

Trace Ratio 0.6815 0.7890 0.7752 11.150 1134.333 0.6723 0.7323 0.7120 1580.726 20.729 

Wrapper Greedy 0.6358 0.6713 0.6472 0.092 68.499 0.6266 0.6570 0.6343 205.979 1.070 

Table 4.7 Results of XGB classifier and Ensemble Voting method with different feature 

selection methods on dataset generated after P-value criteria was applied. 

Feature 

Selection 

XGBoost Ensemble Voting (LR + SVM) 

ACC AUC AUPRC Train Time Test Time ACC AUC AUPRC Train Time 
Test 

Time 

CFS BestFirst 0.6395 0.7089 0.6926 126.594 0.431 0.6470 0.7134 0.6936 NA NA 

CFS Genetic 0.9544 0.9837 0.9818 185.490 0.463 0.9683 0.9952 0.9937 NA NA 

CFS Greedy 0.6482 0.7052 0.6887 455.752 2.208 0.6550 0.7159 0.7023 NA NA 

Chi Square 0.9231 0.9700 0.9705 876.370 7.832 0.8845 0.9588 0.9581 NA NA 

DKSS 0.9615 0.9881 0.9879 1487.282 13.540 0.9687 0.9947 0.9937 NA NA 

Extra DT 0.9632 0.9886 0.9884 759.222 8.781 0.9759 0.9963 0.9960 NA NA 

F Score 0.7430 0.8167 0.8083 941.374 10.675 0.7629 0.8396 0.8286 NA NA 

Fisher Score 0.7387 0.7986 0.7876 949.713 13.009 0.7653 0.8425 0.8345 NA NA 

P-value Filter 0.9912 0.9992 0.9992 1716.624 13.000 0.9956 0.9999 0.9999 NA NA 

Gain Ratio 0.9664 0.9924 0.9910 700.043 3.513 0.9783 0.9967 0.9963 NA NA 

Gini Index 0.8228 0.8892 0.8808 828.508 11.133 0.8452 0.9224 0.9185 NA NA 

Info. Gain 0.9632 0.9878 0.9868 821.819 10.293 0.9795 0.9974 0.9972 NA NA 

LR Lasso 0.7437 0.8324 0.8336 317.972 2.031 0.7669 0.8316 0.8149 NA NA 

ReliefF 0.9566 0.9909 0.9914 849.870 7.929 0.9727 0.9963 0.9961 NA NA 

RFS 0.9140 0.9711 0.9700 944.679 6.570 0.9434 0.9870 0.9868 NA NA 

T Score 0.7496 0.8112 0.8061 738.165 13.171 0.7694 0.8393 0.8277 NA NA 

Trace Ratio 0.7560 0.8102 0.8024 1097.323 9.731 0.7649 0.8441 0.8365 NA NA 

Wrapper Greedy 0.6466 0.6932 0.6734 215.749 0.144 0.6474 0.6941 0.6752 NA NA 
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Unlike to the first phase, a much more comprehensive analysis was performed in 

the second phase by testing 17 feature selection methods. Moreover, not only ranking and 

embedded methods but also wrapper feature selection techniques were experimented. 

Running times of both train and test process were also calculated and included in tables. 

A general overview of the results shows that 6 feature selection methods have 

achieved an accuracy rate exceeding 95% with LR, SVM, XGB, and Ensemble Voting 

algorithms. In the voting ensemble method, two distinct approaches were used to combine 

the predictions of the base learners: Hard Voting and Soft Voting. Hard voting determines 

the class by selecting the majority of classes predicted by the base learners. In contrast, 

Soft Voting calculates the average of the prediction probabilities for each class as 

predicted by the base learners. To minimize misclassification in the ensemble, we 

preferred the soft voting approach and combined only the LR and SVM methods as base 

learners. This was because the RF and k-NN methods had lower accuracy, which could 

potentially have decreased the overall accuracy of the voting ensemble. Despite the results 

being quite close, the voting ensemble approach did not outperform the LR and SVM 

methods used individually. On the other hand, the XGB ensemble method achieved 

comparable results for all feature selection methods.  

In the evaluation of feature selection methods, decision tree-based techniques, 

including Extra DT, Information Gain, and Gain Ratio, emerged as the top performers. 

Subsequently, the ReliefF method, followed by Genetic Search-based CFS and proposed 

DKSS methods, demonstrated competitive results. On the contrary, methods employing 

Best First/Greedy Search-based CFS and Wrapper strategies obtained lowest prediction 

accuracies among the models, which might be due to the selection of very few SNPs.  

Among the filtering methods, ReliefF achieved significantly higher prediction 

scores than the others, such as Fisher Score, F Score, Trace Ratio and T Score. One of the 

reasons for this result could be related to the fact that the ReliefF algorithm is a 

multivariate approach.  Analyses using the DKSS method have already demonstrate that 

considering groups of SNPs with known biological interactions improves predictions of 

Behçet's disease susceptibility compared to considering SNPs independently. Hence, 

multivariate selection approaches may be able to capture the relationship of these 

interactions between SNPs. 
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Another remarkable observation is an astronomical increase in prediction accuracy 

when the SNPs are filtered by P-value criteria. For example, the logistic regression model 

was able to achieve a prediction accuracy of 62% for the full data set, while this 

percentage increases to 99% when only SNPs with a P-value of less than 0.05 are 

considered. This result provides evidence that the P-value indicates the importance of 

SNPs. Although the second phase, unlike the first phase, includes the hyperparameter 

optimization step for machine learning algorithms, the reason for the improvement 

observed in the second phase is closely related to P-value filtering. 

 

Figure 4.4 Accuracy of logistic regression with respect to number of features according 

to P-value criteria. Each feature was added one by one, and performance was evaluated 

using logistic regression algorithm. 

The fact that the best predictive accuracy is obtained by the P-value filtered method 

compared to others may indicate that all 18,479 SNPs contribute to disease prediction. To 

test this hypothesis, we performed the following experiment.  We ranked the features by 

p-value and performed a forward feature selection strategy (increasing the number of 

features by 1 at each step) in the first feature selection step. After each addition, the 

accuracy of these feature subsets was evaluated using logistic regression, as shown in 

Figure 4.4. Based on this figure, the maximum accuracy of 99.64% is achieved when the 

number of features is equal to 13,611. This accuracy is also obtained for some of the 

higher number of features. This shows that it is not necessary to use all 18,479 features 
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to achieve the best classification accuracy, and that FS methods using CFS as a subset 

evaluator and embedding methods are conservative in the number of features selected. 

For the ranker-based methods, the number of features was set at 8000 to allow a fair 

comparison with the DKSS method, which uses biological subnetwork information. If the 

number of features selected by the ranker-based methods were allowed to vary, it may be 

possible to find a feature subset containing a smaller number of features. 

 

 

Figure 4.5 Most representative SNPs that are identified by feature selection methods. 

Their genotypic p-values are shown in boxes. Numbers on the slices of the pie chart 

represent occurrence rates. 

As part of the experiments, selected, i.e. significant, features were further analyzed 

using a biological investigation instrument. In the Behçet experiment, we first identified 

the most significant SNPs by the selection frequency of highly performing feature 

selection methods. Initially, SNP groups were determined by selecting the top 25 SNPs 

ranked as highly relevant for prediction by each of the four best feature selection methods 

used in this study. These best feature selection methods are Extra Decision Tree, Gain 

Ratio, Information Gain and Relief. This strategy was applied for each cross-validation 

fold and 40 SNP lists were generated, with each list containing 25 SNPs. The next step is 

to determine the frequency of each SNP's occurrence across the 40 lists. If a SNP appears 

in a list, then it gets 1 point, otherwise 0. Once frequency counting is done, occurrence 

rate for each SNP is calculated by dividing its frequency of occurrence by 40. Figure 4.5 
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shows the occurrence rate and the genotypic p-values of the top 15 SNPs selected by the 

best four feature selection methods. Values on the slices of the pie chart indicates 

occurrence rates. According to the figure, SNPs rs9266399, rs9266327 and rs6933050 are 

top-selected SNPs among best 4 feature selection method, with 0.75 occurrence rate. 

These are followed by rs2848713 with an occurrence rate of 0.73, rs4713460, rs1131896, 

rs2256028 with 0.70 and rs522686, rs703191 and rs1058026 SNPs with 0.60. 

Table 4.8 Detailed Information about Significant SNPs and Genes according to 

occurrence rate. 

SNP ID 
Overlapped 

Gene 
Type 

Nearest 

Upstream 

Gene 

Type of 

Nearest 

Upstream 

Gene 

Nearest 

Downstream 

Gene 

Type of 

Nearest 

Downstream 

Gene 

Feature 

Type Class 

rs9266327 None None AL671883.2 
unprocessed 

pseudogene 
DHFRP2 

processed 

pseudogene 
  

rs2848713 HCP5 sense_overlapping None None None None   

rs9266399 AL671883.3 lincRNA None None None None   

rs6933050 AL671883.3 lincRNA None None None None 
Transcription 

Factor 

rs1058026 HLA-B protein coding None None None None 
Transcription 

Factor 

rs4713460 None None FGFR3P1 
processed 

pseudogene 
ZDHHC20P2 

processed 

pseudogene 
  

rs2256028 MICA protein_coding None None None None 
Transcription 

Factor 

rs1131896 HCP5 sense_overlapping None None None None   

rs6535384 SCD5 protein_coding None None None None   

rs2411899 None None B4GALNT2 
protein 

coding 
GNGT2 protein coding 

Transcription 

Factor 

rs703191 None None SGK1 
protein 

coding 
CHCHD2P4 

processed 

pseudogene 
  

rs522686 KIRREL3 protein_coding None None None None 
Transcription 

Factor 

rs1208571 None None ZNF33CP 
processed 

pseudogene 
ZNF25 protein_coding 

Transcription 

Factor 

rs2520495 None None RNU7-197P snRNA AC108156.1 lincRNA   

rs16995979 
LAMP5-

AS1 
antisense None None None None 

Transcription 

Factor 

A further analysis was performed on these most represented SNPs to reveal the 

information behind the SNP ids using the SPOT tool [199], which is also used to map the 

SNPs to genes and then find associated active subnetworks of our dataset. As a result, we 

found that 7 of the top 15 SNPs are associated with 6 different genes. These genes are 

HLA-B (rs1058026), HCP5 (rs1131896, rs2848713), KIRREL3 (rs522686), LAMP5-
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AS1 (rs16995979), MICA (rs2256028) and SCD5 (rs6535384). Note that, the HLA-B 

gene has already been mentioned as having a strong association with Behçet's disease in 

the literature [32,200]. Associated Pathways and GO terms with these genes were also 

checked. There is no any meaningful association biological pathways, but there are some 

findings on antigen processing and presentation, defense response, regulation of immune 

response GO Biological Process terms; integral component of membrane, cell surface GO 

Cellular Component terms and antigen binding GO Molecular Function terms. Detailed 

Information about Significant SNPs and Genes according to occurrence rate presented in 

the Table 4.8. 

4.2 Experiments on Respiratory Infection Prediction 

4.2.1 Dataset 

To evaluate the performance of machine learning models in predicting respiratory 

infections, we used a comprehensive respiratory dataset publicly available on the Gene 

Expression Omnibus (GEO) with accession number GSE73072. This dataset actually 

consists of seven distinct datasets, each derived from different challenges conducted by 

Duke University under a contract awarded by the DARPA Predicting Health and Disease 

program. These seven challenge experiments are denoted to as RSV DEE1, H3N2 DEE2, 

H1N1 DEE3, H1N1 DEE4, H3N2 DEE5, HRV UVA and HRV DUKE. Each dataset 

contains a varying number of samples from one of four different respiratory viruses: 

H1N1, H3N2, HRV, or RSV. Throughout each challenge study, peripheral blood was 

collected from healthy volunteers a day prior to inoculation (i.e., T.-24 or T.-30 hours), 

immediately before inoculation (T.0), and at predetermined intervals following the 

challenge. Each volunteer was exposed to only one of the four live respiratory viruses by 

inoculating at time T.0 in a controlled environment. Data sampling of the microarray 

began 1 day (24 hours or 30 hours) before inoculation and continued at various intervals 

up to 7 days later.  To extract microarray data, Human Genome U133A 2.0 array was 

used. Further details about dataset can be found in [201]. Infection of a volunteer was 

detected by analyzing nasal lavage particles in a clinical setting. If the particles had a viral 

indicator, the infection status of the individual was labeled 1, otherwise 0. Subjects were 

also asked to periodically rate the severity of 8 different symptoms, including runny nose, 

headache, malaise, myalgia, sneezing, sore throat, and nasal congestion, from 0-4. 
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Afterward, rates were used to calculate the Jackson score [202], which is known to be the 

best method for measuring symptom severity.  The individuals who scored above 6 were 

labeled 1 to indicate symptomatic, otherwise labeled 1. Hence, the dataset contains 2 

different label values, infection and post-exposure symptom development. 

One of the objectives of this thesis is to integrate existing knowledge into the 

prediction model to improve the predictive performance. In the respiratory infection 

prediction experiment, different feature representation approaches were comparatively 

analyzed. Feature representation is the transformation of raw data into another format or 

feature space that may contain more or fewer features. This process can improve the 

performance of machine learning models as the performance is highly dependent on how 

the data is represented. This is because a proper feature representation can lead to the 

hidden patterns of the raw data being captured. Hence, we have used 3 feature types to 

represent samples, gene-level, probe-level and a pathway-centric approach named 

ssGSEA-based representation. In order to generate these types of features it should be 

performed some pre-processing on the raw microarray data. 

 

Figure 4.6 Generation of probe- and gene-based expression values using CDF files and 

the normalization steps. Due to variations in the number of CDF file mappings, each 

representation type has a different number of expression values. 

The GSE73072 repository contains the raw “CEL” data files for the samples, which 

are generated by array scanner software and include measured probe intensities. These 

intensities should be mapped to probes or genes using proper annotation i.e. Chip 

Description File (CDF). The CDF provides details about the identity and location of each 

probe on the chip. To derive probe- or gene-level expression values from this data, we 

developed a script in R, employing the affy package from the Bioconductor library [203]. 
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The latest CDF files published by Bioconducter named “hgu133a2cdf” and 

“hgu133a2hsentrezgcdf” were used to read data from raw files for probe and gene-level 

representation, respectively. After executing the script, we acquired expression values for 

each sample at both the probe and gene levels and then the normalization process was 

launched. 

Microarray experiments, which typically involve numerous arrays, inherently 

contain some non-biological variations. These variations stem from differences in various 

stages of the experimental process, such as sample preparation (for instance labeling 

differences), the manufacturing of the arrays, and the processing steps (such as variations 

in scanner equipment) [204]. Normalization process is one of the way for reducing this 

variation. Although there are many proposed normalization techniques in the literature, 

the most popular method is Robust Multi Array (RMA). RMA is a multi-step process that 

sequentially performs background correction, quantile normalization, and summarization 

to estimate the true gene expression values while reducing noise and technical variability 

[205]. During dataset creation processing, we have applied RMA normalization to 

expression values just after extraction them from microarray data. Subsequently, batch 

effect removal step was performed. Similar to variations corrected by RMA 

normalization, batch effect refers to technical variation stemming from the generation of 

data in multiple batches [206]. While normalization primarily focuses on correcting the 

biases within each sequencing experiment, batch effect removal helps to reduce the bias 

generated across batches.  These batch effects may arise from the dates of sequencing, 

the people who performed the sequencing, the protocol, or the type of sequencing 

machine [207].  Since our dataset is aggregation of 7 challenge datasets which are 

collected at different times, there might be a batch effect that results in variations in 

expression levels. Therefore, we have also applied ComBat [208] to expression values 

using the pyComBat library, which is a framework to adjust batch effects [209]. 

Following the normalization process, probe-level and gene-level representations of 

expression values for the samples were obtained.  As previously stated, the GSE73072 

was derived from an aggregation of 7 different challenge datasets, each comprising 

samples exposed with four respiratory viruses. Therefore, obtained expression values 

from raw data were divided into 7 parts according to their challenges (e.g., DEE1, DEE2, 

DEE3, etc.), after the normalization process. Consequently, two different type of dataset 

were generated with the probe-level representation consisting of 22,277 features and the 
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gene-level representation consisting of 12,310 features for each of 7 sub-dataset. Note 

that, the feature dimension of gene-level representation is fewer than probe-level. This is 

because a series of probe pairs known as a probe set can only represent to a single gene 

in some cases [210]. Flow of the pre-processing to obtain different represented datasets 

are given as Figure 4.6. 

Another approach to represent samples that we have proposed in our respiratory 

infection prediction experiments is the ssGSEA-based representation, where features 

consist of enrichment scores. The ssGSEA-based representation, known in the literature 

as pathway-centric, essentially uses enrichment scores as features that express how 

representative the predefined gene sets or pathways are of the expression values of the 

samples, which is explained in detail in Section 3.4.2. Due to the fact that each pre-defined 

gene set is used to calculate one enrichment score, a large number of gene sets are 

necessary to represent samples in high discriminative dimensions. Hence, we have used 

Molecular Signatures Database (MSigDB) collections in our experiments. The MSigDB 

is a comprehensive and widely-used repository for the analysis of gene expression data 

[211]. It explicitly designed to provide gene sets for enrichment analyses and covers 

various gene set sources.  More than 36800 different human gene sets from 9 major and 

30 sub-collections are available in the database.  Each collection is derived for a specific 

purpose in gene expression analysis to investigate gene function and associations, 

biological pathways, and disease mechanisms. 

 

Figure 4.7 Illustration of ssGSEA based feature representation generation using MSigDB 

repository Gene Pattern cloud service. 

Using the MSigDB and gene expression values in our 7 datasets, enrichment scores 

were calculated using the web-based tool called GenePattern service [212]. GenePattern 

is a cloud-based computational biology platform that provides free access to complex 

bioinformatics tools and resources such as ssGSEA, GSEA, TCGA modules, mainly in 
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the field of genomics. ssGSEA module requires pre-defined gene sets, expression values 

of samples with gene symbols, and algorithmic parameters including weighting exponent, 

minimum gene size, sample normalization etc.  As we wanted to use as many gene sets 

as possible as features, the minimum gene size was set to 2, which excluded gene sets 

with less than this number of overlaps. Since the input expression values must contain 

gene symbols rather than probe IDs, gene symbol annotated expression values described 

in the dataset section were used as input to the module. Because matching is carried out 

between gene sets and inputs with gene symbols, the module cannot calculate scores when 

probe IDs are uploaded. Utilizing gene-annotated expression data files and all human-

related gene sets sourced from MSigDB, the ssGSEA module was executed.  As a result, 

a total of 36,834 unique enrichment scores were calculated for each sample based on the 

corresponding gene sets. Then, these scores are spliced together as a vector to represent 

samples.  In addition to these 3 types of feature representation, we also generated extended 

versions of these representations by splicing them end-to-end. For example, using 12,310 

features from the gene level and 36,834 features from the ssGSEA, a sample was 

represented with 49,144 features. This is because some expression values and enrichment 

scores can be more discriminative when used together. Eventually, 5 different feature 

types, gene level, gene + ssGSEA combination, probe level, probe + ssGSEA 

combination, and ssGSEA were generated.   

4.2.2 Experimental Design 

In this section, the implementations of the models and experiments are presented in 

detail. The in-depth analysis of the respiratory dataset aims to develop predictive models 

of resilience or susceptibility to symptoms and infection using various machine learning 

models. In addition, factors, i.e. expressed genes, responsible for mediating the response 

to respiratory virus exposure were investigated using significant genes selected by 

different feature selection methods. Furthermore, the use of enrichment scores as a feature 

to predict infected and symptomatic individuals exposed to a respiratory virus is another 

focus of these analyses. Every sample in the dataset has two distinct class labels: Viral 

Shedding and Symptomatic Response to Exposure. The Viral Shedding label denotes the 

infection status of the individual, whereas the Symptomatic Response reveals if the 

individual exhibited severe symptoms following exposure. Therefore, we have 2 different 

tasks during experiments prediction of being infected and prediction of symptom 

presence. Both tasks were predicted using separate models. Furthermore, we also 
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examined the ability to predict disease in the post-exposure period by focusing on the 

time-point dimension of data sampling. 

Figure 4.8 Number of samples collected from the subject for each sub-experiment dataset 

with sampling time points. T.0 indicates the time of inoculation of subjects with related 

viruses. 

The first step in our experiments is the definition of the time points at which the 

samples Following inoculation of the subject with a virus, probe intensities were sampled 

periodically, aiming to observe differentially expressed genes and the development of 

symptoms resulting from virus exposure over time. This enabled to evaluation and 

examination expressed genes before, just after, a time period after the exposure. However, 

due to variations in experiments, the sampling time points and intervals varied across 

experiments.  

 

Figure 4.9 Average gene expression value calculation of each samples up to predefined 

time points [213].  

For instance, a sampling was performed 24 hours after the inoculation in HRV 

experiments, while sampled 21 hours after in H1N1 experiments. In addition, 22 subjects 

were sampled at timepoint T.-21 in DEE3, while this number is 24 at timepoint T.0. This 

means that some subjects were not sampled at all time points.  Therefore, inconsistency 

in sample size appeared that caused difficulty perform analysis on datasets collectively. 

Detailed information on the number of samples and experiment-wise collection time 

points is given in Figure 4.8. To overcome this problem, we defined 6 different time points 
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and calculated the average of the expression values for each subject up to these predefined 

time points. These time points are time point 0 (T.0), time point 24 (T.24), time point 48 

(T.48), time point 72 (T.72), time point 96 (T.96), time point 120 (T.120). For example, 

if a subject had gene expression samples at the time points T-24, T0, T8, and T16, only 

average of T-24 and T0 was considered for the T0 prediction, as seen Figure 4.9.  

Although ignoring each time points can be seen as a disadvantage, it can also be seen as 

an advantage, because the timing of symptoms varies from person to person and even 

from virus to virus. For example, in the HRV DUKE experiment, there are eight time 

points up to the T.24 prediction. While some subjects may become symptomatic between 

time points T.4 and T.12, others may become symptomatic after T.12. As machine 

learning models cannot be trained/tested individually for each subject depending on the 

time point, symptom signals from all subjects should be captured in a generalized model. 

This is because we assume that the changes in gene expression also begin with the onset 

of symptoms, making it easier to capture the changed signals (i.e. gene expression) by 

machine learning. In this way, even though subjects' gene expression signals may be weak 

or strong at different times, this approach can capture distinctive signals for all subjects, 

which also facilitates the identification of key gene expressions that affect disease 

prediction [213]. After determining the time points to be predicted and expression values 

were averaged, the training and test subjects for the sub-datasets DEE1, DEE2, DEE3 and 

HRV UVA were split using the Scikit-Learn library [195], ensuring a balanced 

distribution based on class labels. For the other sub-datasets, namely DEE4, DEE5 and 

HRV DUKE, the same training and test subjects of the Viral DREAM Challenge [214] 

were used to ensure a fair comparison. 

 

Figure 4.10 Three experimental groups derived from the GSE73072 dataset by merging 

samples related to the same virus (Virus-Based) and all samples (ALL). For each group, 

training and test samples were kept equal to ensure a fair comparison. 
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Figure 4.11 Number of training and test samples according to gene expression values 

averaged up to predefined time points. Virus-based datasets were generated by merging 

samples belonging to the same virus family. 

Addition to the different representation types, we have generated 3 dataset group 

according to their sample combination. The first one is “Experiment-Based” in which 

each of the 7 sub-data sets is analyzed separately. Secondary group is based on the 

merging of sub-sets of data in which similar viruses are being studied. For example, the 

two sub-sets DEE3 and DEE4 contain samples injected with the H1N1 virus. On the other 

hand, DEE2 and DEE5 contain samples injected with the H3N2 virus. As can be seen in 

Figure 4.8, the number of data collected in each challenge is quite limited. The main 

reason for this is that the data is genetic, and it is necessary to inject the virus directly into 

individuals to understand the infection. It is therefore difficult to find enough volunteers 

for such a large and risky study. On the other hand, sample size plays a crucial role in 

model learning and machine learning results [215]. Large data sets allow algorithms to 

be trained on broader and more diverse samples, making the model more generalizable to 

real-world scenarios. Insufficient or biased data can cause the model to produce 

misleading results. Therefore, increasing the amount of data in machine learning should 

be balanced with the quality and representativeness of the data. Therefore, samples 

exposed to identical viruses were combined, thereby increasing the total sample size. 

Consequently, sub-datasets from experiments DEE2 - DEE5, DEE3 - DEE4, HRV UVA 

- HRV DUKE were merged. This resulted in the creation of H1N1, H3N2, and HRV sub-

datasets, with each one has more samples than experiment-based. The last group contains 
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all samples merged into a single dataset called “All”. This dataset allows the performance 

of a general model to be assessed across a wide range of viral infections caused by 

different viruses. 

 

Figure 4.12 Experimental flow of the respiratory infection and symptom development 

prediction problems.  

In addition, further analysis can reveal common genes for all the respiratory viruses 

we have studied. Number of train and test sample for each group and sub-dataset are 

shown in Figure 4.11. As seen in the figure, we have 11 separate experiments, each with 

6 different time points. Taking into account that each experiment/time point was 

represented by 5 different feature sets, we prepared 330 unique sub-datasets as input for 

the machine learning models. After the creation of the data set, the experimental process 

comprises 4 further steps, which are shown in Figure 4.12. These are the feature selection, 

parameter optimization, prediction and performance evaluation steps, where all steps are 

applied to each of the sub-datasets explained above. However, we can shrink these 4 steps 

to 2 main phases as feature selection and classification. In feature selection phase, we 

performed two approaches: hybrid and embedded. 

The hybrid approach takes the advantages of both ranking and wrapper. It has 2 

steps inside, ranking features using a filtering method and selecting the most relevant 

features using a wrapper method. During the filtering step, the correlation value of each 

feature was calculated using the only training data samples. Subsequently, training set 

sorted according to this new feature ordering using correlation values. To determine the 

optimal filtering method, we compared 1 univariate and 2 multivariate filtering methods 

during this step: Fisher Score, ReliefF and mRMR. The implementation of these methods 

was done on Python language with the library [197]. The second step of hybrid approach 

is determining the number of most significant features from re-ordered dataset. Starting 
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from the most correlated feature, a subset was then formed by adding the next feature at 

each iteration. We preferred the logistic regression algorithm as the wrapper method 

because it is simple, runs fast, and is efficient even with small data sets. After each 

iteration, number of features in the subset was stored along with the performance score. 

Since one of the goals of feature selection was to minimize the number of dimensions 

while maintaining or improving prediction accuracy, the least number of features that 

achieved the highest predictive performance was marked as the optimal subset of features. 

For example, if both the top 3 and top 50 features achieve the same maximum accuracy 

of 75%, the set of top 3 features is selected as optimal. On the other hand, L1 regularized 

logistic regression model, known as Lasso, and XGBoost backed tree-based feature 

selection methods were used as embedded approaches. Embedded methods inherently 

select features during the learning process, we didn't apply any further wrapper like 

selection strategy to them. Once the best set of features was figured out through FS 

method from the training set, the test set is rearranged using these features.  

Table 4.9 Optimized hyper-parameters of each classifier with lower and upper bounds 

for Respiratory Infection prediction problem. 

Classifier Parameter Lower Bound Upper Bound 

XGBoost 

Learning Rate 0.0001 1 

Number of Estimators 1 1000 

Maximum Depth of Tree 2 1000 

L1 Regularization Coefficient 0 1 

L2 Regularization Coefficient 0 1 

LightBoost 

Learning Rate 0.0001 1 

Number of Estimators 1 1000 

Maximum Depth of Tree 2 1000 

L1 Regularization Coefficient 0 1 

L2 Regularization Coefficient 0 1 

LR Regularization (C) 0.0001 1000 

SVM Regularization (C) 0.0001 1000 

NuSVC nu 0.0001 25 

kNN k – Number of Neighbors 2 Number of Class 

RF Number of Estimators 10 1000 

In next main step is about to optimize hyper-parameters of the algorithms and make 

predictions on the test samples. During experiments, 8 different classification algorithms 

were used. These are logistic regression (LR), support vector machine (SVM), random 

forest (RF), k nearest neighbors (kNN), Nu-Support Vector Classification (NuSVC), 

Gaussian Naive Bayes (GNB), XGBoost (XGB), and LightGBM (LGB). In hyper-

parameter step, parameters of each these algorithms were tuned between lower and upper 
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boundaries given in Table 4.9, on the only training samples to avoid overfitting in the 

results. 

Although some datasets have a bit more samples due to merging experiments, the 

sample size is still not very large. When the sample size in a data set is small, Leave-One-

Out Cross Validation (LOOCV) is suggested to achieve reliable prediction performance 

for a classification algorithm [216]; hence it was used with Bayesian optimization to tune 

parameters of algorithms. LOOCV is a specific implementation of k-fold cross-validation 

wherein the “k” value equals the number of samples within the dataset. In each iteration, 

one sample is marked as validation, and the rest is used to train the model with the specific 

parameters set determined by Bayesian acquisition function. Trained model then used to 

predict class probabilities of the validation sample. Once all samples have been predicted, 

the performance of the candidate parameter set is calculated with a metric according to a 

prediction metric. Since the results of the models in our study were compared according 

to their AUPRC scores, we tried to maximize the AUPRC score during optimization. The 

configuration of the parameter set that achieved the highest score was stored for the final 

model. The SKOPT library in Python software was used to implement the Bayesian 

optimization [217]. For each sub-dataset mentioned above, 250 trials were performed 

using the “gp_minimize” function.  Once the optimal parameters were found, the 

classification algorithms were trained, and test samples were predicted. Finally, metrics 

were calculated using the prediction probability distribution of each sample, and results 

tables were formed. 

 4.2.3 Results and Discussions 

In the second experiment of our study, based on the sample combinations 

mentioned in the previous section, 3 different sub-sections were treated. Each subsection 

contains corresponding results tables. The "number of features" used during the training 

/ testing process is indicated in the “NF” column. The column “Clf.” expresses the 

algorithm of the classifier. As there are a large number of tables, the results have been 

fitted into the pages by shrinking the column names. All results are descending order on 

AUPRC values. 
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4.2.3.1 Results for Experiment-Based Groups 

Table 4.10 The results of the best-performing models according to feature representation 

type for each experiment at time points T.0 and T.24 without feature selection on the 

infection prediction task. An asterisk (*) indicates that the hyper-parameters were not 

optimized. NF column shows the number of used features after the feature selection 

methods. 

Exp. 
TimePoint 0 TimePoint 24 

NF Feature Clf. AUPRC ACC NF Feature Clf. AUPRC ACC 

RSV 

DEE1 

49144 G.+GSEA XGB 0.867 0.600 36834 GSEA XGB 0.903 0.800 

36834 GSEA SVM 0.850 0.600 49144 G.+GSEA XGB 0.903 0.600 

59111 P.+GSEA SVM 0.850 0.600 12310 Gene XGB 0.903 0.600 

22277 Probe NuSVC 0.850 0.600 22277 Probe KNN 0.822 0.600 

12310 Gene XGB 0.822 0.600 59111 P.+GSEA LGB 0.800 0.600 

H3N2 

DEE2 

22277 Probe KNN 1.000 1.000 49144 G.+GSEA RF 1.000 1.000 

49144 G.+GSEA RF 1.000 0.600 12310 Gene KNN* 1.000 1.000 

12310 Gene KNN* 0.933 0.600 36834 GSEA KNN* 1.000 1.000 

36834 GSEA KNN 0.933 0.600 59111 P.+GSEA KNN* 1.000 1.000 

59111 P.+GSEA KNN 0.933 0.600 22277 Probe KNN* 1.000 1.000 

H3N2 

DEE5 

36834 GSEA XGB 0.943 0.750 22277 Probe RF 0.971 0.625 

49144 G.+GSEA KNN 0.925 0.375 49144 G.+GSEA LR 0.938 0.750 

59111 P.+GSEA KNN 0.925 0.375 36834 GSEA LR 0.938 0.750 

12310 Gene XGB 0.850 0.500 59111 P.+GSEA LR 0.938 0.750 

22277 Probe GNB 0.850 0.500 12310 Gene LR 0.938 0.625 

H1N1 

DEE3 

49144 G.+GSEA RF* 1.000 0.667 12310 Gene NuSVC 0.903 0.500 

36834 GSEA RF 1.000 0.667 49144 G.+GSEA KNN* 0.867 0.500 

12310 Gene NuSVC 1.000 0.500 36834 GSEA KNN* 0.867 0.500 

59111 P.+GSEA NuSVC 1.000 0.500 59111 P.+GSEA KNN* 0.867 0.500 

22277 Probe NuSVC 1.000 0.500 22277 Probe NuSVC 0.850 0.500 

H1N1 

DEE4 

36834 GSEA XGB 1.000 0.857 12310 Gene RF 1.000 0.857 

12310 Gene RF 0.960 0.857 36834 GSEA XGB* 1.000 0.857 

49144 G.+GSEA SVM* 0.944 0.857 49144 G.+GSEA NuSVC 0.944 0.857 

59111 P.+GSEA SVM* 0.944 0.857 59111 P.+GSEA NuSVC 0.944 0.857 

22277 Probe XGB 0.929 0.857 22277 Probe LGB 0.929 0.857 

HRV 

DUKE 

22277 Probe LR 1.000 1.000 12310 Gene RF 1.000 1.000 

49144 G.+GSEA LR 0.974 0.875 36834 GSEA RF* 1.000 1.000 

12310 Gene LR 0.974 0.875 59111 P.+GSEA XGB* 1.000 1.000 

36834 GSEA LR 0.974 0.875 22277 Probe RF 1.000 0.875 

59111 P.+GSEA LR 0.974 0.875 49144 G.+GSEA KNN 0.979 0.750 

HRV 

UVA 

36834 GSEA XGB 1.000 1.000 49144 G.+GSEA SVM* 1.000 0.600 

49144 G.+GSEA SVM* 1.000 0.600 12310 Gene SVM* 1.000 0.600 

12310 Gene SVM* 1.000 0.600 36834 GSEA SVM* 1.000 0.600 

59111 P.+GSEA SVM* 1.000 0.600 59111 P.+GSEA SVM* 1.000 0.600 

22277 Probe SVM* 1.000 0.600 22277 Probe SVM* 1.000 0.600 
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Table 4.11 The results of the best-performing models according to feature representation 

type for each experiment at time points T.48 and T.72 without feature selection on the 

infection prediction task. An asterisk (*) indicates that the hyper-parameters were not 

optimized. NF column shows the number of used features after the feature selection 

methods. 

Exp. 
TimePoint 48 TimePoint 72 

NF Feature Clf. AUPRC ACC NF Feature Clf. AUPRC ACC 

RSV 

DEE1 

49144 G.+GSEA KNN* 0.917 0.800 36834 GSEA XGB 0.903 0.600 

36834 GSEA KNN* 0.917 0.800 12310 Gene NuSVC 0.850 0.400 

59111 P.+GSEA KNN* 0.917 0.800 49144 G.+GSEA KNN* 0.822 0.600 

12310 Gene KNN* 0.822 0.600 59111 P.+GSEA KNN* 0.822 0.600 

22277 Probe KNN* 0.822 0.600 22277 Probe LGB 0.800 0.600 

H3N2 

DEE2 

49144 G.+GSEA KNN* 1.000 1.000 49144 G.+GSEA GNB 1.000 1.000 

36834 GSEA KNN* 1.000 1.000 36834 GSEA NuSVC* 1.000 1.000 

59111 P.+GSEA KNN* 1.000 1.000 59111 P.+GSEA GNB 1.000 1.000 

22277 Probe KNN 1.000 1.000 22277 Probe GNB 1.000 1.000 

12310 Gene LR 1.000 0.600 12310 Gene LR 1.000 0.800 

H3N2 

DEE5 

49144 G.+GSEA LR* 1.000 0.750 49144 G.+GSEA LR 1.000 1.000 

12310 Gene LR 1.000 0.750 12310 Gene LR 1.000 1.000 

36834 GSEA LR* 1.000 0.750 36834 GSEA LR 1.000 1.000 

59111 P.+GSEA LR* 1.000 0.750 59111 P.+GSEA LR 1.000 1.000 

22277 Probe LR* 1.000 0.625 22277 Probe LR 1.000 1.000 

H1N1 

DEE3 

12310 Gene KNN 0.933 0.833 49144 G.+GSEA GNB 0.800 0.667 

59111 P.+GSEA NuSVC 0.903 0.667 12310 Gene GNB 0.800 0.667 

49144 G.+GSEA RF* 0.850 0.500 36834 GSEA XGB 0.800 0.667 

36834 GSEA LR 0.800 0.667 59111 P.+GSEA XGB 0.800 0.667 

22277 Probe GNB 0.800 0.667 22277 Probe GNB 0.800 0.667 

H1N1 

DEE4 

49144 G.+GSEA NuSVC 1.000 0.857 59111 P.+GSEA XGB 0.974 0.857 

12310 Gene NuSVC 1.000 0.857 22277 Probe XGB 0.974 0.857 

22277 Probe NuSVC 1.000 0.857 36834 GSEA RF 0.960 0.714 

59111 P.+GSEA XGB 0.988 0.857 49144 G.+GSEA NuSVC 0.944 0.857 

36834 GSEA SVM 0.944 0.857 12310 Gene LGB 0.929 0.857 

HRV 

DUKE 

49144 G.+GSEA KNN* 1.000 1.000 49144 G.+GSEA RF 1.000 0.750 

36834 GSEA KNN* 1.000 1.000 36834 GSEA RF* 1.000 0.750 

59111 P.+GSEA KNN* 1.000 1.000 22277 Probe LR 1.000 0.750 

12310 Gene RF* 1.000 0.875 59111 P.+GSEA KNN 0.988 0.875 

22277 Probe KNN* 0.979 0.875 12310 Gene RF* 0.974 0.750 

HRV 

UVA 

49144 G.+GSEA SVM* 1.000 0.600 12310 Gene SVM* 1.000 0.600 

12310 Gene SVM* 1.000 0.600 22277 Probe SVM* 1.000 0.600 

36834 GSEA SVM* 1.000 0.600 49144 G.+GSEA SVM* 0.903 0.600 

59111 P.+GSEA SVM* 1.000 0.600 36834 GSEA SVM* 0.903 0.600 

22277 Probe SVM* 1.000 0.600 59111 P.+GSEA SVM* 0.903 0.600 

Tables 4.10, 4.11, and 4.12 present the results of the models obtained on the data sets in 

which feature selection has not been performed for the time points between T0 and T120.  
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Table 4.12 The results of the best-performing models according to feature representation 

type for each experiment at time points T.96 and T.120 without feature selection on the 

infection prediction task. An asterisk (*) indicates that the hyper-parameters were not 

optimized. NF column shows the number of used features after the feature selection 

methods. 

Exp. 
TimePoint 96 TimePoint 120 

NF Feature Clf. AUPRC ACC NF Feature Clf. AUPRC ACC 

RSV 

DEE1 

12310 Gene RF 0.903 0.600 49144 G.+GSEA XGB* 0.903 0.800 

49144 G.+GSEA KNN 0.875 0.800 12310 Gene XGB* 0.903 0.800 

36834 GSEA KNN 0.875 0.800 59111 P.+GSEA RF* 0.903 0.600 

59111 P.+GSEA KNN 0.875 0.800 36834 GSEA KNN 0.875 0.800 

22277 Probe LGB 0.800 0.600 22277 Probe LR 0.850 0.600 

H3N2 

DEE2 

36834 GSEA XGB 1.000 1.000 36834 GSEA XGB 1.000 1.000 

49144 G.+GSEA LR 1.000 0.800 49144 G.+GSEA LR 1.000 0.800 

12310 Gene LR 1.000 0.800 12310 Gene LR 1.000 0.800 

59111 P.+GSEA LR 1.000 0.800 59111 P.+GSEA LR 1.000 0.800 

22277 Probe LR 1.000 0.800 22277 Probe LR 1.000 0.800 

H3N2 

DEE5 

49144 G.+GSEA SVM 1.000 1.000 49144 G.+GSEA LR* 1.000 1.000 

12310 Gene LR 1.000 1.000 12310 Gene LR 1.000 1.000 

36834 GSEA SVM 1.000 1.000 36834 GSEA LR* 1.000 1.000 

59111 P.+GSEA LR 1.000 1.000 59111 P.+GSEA SVM* 1.000 1.000 

22277 Probe LR 1.000 1.000 22277 Probe NuSVC* 1.000 1.000 

H1N1 

DEE3 

49144 G.+GSEA XGB 0.800 0.667 59111 P.+GSEA RF 0.933 0.667 

12310 Gene GNB 0.800 0.667 36834 GSEA RF* 0.850 0.667 

36834 GSEA XGB 0.800 0.667 49144 G.+GSEA XGB 0.800 0.667 

59111 P.+GSEA GNB 0.800 0.667 12310 Gene GNB 0.800 0.667 

22277 Probe GNB 0.800 0.667 22277 Probe GNB 0.800 0.667 

H1N1 

DEE4 

59111 P.+GSEA RF 0.988 0.857 36834 GSEA XGB 1.000 0.857 

49144 G.+GSEA RF 0.944 0.857 12310 Gene NuSVC 0.944 0.857 

12310 Gene NuSVC 0.944 0.857 49144 G.+GSEA LGB 0.929 0.857 

36834 GSEA KNN* 0.933 0.714 59111 P.+GSEA LGB 0.929 0.857 

22277 Probe LGB 0.929 0.857 22277 Probe LGB 0.929 0.857 

HRV 

DUKE 

12310 Gene RF* 1.000 0.750 22277 Probe RF* 1.000 0.750 

49144 G.+GSEA RF* 0.965 0.750 49144 G.+GSEA XGB 0.988 0.875 

36834 GSEA RF 0.965 0.750 36834 GSEA XGB 0.979 0.875 

22277 Probe RF* 0.943 0.750 12310 Gene KNN 0.979 0.750 

59111 P.+GSEA LR 0.929 0.875 59111 P.+GSEA LR 0.929 0.875 

HRV 

UVA 

12310 Gene SVM* 1.000 0.600 49144 G.+GSEA XGB* 1.000 0.600 

22277 Probe SVM* 1.000 0.600 12310 Gene XGB 1.000 0.600 

49144 G.+GSEA SVM* 0.903 0.600 22277 Probe SVM* 1.000 0.600 

36834 GSEA SVM* 0.903 0.600 36834 GSEA SVM* 0.850 0.600 

59111 P.+GSEA SVM* 0.903 0.600 59111 P.+GSEA SVM* 0.850 0.600 

When evaluating the results for the pre-infection period T.0, it can be observed that 

the Gene+GSEA representation, in which the gene expression values, and the enrichment 
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values are concatenated end-to-end, is one of the leading models in almost all sub-

experiments. Furthermore, the Gene+GSEA representation approach achieved an 

AUPRC value of 1 in the DEE2, DEE3, and UVA sub-experiments, correctly predicting 

all infected individuals. In addition, the best performance in T0 prediction was achieved 

by combinations of XGB classifier with GSEA-based representation (Probe+GSEA, 

Gene+GSEA or GSEA only) in DEE1, DEE4, DEE5 and UVA sub-experiments.  

Another notable finding is 100% accuracy for the HRV UVA sub-experiment was 

only obtained by of GSEA-based representation at time point T.0. No such accuracy is 

achieved at other time points, even though it would be expected that post-exposure may 

result in easy prediction due to changes in genetic expression values. 

 

Figure 4.13 Comparison of multiple sub-experiments and time points for infection 

prediction problem using radar plots. Combining gene expression with GSEA features 

(i.e. “G+GSEA”) achieved almost the best results in experiment-based group analyses. 

Moreover, the comparative radar plots shown in Figure 4.13 indicate that GSEA-

based representations generated using gene expression allow for better performance with 

respect to multiple metrics in the pre- and early post-infection periods. These results may 

therefore be evidence that the use of GSEA-based representations in experiments with a 
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limited number of samples can better predict whether an individual becomes infected or 

not.   

Table 4.13 The results of the best-performing models according to feature representation 

type for each experiment at time points T.0 and T.24 with feature selection on the 

infection prediction task. An asterisk (*) indicates that the hyper-parameters were not 

optimized. NF column shows the number of used features after the feature selection 

methods. 

Exp. 
TimePoint 0 TimePoint 24 

FS NF Feature Clf. AUPRC ACC FS NF Feature Clf. AUPRC ACC 

RSV 

DEE1 

Tree B. 4 G.+GSEA XGB 0.867 0.600 Tree B. 4 G.+GSEA NuSVC 1.000 1.000 

Tree B. 4 Gene XGB 0.867 0.600 Tree B. 4 Gene NuSVC 1.000 1.000 

Tree B. 4 P.+GSEA XGB 0.867 0.600 Lasso 2261 GSEA RF 1.000 1.000 

Tree B. 4 Probe. XGB 0.867 0.600 Fisher S. 62 Probe. XGB* 0.958 0.600 

Lasso 1211 GSEA LR 0.850 0.400 Lasso 2094 P.+GSEA XGB 0.903 0.800 

H3N2 

DEE2 

Fisher S. 5 G.+GSEA XGB 1.000 1.000 ReliefF 13 Gene XGB 1.000 1.000 

Fisher S. 23 Gene XGB 1.000 1.000 Tree B. 5 GSEA SVM* 1.000 0.800 

Fisher S. 5 P.+GSEA XGB 1.000 1.000 Fisher S. 13 Probe. LR 1.000 0.800 

Fisher S. 17 Probe. XGB 1.000 1.000 Tree B. 6 G.+GSEA KNN* 0.958 0.800 

Lasso 1503 GSEA XGB 0.903 0.800 ReliefF 7 P.+GSEA XGB 0.933 0.800 

H3N2 

DEE5 

ReliefF 13 G.+GSEA RF* 1.000 0.500 mRMR 2 GSEA SVM* 1.000 0.875 

ReliefF 13 GSEA RF* 1.000 0.500 Fisher S. 4 P.+GSEA LR 1.000 0.875 

ReliefF 13 P.+GSEA RF* 1.000 0.500 Lasso 17 Probe. GNB 1.000 0.875 

Fisher S. 12 Gene XGB* 0.967 0.625 mRMR 4 G.+GSEA NuSVC 1.000 0.750 

ReliefF 308 Probe. XGB 0.938 0.750 ReliefF 25 Gene LR 1.000 0.625 

H1N1 

DEE3 

ReliefF 16 G.+GSEA LR 1.000 0.833 ReliefF 7 G.+GSEA RF 1.000 0.833 

Fisher S. 21 Gene XGB 1.000 0.833 ReliefF 7 GSEA RF 1.000 0.833 

ReliefF 16 GSEA LR 1.000 0.833 ReliefF 7 P.+GSEA RF 1.000 0.833 

ReliefF 16 P.+GSEA LR 1.000 0.833 ReliefF 34 Probe. SVM* 1.000 0.500 

Lasso 59 Probe. XGB* 0.903 0.833 Lasso 39 Gene LR 0.903 0.667 

H1N1 

DEE4 

Tree B. 6 G.+GSEA LR 1.000 0.857 Tree B. 6 GSEA KNN 1.000 1.000 

Tree B. 6 Gene LR 1.000 0.857 Fisher S. 31 Probe. XGB* 1.000 1.000 

Tree B. 6 GSEA LR 1.000 0.857 Lasso 993 G.+GSEA RF 0.974 0.857 

ReliefF 20 P.+GSEA XGB* 0.960 0.857 ReliefF 59 Gene XGB* 0.974 0.857 

Tree B. 6 Probe. GNB 0.944 0.714 ReliefF 1 P.+GSEA LR 0.974 0.714 

HRV 

DUKE 

Lasso 49 Gene XGB* 1.000 0.875 Fisher S. 5 G.+GSEA XGB 1.000 1.000 

Tree B. 9 GSEA XGB 1.000 0.875 Fisher S. 6 Gene XGB* 1.000 1.000 

ReliefF 49 Probe. GNB 1.000 0.750 Fisher S. 4 GSEA RF 1.000 1.000 

Lasso 2990 G.+GSEA LR* 0.974 0.750 Lasso 2878 P.+GSEA RF 1.000 1.000 

Lasso 2850 P.+GSEA KNN* 0.955 0.875 ReliefF 39 Probe. XGB 1.000 0.875 

HRV 

UVA 

Fisher S. 7 G.+GSEA XGB 1.000 1.000 Fisher S. 3 G.+GSEA XGB 1.000 1.000 

Lasso 20 Gene XGB 1.000 1.000 Fisher S. 3 GSEA XGB 1.000 1.000 

Tree B. 3 GSEA XGB 1.000 1.000 Fisher S. 3 P.+GSEA XGB 1.000 1.000 

Fisher S. 5 P.+GSEA XGB 1.000 1.000 Lasso 22 Probe. RF 1.000 1.000 

Lasso 28 Probe. LR 1.000 0.800 Fisher S. 21 Gene SVM 1.000 0.600 
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Tables 4.13, 4.14, 4.15 show the results of the different models for predicting 

infection depending on the prediction time after the feature selection was performed. 

Table 4.14 The results of the best-performing models according to feature representation 

type for each experiment at time points T.48 and T.72 with feature selection on the 

infection prediction task. An asterisk (*) indicates that the hyper-parameters were not 

optimized. NF column shows the number of used features after the feature selection 

methods. 

Exp. 
TimePoint 48 TimePoint 72 

FS NF Feature Clf. AUPRC ACC FS NF Feature Clf. AUPRC ACC 

RSV 

DEE1 

Fisher S. 7 P.+GSEA LR 1.000 0.800 Lasso 1388 GSEA XGB 1.000 0.800 

mRMR 36 Probe. SVM 1.000 0.800 ReliefF 1811 G.+GSEA XGB 1.000 0.600 

Fisher S. 1 G.+GSEA LR 1.000 0.600 ReliefF 1811 P.+GSEA XGB 1.000 0.600 

Lasso 38 Gene RF 1.000 0.600 ReliefF 114 Gene KNN* 0.917 0.600 

Fisher S. 1 GSEA LR 1.000 0.600 Lasso 62 Probe. XGB* 0.903 0.600 

H3N2 

DEE2 

Fisher S. 3 G.+GSEA XGB 1.000 1.000 ReliefF 29 G.+GSEA LR 1.000 1.000 

Fisher S. 11 Gene SVM 1.000 1.000 Fisher S. 96 Gene NuSVC 1.000 1.000 

Fisher S. 3 GSEA XGB 1.000 1.000 Tree B. 5 GSEA GNB 1.000 1.000 

Fisher S. 4 P.+GSEA XGB 1.000 1.000 ReliefF 29 P.+GSEA LR 1.000 1.000 

Tree B. 5 Probe. RF 1.000 0.800 Fisher S. 26 Probe. LR 1.000 0.800 

H3N2 

DEE5 

Lasso 16 Gene LR 1.000 1.000 Fisher S. 2 G.+GSEA GNB 1.000 1.000 

Lasso 872 GSEA XGB 1.000 1.000 Fisher S. 13 Gene XGB 1.000 1.000 

Fisher S. 8 Probe. LR 1.000 0.875 Fisher S. 2 GSEA GNB 1.000 1.000 

ReliefF 305 G.+GSEA GNB 1.000 0.750 Tree B. 2 P.+GSEA GNB 1.000 1.000 

ReliefF 305 P.+GSEA GNB 1.000 0.750 Tree B. 2 Probe. GNB 1.000 1.000 

H1N1 

DEE3 

mRMR 6 GSEA LR 1.000 0.667 ReliefF 2 Gene SVM* 1.000 0.500 

mRMR 13 P.+GSEA LR* 1.000 0.667 ReliefF 2 Probe. LR 1.000 0.500 

ReliefF 116 Probe. RF 1.000 0.667 Tree B. 1 G.+GSEA GNB 0.850 0.667 

Lasso 1238 G.+GSEA RF 1.000 0.500 Tree B. 1 GSEA GNB 0.850 0.667 

ReliefF 52 Gene LR 1.000 0.500 Tree B. 1 P.+GSEA GNB 0.850 0.667 

H1N1 

DEE4 

Lasso 1086 G.+GSEA NuSVC 1.000 1.000 Fisher S. 2 P.+GSEA XGB 1.000 1.000 

ReliefF 83 GSEA NuSVC 1.000 0.857 mRMR 210 Probe. XGB* 1.000 1.000 

ReliefF 83 P.+GSEA NuSVC 1.000 0.857 Fisher S. 3 G.+GSEA KNN 0.988 0.857 

Tree B. 6 Probe. XGB 0.988 0.857 Fisher S. 1 GSEA KNN 0.988 0.857 

Lasso 25 Gene LR 0.974 0.714 Tree B. 6 Gene KNN 0.976 0.857 

HRV 

DUKE 

Tree B. 6 GSEA GNB 1.000 1.000 Lasso 50 Probe. RF 1.000 1.000 

Lasso 3269 G.+GSEA RF 1.000 0.750 Fisher S. 15 G.+GSEA RF* 1.000 0.875 

ReliefF 4 Gene RF 1.000 0.750 Lasso 875 GSEA XGB 1.000 0.875 

ReliefF 72 Probe. SVM 0.974 0.750 Lasso 827 P.+GSEA RF* 1.000 0.750 

ReliefF 64 P.+GSEA KNN* 0.965 0.750 ReliefF 61 Gene RF* 0.988 0.875 

HRV 

UVA 

ReliefF 5 Probe. RF 1.000 1.000 ReliefF 5 Probe. RF 1.000 1.000 

ReliefF 4 Gene SVM 1.000 0.800 ReliefF 4 Gene SVM 1.000 0.800 

mRMR 4 P.+GSEA SVM* 1.000 0.800 Tree B. 2 G.+GSEA SVM* 1.000 0.600 

Tree B. 2 G.+GSEA SVM* 0.903 0.600 Fisher S. 2 GSEA SVM* 1.000 0.600 

Lasso 2424 GSEA SVM* 0.850 0.600 Fisher S. 3 P.+GSEA SVM* 1.000 0.600 
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Table 4.15 The results of the best-performing models according to feature representation 

type for each experiment at time points T.96 and T.120 with feature selection on the 

infection prediction task. An asterisk (*) indicates that the hyper-parameters were not 

optimized. NF column shows the number of used features after the feature selection 

methods. 

Exp 
TimePoint 96 TimePoint 120 

FS NF Feature Clf. AUPRC ACC FS NF Feature Clf. AUPRC ACC 

RSV 

DEE1 

ReliefF 2918 G.+GSEA XGB* 1.000 0.800 Tree B. 4 P.+GSEA NuSVC* 1.000 0.800 

ReliefF 3026 GSEA XGB* 1.000 0.800 Tree B. 4 Probe. NuSVC* 1.000 0.800 

ReliefF 2918 P.+GSEA XGB* 1.000 0.800 mRMR 5 GSEA XGB 0.958 0.800 

ReliefF 273 Probe. XGB* 1.000 0.800 ReliefF 274 Gene KNN 0.933 0.600 

ReliefF 179 Gene KNN 0.958 0.600 Tree B. 3 G.+GSEA XGB 0.903 0.800 

H3N2 

DEE2 

ReliefF 2602 G.+GSEA NuSVC 1.000 1.000 Tree B. 5 G.+GSEA RF 1.000 1.000 

Fisher S. 13 Gene GNB 1.000 1.000 Tree B. 5 Gene RF 1.000 1.000 

ReliefF 2602 GSEA NuSVC 1.000 1.000 Tree B. 5 GSEA XGB 1.000 1.000 

Tree B. 6 P.+GSEA SVM 1.000 1.000 ReliefF 6202 P.+GSEA NuSVC 1.000 1.000 

Tree B. 6 Probe. SVM 1.000 1.000 Fisher S. 16 Probe. XGB 1.000 1.000 

H3N2 

DEE5 

Lasso 1888 G.+GSEA RF 1.000 1.000 Lasso 1921 G.+GSEA GNB 1.000 1.000 

Fisher S. 23 Gene RF 1.000 1.000 Fisher S. 11 Gene RF 1.000 1.000 

Lasso 1692 GSEA RF 1.000 1.000 Tree B. 2 P.+GSEA GNB 1.000 1.000 

Tree B. 2 P.+GSEA XGB 1.000 1.000 Tree B. 2 Probe. GNB 1.000 1.000 

Tree B. 2 Probe. XGB 1.000 1.000 Lasso 1650 GSEA LR 1.000 0.875 

H1N1 

DEE3 

ReliefF 2 Probe. LR 1.000 0.667 Lasso 51 Probe. XGB* 1.000 0.667 

mRMR 7 G.+GSEA KNN 1.000 0.500 Lasso 22 Gene RF* 1.000 0.500 

ReliefF 1 Gene LR 1.000 0.500 Tree B. 1 P.+GSEA LR 1.000 0.500 

Tree B. 1 P.+GSEA LR 1.000 0.500 ReliefF 439 GSEA NuSVC 0.903 0.500 

ReliefF 7 GSEA XGB 0.958 0.500 Tree B. 1 G.+GSEA GNB 0.850 0.667 

H1N1 

DEE4 

Tree B. 6 G.+GSEA KNN 1.000 1.000 Tree B. 6 GSEA NuSVC 1.000 0.857 

Tree B. 6 Gene KNN 1.000 1.000 Lasso 851 G.+GSEA XGB 0.974 0.857 

Tree B. 6 GSEA GNB 1.000 0.857 Lasso 34 Probe. XGB 0.974 0.857 

Fisher S. 1 P.+GSEA XGB* 0.976 0.857 Lasso 21 Gene RF 0.974 0.714 

Lasso 35 Probe. XGB* 0.974 0.857 Fisher S. 1 P.+GSEA XGB 0.964 0.571 

HRV 

DUKE 

Lasso 41 Gene RF 1.000 0.875 Lasso 806 GSEA XGB 1.000 1.000 

Lasso 816 P.+GSEA XGB* 1.000 0.875 Tree B. 2 G.+GSEA GNB 1.000 0.875 

Lasso 46 Probe. RF 1.000 0.875 ReliefF 56 Gene SVM 1.000 0.875 

Lasso 799 GSEA XGB 0.974 0.875 Lasso 26 Probe. RF* 1.000 0.875 

Tree B. 7 G.+GSEA SVM 0.974 0.750 Lasso 808 P.+GSEA XGB 0.979 0.875 

HRV 

UVA 

ReliefF 3 Gene RF 1.000 1.000 Tree B. 3 G.+GSEA GNB 1.000 1.000 

mRMR 5 P.+GSEA SVM* 1.000 1.000 Tree B. 3 Gene GNB 1.000 1.000 

ReliefF 5 Probe. RF 1.000 1.000 Fisher S. 3 GSEA SVM* 1.000 1.000 

mRMR 5 G.+GSEA SVM* 1.000 0.800 Fisher S. 6 P.+GSEA SVM* 1.000 1.000 

Fisher S. 2 GSEA SVM* 1.000 0.800 ReliefF 3 Probe. RF 1.000 1.000 

Results of the tables broadly indicate that the application of feature selection 

boosted results of both AURPC and Accuracy across all sub-experiments, with the 



89 

 

exception of the T.0 RSV sub-experiment and the DEE2 sub-experiment at the T24 point. 

This improvement is not confined to a specific representation approach or classifier but 

is observed in nearly all combinations despite the small number of features. For instance, 

an AUPRC value of 1 is obtained using 36,834 features with the XGB algorithm and 

GSEA feature type without feature selection at the T0 time point prediction in the HRV 

UVA sub-experiment. However, the same performance is achieved using only 3 features 

after applying tree-based feature selection with the exact same representation-classifier 

combination. Similar results are also observable in other sub-experiments. It is also 

observed that all subjects are correctly predicted in the sub-experiments except DEE3. 

For example, in the DEE2, DEE5 and UVA sub-experiments, subjects were predicted 

with 100% accuracy at all time points, whereas in the DEE1, DEE4 and DUKE sub-

experiments, subjects were predicted with 100% accuracy specifically at T.24. 

Considering the number of used features, it can be stated that the application of feature 

selection has a positive impact on the prediction performance of the sub-experiment. 

When comparing feature selection methods, Fisher Score, ReliefF and the embedded tree-

based approach consistently outperform others at all time points and in all sub-

experiments, except for HRV DUKE at T.96 and T.120. Additionally, tree-based method 

is most efficient approach as uses least number of features while keeping high 

predictivity. 

 

Figure 4.14 Mostly selected genes among the different time points for each sub-

experiment according to Probe- and Gene-level representations in infection prediction 

problem. Genes of the experiment “HRV DUKE” are restricted due to large number of 4 

times occurred genes. 
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In many cases, feature selection is utilized not only to reduce dimensionality but 

also to detect key-parts that affect the phenotype class, such as infection status. In this 

way, the expression of selected genes or probes can also be interpreted as being significant 

in terms of infection. In our analysis, we expect that a gene or probe selected during more 

than 4 time points is likely significant in terms of prediction of that sub-experiment. 

Because that mean these genes played an important role throughout the post-exposure 

period while the biological system responded to the virus. Therefore, we extracted the 

number of genes and probes meeting this criterion as shown in Figure 4.14. However, 

some sub-experiments such as DEE1 or DEE2 are not included because no gene or probe 

was selected for them at more than 4 time points. Gene- and probe-expression based 

significant parts are figured out separately since the selected parts also vary. Probe ids 

then mapped to genes using an appropriate annotation file. 

When the most frequently selected genes are examined in detail, they are often 

found in the literature to be related either to the virus involved in the experiment or to the 

immune system. For example, let's consider IDO1 and C4BPA, genes selected at both 

gene and probe levels in the DEE3 H1N1 sub-experiment. According to available 

literature, the IDO1 gene is responsible for encoding the indoleamine-2,3-dioxygenase 

enzyme which plays a significant role in immune response against influenza A (H1N1) 

virus [218]. C4BPA, on the other hand, belongs to the group of C4b-binding proteins that 

suppress the complement system and one of the body's immune systems. This specific 

C4BP group acts as an entry inhibitor for H1N1 while at the same time promoting an 

immune response [219]. Similarly, a study has reported an interaction between SRSF 

group proteins and the Influenza A virus that regulates viral RNA splicing and replication 

[220]. 

In other sub-experiments, there are also many literature studies showing that there 

are relationship between the selected genes and viral infection, a respiratory virus or the 

immune system [221-223]. For example, the Gene DEFA4, which is selected as 

significant in UVA sub-experiments, is one of the most commonly overexpressed genes 

associated with neutrophil function in rhinovirus (HRV) infection [224]. The DEFA4 

encodes for a protein called human neutrophil activation (HNP-4), and HNP-4 has been 

shown to have antiviral activity against HRV, as well as other respiratory viruses.  Genes 

linked to neutrophil activation were also found to be effective in predicting outcomes of 

respiratory infections through further pathway analysis, explained below. 



91 

 

Examining genes individually is crucial for understanding the function of each gene 

and its potential role in diseases. However, this approach might ignore the interactions 

between genes and how they function as a whole. Therefore, Over-representation 

Analysis was performed on concatenation of all selected genes to identify their collective 

impact and determine their association with biological pathways or functional groups. 

 

Figure 4.15 Overrepresented Pathways and GO Terms on the mostly selected genes in 

infection prediction problem presented in the Figure 4.14. 

Figure 4.15 depicts the over-represented pathways and gene ontology (GO) terms 

on the selected genes shown in Figure 4.14. The majority of over-represented pathways 

are either directly or secondarily associated with the immune system, similar to the 

linkage of individual genes to the immune system and immune response.  Additionally, 

GO terms “Neutrophil activation” and “Granulocyte Activation” have also associations 

with immunity as they are being activated in response to infection or inflammation as part 

of the innate immune response [225]. These findings indicate a strong correlation between 

respiratory virus infection and the immune system being infected after exposure. 

The other task we made prediction in our experiments was the severe symptoms 

presence following exposure to viruses.  Tables 4.16 to 4.18 and 4.19 to 4.21 show the 

prediction scores of symptomatic individuals using the full features and feature selected 

datasets, respectively. In particular, at time point T.24, it can be observed on the top 

results of the table that all symptomatic subjects were accurately predicted by achieving 

an AUPRC value of 1. Similar to the infection prediction task, high classification 
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performance was achieved across all approaches in predicting whether subjects would 

develop symptoms. 

Table 4.16 The results of the best-performing models according to feature representation 

type for each experiment at time points T.0 and T.24 without feature selection on the 

symptomatic prediction task. An asterisk (*) indicates that the hyper-parameters were not 

optimized. NF column shows the number of used features after the feature selection 

methods. 

Exp. 
TimePoint 0 TimePoint 24 

NF Feature Clf. AUPRC ACC NF Feature Clf. AUPRC ACC 

RSV 

DEE1 

49144 G.+GSEA SVM* 0.850 0.600 49144 G.+GSEA XGB 1.000 1.000 

12310 Gene SVM* 0.850 0.600 12310 Gene XGB 1.000 1.000 

36834 GSEA SVM* 0.850 0.600 59111 P.+GSEA XGB 0.875 0.800 

59111 P.+GSEA SVM* 0.850 0.600 22277 Probe XGB 0.875 0.800 

22277 Probe SVM* 0.850 0.600 36834 GSEA SVM* 0.850 0.600 

H3N2 

DEE2 

49144 G.+GSEA LR 1.000 1.000 49144 G.+GSEA RF 1.000 1.000 

12310 Gene LR 1.000 1.000 12310 Gene RF 1.000 1.000 

36834 GSEA LR 1.000 1.000 36834 GSEA NuSVC 1.000 1.000 

59111 P.+GSEA LR 1.000 1.000 59111 P.+GSEA RF 1.000 1.000 

22277 Probe LR 1.000 1.000 22277 Probe RF 1.000 1.000 

H3N2 

DEE5 

12310 Gene NuSVC 0.963 0.625 22277 Probe NuSVC* 1.000 0.625 

49144 G.+GSEA KNN 0.950 0.625 49144 G.+GSEA KNN* 0.971 0.750 

36834 GSEA KNN 0.950 0.625 12310 Gene KNN* 0.971 0.750 

59111 P.+GSEA KNN 0.950 0.625 36834 GSEA KNN* 0.971 0.750 

22277 Probe NuSVC 0.938 0.625 59111 P.+GSEA KNN* 0.971 0.750 

H1N1 

DEE3 

49144 G.+GSEA RF 1.000 1.000 12310 Gene RF* 1.000 0.833 

12310 Gene NuSVC 1.000 0.667 59111 P.+GSEA RF* 0.975 0.833 

36834 GSEA RF* 1.000 0.667 22277 Probe XGB 0.958 0.500 

59111 P.+GSEA NuSVC 1.000 0.333 49144 G.+GSEA XGB 0.917 0.667 

22277 Probe KNN* 0.975 0.833 36834 GSEA XGB 0.917 0.667 

H1N1 

DEE4 

49144 G.+GSEA NuSVC 1.000 0.714 49144 G.+GSEA RF 1.000 1.000 

12310 Gene NuSVC 1.000 0.714 36834 GSEA RF 1.000 1.000 

36834 GSEA NuSVC 1.000 0.714 22277 Probe NuSVC* 1.000 0.714 

59111 P.+GSEA NuSVC 1.000 0.714 59111 P.+GSEA KNN 0.917 0.857 

22277 Probe LGB 0.643 0.714 12310 Gene KNN 0.833 0.714 

HRV 

DUKE 

49144 G.+GSEA LR* 1.000 0.750 36834 GSEA LR 1.000 0.875 

36834 GSEA LR* 1.000 0.750 49144 G.+GSEA LR 0.944 0.875 

59111 P.+GSEA LR* 1.000 0.750 59111 P.+GSEA LR 0.944 0.875 

12310 Gene LR 0.871 0.625 12310 Gene XGB 0.927 0.750 

22277 Probe LR 0.835 0.625 22277 Probe SVM 0.908 0.750 

HRV 

UVA 

49144 G.+GSEA RF 1.000 1.000 49144 G.+GSEA XGB 1.000 0.600 

12310 Gene RF* 1.000 0.800 12310 Gene NuSVC 1.000 0.600 

36834 GSEA KNN 0.958 0.800 22277 Probe NuSVC 1.000 0.600 

59111 P.+GSEA KNN 0.958 0.800 36834 GSEA NuSVC* 0.903 0.800 

22277 Probe LR* 0.903 0.800 59111 P.+GSEA NuSVC* 0.903 0.800 
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Table 4.17 The results of the best-performing models according to feature representation 

type for each experiment at time points T.48 and T.72 without feature selection on the 

symptomatic prediction task. An asterisk (*) indicates that the hyper-parameters were not 

optimized. NF column shows the number of used features after the feature selection 

methods. 

Exp. 
TimePoint 48 TimePoint 72 

NF Feature Clf. AUPRC ACC NF Feature Clf. AUPRC ACC 

RSV 

DEE1 

49144 G.+GSEA XGB 0.875 0.800 49144 G.+GSEA XGB 0.867 0.600 

12310 Gene XGB 0.875 0.800 12310 Gene XGB 0.867 0.600 

36834 GSEA LGB 0.800 0.400 36834 GSEA LGB 0.800 0.400 

59111 P.+GSEA LGB 0.800 0.400 59111 P.+GSEA LGB 0.800 0.400 

22277 Probe LGB 0.800 0.400 22277 Probe LGB 0.800 0.400 

H3N2 

DEE2 

22277 Probe GNB 1.000 1.000 49144 G.+GSEA LR 1.000 1.000 

49144 G.+GSEA LR 1.000 0.800 12310 Gene LR 1.000 1.000 

12310 Gene RF 1.000 0.800 36834 GSEA LR 1.000 1.000 

36834 GSEA LR 1.000 0.800 59111 P.+GSEA LR 1.000 1.000 

59111 P.+GSEA LR 1.000 0.800 22277 Probe LR 1.000 1.000 

H3N2 

DEE5 

22277 Probe KNN* 0.983 0.875 22277 Probe KNN 0.943 0.750 

12310 Gene KNN 0.950 0.875 36834 GSEA XGB 0.938 0.750 

49144 G.+GSEA KNN* 0.943 0.750 49144 G.+GSEA KNN* 0.923 0.750 

36834 GSEA KNN* 0.943 0.750 59111 P.+GSEA KNN* 0.923 0.750 

59111 P.+GSEA KNN* 0.943 0.750 12310 Gene KNN 0.875 0.625 

H1N1 

DEE3 

49144 G.+GSEA RF 1.000 0.833 12310 Gene KNN* 1.000 1.000 

12310 Gene RF 0.975 0.833 36834 GSEA RF 1.000 1.000 

36834 GSEA RF 0.944 0.833 49144 G.+GSEA RF 1.000 0.833 

22277 Probe RF* 0.944 0.667 59111 P.+GSEA KNN* 0.975 0.833 

59111 P.+GSEA KNN 0.917 0.667 22277 Probe LR 0.944 0.667 

H1N1 

DEE4 

49144 G.+GSEA KNN 0.833 0.714 36834 GSEA XGB 1.000 1.000 

12310 Gene KNN 0.833 0.714 49144 G.+GSEA KNN* 0.875 0.714 

36834 GSEA KNN 0.833 0.714 59111 P.+GSEA KNN* 0.875 0.714 

59111 P.+GSEA KNN 0.833 0.714 22277 Probe KNN* 0.833 0.714 

22277 Probe LGB 0.643 0.714 12310 Gene NuSVC 0.792 0.714 

HRV 

DUKE 

49144 G.+GSEA LR* 0.944 0.875 49144 G.+GSEA LR 1.000 0.875 

12310 Gene NuSVC 0.908 0.750 36834 GSEA LR 1.000 0.875 

36834 GSEA LR 0.908 0.750 59111 P.+GSEA LR 1.000 0.875 

59111 P.+GSEA LR 0.908 0.750 22277 Probe SVM 0.908 0.750 

22277 Probe LR 0.908 0.625 12310 Gene LR 0.908 0.625 

HRV 

UVA 

12310 Gene NuSVC* 0.903 0.600 12310 Gene KNN* 0.917 0.800 

22277 Probe NuSVC* 0.903 0.600 22277 Probe KNN* 0.917 0.800 

36834 GSEA XGB 0.875 0.800 49144 G.+GSEA NuSVC* 0.903 0.800 

49144 G.+GSEA NuSVC 0.850 0.600 36834 GSEA NuSVC* 0.903 0.800 

59111 P.+GSEA NuSVC 0.850 0.600 59111 P.+GSEA XGB 0.903 0.800 

During the pre-infection and early post-infection periods (T.0, T.24 and T.48), non-

feature selection applied results generally indicate that the Gene, Gene+GSEA, and Probe 
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representation approaches yield the best results. Furthermore, AUPRC values of 

Gene+GSEA and Gene are mostly similar. For instance, in the T.0 results of DEE1, DEE2 

Table 4.18 The results of the best-performing models according to feature representation 

type for each experiment at time points T.96 and T.120 without feature selection on the 

symptomatic prediction task. An asterisk (*) indicates that the hyper-parameters were not 

optimized. NF column shows the number of used features after the feature selection 

methods. 

Exp. 
TimePoint 96 TimePoint 120 

NF Feature Clf. AUPRC ACC NF Feature Clf. AUPRC ACC 

RSV 

DEE1 

49144 G.+GSEA XGB 0.933 0.800 49144 G.+GSEA XGB 0.933 0.800 

12310 Gene XGB 0.933 0.800 12310 Gene XGB 0.933 0.800 

22277 Probe KNN 0.917 0.600 36834 GSEA GNB 0.933 0.800 

36834 GSEA GNB 0.867 0.600 59111 P.+GSEA GNB 0.933 0.800 

59111 P.+GSEA XGB 0.867 0.600 22277 Probe GNB 0.933 0.800 

H3N2 

DEE2 

49144 G.+GSEA LR 1.000 1.000 49144 G.+GSEA LR 1.000 1.000 

12310 Gene LR 1.000 1.000 12310 Gene LR 1.000 1.000 

36834 GSEA LR 1.000 1.000 36834 GSEA LR 1.000 1.000 

59111 P.+GSEA LR 1.000 1.000 59111 P.+GSEA LR 1.000 1.000 

22277 Probe LR 1.000 1.000 22277 Probe LR 1.000 1.000 

H3N2 

DEE5 

22277 Probe KNN 0.925 0.750 12310 Gene SVM 0.963 0.875 

49144 G.+GSEA RF 0.918 0.750 36834 GSEA RF 0.920 0.875 

36834 GSEA XGB 0.918 0.750 22277 Probe RF 0.920 0.750 

12310 Gene LR 0.865 0.625 49144 G.+GSEA RF* 0.918 0.625 

59111 P.+GSEA RF 0.865 0.625 59111 P.+GSEA RF* 0.918 0.750 

H1N1 

DEE3 

49144 G.+GSEA KNN 1.000 1.000 49144 G.+GSEA RF 1.000 1.000 

12310 Gene RF 1.000 1.000 12310 Gene GNB 1.000 1.000 

36834 GSEA KNN 1.000 1.000 36834 GSEA RF 1.000 1.000 

59111 P.+GSEA RF 1.000 1.000 59111 P.+GSEA RF 1.000 1.000 

22277 Probe GNB 1.000 1.000 22277 Probe KNN 1.000 1.000 

H1N1 

DEE4 

36834 GSEA XGB 1.000 1.000 36834 GSEA XGB 0.833 0.857 

49144 G.+GSEA NuSVC 0.792 0.714 49144 G.+GSEA KNN 0.792 0.857 

12310 Gene LR 0.792 0.714 59111 P.+GSEA KNN 0.792 0.857 

59111 P.+GSEA NuSVC 0.792 0.714 12310 Gene LR* 0.792 0.714 

22277 Probe LR 0.792 0.714 22277 Probe LR 0.792 0.714 

HRV 

DUKE 

36834 GSEA XGB 1.000 1.000 59111 P.+GSEA XGB 1.000 1.000 

49144 G.+GSEA KNN 0.946 0.625 22277 Probe XGB 1.000 1.000 

59111 P.+GSEA KNN 0.946 0.625 49144 G.+GSEA KNN 0.946 0.875 

12310 Gene SVM 0.908 0.750 36834 GSEA KNN 0.946 0.875 

22277 Probe LR 0.908 0.625 12310 Gene LR 0.944 0.875 

HRV 

UVA 

36834 GSEA NuSVC* 1.000 1.000 12310 Gene NuSVC 1.000 1.000 

59111 P.+GSEA NuSVC* 1.000 1.000 49144 G.+GSEA NuSVC* 1.000 0.800 

12310 Gene NuSVC* 1.000 0.600 36834 GSEA NuSVC* 1.000 0.800 

22277 Probe NuSVC* 1.000 0.600 59111 P.+GSEA NuSVC* 1.000 0.800 

49144 G.+GSEA NuSVC* 0.903 0.600 22277 Probe NuSVC* 1.000 0.600 
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Table 4.19 The results of the best-performing models according to feature representation 

type for each experiment at time points T.0 and T.24 with feature selection on the 

symptomatic prediction task. An asterisk (*) indicates that the hyper-parameters were not 

optimized. NF column shows the number of used features after the feature selection 

methods. 

Exp. 
TimePoint 0 TimePoint 24 

FS NF Feature Clf. AUPRC ACC FS NF Feature Clf. AUPRC ACC 

RSV 

DEE1 

Tree B. 1 GSEA SVM 0.903 0.600 Tree B. 1 G.+GSEA LR 1.000 1.000 

Tree B. 1 G.+GSEA SVM 0.903 0.400 Tree B. 1 Gene LR 1.000 1.000 

Tree B. 1 Gene SVM 0.903 0.400 Fisher S. 5 Probe. RF 1.000 1.000 

Lasso 34 Probe. KNN* 0.878 0.600 Tree B. 1 P.+GSEA RF 0.875 0.800 

Lasso 732 P.+GSEA SVM* 0.850 0.600 mRMR 2 GSEA LR* 0.850 0.800 

H3N2 

DEE2 

Fisher S. 2 G.+GSEA LR 1.000 1.000 Tree B. 1 G.+GSEA LR 1.000 1.000 

Fisher S. 2 GSEA LR 1.000 1.000 Tree B. 1 Gene LR 1.000 1.000 

Tree B. 2 P.+GSEA LR 1.000 1.000 Lasso 373 GSEA RF 1.000 1.000 

Tree B. 2 Probe. LR 1.000 1.000 Lasso 1527 P.+GSEA RF 1.000 1.000 

Fisher S. 4 Gene RF 1.000 0.600 Fisher S. 9 Probe. XGB 1.000 1.000 

H3N2 

DEE5 

Lasso 1769 GSEA RF 0.963 0.625 Lasso 27 Gene XGB 1.000 0.875 

Lasso 1917 P.+GSEA XGB 0.963 0.625 ReliefF 28 G.+GSEA LR* 0.963 0.875 

Lasso 2024 G.+GSEA KNN 0.943 0.750 ReliefF 28 GSEA LR* 0.963 0.875 

Tree B. 3 Gene RF 0.920 0.500 ReliefF 28 P.+GSEA LR* 0.963 0.875 

Tree B. 3 Probe. XGB 0.857 0.750 Fisher S. 14 Probe. XGB 0.963 0.750 

H1N1 

DEE3 

Fisher S. 49 G.+GSEA RF 1.000 0.833 mRMR 18 Gene LR 1.000 1.000 

mRMR 28 GSEA RF 1.000 0.833 Fisher S. 8 P.+GSEA GNB 1.000 1.000 

mRMR 8 Probe. GNB 1.000 0.833 ReliefF 101 Probe. KNN 1.000 1.000 

Fisher S. 9 Gene GNB 1.000 0.667 Fisher S. 6 G.+GSEA GNB 1.000 0.833 

Fisher S. 54 P.+GSEA RF 1.000 0.667 Fisher S. 6 GSEA GNB 1.000 0.833 

H1N1 

DEE4 

ReliefF 64 G.+GSEA KNN 1.000 1.000 ReliefF 6 G.+GSEA LR 1.000 1.000 

Lasso 7 Gene GNB 1.000 1.000 ReliefF 12 Gene RF 1.000 1.000 

ReliefF 64 GSEA KNN 1.000 1.000 ReliefF 6 GSEA LR 1.000 1.000 

ReliefF 64 P.+GSEA KNN 1.000 1.000 ReliefF 6 P.+GSEA LR 1.000 1.000 

ReliefF 16 Probe. LR* 1.000 1.000 ReliefF 22 Probe. XGB 1.000 1.000 

HRV 

DUKE 

ReliefF 3 G.+GSEA XGB* 1.000 0.875 Lasso 1625 P.+GSEA LR* 1.000 0.875 

ReliefF 3 GSEA XGB* 1.000 0.875 ReliefF 2506 G.+GSEA NuSVC 1.000 0.750 

ReliefF 3 P.+GSEA XGB* 1.000 0.875 ReliefF 2506 GSEA NuSVC 1.000 0.750 

Lasso 37 Gene RF 1.000 0.625 ReliefF 1350 Gene XGB 0.958 0.750 

Lasso 54 Probe. GNB 0.866 0.375 ReliefF 2 Probe. KNN* 0.950 0.750 

HRV 

UVA 

Fisher S. 15 Gene GNB 1.000 1.000 Tree B. 3 G.+GSEA KNN 1.000 1.000 

Fisher S. 11 P.+GSEA RF 1.000 1.000 Tree B. 3 Gene KNN 1.000 1.000 

Fisher S. 12 Probe. RF 1.000 1.000 Lasso 35 Probe. XGB 1.000 0.800 

Tree B. 3 G.+GSEA LR 1.000 0.800 Tree B. 3 GSEA SVM* 1.000 0.600 

mRMR 4 GSEA GNB 1.000 0.800 mRMR 8 P.+GSEA SVM* 1.000 0.600 

DEE4 sub-experiments; both the Gene and Gene + GSEA approaches achieved identical 

highest predictivity. In this case, it can be stated that the extending gene expression values 



96 

 

with enrichment scores didn’t improve the ability to classify the samples according to 

actual classes.  

Table 4.20 The results of the best-performing models according to feature representation 

type for each experiment at time points T.48 and T.72 with feature selection on the 

symptomatic prediction task. An asterisk (*) indicates that the hyper-parameters were not 

optimized. NF column shows the number of used features after the feature selection 

methods. 

Exp. 
TimePoint 48 TimePoint 72 

FS NF Feature Clf. AUPRC ACC FS NF Feature Clf. AUPRC ACC 

RSV 

DEE1 

Tree B. 1 G.+GSEA LR 1.000 0.800 ReliefF 9 Gene KNN* 0.958 0.800 

Tree B. 1 Gene LR 1.000 0.800 mRMR 3 GSEA RF 0.958 0.800 

Lasso 12 Probe. XGB 0.933 0.600 mRMR 3 P.+GSEA RF 0.958 0.800 

Tree B. 1 GSEA LGB 0.800 0.400 ReliefF 42 Probe. KNN 0.903 0.600 

Tree B. 1 P.+GSEA LGB 0.800 0.400 Fisher S. 4 G.+GSEA KNN* 0.878 0.800 

H3N2 

DEE2 

Lasso 1623 G.+GSEA LR 1.000 1.000 Tree B. 2 G.+GSEA LR 1.000 1.000 

Fisher S. 9 Gene XGB 1.000 1.000 Tree B. 2 Gene LR 1.000 1.000 

Lasso 432 GSEA LR 1.000 1.000 Tree B. 2 GSEA LR 1.000 1.000 

Fisher S. 6 P.+GSEA XGB 1.000 1.000 Fisher S. 1 P.+GSEA LR 1.000 1.000 

Fisher S. 6 Probe. XGB 1.000 1.000 Fisher S. 6 Probe. LR 1.000 1.000 

H3N2 

DEE5 

Lasso 2203 G.+GSEA XGB 1.000 1.000 Lasso 2303 G.+GSEA XGB* 0.951 0.750 

Lasso 3410 GSEA XGB 1.000 1.000 Lasso 25 Gene RF* 0.938 0.750 

Lasso 1880 P.+GSEA XGB 1.000 1.000 ReliefF 68 GSEA XGB* 0.923 0.750 

mRMR 28 Gene RF* 1.000 0.625 ReliefF 68 P.+GSEA XGB* 0.923 0.750 

Tree B. 3 Probe. GNB 0.860 0.875 Lasso 30 Probe. RF* 0.906 0.750 

H1N1 

DEE3 

ReliefF 20 Probe. KNN 1.000 1.000 Lasso 2681 P.+GSEA XGB 1.000 1.000 

Lasso 1525 G.+GSEA RF 1.000 0.833 Lasso 2669 G.+GSEA RF 1.000 0.833 

Lasso 25 Gene SVM* 1.000 0.667 Tree B. 8 Gene LR 1.000 0.833 

Lasso 1577 GSEA RF 1.000 0.667 ReliefF 15 Probe. RF 1.000 0.833 

Lasso 2730 P.+GSEA RF 0.975 0.833 Lasso 1609 GSEA KNN 0.958 0.667 

H1N1 

DEE4 

ReliefF 4 G.+GSEA RF 1.000 1.000 Tree B. 2 GSEA RF 1.000 1.000 

ReliefF 4 GSEA RF 1.000 1.000 Fisher S. 3 G.+GSEA RF* 1.000 0.857 

ReliefF 4 P.+GSEA RF 1.000 1.000 Fisher S. 3 P.+GSEA RF* 1.000 0.857 

Fisher S. 11 Probe. SVM* 1.000 0.714 ReliefF 106 Gene KNN 0.917 0.857 

ReliefF 158 Gene KNN* 0.833 0.857 ReliefF 33 Probe. KNN* 0.917 0.857 

HRV 

DUKE 

Fisher S. 7 G.+GSEA XGB* 0.944 0.875 ReliefF 13 G.+GSEA LR 1.000 1.000 

Lasso 36 Gene XGB 0.944 0.750 ReliefF 13 GSEA LR 1.000 1.000 

Lasso 1695 P.+GSEA NuSVC 0.944 0.750 ReliefF 13 P.+GSEA LR 1.000 1.000 

Lasso 57 Probe. KNN* 0.917 0.750 Lasso 35 Gene KNN 1.000 0.500 

Tree B. 5 GSEA KNN 0.896 0.625 mRMR 67 Probe. RF 0.884 0.500 

HRV 

UVA 

ReliefF 1 G.+GSEA SVM 1.000 0.800 Lasso 19 Gene RF* 1.000 0.800 

ReliefF 1 GSEA SVM 1.000 0.800 Tree B. 2 P.+GSEA NuSVC 1.000 0.800 

ReliefF 1 P.+GSEA SVM 1.000 0.800 Tree B. 2 Probe. NuSVC 1.000 0.800 

Lasso 42 Probe. RF 1.000 0.800 Fisher S. 63 GSEA XGB 0.933 0.800 

Tree B. 3 Gene SVM* 1.000 0.600 Fisher S. 93 G.+GSEA RF 0.903 0.600 
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Table 4.21 The results of the best-performing models according to feature representation 

type for each experiment at time points T.96 and T.120 with feature selection on the 

symptomatic prediction task. An asterisk (*) indicates that the hyper-parameters were not 

optimized. NF column shows the number of used features after the feature selection 

methods. 

Exp. 
TimePoint 96 TimePoint 120 

FS NF Feature Clf. AUPRC ACC FS NF Feature Clf. AUPRC ACC 

RSV 

DEE1 

Lasso 33 Probe. XGB* 0.958 0.600 Tree B. 1 G.+GSEA SVM 1.000 0.800 

Tree B. 1 G.+GSEA RF 0.933 0.800 Tree B. 1 Gene SVM 1.000 0.800 

Tree B. 1 Gene RF 0.933 0.800 ReliefF 36 Probe. KNN* 0.933 0.800 

Tree B. 1 P.+GSEA SVM 0.903 0.600 Tree B. 1 P.+GSEA RF 0.933 0.600 

Tree B. 1 GSEA LGB 0.800 0.400 Lasso 714 GSEA GNB 0.878 0.800 

H3N2 

DEE2 

Tree B. 2 G.+GSEA LR 1.000 1.000 Tree B. 2 G.+GSEA LR 1.000 1.000 

Tree B. 2 Gene LR 1.000 1.000 Tree B. 2 Gene LR 1.000 1.000 

Tree B. 2 GSEA LR 1.000 1.000 Tree B. 2 GSEA LR 1.000 1.000 

ReliefF 4 P.+GSEA LR 1.000 1.000 Tree B. 2 P.+GSEA RF 1.000 1.000 

Fisher S. 2 Probe. LR 1.000 1.000 Tree B. 2 Probe. RF 1.000 1.000 

H3N2 

DEE5 

Lasso 51 Probe. RF 1.000 1.000 ReliefF 29 Gene GNB 0.938 0.750 

Lasso 970 G.+GSEA RF 0.951 0.750 Lasso 2563 P.+GSEA RF 0.938 0.750 

Tree B. 3 Gene KNN* 0.943 0.875 Lasso 55 Probe. RF* 0.938 0.625 

ReliefF 78 GSEA XGB* 0.943 0.750 Lasso 994 G.+GSEA KNN* 0.925 0.625 

ReliefF 78 P.+GSEA XGB* 0.943 0.750 Lasso 2656 GSEA RF* 0.893 0.625 

H1N1 

DEE3 

mRMR 35 G.+GSEA KNN 1.000 1.000 Fisher S. 7 G.+GSEA RF 1.000 1.000 

ReliefF 28 Gene RF 1.000 1.000 Tree B. 1 GSEA SVM 1.000 1.000 

ReliefF 15 GSEA XGB 1.000 1.000 Fisher S. 7 P.+GSEA RF 1.000 1.000 

ReliefF 15 P.+GSEA XGB 1.000 1.000 Fisher S. 224 Probe. GNB 1.000 1.000 

Fisher S. 438 Probe. LR 1.000 1.000 Fisher S. 16 Gene NuSVC* 1.000 0.833 

H1N1 

DEE4 

ReliefF 4 Gene LR 1.000 1.000 ReliefF 4 Gene GNB 1.000 0.857 

Tree B. 2 GSEA RF 1.000 1.000 Tree B. 2 GSEA NuSVC 1.000 0.857 

ReliefF 66 G.+GSEA KNN* 0.917 0.857 ReliefF 5083 G.+GSEA KNN 0.917 0.857 

ReliefF 66 P.+GSEA KNN* 0.917 0.857 ReliefF 4874 P.+GSEA KNN 0.917 0.857 

ReliefF 88 Probe. XGB 0.917 0.857 ReliefF 215 Probe. XGB 0.833 0.857 

HRV 

DUKE 

Tree B. 6 GSEA XGB 1.000 1.000 Tree B. 4 GSEA SVM* 1.000 1.000 

Lasso 39 Gene LR 1.000 0.875 Tree B. 5 P.+GSEA XGB 1.000 1.000 

Lasso 1573 P.+GSEA LR 1.000 0.875 Tree B. 5 Probe. XGB 1.000 1.000 

Lasso 1551 G.+GSEA LR 0.944 0.875 Tree B. 4 G.+GSEA SVM* 1.000 0.625 

Tree B. 4 Probe. LR 0.944 0.875 Tree B. 4 Gene SVM* 1.000 0.625 

HRV 

UVA 

Tree B. 3 GSEA NuSVC 1.000 1.000 Lasso 3237 P.+GSEA XGB* 1.000 1.000 

Lasso 41 Probe. RF 1.000 1.000 mRMR 363 Probe. KNN* 1.000 1.000 

Lasso 27 Gene RF 0.958 0.800 Tree B. 3 GSEA RF* 1.000 0.800 

Tree B. 3 P.+GSEA RF 0.903 0.800 ReliefF 5799 G.+GSEA XGB 1.000 0.600 

Lasso 3244 G.+GSEA XGB 0.903 0.600 Lasso 27 Gene RF 0.903 0.800 

In other words, proposed GSEA based representation was not made any 

improvement in predicting the presence of symptoms, especially in the pre-infection and 
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early post-infection periods. On the other hand, when feature selection was applied, 

GSEA-based approaches showed improvement. For example, at T.0, features derived 

from enrichment scores achieved the highest performance in all sub-experiments of 

DEE1, DEE2, DEE3, DEE5 and DUKE. This result suggests that feature selection, i.e. 

enrichment scores of predefined gene sets, is more useful in predicting symptomatic 

subjects for the sub-experimental problems. 

 

Figure 4.16 Overrepresented Pathways and GO Terms on the mostly selected genes in 

symptom development prediction problem. 

In feature selection applied results, same as the infection prediction problem, Tree-

Based, ReliefF and Lasso methods have emerged as top-performing approaches. In 

particular, the tree-based approach has achieved 100% accuracy using only 3-4 features 

at some time points/sub-experiments (e.g. DEE1 T.0, DEE2 T.24). The infection 

prediction results had demonstrated that the tree-based approach is highly effective in 

delivering high performance with a minimal number of features. However, other methods 

have also exhibited strong results with a small number of features in predicting 

symptomatic subjects; for example, in T.0 prediction in the DUKE sub-experiment, the 

ReliefF method achieved outstanding performance with only 3 features - highlighting that 

a small set of expressed genes may be sufficient for accurate symptom prediction. The 

analysis of genes with more than 4 occurrences at all time points aligns closely with the 

findings in the infection prediction problem, as illustrated in Figure 4.16. It is evident 

once again that genes associated with the immune system significantly contribute to 
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improved classification success when selected frequently. The GO term "antigen 

processing and presentation of peptide antigen" refers to the complex biological process 

where cells present peptide antigens a key part of the cellular immune response. 

To summarize the experiment-based results for both problems collectively, it's 

evident that models have consistently and accurately predicted all individuals infected 

with the virus as well as those who developed symptoms. Furthermore, the GSEA-based 

representation type also achieved satisfactory performance for each sub-experimental 

dataset. When examining the impact of feature selection methods, it becomes clear that 

they are particularly beneficial for both prediction problems, especially in terms of 

achieving high predictive accuracy with a very small number of features. In addition, 

performing the ORA on the most frequently occurring genes has revealed a direct impact 

of genes related to the “Immune System” on the prediction performance. 

Table 4.22 Average results for infection prediction of best models according to Feature 

Representation types. 

Feature Classifier FS Method NF AUPRC ACC AUROC 

G.+GSEA GNB Lasso 1731.4 0.856 0.727 0.658 

P.+GSEA GNB Lasso 1457.2 0.849 0.723 0.639 

GSEA GNB Lasso 1608.9 0.848 0.705 0.638 

Probe GNB - 22277.0 0.847 0.712 0.626 

Gene SVM* mRMR 37.4 0.844 0.655 0.718 

Table 4.23 Average results for symptomatic prediction of best models according to 

Feature Representation types. 

Feature Classifier FS Method NF AUPRC ACC AUROC 

G.+GSEA RF - 49144.0 0.821 0.716 0.780 

P.+GSEA RF* Lasso 1737.8 0.817 0.686 0.771 

GSEA LR* - 36834.0 0.812 0.659 0.775 

Probe LR* - 22277.0 0.808 0.640 0.761 

Gene KNN* - 12310.0 0.801 0.682 0.743 

Notwithstanding the usefulness of separate models, different combinations stand 

out for either symptom development or infection prediction depending on the time 

point/sub-experiment pair, as each is interpreted separately. Hence, averages of each 

method combination were computed to assess the generalizability of approaches.  While 

calculating average metrics, the class probability distributions of each sample in different 

sub-experiments by each method combination were unified. This yielded average results 

for each sub-experiment; however, since our sub-datasets also had another dimension, 
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time point, results from 6-time points were averaged as well. Tables 4.22 and Table 4.23 

respectively show the average metrics of method combinations for infection prediction 

and symptom prediction. In both prediction tasks, it is observed that GSEA-based 

approaches generally demonstrate better performance when averages are considered. 

Moreover, in infection prediction, the Gaussian Naïve Bayes algorithm stands out as the 

classifier, while the Lasso approach emerges as the preferred method for feature selection. 

The primary reason for the Bayes algorithm's superior performance is the small sample 

size used in the sub-experiments. Typically, machine learning algorithms tend to learn 

patterns in the data more effectively as the sample size increases. For analyses with 

limited data, probabilistic models are recommended. Given the class independence 

assumption, naive Bayes classifiers are able to efficiently utilize high dimensional 

features even with limited training data compared to more advanced methods. Hence, 

even though different combinations seem to be better when considered individually for 

time points and sub-experiments, the evaluation of the combinations by the average of 

the experiments as well as the time points shows the advantage of the Naive Bayes 

algorithm in infection prediction. 

4.2.3.2 Results for Virus-Merge-Based Models 

Table 4.24 The results of the best-performing models according to feature representation 

type for each virus-merged subset at time points T.0 and T.24 on the infection prediction 

task. An asterisk (*) indicates that the hyper-parameters were not optimized. NF column 

shows the number of used features after the feature selection methods. 

Exp. 
TimePoint 0 TimePoint 24 

FS NF Feature Clf. AUPRC ACC FS NF Feature Clf. AUPRC ACC 

H1N1 

Fisher S. 15 G.+GSEA NuSVC 1.000 0.846 - 12310 Gene XGB 0.952 0.846 

Fisher S. 14 GSEA NuSVC 1.000 0.846 Lasso 57 Probe XGB* 0.926 0.538 

Fisher S. 23 P.+GSEA NuSVC 1.000 0.846 Tree B. 16 GSEA NuSVC* 0.919 0.769 

Lasso 57 Probe LR 0.951 0.769 - 49144 G.+GSEA XGB 0.919 0.846 

ReliefF 67 Gene XGB* 0.943 0.846 Fisher S. 937 P.+GSEA NuSVC 0.905 0.769 

H3N2 

mRMR 7 Gene XGB* 0.950 0.615 ReliefF 5 Gene KNN 0.958 0.846 

Lasso 2329 P.+GSEA KNN* 0.938 0.615 - 22277 Probe KNN 0.950 0.538 

Tree B. 12 G.+GSEA GNB 0.905 0.615 Lasso 1218 P.+GSEA LR 0.917 0.846 

Tree B. 10 Probe GNB 0.902 0.692 Lasso 1271 GSEA LR 0.917 0.769 

Lasso 2627 GSEA KNN 0.897 0.538 Lasso 1173 G.+GSEA LR* 0.909 0.846 

HRV 

ReliefF 37 G.+GSEA KNN* 0.886 0.692 Lasso 57 Gene XGB* 0.958 0.692 

ReliefF 37 GSEA KNN* 0.886 0.692 Tree B. 25 P.+GSEA XGB* 0.919 0.615 

ReliefF 37 P.+GSEA KNN* 0.886 0.692 Fisher S. 6 GSEA XGB 0.918 0.615 

ReliefF 46 Gene KNN* 0.872 0.615 Fisher S. 7 G.+GSEA XGB* 0.915 0.692 

ReliefF 24 Probe KNN 0.872 0.615 Fisher S. 16 Probe SVM 0.906 0.615 
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Table 4.25 The results of the best-performing models according to feature representation 

type for each virus-merged subset at time points T.48 and T.72 on the infection prediction 

task. An asterisk (*) indicates that the hyper-parameters were not optimized. NF column 

shows the number of used features after the feature selection methods. 

Exp. 
TimePoint 48 TimePoint 72 

FS NF Feature Clf. AUPRC ACC FS NF Feature Clf. AUPRC ACC 

H1N1 

ReliefF 156 Gene SVM 0.918 0.615 - 22277 Probe XGB 0.919 0.615 

ReliefF 6 GSEA XGB 0.900 0.692 - 59111 P.+GSEA XGB* 0.880 0.615 

ReliefF 6 P.+GSEA XGB 0.887 0.692 Lasso 4994 GSEA GNB 0.875 0.769 

ReliefF 6 G.+GSEA LR 0.874 0.615 Lasso 1979 G.+GSEA GNB 0.850 0.769 

Lasso 58 Probe LR 0.863 0.615 Fisher S. 151 Gene GNB 0.850 0.692 

H3N2 

Tree B. 9 G.+GSEA LR 1.000 0.846 Lasso 23 Gene GNB 1.000 1.000 

Lasso 21 Gene KNN* 0.988 0.923 Lasso 37 Probe LR* 1.000 1.000 

ReliefF 49 GSEA RF 0.985 0.846 ReliefF 271 G.+GSEA KNN 0.988 0.923 

ReliefF 49 P.+GSEA RF 0.985 0.846 ReliefF 271 GSEA KNN 0.988 0.923 

- 22277 Probe KNN 0.966 0.538 ReliefF 271 P.+GSEA KNN 0.988 0.923 

HRV 

Tree B. 21 Gene LR* 0.921 0.769 Lasso 47 Probe RF* 0.912 0.769 

Lasso 45 Probe SVM 0.899 0.692 Tree B. 18 P.+GSEA XGB 0.899 0.769 

- 59111 P.+GSEA RF 0.863 0.538 - 12310 Gene KNN 0.885 0.692 

- 49144 G.+GSEA XGB 0.854 0.692 Tree B. 19 GSEA KNN* 0.865 0.615 

ReliefF 6 GSEA KNN 0.848 0.692 mRMR 100 G.+GSEA KNN* 0.860 0.692 

 

Table 4.26 The results of the best-performing models according to feature representation 

type for each virus-merged subset at time points T.96 and T.120 on the infection 

prediction task. An asterisk (*) indicates that the hyper-parameters were not optimized. 

NF column shows the number of used features after the feature selection methods. 

Exp. 
TimePoint 96 TimePoint 120 

FS NF Feature Clf. AUPRC ACC FS NF Feature Clf. AUPRC ACC 

H1N1 

ReliefF 8 Probe XGB 0.939 0.692 Tree B. 11 Gene GNB 0.875 0.692 

- 12310 Gene GNB 0.875 0.769 - 22277 Probe GNB 0.875 0.769 

- 49144 G.+GSEA LGB 0.846 0.692 Tree B. 13 G.+GSEA GNB 0.848 0.692 

- 36834 GSEA LGB 0.846 0.692 - 36834 GSEA LGB 0.846 0.692 

- 59111 P.+GSEA LGB 0.846 0.692 - 59111 P.+GSEA LGB 0.846 0.692 

H3N2 

mRMR 7 Gene LR 1.000 1.000 Lasso 29 Probe LR 1.000 1.000 

Lasso 16 Probe SVM 1.000 1.000 Lasso 17 Gene XGB 1.000 0.923 

- 49144 G.+GSEA LR 0.985 0.923 Fisher S. 2 G.+GSEA LR 0.985 0.923 

- 36834 GSEA LR 0.985 0.923 - 36834 GSEA LR 0.985 0.923 

- 59111 P.+GSEA LR 0.985 0.923 - 59111 P.+GSEA LR 0.985 0.923 

HRV 

- 59111 P.+GSEA XGB* 0.919 0.692 ReliefF 117 G.+GSEA NuSVC 0.979 0.846 

ReliefF 16 Probe GNB 0.915 0.615 ReliefF 118 P.+GSEA NuSVC 0.971 0.769 

- 36834 GSEA RF 0.907 0.692 ReliefF 116 GSEA KNN 0.969 0.846 

Fisher S. 54 G.+GSEA KNN* 0.858 0.692 ReliefF 19 Probe GNB 0.934 0.615 

Tree B. 24 Gene NuSVC 0.857 0.538 Lasso 62 Gene SVM 0.904 0.692 

The prediction results obtained from the combined training and test samples of sub-

experiments according to same viruses are shown in Tables 4.24 to 4.26 for infection 
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prediction problem. In contrast to the experiment-based analysis, the results obtained 

from the models with and without feature selection are presented in the same tables, 

categorized by time point and virus type.  When examining the results of infection 

prediction without feature selection, it is observed that GSEA-based approaches give the 

best results for all three virus types on the prediction of pre-infection (T.0). Conversely, 

no prominent feature representation types stand out at other time points. Furthermore, the 

superior performance of the GSEA-based approaches continued after feature selection 

was applied to the prediction of T.0 time points, except for the best performing model for 

the H3N2 virus. It is noteworthy that, the prediction performance for samples associated 

with H1N1 experiments tends to decrease up to T.72 time point in almost all models. 

However, the highest performance in predicting H1N1 infected samples is obtained by 

utilizing the ssGSEA-based representation at the pre-exposure time point (T0), with an 

AUPRC value of 1. At no other time point of the H1N1 predictions could an AUPRC 

value of 1 be achieved. On the H3N2 virus related results, the predictive performance is 

increasing steadily after the exposure of virus. The best performing models always 

achieved an AUPRC of 1, especially 48 hours after exposure. In the case of HRV virus, 

an AUPRC value of around 0.92 was obtained except for the T.0 time point. 

 

Figure 4.17 Prediction performance of the best performing gene-level representation used 

models according to the time points and virus types. 

In the original article and the reported information on the dataset, there are also 

onset times at which volunteers became infected after exposure, depending on the 

experiment. According to reports, H1N1-injected volunteers were infected between 24-
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48 hours, H3N2-injected volunteers were infected between 30-48 hours, and HRV-

injected volunteers were infected 24-48 hours after exposure on average. Figure 4.17 

shows the predictive performance of the best performing gene level expression-used 

models based on time points for each respiratory virus. When compared prediction 

models to the time points at which individuals become infected or feel symptoms, it is 

seen that there is a slight relation between them. For instance, HRV models demonstrated 

peak performance at the T.24 time point, which aligns with volunteers typically exhibiting 

symptoms 24-48 hours after exposure to HRV virus. This association suggests that 

machine learning models can predict changes in gene expression values just before 

symptoms appear. As a further investigation, selected features were extracted from each 

of the best performing models of expression values, i.e. genes and probes, according to 

virus types. For this purpose, the top-15 most frequently selected genes were identified 

using the best-performing models for each virus-experiment at the gene and probe-level. 

The frequency of occurrence of these genes in each virus-experiment was then extracted. 

Figure 4.18 represent frequency of each mostly selected genes according to virus types. 

 

Figure 4.18 Frequency of the most frequently selected top 15 genes according to different 

virus-based experiments. In order to calculate frequencies of each gene, genes in which 

mostly selected in both probe- and gene-level representation models were taken into 

account. 

As can be seen from the frequency of occurrence, no specific gene(s) was selected 

frequently in all 3 virus types.  Nevertheless, some genes have an occurrence in 2 

experiments. For instance, the gene “MYL4” was selected 12 and 7 times in H1N1 and 

HRV experiments, respectively. Genes of the HLA family (HLA-DQA1, HLA-DQB1) 

were selected for both the H3N2 and H1N1 viruses. In the context of influenza viruses 

(H1N1, H3N2), HLA class II molecules play a crucial role in presenting viral antigens to 
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CD4 T cells, which are essential for an effective immune response generation. Hence, 

these genes have the potential to influence the immune response to influenza during 

natural infection as well as vaccination [226]. The gene TNFAIP6 was selected 7 times 

in both HRV and H3N2 experiments.  TNFAIP6 is thought to be one of the genes strongly 

induced by HRV, leading to high expression of TNFAIP6 in nasal secretions as part of 

the inflammatory and immune response to HRV infection [223]. Complement factor D 

(the gene CFD), frequently selected in HRV experiments, is one of the critical elements 

of the alternative complement pathway, which is such an important part of the innate 

immune system for host defense against pathogens [227]. The association between 

selected identified genes and the immune system had been confirmed previously by an 

overrepresentation analysis in sub-experiment-based analyses.  

A similar analysis was performed on the mostly selected genes (see gene symbols 

in Figure 4.14) obtained from virus-based experiments. Consequently, “defense response 

(GO:0006952)”, “leukocyte-mediated immunity (GO:0002443)”, “immune effector 

process (GO:0002252)”, “immune response (GO:0006955)”, “inflammatory response 

(GO:0006954)”, “innate immune response (GO:0045087)” from the GO terms and the 

pathways “immune system (R-HSA-168256)”, “Neutrophil degranulation (R-HSA-

6798695)” from the Reactome database are significantly enriched. Thus, the association 

between the immune system and predicting infection continues when different 

experiments are combined, as evidenced by the results. 

 

Figure 4.19 Frequency of the most frequently selected top 15 pathways and gene sets 

according to different virus-based experiments.  

In our experiments, we also performed frequency analysis on the gene sets selected 

by best-performing GSEA-based representation types, as represented in Figure 4.19. The 
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MSigDB database is a comprehensive repository containing curated gene sets from well-

known databases such as KEGG, Reactome, and Gene Ontology as well as gene sets from 

studies published in the literature. The gene sets in the figure labeled with “MSigDB 

Name” are from publications. Other prefixes used in the figure are Gene Ontology (GO), 

Human Phenotype Ontology (HP), Reactome Database (R-HSA), and WikiPathways 

(WP). 

Another point to consider with the selected genes & gene sets is the relations 

between them. For example, the frequently selected gene set HP:0004823 of the H1N1 

experiment contains the HBB gene, which was selected most frequently gene in the same 

experiment. In the H3N2 experiment, the gene set labelled “HP:0012335” (called as 

Abnormality of folate metabolism on the source repository) was selected 10 times. When 

this gene set was analyzed, it was found to contain HLA-DQA1 and HLA-DQB1, which 

are among the most frequently selected genes in H3N2 experiments. In the HRV-related 

experiment, CFD was the most frequently selected gene. This gene is included in the 

following pathways: “Acquired partial lipodystrophy Barraquer Simons syndrome 

pathway (WP5104)”, “Reactome alternative complement activation pathway (R-HSA-

173736)”, and “Biocarta alternative complement pathway”. These pathways are also the 

most frequently selected gene sets in the same experiment. The fact that these gene sets 

contain the CFD gene might be related to the improvement in predictability of GSEA-

based representations that select these gene sets. Therefore, differentiation in the 

expression value of the CFD gene could be one of the most discriminating factors in 

predicting whether individuals are exposed to the HRV virus. 

Tables 4.27 to 4.29 indicate the models' results for predicting symptom 

development. Unlike the infection prediction problem, no virus type or time point 

achieved an AUPRC value of 1 before time point T.72 except the best model of the H3N2 

experiment. Nevertheless, the majority of the models delivered strong predictive 

performance, exceeding an AUPRC of 0.94. Among the feature selection methods, the 

mRMR approach shows an improvement in this prediction problem. In addition, the 

Lasso and ReliefF methods stand out slightly more than the others. 

Contrary to the infection prediction problem, probe-level representation achieved 

better performance at some time points than other types of representation. For example, 

the highest AUPRCs for H1N1 and H3N2 viruses at time point T.24 was obtained by 
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probe-level representation. On the other hand, GSEA-based approaches have generally 

achieved better performance than other methods, especially after the T.48 time point. 

Table 4.27 The results of the best-performing models according to feature representation 

type for each virus-merged subset at time points T.0 and T.24 on the symptom prediction 

task. An asterisk (*) indicates that the hyper-parameters were not optimized. NF column 

shows the number of used features after the feature selection methods. 

Exp. 
TimePoint 0 TimePoint 24 

FS NF Feature Clf. AUPRC ACC FS NF Feature Clf. AUPRC ACC 

H1N1 

Fisher S. 65 G.+GSEA XGB 0.941 0.769 - 22277 Probe LR 0.955 0.769 

mRMR 22 Gene RF* 0.920 0.923 - 49144 G.+GSEA RF 0.944 0.769 

Lasso 973 P.+GSEA KNN 0.892 0.769 Lasso 861 GSEA LR 0.944 0.846 

Fisher S. 17 Probe RF* 0.876 0.769 Lasso 308 P.+GSEA LR 0.930 0.692 

Lasso 492 GSEA RF* 0.856 0.769 - 12310 Gene LR 0.925 0.769 

H3N2 

mRMR 17 Gene KNN* 0.984 0.846 mRMR 31 Probe SVM 0.981 0.846 

Tree B. 13 Probe KNN 0.924 0.846 Lasso 4362 P.+GSEA KNN 0.968 0.846 

Lasso 1643 GSEA KNN 0.921 0.615 Fisher S. 15 GSEA GNB 0.955 0.769 

Lasso 1551 P.+GSEA XGB 0.886 0.769 Fisher S. 19 G.+GSEA GNB 0.933 0.769 

Tree B. 10 G.+GSEA XGB 0.883 0.846 - 12310 Gene LR 0.928 0.769 

HRV 

Lasso 5086 P.+GSEA RF* 0.940 0.692 Lasso 3466 GSEA XGB* 0.966 0.769 

ReliefF 38 GSEA LR 0.938 0.846 - 22277 Probe NuSVC 0.944 0.538 

ReliefF 22 Gene RF* 0.935 0.692 mRMR 30 Gene LR 0.923 0.846 

ReliefF 38 G.+GSEA LR 0.916 0.846 Lasso 3489 P.+GSEA SVM 0.923 0.692 

- 22277 Probe LGB 0.769 0.538 Lasso 3343 G.+GSEA NuSVC* 0.916 0.615 

 

Table 4.28 The results of the best-performing models according to feature representation 

type for each virus-merged subset at time points T.48 and T.72 on the symptom prediction 

task. An asterisk (*) indicates that the hyper-parameters were not optimized. NF column 

shows the number of used features after the feature selection methods. 

Exp. 
TimePoint 48 TimePoint 72 

FS NF Feature Clf. AUPRC ACC FS NF Feature Clf. AUPRC ACC 

H1N1 

Lasso 539 G.+GSEA RF 0.988 0.923 Fisher S. 6 G.+GSEA LR 1.000 1.000 

- 22277 Probe LR 0.955 0.769 Fisher S. 6 GSEA LR 1.000 1.000 

Lasso 731 GSEA RF* 0.944 0.769 Fisher S. 7 P.+GSEA LR 1.000 1.000 

- 12310 Gene NuSVC* 0.941 0.846 Tree B. 17 Gene NuSVC 0.941 0.923 

Lasso 666 P.+GSEA NuSVC* 0.930 0.923 Fisher S. 63 Probe KNN 0.921 0.846 

H3N2 

Lasso 4505 P.+GSEA XGB* 1.000 0.769 ReliefF 40 Gene XGB 1.000 0.923 

Lasso 1535 G.+GSEA XGB* 0.991 0.846 Lasso 4636 P.+GSEA XGB 1.000 0.923 

ReliefF 1399 Gene KNN* 0.948 0.769 mRMR 23 GSEA XGB 0.966 0.846 

Fisher S 13 GSEA LR 0.945 0.692 - 49144 G.+GSEA KNN 0.960 0.923 

- 22277 Probe KNN* 0.936 0.846 - 22277 Probe KNN 0.950 0.923 

HRV 

Lasso 3759 P.+GSEA NuSVC* 0.916 0.692 - 49144 G.+GSEA LR* 0.945 0.769 

mRMR 137 G.+GSEA KNN 0.915 0.692 ReliefF 33 Gene LR 0.945 0.769 

- 36834 GSEA NuSVC* 0.889 0.538 Lasso 2624 P.+GSEA NuSVC 0.945 0.692 

Lasso 41 Gene XGB* 0.885 0.615 Lasso 2676 GSEA SVM 0.938 0.846 

ReliefF 470 Probe LR 0.877 0.538 - 22277 Probe NuSVC* 0.938 0.538 
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Table 4.29 The results of the best-performing models according to feature representation 

type for each virus-merged subset at time points T.96 and T.120 on the symptom 

prediction task. An asterisk (*) indicates that the hyper-parameters were not optimized. 

NF column shows the number of used features after the feature selection methods. 

Exp. 
TimePoint 96 TimePoint 120 

FS NF Feature Clf. AUPRC ACC FS NF Feature Clf. AUPRC ACC 

H1N1 

mRMR 54 Gene KNN* 1.000 1.000 Lasso 627 P.+GSEA RF 0.965 0.846 

mRMR 28 G.+GSEA LR 1.000 0.923 Fisher S. 35 Probe KNN* 0.962 0.923 

Fisher S. 3 GSEA LR* 1.000 0.846 - 36834 GSEA LR* 0.955 0.846 

Fisher S. 3 P.+GSEA LR* 1.000 0.846 ReliefF 2 Gene XGB 0.951 0.846 

Lasso 21 Probe XGB* 1.000 0.538 - 49144 G.+GSEA KNN* 0.944 0.846 

H3N2 

mRMR 43 Gene XGB 1.000 0.923 mRMR 13 Probe XGB 1.000 0.923 

Lasso 4913 G.+GSEA XGB* 1.000 0.846 ReliefF 29 G.+GSEA XGB* 1.000 0.846 

ReliefF 146 P.+GSEA XGB 1.000 0.769 mRMR 23 Gene XGB 1.000 0.846 

- 36834 GSEA XGB* 0.981 0.923 ReliefF 29 GSEA XGB* 1.000 0.846 

- 22277 Probe NuSVC 0.981 0.769 ReliefF 29 P.+GSEA XGB* 1.000 0.846 

HRV 

ReliefF 5265 GSEA NuSVC 0.966 0.692 Lasso 83 Gene GNB 0.959 0.846 

ReliefF 9129 G.+GSEA LR* 0.945 0.846 Fisher S. 22 G.+GSEA SVM* 0.945 0.769 

ReliefF 4087 P.+GSEA LR 0.945 0.846 Lasso 2754 P.+GSEA SVM 0.945 0.692 

ReliefF 530 Gene SVM 0.923 0.846 - 22277 Probe KNN* 0.940 0.615 

- 22277 Probe NuSVC* 0.916 0.615 Tree B. 23 GSEA XGB 0.935 0.692 

We also identified frequently selected genes by virus type and used them as input 

for ORA. The most frequently selected genes in the H1N1 experiment were C1orf115 and 

DDX3X, in the H3N2 experiment were UPF3A and RUBCNL. These genes were not 

found or observed in previous analyses like infection prediction. On the other hand, the 

following genes became prominent in the HRV experiment; MPZL1, HLA-DQA1, HLA-

DQB1, and DEFA4. Moreover, no significant results were obtained for genes other than 

those selected for the HRV virus experiments. Significant genes from the HRV 

experiments were enriched in gene sets related to the immune system, which is consistent 

with our infection prediction results. 

4.2.3.3 Results for All-Merge-Based Models 

The final experiment group in the respiratory analysis is “ALL”, where all samples 

from the sub-experiments are merged into a single set. Our main dataset, GSE73072, 

consists of 7 datasets related to 4 respiratory viruses derived from different challenges. 

Therefore, performing machine learning and further analyses on this combination of 

datasets would provide comprehensive findings and associations regarding the 

generalization of respiratory virus prediction with machine learning. 
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Table 4.30 The results of the best-performing models according to feature representation 

type for each virus-merged subset at time points 

FS NF Feature Clf. AUPRC ACC FS NF Feature Clf. AUPRC ACC 

Infection Prediction Time Point 0 Symptom Develop Prediction Time Point 0 

ReliefF 311 Gene SVM* 0.897 0.659 mRMR 48 G.+GSEA KNN 0.820 0.705 

ReliefF 36 G.+GSEA RF* 0.884 0.727 mRMR 27 P.+GSEA LGB 0.802 0.636 

ReliefF 36 GSEA RF* 0.884 0.727 mRMR 277 GSEA LGB* 0.790 0.636 

ReliefF 36 P.+GSEA RF* 0.884 0.727 Lasso 215 Gene LGB* 0.752 0.545 

Tree B. 88 Probe XGB 0.877 0.659 Lasso 164 Probe LGB* 0.746 0.659 

Infection Prediction Time Point 24 Symptom Develop Prediction Time Point 24 

Tree B. 85 Probe RF* 0.897 0.727 mRMR 27 P.+GSEA SVM 0.809 0.682 

Lasso 7843 GSEA XGB 0.892 0.705 Lasso 7370 GSEA LR* 0.801 0.659 

ReliefF 4602 G.+GSEA LGB 0.882 0.682 Lasso 7006 G.+GSEA SVM 0.799 0.682 

Lasso 178 Gene KNN* 0.879 0.682 - 12310 Gene KNN* 0.798 0.591 

- 59111 P.+GSEA LR* 0.869 0.659 ReliefF 706 Probe SVM* 0.764 0.568 

Infection Prediction Time Point 48 Symptom Develop Prediction Time Point 48 

Lasso 7850 G.+GSEA RF* 0.858 0.705 - 36834 GSEA LR 0.825 0.705 

Lasso 7826 P.+GSEA RF* 0.852 0.705 - 59111 P.+GSEA LR* 0.820 0.750 

- 22277 Probe RF 0.840 0.705 ReliefF 402 Gene SVM* 0.816 0.659 

Lasso 98 Gene XGB* 0.840 0.614 ReliefF 2017 Probe SVM 0.813 0.682 

Lasso 6894 GSEA LR* 0.838 0.659 Tree B. 81 G.+GSEA SVM* 0.809 0.795 

Infection Prediction Time Point 72 Symptom Develop Prediction Time Point72 

Tree B. 82 G.+GSEA LR* 0.878 0.773 Tree B. 76 G.+GSEA SVM 0.935 0.750 

Fisher S. 121 Gene NuSVC 0.872 0.659 ReliefF 120 Gene LR* 0.908 0.727 

mRMR 155 GSEA XGB 0.868 0.682 Fisher S. 8 P.+GSEA LR 0.903 0.750 

- 59111 P.+GSEA LR* 0.864 0.750 Fisher S. 7 GSEA LR 0.902 0.750 

Tree B. 91 Probe RF 0.840 0.727 Fisher S. 26 Probe SVM 0.871 0.659 

Infection Prediction Time Point 96 Symptom Develop Prediction Time Point 96 

Lasso 166 Probe XGB 0.900 0.727 ReliefF 1076 P.+GSEA SVM 0.934 0.727 

ReliefF 16 G.+GSEA XGB 0.889 0.727 - 49144 G.+GSEA LR 0.934 0.705 

ReliefF 16 GSEA XGB 0.889 0.727 ReliefF 535 GSEA SVM* 0.932 0.727 

ReliefF 16 P.+GSEA XGB 0.889 0.727 - 12310 Gene NuSVC* 0.930 0.682 

mRMR 12 Gene LR 0.889 0.659 ReliefF 51 Probe GNB 0.924 0.841 

Infection Prediction Time Point 120 Symptom Develop Prediction Time Point 120 

Tree B. 67 P.+GSEA KNN 0.876 0.727 - 36834 GSEA XGB 0.950 0.773 

- 49144 G.+GSEA LR* 0.870 0.636 Lasso 6791 G.+GSEA LR* 0.942 0.727 

ReliefF 2425 GSEA RF 0.866 0.705 ReliefF 3922 Probe NuSVC* 0.939 0.682 

ReliefF 22 Probe RF 0.863 0.659 Lasso 6880 P.+GSEA LR* 0.938 0.727 

Lasso 181 Gene RF 0.852 0.705 - 12310 Gene NuSVC 0.933 0.705 

Table 4.30 shows the performance results obtained on the “ALL” experiment group.  

As expected, models couldn’t achieve better performance than virus-based and sub-

experiment-based analyses.  The reason we presume is that the merging of different virus-

related sub-datasets leads to more diverse and complex patterns and hence models have 

difficulty to capture patterns effectively. Because the sub-dataset could have different 
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distributions and combining them may cause statistical bias and challenges in 

generalization.  Nevertheless, almost all models obtained an adequate prediction result, 

nearly AUPRC value of 0.85. Although there is no significant increase in the prediction 

of infection over time, in predicting the development of symptom problem, models 

predictivity is increases with time after the exposure. Despite the fact that no specific 

representation approach that always obtain best results, GSEA-based approaches 

achieved the best AUPRC values in both prediction problems at time points T.48, T.72 

and T.120. In addition, the best models were usually obtained when feature selection was 

applied to the datasets., 

In particular, the ReliefF and Lasso methods exhibited better performance than 

others in infection prediction problems. The tree-based method, on the other hand, could 

not achieve good performance compared to the results of the virus-based and sub-

experiment-based methods. Since the data set used in the “All” experimental group 

combines 7 sub-datasets and the bootstrapping of the tree-based algorithms leads to the 

selection of a random subset from the data set, it is likely that the selected features are not 

significant with respect to the virus or the sub-experiment. Consequently, the tree-based 

feature selection may not be able to select discriminative features that correctly classify 

samples. 

 

Figure 4.20 Average prediction performance of each model combination according to 

different feature representation types for infection prediction problem. 

The best combination of classifiers, representation types, and feature selection 

according to the prediction problem was also determined by taking the average prediction 

of different time points. Figures 4.20 and 4.21 illustrate these results for infection 

prediction and symptomatic individual prediction, respectively. For example, the best of 

the gene representation-based combination, gene level expression values without feature 

selection + logistic regression classifier, could only achieve an AUPRC value of 0.807 as 

the worst result for infection prediction on average. On the contrary, the extending of 
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gene-level expression values with enrichment scores as features (G.+GSEA 

representation) achieved an AUPRC value of 0.849 when ReliefF and RF algorithms were 

utilized as feature selection and classifier, respectively. 

The best model was followed by the GSEA representation, which solely relied on 

enrichment scores and showed a near-prediction performance with an AUPRC of 0.842. 

Integrating probe-level expression values with enrichment scores also achieved better 

performance than only gene-level and probe-level representation types. These findings 

suggest that the use of GSEA scores with/without the combination of expression values 

is promising for further improvement of prediction accuracy. 

 

 

Figure 4.21 Average prediction performance of each model combination according to 

different feature representation types for symptom develop prediction problem. 

Similar achievements of the GSEA-based representation types were also achieved 

in the prediction of symptomatic subjects. Combined feature representation of probe-level 

expression and enrichment scores (P.+GSEA) achieved an AUPRC value of 0.849 as the 

best-performing model. Closer predictivity performance was obtained by combining 

gene-level expression values and enrichment scores. These results for both prediction 

problems reflect that the use of enrichment scores, which allow an extended feature size, 

leads to improved generalization of prediction performance. 

4.2.3.4 Comparison Results with Viral DREAM Challenge 

A further analysis of the thesis is the comparison of the proposed methods with the 

results of the Viral DREAM Challenge. DREAM is a community-driven organization 

focused on advancing biomedical and systems biology research through crowdsourcing 

competitions. Competitions usually aim to address on a specific biomedical research 

question, narrowed down to a specific disease. As the competitions are open to 
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researchers around the world, a wide range of ideas and solutions can be presented. This 

allows for the most effective solution to the problem being sought [228].  

 

Figure 4.22 Comparison of the best performing models of different experimental groups 

(Experimental, Virus-based and All-Merged) with the winning results of the Viral 

DREAM Challenge according to different T.0 and T.24 time points. 

The Respiratory Viral DREAM Challenge was one of these competitions which 

aimed to develop early predictors of respiratory susceptibility and infectivity based on 

pre-and post-exposure gene expression profiles [214]. Participants were expected to make 

predictions about viral shedding and the presence of symptoms before and 24 hours after 

exposure. According to the results of the leaderboard stage, the winner teams achieved an 

AUPRC of 0.9298 for predicting infection, while the prediction of symptomatic cases 

stuck around an AUPRC of 0.78. Furthermore, the heme metabolism pathway showed a 

strong relation with symptom development as a result of the enrichment analyses on the 

susceptible genes identified by participants. During the leaderboard stage of the 

challenge, probe-level expression of GSE73072 was used and testing samples were 

selected only from DEE4, DEE5, and HRV DUKE experiments. As explained detailly in 

the dataset section, we had also chosen the same testing subject from DEE4, DEE5 and 

HRV DUKE sub-experiment in our analysis.  

Figure 4.22 illustrates the comparison of the best-performing models of each 

experiment group with the winning results on the Viral Challenge.  In order to ensure a 



112 

 

fair comparison, we have recalculated the AUPRC scores keeping only the samples same 

as Viral Challenge testing samples, i.e. using only test samples derived from DEE4, 

DEE5, HRV DUKE.  

In the viral challenge, only the pre-infection (T.0) and early post-infection (T.24) 

time points predictions were considered. Therefore, we filtered results by keeping only 

these two prediction points. In addition, each time point (i.e. T.0 and T.24) / prediction 

task (i.e. infection prediction and symptom presence prediction) pair was evaluated 

separately in the challenge, in other words, there was no expectation that a proposed 

model would be best for all time points and problem predictions. Therefore, we figured 

out only the best-performing models for each different experiment group (experiment-

based, virus-based, all-sample merged). 

The model combination G.+GSEA representation type with XGB classifier and 

ReliefF feature selection, which also trained with the merged of all-sub-dataset, achieved 

an outstanding AUPRC value of 0.983 on the infection prediction for the pre-infection 

period (Timepoint T.0). Moreover, the number of used features on this model was only 

36. Considering that the winning model of the Viral Challenge used 22777 features (since 

it's probe-level expression values), it can be interpreted that our best model achieved a 

reasonably high score despite the small number of features. In the experiment-based 

analysis, where each sub-experiment dataset was trained and tested separately, the GSEA-

based representation using only enrichment scores as features also outperformed the 

winning model of the leaderboard stage of the Viral Challenge, achieving an AUPRC 

value of 0.956. 

Similar results are also observed for the early post-infection (T.24) prediction 

problem. While the best-performing model of the Viral challenge was stuck at an AUPRC 

of 0.93, our model consisting of GSEA features, XGB classifier, and Fisher score feature 

selection achieved an AUPRC of 0.975 when each sub-experiment was trained separately. 

This model was followed by the gene expression + GSEA-based representation, using a 

random forest classifier, with an AUPRC of 0.951. 

On the second prediction task, the prediction of the presence of symptoms, the 

winning models of the challenge obtained 0.781 and 0.751 AUPRC values for the 

prediction of pre-infection and early post-infection time points, respectively. When these 



113 

 

results were compared with the infection prediction performance, it was clear that there 

was still room for improvement in the symptom prediction problem. 

Our models, shown in Figure 4.21, significantly outperformed the results of the 

winning team in the leaderboard stage. Extended features of probe-level expression with 

enrichment scores (P.+GSEA) had achieved the highest score in symptom prediction with 

an AUPRC value of 0.9373 at T.0. In predicting the symptom development following the 

exposure, the gene expression + GSEA feature representation method achieved the 

highest predictivity of 0.9370 AUPRC value in the experiment-based group where each 

sub-experiment was independently trained.  Other best-performing models for experiment 

groups such as virus-based (merging samples from identical viruses) and ALL (merging 

all samples), demonstrated significant improvement exceeding 10% with an AUPRC 

value of no less than 0.87. 
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Chapter 5 

Conclusions and Future Prospects  

5.1 Conclusions 

This thesis has comprehensively investigated the predictive performance of 

machine learning methods on two disease types, genetic and infectious. These diseases 

are Behçet's disease and respiratory infections, respectively. For both disease types, data 

types containing individuals' genetic profiles (GWAS data and Gene Expression) were 

used as inputs, and disease presence predictions were compared using the most common 

machine learning methods. Furthermore, different approaches have been proposed by 

integrating the community or external information into disease prediction depending on 

the type of experiment. The general finding as a result of our experiments according to 

disease prediction are as follows: 

• Although only two different experiments were conducted during the thesis, the 

high prediction performance was achieved despite the different types of input 

data. It can be concluded that machine learning methods are capable of handling 

individual genetic data and predicting the presence of disease. 

• Although most of the genes selected as significant for disease prediction are 

compatible with in vivo or in vitro studies reported in the literature, some selected 

genes have never been reported to be associated with the related disease. This may 

be due to nature of machine learning and complex diseases. Complex diseases 

usually result from the contribution of multiple genomic variants and genes, due 

to fact that genes can interact with other genes, proteins, and pathways. Therefore, 

a minor value change in a gene which seemingly non-significant biologically may 

help to classify samples. This is because machine learning models learn by trying 

to classify input values optimally. In other words, they analyze relevant data (such 

as gene expression) statistically, rather than relying solely on domain knowledge 
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such as biological or genetic knowledge. Therefore, some genes that might not be 

considered significant based on in vivo analyses could play a crucial role in 

improving prediction accuracy. 

• It can be noted that the use of external knowledge in the prediction phase has a 

positive effect in both experiments. In most machine learning based disease 

prediction studies, only clinical or omics data such as genomic, proteomic, and 

metabolomic data are used as input to represent the samples. Recently, an 

integrative approach combining multi-omics data of the samples has been 

proposed. However, there are many more domain-based biological studies related 

to infection and disease progression, including gene sets, pathways, and 

demographic and environmental factors. Our experiments have shown that this 

external information can be beneficial for predictive performance if somehow 

integrated into the model. 

In the thesis, it would be more beneficial to interpret the findings separately for each 

disease since the experiments involve two different diseases with different types of data. 

If we examine the results of the first phase of Behçet's disease experiment (when all the 

features are used), the first notable result is the low predictive performance, which 

remains at around 60% when all the SNPs are used. Even when feature selection methods 

were applied to the entire SNP set, a slight improvement was obtained. On the other hand, 

the DKSS method, which selects SNPs using active subnetworks in the literature, 

achieved 96% accuracy using nearly 8076 SNPs, outperforming the closest feature 

method by 30% more accuracy. This result can be seen as evidence that a specific subset 

of features, rather than all features, is more useful in the prediction of genetic diseases 

with machine learning methods. Moreover, the higher results obtained after applying the 

P-value criteria (in the second phase) also confirm that all features should be filtered by 

a correct technique. 

In the second phase, where 18479 features were used after filtering by P-value, 

almost perfect classification performance was achieved with more than 99+ accuracy rate. 

Furthermore, even if fewer number of these features were used after the feature selection 

methods performed, the prediction performance still remained at around 97% accuracy. 

These results indicate that the P-value criterion in GWAS data filters out the SNPs that 

are most relevant for disease prediction. However, relying only on the P-value criteria 
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may not be sufficient when identifying the most effective SNPs in terms of disease 

prediction. To address this issue, the common SNPs selected by the best-performing 

feature selection methods were identified and ranked. Even though the top-7 SNPs in the 

ranked list are SNPs with the lowest P-value, the list contains SNPs with high P-value 

values such as rs522686, rs703191, and rs1208571. This result can be presented as 

evidence that the combination of multiple genetic factors is significant in the disease 

prediction problem, especially in multifactorial genetic diseases.  SNPs were then mapped 

to genes, and it was observed that the top selected gene is HLA-B (rs1058026). It was 

expected because this gene was marked as a highly associated gene with Behçet's Disease. 

It also showed that the usage of domain knowledge from literature could significantly 

contribute to disease prediction. Additionally, other highly selected genes include HCP5 

(rs1131896, rs2848713), KIRREL3 (rs522686), LAMP5-AS1 (rs16995979), MICA 

(rs2256028), and SCD5 (rs6535384). However, some further in vivo and in vitro 

experiments should be carried out to state these genes are also significant for Behçet's 

disease. 

In our second experiment, infectious disease prediction, we have conducted more 

comprehensive and detailed analyses compared to those in Behçet’s disease. This is 

because the dataset we used provides considerably broader opportunities in terms of 

prediction. The GSE73072 dataset is a combination of seven distinct sub-experiments 

related to four respiratory viruses, as well as keeps information on infection and 

symptomatic status of individuals. In addition, gene expression values from samples were 

collected a day before inoculation (i.e., T.-24 or T.-30 hours), immediately before 

inoculation (T.0), and at predetermined intervals. Therefore, we could carry out multiple 

analyses such as symptom prediction, pre- and post-exposure prediction, merging the 

same virus samples, etc. To analyze this dataset comprehensively, we handled the dataset 

in 3 experimental groups, each of them analyzed individually: 

1. Experiment-Based Analysis: Each sub-dataset analyzed separately. 

2. Virus-Based Analysis: Samples related in same virus are merged to examine virus 

related findings 

3. Combined Analysis (“ALL”): All samples are merged as a single dataset. 
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Within each of these experimental groups, several machine learning, feature 

selection and feature representation methods were compared, yielding more than 60,000 

lines of results. These results can be summarized as follows: 

- Firstly, the infection and symptomatic status of individuals was predicted with 

acceptable accuracy, achieving an average AUPRC of approximately 0.9. This 

result was achieved in almost all experimental groups as well as in the time point 

predictions.  In particular, the prediction performance at T.0 showed that machine 

learning methods can predict whether individuals will become infected and 

develop symptoms after exposure to the virus. 

- Although 7 sub-datasets were collected at different times and for different 

experiments, classification performance were closed to each other when they are 

merged or analyzed separately. For instance, the DEE2 H3N2 and DEE5 H3N2 

sub-experiments yielded AUPRC values of 1 and 0.943, respectively, for infection 

predictions at time point T.0.  On the other hand, the performance remained at an 

AUPRC of 0.984, which can be considered acceptable. Consequently, the merging 

of samples from different datasets to be predicted can be considered an applicable 

approach in terms of generalizability, if they are related to the same disease. 

Similar results were obtained for the symptom development prediction problem. 

- In some experiments, remarkably high prediction performance has been achieved 

using only one or a few features. For instance, in the DEE2 sub-experiment, a 

Tree-Based approach with a selection of 5 ssGSEA features yielded an AUPRC 

value of 1 for infection prediction at time point T.0. This notable performance 

would potentially be seen associated with the scarcity of training and test data in 

the experiment-based group. Nevertheless, a combination of the fisher score and 

ssGSEA representation model achieved an AUPRC value of 0.902 at time point 

T.72 prediction on the "ALL" dataset, which has more samples as all samples are 

merged. Therefore, it can be concluded that a small number of genetic information 

can be adequate rather than use all features to make predictions about respiratory 

infection problems. 

- During the analyses, the effect of feature representation types on respiratory 

infection prediction was also addressed. Microarray technology actually reflects 
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the intensity level of probes derived from blood-like samples. Probes are the short 

sequences of single-stranded DNA. If gene-level expression values are needed, 

these probes should be mapped into genes to determine which gene expressed 

more. Consequently, in our analysis, we have compared the usage of both probe-

level and gene-level expression values as input for machine learning models. 

Additionally, we have proposed the ssGSEA-based representation approach to the 

respiratory prediction problem. The ssGSEA-based representation essentially uses 

enrichment scores as features that express how representative the predefined gene 

sets or pathways are of the expression values of the samples. From the results we 

have obtained, it has been observed that there is not a single method that 

consistently outperforms the others. Best-performing representation type varied 

depending on the experiment group, type of sub-experiments as well as predicted 

time points. For instance, in the symptom prediction problem of the “ALL” 

experiment group, the ssGSEA-based representation approaches achieved the 

highest performance in all 6 time point predictions. However, the same 

representation types could only obtain the best results in 1 out of 6 time point 

predictions in H3N2-virus-related experiments. Nevertheless, it can be concluded 

that representing the samples with enrichment scores derived from gene 

expression values is acceptable approach. 

- When evaluating the feature selection methods, Tree-Based, Lasso, ReliefF, and 

mRMR were found to be the most effective methods. A common ground of these 

four methods is that they all consider the interdependencies of features during the 

selection process. Hence, these methods evaluate features as a group rather than 

individually. This finding is supported by biological evidence, which suggests that 

diseases are often influenced by multiple genetic factors, as previously stated. 

Another notable finding related to feature selection is that best-performing results 

are often obtained when the feature selection method is applied. Therefore, it can 

be concluded that feature selection techniques can significantly improve the 

accuracy of predicting infectious diseases, particularly respiratory diseases. 

- The CFD was selected as most significant gene almost all different time point 

prediction in the H3N2-related experiment. HBB, on the other hand, was mostly 

selected gene for the H1N1 experiment. Despite the lack of study indicating the 

association of these genes to respiratory viruses, the results of machine learning 
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demonstrate a clear impact of their expression on the accurate prediction of an 

individual's infection. To conclusively prove the impact of these genes on disease 

progression or infection, further genetic or biological studies and experiments 

should be carried out. 

- Another significant finding resulting from the experiments is the strong 

association between the prediction of respiratory infection and the Immune 

System. Upon further analysis of the common genes selected in the best-

performing models across all three experimental groups using Over 

Representation Analysis (ORA), it has become evident that these genes are closely 

associated with the “Immune System” or “Immune Response”. 

- The primary objective of the respiratory infection prediction experiments was to 

outperform the best results of the Viral DREAM Challenge, considered to be one 

of the most comprehensive challenges in the field of respiratory infection 

prediction, by using different approaches. Our proposed methods were compared 

with the results of the winner of the challenge (see Section 4.2.2.2), showing that 

GSEA-based representation approaches outperformed them in all prediction 

problems and time points. In particular, the models we introduced for predicting 

symptom development achieved nearly 20% better results. This suggests that the 

GSEA-based feature representation approach can be valuable in prediction 

problems that utilize gene expression as input data. 

5.2 Societal Impact and Contribution to Global 

Sustainability 

Today, accurate and early diagnosis is one of the most important factors in 

preventing the spread of diseases and the progression of health problems. Rapid and 

accurate diagnosis can reduce healthcare costs and potential health problems for 

individuals, especially children. However, diagnosis of any disease is challenging with 

traditional approaches due to the complex mechanisms of the disease, the similarity of 

symptoms, and the difficulty in identifying the underlying factors leading to the disease. 

Therefore, healthcare systems need to evolve such an approach to provide robust, faster, 
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and more accurate solutions. Moreover, the challenges of the coronavirus pandemic 

(COVID-19) also brought to light the urgent need for a transformation of our healthcare 

services to make health systems a more resilient and sustainable [229]. 

This topic, sustainability in healthcare, is also partially included in the 17 

Sustainable Development Goals (SDGs) introduced by the United Nations Development 

Programme (UNDP) in 2015 [230]. These 17 goals serve as a shared blueprint for 

achieving peace, prosperity, and sustainability for both people and the planet. One of 

these goals, Goal 3 in the list, is related to improving health outcomes and access to 

quality health care. This goal also includes a sub-target directly related to communicable, 

i.e. infectious diseases.  

This thesis contains a comprehensive and comparative analysis of the prediction of 

two different diseases, one genetic and the other infectious. Besides machine learning 

methods in prediction, feature selection and feature representation approaches included 

in the experiments in detail. Therefore, all experiments constituting the thesis output are 

related to personalized medicine. Hence, by showing how machine learning approaches 

behave in two different types of disease and how accurate in prediction they are, this study 

contributes to the sustainability of personalized medicine as well as healthcare systems. 

In addition, some of the genes that are expected to be associated with the disease 

according to in silico analysis are revealed for the diseases handled. Hence, this study is 

a contribution to the sustainability of healthcare systems through machine learning 

prediction for both Behçet's disease and respiratory infection. Furthermore, in the 

respiratory infection problem, we also find the significant genes that might be important 

for post-exposure infection. From this point of view, our study highlights the prospects 

of how models based on artificial intelligence, which has gained an important place in the 

development of technology, will play a role in current and future medical technology, 

healthcare systems, and the diagnosis of diseases. 

5.3 Future Prospects 

During the study of this thesis, 2 papers on disease prediction were published in 

high quartile journals. In addition, a paper that included an enrichment score-based 

representation for the problem of infection prediction was submitted to another journal. 
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Nevertheless, there are still many opportunities in the disease prediction problem of both 

infectious and genetic disease. Because the paradigm of the health-science has been 

shifting technological-solutions with the power of the artificial intelligence. 

One of them is to develop a feature selection & extraction tool that incorporates 

both GSEA and ssGSEA approaches. As explained in previous sections, the standard 

GSEA approach can be performed over the whole dataset, not for the sample level. 

Therefore, the ssGSEA method was used to extract information to be used in sample-level 

prediction for our experiments. However, determining which gene sets or pathways to use 

as input for the ssGSEA process can be done more reliably and statistically, rather than 

randomly. For example, enriched gene sets can be identified using standard GSEA and 

only training samples, and then ssGSEA can be performed using only these sets. 

Prediction accuracy could also be improved by optimizing the parameters of GSEA or 

ssGSEA if a such tool is developed. Our next study after the thesis could be the 

development of this tool. 

Another possible topic for prospects in disease prediction can be integrative feature 

representation using various types of data, including biological, community knowledge, 

patient symptom description, etc. with advanced techniques. As is well known, the 

revolution of Large Language Models (LLMs) has had a profound impact on science and 

technology. Although LLMs are originally a subset of Natural Language Processing 

(NLP), which provides the ability to generate human-like text and answer complex 

questions, they have demonstrated remarkable benefits in various fields such as industry, 

education, and the arts. These models can contribute to disease prediction problems by 

analyzing medical records, disease explanations, and symptom descriptions declared by 

patients. 
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