
 

A
b
d
u

rrah
m

an
 K

Ü
Ç

K
K

O
Ç

 

 

 

ANALYSING NETWORK TRAFFIC AND 

DETECTING NETWORK THREATS BY 

USING THE ALGORITHMS OF MACHINE 

LEARNING 

 

 

M.Sc. 

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND  

COMPUTER ENGINEERING THE GRADUATE SCHOOL OF 

ENGINEERING AND SCIENCE OF ABDULLAH GUL UNIVERSITY 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF 

ELECTRICAL AND  

COMPUTER ENGINEERING  

 

 

 

By 

Abdurrahman Küçükkoç 

April 2024 

 

M
.S

c. T
h

esis   
A

G
U

 2
0
2
4
 

 



 
 

 

 

 

 

 

ANALYSING NETWORK TRAFFIC AND DETECTING 

NETWORK THREATS BY USING THE ALGORITHMS 

OF MACHINE LEARNING 

 

 

A THESIS 

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND COMPUTER 

ENGINEERING 

AND THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE OF 

ABDULLAH GUL UNIVERSITY 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF 

ELECTRICAL AND COMPUTER ENGINEERING 

 

 

 

 

By 

Abdurrahman Küçükkoç 

April 2024 



 

 

 

 

SCIENTIFIC ETHICS COMPLIANCE 

 

 

I hereby declare that all information in this document has been obtained in accordance 

with academic rules and ethical conduct. I also declare that, as required by these rules 

and conduct, I have fully cited and referenced all materials and results that are not 

original to this work.  

 

 

Name-Surname: Abdurrahman Küçükkoç 

Signature : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

REGULATORY COMPLIANCE 

 

 

M.Sc. thesis titled “Analysing network traffic and detecting network threats by using 

the algorithms of machine learning” has been prepared in accordance with the Thesis 

Writing Guidelines of the Abdullah Gül University, Graduate School of Engineering & 

Science. 

 

 

 

 

 

 

                                                                                                                   

 

Prepared By Advisor 

Abdurrahman Küçükkoç Associate Professor Zafer Aydın 

  

              

 

 

 

 

 

 

Head of the Electrical and Computer Engineering  Program 

Assist. Prof. Samet GÜLER  

 

 

 



 

 

ACCEPTANCE AND APPROVAL 

 

 

M.Sc. thesis titled “Analysing network traffic and detecting network threats by using 

the algorithms of machine learning” and prepared by Abdurrahman Kçükkoç has been 

accepted by the jury in the Electrical and Computer Engineering Graduate Program at 

Abdullah Gül University, Graduate School of Engineering &  Science. 

 

……….. /……….. / ……….. 

                                                                                               (Thesis Defense Exam Date) 

 

 

JURY: 

                                                                  

Advisor :  Assoc. Prof. Zafer AYDIN………………………………................................ 

 

Member  : Assist. Prof. Abdulkadir KÖSE….………………………………................... 

 

Member  : Assist. Prof. Yasin GÖRMEZ…...………………………………. ................. 

 

 

 

APPROVAL: 

 

The acceptance of this M.Sc. thesis has been approved by the decision of the Abdullah 

Gül University, Graduate School of Engineering &  Science, Executive Board dated ….. 

/….. / ………..  and numbered .…………..……. . 

……….. /……….. / ……….. 

(Date) 

Graduate School Dean  

Prof. İrfan ALAN  



 

 

ABSTRACT 

ANALYSING NETWORK TRAFFIC AND DETECTING 

NETWORK THREATS BY USING THE ALGORITHMS OF 

MACHINE LEARNING  
 

Abdurrahman Küçükkoç 

MSc. in Electrical and Computer Engineering 

Advisor: Associate Professor Zafer Aydın  

 

April 2024 

 

 

As information technologies progress, the possibilities of access to information increase 

and therefore it becomes difficult to ensure the security of information. Today, with the 

use of information systems in all areas of life, network threats have also increased. The 

increase in individual access to and use of the internet has also brought network threats. 

In addition, the latest developments in information technologies, developing global 

communication networks, the internet of things aiming to connect all objects with 

networks, cloud technologies, the spread of mobile internet and the renewal of devices 

have brought network threats and uncertainties.  Network threats increase the security 

vulnerabilities in the information and communication systems of individuals and 

organisations day by day. This situation causes systems to malfunction, economic 

damage and cyber security to be jeopardised. In order to contribute to individuals, 

institutions and organisations, our thesis aims to protect information systems against 

network threats, to ensure data confidentiality, integrity and accessibility, to detect 

network threats in advance and to take measures against these threats. We believe that 

by analysing heterogeneous network traffic, which includes most network attacks on the 

Internet, and using machine learning algorithms, we will reach a result close to reality in 

the detection of network threats. In line with this result, we will be able to take 

precautions against network threats in information systems and structures. 

Keywords: Network threats, Machine Learning, Security vulnerabilities 

 

 

 

 

 

 

 

 



 

ÖZET 

 MAKİNE ÖĞRENİMİ ALGORİTMALARINI KULLANARAK 

AĞ TRAFİĞİNİ ANALİZ ETME VE AĞ TEHDİTLERİNİ 

TESPİT ETME  

 

Abdurrahman Küçükkoç 

 Elektrik ve Bilgisayar Mühendisliği Anabilim Dalı Yüksek Lisans 

Tez Danışmanı:  Doç. Dr. Zafer Aydın 

Nisan - 2024 

 

Bilgi teknolojileri ilerledikçe bilgiye erişim imkânları artmakta ve dolayısıyla da 

bilginin güvenliğinin sağlanması zorlaşmaktadır. Günümüzde bilişim sistemlerinin 

hayatın her alanında kullanılmaya başlanması ile birlikte ağ tehditleri de artmıştır. 

Bireysel olarak internete erişimin ve internet kullanımının artması ağ tehditlerini de 

beraberinde getirmiştir. Ayrıca bilişim teknolojilerindeki son gelişmeler, gelişen global 

iletişim ağları,  tüm nesnelerin ağlarla birbirine bağlanmasını hedefleyen nesnelerin 

interneti, bulut teknolojileri, mobil internetin yaygınlaşması ve cihazların yenilenmesi 

ile birlikte ağ tehditleri ve belirsizlikleri de beraberinde getirmiştir.  Ağ tehditleri 

bireyleri, kurumların bilgi ve iletişim sistemlerinde güvenlik zafiyetlerini her geçen gün 

arttırmaktadır. Bu durum sistemlerin çalışmamasına, ekonomik zarara ve siber 

güvenliğin tehlikeye girmesine neden olmaktadır. Birey, kurum ve kuruluşlara katkı 

sağlaması adına tez çalışmamız ağ tehditlerine karşı bilgi sistemlerini korumayı, veri 

gizliliğini, bütünlüğünü ve erişilebilirliğini güvence altına almayı, ağ tehditlerini 

önceden tespit etmeyi ve bu tehditlere karşı önlem almayı hedeflemektedir. İnternet 

üzerindeki çoğu ağ saldırılarını içeren heterojen ağ trafiğini analiz ederek ve makine 

öğrenmesi algoritmalarını kullanarak ağ tehditlerinin tespitinde gerçeğe yakın bir 

sonuca ulaşacağımıza inanıyoruz. Bu sonuç doğrultusunda bilişim sistem ve yapılarında 

ağ tehditlerine karşı önlemler almayı sağlayacağını düşünmekteyiz. 

 

 

Anahtar kelimeler: Ağ saldırıları, Makine öğrenme, Güvenlik açıklıkları 

 

 

 



 

 

Acknowledgements 

I'd like to start by thanking my thesis advisor, Assoc. Prof. Dr. Zafer AYDIN, for taking 

my wishes into consideration and helping me choose the thesis topic. I'd also like to 

thank all the academic and administrative staff at Abdullah Gül University for 

contributing to my master's degree education. I'd like to thank my wonderful thesis 

defence jury members, Dr. Yasin GÖRMEZ and Dr. Abdulkadir KÖSE, for their 

invaluable help and guidance during the evaluation of my thesis study. I'd also like to 

thank my loving family for their unwavering support and encouragement throughout my 

entire education journey.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

TABLE OF CONTENTS 

1. INTRODUCTION ........................................................................................................................ 1 

2. GENERAL INFORMATION .................................................................................................. 2 

2.1 NETWORK ATTACKS ................................................................................................. 2 

2.1.1 Aims of the Attackers ............................................................................................... 2 

2.2 ATTACK TYPES .............................................................................................................. 3 

2.2.1 Deniel of Service Attack .......................................................................................... 3 

2.2.2 Distributed Deniel of Service Attack  ...................................................................... 3 

2.2.3 Botnet Attacks .......................................................................................................... 4 

2.2.4 Brute Force Attacks ................................................................................................. 6 

2.2.5 Port Scanning Attacks ............................................................................................. 7 

2.2.6 Web Application Attacks ......................................................................................... 8 

2.2.6.1 Authentication-Based Attacks .................................................................... 8 

2.2.6.1.1 Brute Force Attack ............................................................................... 8 

2.2.6.1.2 Insufficient Authentication .................................................................... 8 

2.2.6.1.3 Weaknesses in Password Recovery ...................................................... 8 

2.2.6.2 Authorization Based Attacks ...................................................................... 9 

2.2.6.2.1 Session Predication/Session Hijacking ................................................ 9 

2.2.6.2.2 Insufficient Authorisation ..................................................................... 9 

2.2.6.2.3 Insufficient Session Expiry ................................................................... 9 

2.2.6.2.4 Session Fixation.................................................................................... 9 

2.2.6.3 Client-side Attacks ..................................................................................... 9 

2.2.6.3.1 Content Spoofing .................................................................................. 9 

2.2.6.3.2 Cross-Site Scripting .............................................................................. 9 

2.2.6.4 Command Execution Attacks ................................................................... 10 

2.2.6.4.1 Buffer Overflow .................................................................................. 10 

2.2.6.4.2 Format String Attack .......................................................................... 10 

2.2.6.4.3 Light Weight Directory Access Protocol (LDAP) Injection ............... 10 

2.2.6.4.4 Operating System (OS) Commanding................................................. 10 

2.2.6.4.5 SQL Injection ...................................................................................... 10 

2.2.6.4.6 Server-Side Include (SSI) Injection .................................................... 10 

2.2.6.4.7 X-Path Injection.................................................................................. 10 

2.2.6.5 Information Disclosure ............................................................................ 11 

2.2.6.5.1 Directory Indexing.............................................................................. 11 

2.2.6.5.2 Information Leakage .......................................................................... 11 

2.2.6.5.3 Path Traversal .................................................................................... 11 

2.2.6.5.4 Predictable Resource Location .......................................................... 11 

2.2.6.6 Logical Attacks ......................................................................................... 11 

2.2.6.6.1 Abuse of Functionality ........................................................................ 11 

2.2.6.6.2 Denial of Service ................................................................................ 11 

2.2.6.6.3 Insufficient Anti-Automation .............................................................. 12 

3. MATERIALS AND METODS ............................................................................... 13 

3.1 MACHINE LEARNING ........................................................................................................ 13 

3.1.1 Supervised Machine Learning ............................................................................... 13 

3.1.2 Classification ......................................................................................................... 14 

3.1.2.1 K-NN (K-Nearest Neighbours) ................................................................. 14 

3.1.2.2 SVM (Support Vector Machine) ............................................................... 14 



 

3.1.2.3 Random Forests ....................................................................................... 15 

3.1.2.4 XGBoost Classifier ................................................................................... 15 

3.1.2.5 LightGBM (Light Gradient Boosting Machine) ....................................... 16 

3.1.3 Hyperparameter Optimisation .............................................................................. 17 

3.1.3.1 GridSearchCV .......................................................................................... 17 

3.1.3.2 RandomisedSearchCV .............................................................................. 17 

3.1.3.3 BayesSearchCV ........................................................................................ 17 

3.2 PYTHON PROGRAMMING LANGUAGE ............................................................................... 18 

3.2.1 Anaconda ............................................................................................................... 19 

3.2.2 Anaconda Navigator and IDEs ............................................................................. 19 

3.2.3 Jupyter Notebook: The Classic Notebook Interface .............................................. 20 

3.3 VHS-22 DATASET ............................................................................................................ 20 

4. RESULTS ...................................................................................................................................... 23 

4.1 SAMPLE DATASET .................................................................................................................... 23 

4.2 RANDOM FORESTS CLASSIFIER ........................................................................................... 234 

4.3 XGBOOST CLASSIFIER ............................................................................................................ 26 

4.4 K-NN CLASSIFIER .................................................................................................................... 26 

4.5 SVM ............................................................................................................................................ 26 

4.6 LIGHTGBM CLASSIFIER ......................................................................................................... 26 

5. CONCLUSIONS AND FUTURE PROSPECTS............................................................ 27 

5.1 CONCLUSIONS .................................................................................................................. 27 

5.2 SOCIETAL IMPACT AND CONTRIBUTION TO GLOBAL SUSTAINABILITY ........................... 27 

5.3 FUTURE PROSPECTS ......................................................................................................... 28 

 

 

 

 

 

 

 

 

 



 

LIST OF FIGURES 

Figure 4.1 Distribution of dataset  .................................................................................. 22 

Figure 4.2 Feature importances associated with Attach Label feature ........................... 24 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

LIST OF TABLES 

Table 3.1 The VHS-22 provides access to extracted stream parameters, including 

descriptions of flow level and network level properties.  ....................................... 19 

Table 4.2 The scores obtained by applying the Random Forest model are presented 

below ....................................................................................................................... 26 

Table 4.3 The scores obtained by applying the XGBoost Classifier model are presented 

below  ...................................................................................................................... 26 

Table 4.4 The scores obtained by applying the K-NN Classifier model are presented 

below  ...................................................................................................................... 27 

Table 4.5 The scores obtained by applying the SVM model are presented below  ........ 27 

Table 4.6 The scores obtained by applying the LightG Classifier model are presented 

below  ...................................................................................................................... 28 

Table 4.7 The scores obtained by applying the XGBoost Classifier model are presented 

below  ...................................................................................................................... 28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

LIST OF ABBREVIATIONS 

BHOs Browser Helper Objects 

CTR Click-Through Rate 

ISS Internet Security Systems 

DDoS Distributed Denial-of-Service 

XSS Cross-Site Scripting 

OS Operating System 

SSI Server-Side Include 

SVM Support Vector Machine 

XGBoost eXtreme Gradient Boosting 

GBM Gradient Boosting Machine 

IDEs Integrated Development Environments 

LightGBM 

IDEs 

 Light Gradient Boosting Machine 

Integrated Development Environments 

 

 

 

 

 

 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To My Family 

  



1 

 

Chapter 1 

Introduction 

The purpose of this investigation is to analyse network traffic utilising machine 

learning algorithms for the detection of potential network threats. Network attacks may 

have various adverse effects including the theft of information, system shutdown, data 

alterations, service disruption, and intrusion upon user privacy. In modern-day society, a 

significant amount of confidential and sensitive data is stored on the internet and can be 

accessed through various networks. Therefore, businesses and organisations must 

prioritize robust network security measures to protect their data and limit access to only 

authorized personnel and partners. Developing network defence systems to mitigate and 

neutralise security risks encountered in information system network traffic will ensure 

the security of critical data types. This helps to prevent national security threats and 

public disorder. The implementation of these systems is a vital contribution to overall 

network security.  We analysed the current network traffic and employed well-known 

algorithms including Light Gradient Boosting Machine, Support Vector Machine, K-

Nearest Neighbours,  XGBoost and Random Forests to determine the most appropriate 

model. The study comprises of four sections. The first section elucidates network 

attacks and their significance, while providing an overview of network attack types and 

relevant information. The second section elucidates machine learning algorithms and 

hyperparameter optimisation, with an emphasis on employing Python Programming 

Language as the application environment for the algorithms. The third section details 

the network dataset used and the models applied. Finally, the fourth section measures 

and analyses the diagnosis of machine learning algorithms used to analyse network 

traffic and detect network threats with the collected data, and evaluates the results.  



2 

 

Chapter 2 

General Information 

2.1 Network Attacks 

A digital network attack may be executed to deactivate one or more client 

computers, servers, or network equipment on the local system.  Such actions may be 

performed with the intention of gaining unauthorized access to target devices and 

disrupting or disabling the applications running on them. In most cases, these attacks are 

carried out by malicious individuals or cybercriminals. By exploiting vulnerabilities in 

local network security, attackers can accomplish their objectives with the assistance of 

viruses, malware and spyware. Such attacks that disable network devices can cause 

significant material and ethical damage to corporate businesses, including theft of 

sensitive information[1]. 

2.1.1 Aims of the attackers 

The objective of computer network attacks acquired in accordance with research 

conducted by the International Cisco Network Academy is outlined below (Cisco 

Network Academy, 2023): 

Information Theft:  The act of unlawfully acquiring data from a storage area can 

be accomplished by gaining entry to a local network or a client user with the assistance 

of practices such as malware, phishing (Gupta et al., 2016) or brute force (Tams et al., 

2015). 

Identity Theft:  Identity theft involves attackers seizing personal information, 

including personal identity information, credit card details and online transaction 

passwords. Attackers can cause material and moral damage to individuals or institutions 

through the capture of this important data. 



3 

 

Service interruption : Service interruption refers to the disabling of client 

computers connected to local networks from receiving services from network systems, 

servers, or related web pages, resulting in system malfunctions. Online services 

provided by governments and banking transactions have become a serious threat to 

corporate companies. This threat manifests in forms such as Denial of Service Attacks 

(DoS) (Sharafaldin et al., 2018) or Distributed Denial of Service Attacks (DDoS) 

(Akgun et al., 2022). 

2.2 Attack Types 

2.2.1 Denial of Service Attack  

A denial of service attack (DOS) refers to any type of attack carried out on a 

network structure with the aim of incapacitating a server's ability to serve its clients. 

Precise identification of the source of the attack is difficult due to the use of a spoofed 

IP address. Attacks range from sending millions of requests to a server in an attempt to 

slow it down, flooding a server with large packets of invalid data, to sending requests 

with an invalid or spoofed IP address[2]. 

2.2.2 Distributed Deniel of Service Attack 

A denial of service attack is identified by an attacker's attempt to prevent 

authorized users of a service from accessing the required resources. Several examples of 

denial of service attacks are available[4]: 

 Attempts to flood a network in order to prevent legitimate network traffic. 

 Attempts to disrupt the connections between two machines in order to 

prevent access to a service. 

 Attempts to prevent a particular person from accessing a service. 

 Attempts to disrupt service to a specific system or person. 

The distributed format adds a dimension of "many to one", which renders these 

attacks more challenging to prevent [5]. A distributed denial of service (DDoS) attack 

comprises four components. The first element is the victim, which refers to the targeted 

host that endures the attack. The second element concerns the presence of the attack 

daemon agents, which are software programs responsible for executing the attack on the 

victim host. Typically, these daemons are deployed in host computers and adversely 



4 

 

impact both the target victim and the host machine. Technical abbreviations are clarified 

upon first use. Typically, these daemons are deployed in host computers and adversely 

impact both the target victim and the host machine. Deploying attack daemons requires 

the attacker to infiltrate host computers. The third component of a distributed denial of 

service attack is the control master program, which coordinates the attack. The 

mastermind behind the attack is the actual attacker, who can remain anonymous while 

using the control master program to orchestrate the attack. [3] 

The process of a distributed attack involves the following steps [6]: 

1. The attacker sends an "execute" message to the control master program. 

2. The control master program receives the "execute" message and disseminates 

the command to the attack daemons under its jurisdiction.  

3. Upon receiving the attack command, the attack daemons initiate the attack on 

the victim. 

While it may appear as though the actual attacker has little involvement beyond 

issuing the "execute" command, in reality, they must meticulously plan the 

implementation of a successful distributed denial of service attack. The attacker is 

required to infiltrate all of the host computers and networks in which the daemon 

attackers will be deployed, as well as analyse the target's network topology to identify 

any bottlenecks or vulnerabilities that can be exploited during the attack. Due to the 

implementation of attack daemons and control master programs, the actual attacker is 

not directly implicated in the attack, resulting in increased difficulty identifying the 

perpetrator[3]. 

2.2.3 Botnet Attacks 

Botnets can be used for legitimate as well as illegitimate reasons [7]. One 

legitimate use is to help run IRC channels by giving certain people administrative 

privileges. However, this purpose does not explain the large number of bots observed. 

According to data gathered from Honeypots [8], we can categorize the potential uses of 

botnets for criminal or destructive purposes as follows. [15] 

DDoS Threats: Botnets are frequently used for DDoS threats [8]. These threats 

disable the network functions of the target system through the consumption of the 

bandwidth of the affected system. For example, an attacker could instruct the botnet to 

connect to a victim's IRC channel. The target could be flooded with an overwhelming 

number of server queries from the botnet. The victim's IRC network is disabled as a 



5 

 

result of this DDoS attack. Evidence shows that threats of UDP and TCP SYN flooding 

[9] are the most frequently employed by botnets. 

General countermeasures against DDoS attacks;  

1. Management of large numbers of devices at risk. 

2. Disable the remote control system [9].  

However, there is still a need for more efficient methods to prevent this type of 

attack. [15] 

Spamming and Spreading Malware: Botnets are responsible for approximately 

70% to 90% of the world's spam, causing concern among professionals in the internet 

protection sector [10, 11]. The study report suggests that compromised hosts may be 

used for malicious purposes, such as spamming, once the SOCKS v4/v5 proxy (TCP/IP 

RFC 1928) is opened by certain bots. Additionally, certain bots have the ability to 

collect email addresses through specific functions [8]. A botnet can be utilized by 

attackers to send large amounts of spam due to its ability to send spam in huge 

quantities. [12, 15]. 

In [13], Trinity, a distributed spam classification system, was proposed by 

researchers. It is content-independent and designed to combat botnet spamming. The 

system is based on the assumption that spam bots do a large number of emails in a short 

period of time. This means that all emails from this source are considered spam. It is 

unclear how effective Trinity is since it is still being experimented on. [15] 

To uncover the collective behaviours of spamming botnets and promote their 

identification in the future, Xie et al. [14] formulated a spam signature generation 

framework named AutoRE. The study discovered several identifying features of 

spamming botnets. Firstly, spammers tend to add random and legitimate URLs to their 

messages in order to avoid detection [14]. Secondly, the IP addresses of botnets are 

usually distributed across multiple ASes (Autonomous Systems), with only a small 

number of machines in each AS on average [14]. Lastly, despite variations in content, 

spam emails frequently share similar recipient addresses [14]. Researching how to 

utilise these features to capture botnets and prevent spamming is worth considering for 

the future. [15] 

Botnets can also be used for spreading malware [8]. For example, a botnet could 

deploy the Witty worm to target the ICQ protocol because the victim's system might not 

have activated Internet Security Systems (ISS) services [8, 15]. 



6 

 

Click Fraud: With the assistance of botnets, perpetrators can install advertising 

add-ons and browser helper objects (BHOs) for business purposes [8]. This resembles 

Google's AdSense programme as they seek to achieve higher results. Click-through rate 

(CTR) can be artificially promoted by perpetrators who use botnets to click on specific 

hyperlinks periodically [8]. This method also proves effective in online polls or games 

[8]. Due to each victim's host possessing a distinct IP address distributed worldwide, 

each click is perceived as a valid action by a legitimate individual. [15] 

Identity Fraud: Identity Fraud, also known as Identity Theft, is a rapidly 

increasing cybercrime [8]. Phishing emails are a common occurrence. The message 

typically contains URLs that appear to be legitimate and requests that the recipient 

provide personal or confidential information. This type of email can be generated and 

sent by botnets using the mechanisms of spamming. [8]. In addition, botnets can also 

create multiple fraudulent websites that mimic legitimate businesses in order to obtain 

personal information from unsuspecting victims. A new fake website may appear until 

the computer is shut down after a fake website has been closed by its owner. [15] 

2.2.4 Brute Force Attacks 

The process of guessing passwords by attempting multiple combinations, 

otherwise known as a Brute force attack, is executed through the "Trial and error" 

method. An attacker initially collects essential information about the user. For example, 

user’s full name, room number, vehicle number, children names etc. The attacker 

persistently attempts passwords randomly using the user's personal information.      It is 

possible that this can take from hours, days, months, or even years. The more advanced 

the encryption scheme (32, 64, 128, 168-bit, etc.) utilized, the greater the length of time 

necessary. The greater the level of encryption applied (32, 64, 128, 168 bit etc.), the 

longer it takes to complete the process. [16] 

As indicated in the table above, it is possible to make alterations depending on the 

size of the key. The longer the key, the less likely it is to be compromised. A brute force 

attack is also referred to as a "Dictionary attack" or a "Hybrid Brute-force attack".  

If your website demands user authentication, it becomes a prime target for brute-

force attacks. Such an attack aims to accurately deduce your password by exhaustively 

trying every imaginable combination of letters, numbers, symbols, etc. However, the 

drawback is that it can take a considerable amount of time (i.e., years) contingent upon 

the password's complexity and length. To avoid this scenario, numerous individuals 



7 

 

prefer to select a dictionary word that holds meaning to them, instead of opting for a 

random password. A "Dictionary attack" is executed by the attacker using exact 

dictionary words, whereas a "Hybrid Brute-force attack" is performed by slightly 

modifying the dictionary words. Attackers have access to various tools that can generate 

numerous possible combinations during an attack, with each try originating from a 

different IP address, making it difficult to track a single account for unsuccessful 

password attacks. [16]  

2.2.5 Port Scanning Attacks 

Port scanning and Distributed Denial-of-Service (DDoS) attacks are frequently 

employed by cyber attackers to identify vulnerabilities and overwhelm a target's 

resources. It is imperative to implement measures to prevent and mitigate these attacks 

to ensure the security of information systems. During the port scanning process, a 

scanning tool detects open ports on the target and reports the running services, as well 

as provides an enumeration of the target's status, such as the operating system in use, the 

amount of memory occupied, and processing information. The objective of port 

scanning is to detect the vulnerable areas of a target resource, which might be exploited. 

 According to Oracle® [1], a typical attack follows five steps: reconnaissance, 

enumeration, penetration, exfiltration, and sanitation. 

After collecting adequate data such as IP scheme, data center locations, and target 

profile during the reconnaissance phase, port scanning is performed as an initial stage of 

the enumeration process. NMAP is widely used as the most prevalent tool for port 

scanning globally [18]. A typical use case involves scanning for ports that permit 

Transmission Control Protocol / Internet Protocol (TCP/IP) traffic. To scan a port, a 

SYN signal is dispatched to the target by the scanner. If the target responds with a 

SYN+ACK signal, the port is explicitly open. In order to terminate the connection, the 

following step is to close it. If it is determined that the port is open, the scanner may 

send a reset (RST) signal. Alternatively, leaving the connection open could lead to a 

denial of service attack known as a TCP SYN attack.  [17] 

2.2.6 Web Application Attacks 

Web attacks pose a significant threat to web applications as they can potentially 

compromise user data and application source code. The different classifications of web 



8 

 

attacks have been categorised according to their impact on victims or the approach they 

use to attack an application. Understanding vulnerabilities is the first step towards 

removing them. The following section aims to aid in the identification and grouping of 

attacks. Six different attack types are presented, each comprised of several specific 

attacks.  There are six categories of attacking methods: Command Execution, 

Information Disclosure, Logical Attacks, Authentic Based Attacks, Authorization Based 

Attacks, and Client-Based Attacks [19, 23]. 

2.2.6.1 Authentication-Based Attacks  

There are several Autentication-Based Attacks 

2.2.6.1.1 Brute Force Attack 

This method is automated and used to determine an unknown value by testing a 

large set of possible values. Successful arrival at the correct value can allow access to 

private and sensitive information [20]. 

2.2.6.1.2 Insufficient Authentication 

If a web service or web application grants access to its content or functionality 

without proper authentication, attackers may easily exploit this vulnerability [20]. 

2.2.6.1.3 Weaknesses in Password Recovery 

A flawed password recovery system can enable an attacker to acquire, alter, or 

retrieve a user's password.   Such weaknesses may be exploited through brute force 

methods, guessing the correct answer to a security question, or taking advantage of 

inherent weaknesses in the system. [23]  

2.2.6.2 Authorization Based Attacks 

There are several Authorization Based Attacks 

2.2.6.2.1 Session Predication/Session Hijacking 

As implied by its name, this attack type involves the hijacking or impersonation of 

a user on a website by the attacker. The main concern in this scenario is the session ID, 



9 

 

which, if predicted by the attacker, poses a significant risk, engage in fraudulent 

activity. [23]  

2.2.6.2.2 Insufficient Authorization 

A website's security policy is vulnerable if there is no means of verifying whether 

a user adheres to it when performing actions [20].  

2.2.6.2.3 Insufficient Session Expiry 

Insufficient session expiry arises when a web application enables an attacker to 

reuse an outdated session ID to gain authorization. [23]  

2.2.6.2.4 Session Fixation 

This attack technique involves the forced assignment of an explicit value to a 

user's session ID. [23]  

2.2.6.3 Client Side Attacks 

2.2.6.3.1 Content Spoofing 

Content Spoofing refers to an attack where an attacker inserts potentially harmful 

material into a website, which the user may view as genuine [20]. 

2.2.6.3.2 Cross-Site Scripting 

Cross-site scripting (XSS) is a web-based attack that involves injecting untrusted 

data into a website that is perceived to be trustworthy. The compromised website is then 

utilized to store, transport, or distribute malicious content to the victim [21]. 

2.2.6.4 Command Execution Attacks 

There are several Command Execution Attacks 

2.2.6.4.1 Buffer Overflow 

A Buffer Overflow attack happens when too much information is written to a 

memory block, also called a buffer, causing it to exceed its capacity. [23]  

2.2.6.4.2 Format String Attack 



10 

 

Format string attacks utilize string formatting library features to access another 

memory space, and may also modify the flow of a web application, posing a security 

risk. [23] 

2.2.6.4.3 Light Weight Directory Access Protocol (LDAP) Injection 

Applications that construct LDAP statements from user input are vulnerable to 

LDAP Injection attacks, causing significant concern.  

2.2.6.4.4 Operating System (OS) Commanding 

OS command injection is an attack in which an attacker can execute unauthorised 

operating system commands via user input manipulation on a web application.  

2.2.6.4.5 SQL Injection 

SQL injection is a frequent attack in applications that have the ability to generate 

SQL queries from user input. If successful, the attacker can gain access to the 

application database and manipulate it using SQL statements [22].  

2.2.6.4.6 Server-Side Include (SSI) Injection 

In Server-Side Include injection, the attacker can infiltrate a web application by 

inserting code that will be executed by the server later [21].  

2.2.6.4.7 X-Path Injection 

In X-Path Injection Attacks, applications that employ user-supplied input to 

construct XML documents to query XML are highly vulnerable to web attacks. [23]  

2.2.6.5 Information Disclosure 

There are several instances of information disclosure. 

2.2.6.5.1 Directory Indexing 

Directory Indexing is a type of server function that discloses all the results within 

the requested directory if the regular base file is absent [20, 23].  

2.2.6.5.2 Information Leakage 



11 

 

Information leakage is a security weakness whereby an application discloses 

specific technical information about itself, as well as private and sensitive data, for 

example, user details. [23]  

2.2.6.5.3 Path Traversal 

A path traversal attack enables attackers to access files and documents located 

outside of the base directory. [23]  

2.2.6.5.4 Predictable Resource Location 

In this type of attack, the attacker is able to access hidden website functionalities 

and content. [23] 

2.2.6.6 Logical Attacks 

There are several Logical Attacks. 

2.2.6.6.1 Abuse of Functionality 

This refers to a type of attack in which a web application uses its features and 

functionalities to target itself or others [20, 23]. Web applications can be vulnerable to 

self-inflicted attacks where the application's features and functions are used to attack 

itself or others [20]. 

2.2.6.6.2 Denial of Service 

Denial of Service (DoS) attacks prevent an application from functioning 

according to user desires, but rather align with the attacker's wishes. [23] 

2.2.6.6.3 Insufficient Anti-Automation 

Insufficient Anti-Automation refers to a type of attack where an attacker is given 

permission to automate a process that was intended to be executed manually. [23]  

 

 

 

 

  



12 

 

Chapter 3 

Materials and Methods 

3.1 Machine Learning 

Machine learning is a broad discipline encompassing information technology, 

statistics, probability, artificial intelligence, psychology, neurobiology, and various 

other fields. A good representation of a chosen dataset can be achieved through 

constructing a model. Machine learning is a simple solution for problem-solving. 

Machine learning has become a sophisticated field, teaching computers to mimic the 

human brain. It has broadened the discipline of statistics, generating essential statistical 

and computational theories of the learning processes.[24] 

Machine learning involves the creation of algorithms that enable computers to 

learn autonomously. By detecting statistical regularities or other patterns in data, 

individuals can learn. The machine learning algorithms [25] are modelled on human 

learning approaches. Additionally, these algorithms can provide insight into the relative 

complexity of learning in various settings. [24] 

These days, the development of new computing technologies in the field of Big 

Data and machine learning differs from past practices. At present, many machine 

learning algorithms have been developed [26], updated, and refined. The latest 

advancement in machine learning is the ability to autonomously apply intricate 

mathematical calculations to large datasets, which results in faster computation. [24]  

3.1.1 Supervised Machine Learning 

Supervised learning typically leaves input probability undefined, even when the 

expected output is known. Thus, a dataset results that contains features and labels. The 

primary objective is to create an estimator that can forecast an object's label from a set 

of features. Thereafter, the learning algorithm takes in a set of features as input while 

also receiving the correct outputs. It then learns through comparing its actual output to 



13 

 

the corrected outputs to identify errors.  The model is adjusted correspondingly, based 

on the inputs provided. Should any input values be missing, it becomes impossible to 

deduce any information regarding the outputs. There is no requirement for the creation 

of the model as long as the inputs are accessible. [24]  

3.1.2 Classification 

3.1.2.1 K-NN (K-Nearest Neighbours) 

The K-Nearest Neighbors (KNN) algorithm is a nonparametric classification 

method, meaning it refrains from making assumptions about the input data.   It is 

renowned for its efficacy and straightforwardness and operates as a supervised learning 

model.  The algorithm learns from labeled training data. A dataset is available with 

classified data points that permit the prediction of the class of unlabeled data. 

In classification, the unlabeled data's class is determined by various 

characteristics. KNN is primarily employed as a classifier, classifying data based on its 

closest proximity or. neighboring training examples in a given region. This method is 

used for its simplicity of execution and low computation time. For continuous data, it 

uses the Euclidean distance to calculate its nearest neighbors. 

For a new input, the K-nearest-neighbours algorithm calculates the closest 

neighbours and determines the classification for the new input based on the majority 

decision of these neighbours. Although this classifier is straightforward, the value of ‘K’ 

significantly impacts the classification of the unlabeled data. [28]  

3.1.2.2 SVM (Support Vector Machine) 

Support Vector Machines (SVMs) are a recent learning approach employed for 

binary classification. The fundamental concept is to identify a hyperplane that perfectly 

segregates the d-dimensional data into its two classes. Nevertheless, since sample data is 

frequently not linearly separable, SVMs introduce the concept of kernel tricks. notion of 

a “kernel induced feature space” which casts the data into a higher dimensional space 

where the data is separable. Typically, casting into such a space would cause problems 

computationally, and with overfitting. The key The insight employed in support vector 

machines is that dealing with the higher-dimensional space directly is unnecessary; the 

dot-product formula for that space suffices, thus eliminating the aforementioned 

concerns. Additionally, the VC-dimension (a measure of the likelihood of a system to 



14 

 

perform optimally) is taken into consideration. Unseen data of SVMs can be calculated 

explicitly, unlike other learning methods such as neural networks, for which there is no 

measure. Overall, SVM’s are intuitive, theoretically well- founded, and have shown to 

be practically successful. SVM’s have also been extended to solve regression tasks 

(where the system is trained to output a numerical value, rather than “yes/no” 

classification). [30]  

3.1.2.2 Random Forests 

The Random Forest algorithm was developed by combining the BAGGing 

method (Breiman, 1996) with random variable selection to create a single "strong 

learner" from a group of "weak learners". Each decision tree within the group is created 

using a sample from the training data with replacement. These decision trees act as base 

estimators for establishing class labels of unlabeled instances through majority voting. 

Abbreviations for technical terms are explained upon first use. Bootstrap sampling is 

employed for every tree in the Random Forest, with data being split based on whether 

the problem is for Classification or Regression.  When it comes to classification, the 

Gini index is employed to partition the data, whilst for regression, minimizing the sum 

of the squares of the mean deviations can be opted for when training each tree model. 

The usage of Random Forests provides advantages such as employing ensembles of 

trees without any pruning. [29]  

3.1.2.2 XGBoost Classifier 

XGBoost is short for eXtreme Gradient Boosting (Chen & Guestrin, 2016). It is a 

type of Gradient Boosting Machine (GBM) that is used extensively for creating 

predictive models in both classification and regression problems. It has been observed 

that XGBoost significantly outperforms other machine learning algorithms, as 

demonstrated in various machine learning datasets (Friedman, 2001). XGBoost is an 

ensemble technique where novel models are created to fix the residuals or errors of 

earlier models before being merged to provide the ultimate prediction. Empirically, 

XGBoost displays relatively faster performance when compared to various other 

ensemble classifiers, such as AdaBoost. The XGBoost algorithm has gained widespread 

recognition in various machine learning and data mining challenges. It has become a 

popular tool among the competitors of Kaggle and data scientists in the industry 



15 

 

(Nielsen, 2016). Furthermore, it is a parallelizable algorithm, enabling the utilization of 

the multi-core computers, thus facilitating the training of large datasets. Moreover, 

XGBoost is freely available open source software which can be used under the 

permissive Apache-2 license.1[29]  

3.1.2.2 LightGBM (Light Gradient Boosting Machine) 

LightGBM is a gradient-based learning framework that leverages decision trees 

and boosting concepts (Ke et al., 2017). This model is relatively new and will be 

described in detail here. Unlike the XGBoost model, its primary distinguishing feature 

is the use of histogram-based algorithms to accelerate training, reduce memory 

consumption, and implement a leafwise growth strategy with depth constraints. The 

fundamental concept behind the histogram algorithm is to categorize uninterrupted 

eigenvalues into k divisions and generate a histogram that has a k-width. Furthermore, it 

allows the retention of results after the feature discretization, which typically needs only 

an 8-bit integer, thus lowering the memory consumption to 1/8 of the original amount. 

This algorithm does not necessitate additional storage for pre-sorted findings. In 

addition, the algorithm's crude partitioning approach does not decrease the accuracy of 

the model.  

Since decision trees are considered weak models for studying, it is not crucial 

whether the segmentation point is accurate or not. More general segmentation points 

can have a regularization effect, which can prevent overfitting effectively. The growth 

strategy for decision trees is referred to as. Leaf-wise is a more effective strategy than 

level-wise, as it treats each leaf individually instead of grouping them by layer.  This 

results in lower memory consumption as only the leaves with the highest branching gain 

are considered at each step. After completing the branching cycle, the blade can reduce 

more errors and achieve higher precision compared to the horizontal direction, with the 

same number of segmentation efforts.  However, using a leaf orientation may lead to the 

growth of deeper decision trees and result in overfitting. Therefore, to ensure high 

efficiency and prevent overfitting, LightGBM implements a maximum depth limit at the 

top of the leaf. [29].  

3.1.3 Hyperparameter Optimisation 



16 

 

Machine learning models are fundamentally founded on mathematical functions 

which illustrate the relationship between dependent and independent variables. The 

process of hyperparameter optimisation involves discovering the optimal combination 

of hyperparameters for a machine learning algorithm based on a predetermined measure 

of success. By optimising the model complexity with hyperparameter optimisation, the 

issues of overfitting and underfitting can be counterbalanced. Again, the issue of 

overfitting resulting from the model's flexibility can be resolved by imposing constraints 

through hyperparameters. 

With numerous hyperparameters and values available for a machine learning 

algorithm, it is apparent that it would be challenging to manually test each combination 

and select the optimal one. As a result, various methods have been developed for 

hyperparameter optimisation, including GridSearchCV and RandomisedSearchCV.  

3.1.3.1 GridSearchCV 

To evaluate the hyperparameters and their corresponding values in the model, the 

model is constructed individually with each combination and subsequently, the 

hyperparameter set that yields the most favourable outcomes according to the 

designated metric is selected. [33] 

3.1.3.2 RandomisedSearchCV 

A set of hyperparameters are selected at random and the model is assessed 

through cross-validation. This process proceeds until either the computation time limit 

or the designated number of iterations is achieved. [34]  

3.1.3.3 BayesSearchCV 

BayesSearchCV incorporates a "fit" and a "score" technique. Additionally, if they 

are present in the estimator utilised, it incorporates "predict", "predict_proba", 

"decision_function", "transform" and "inverse_transform". Cross-validated searches are 

used to refine the parameter settings of the predictor used to apply these techniques. 

Unlike GridSearchCV, it does not try all parameter values, but extracts a fixed number 

of parameter sets from the given probabilities. The n_iter denotes the number of 

attempts to set the parameters. [35] 



17 

 

3.2 Python Programming Language 

Python is an object-oriented, interpretive programming language that is widely 

acclaimed for its versatility in handling a diverse range of assignments (Helmus & 

Collis, 2016). Since its inception, the open-source nature of this has greatly increased its 

importance. Python was created in 1991 by Van Rossum and Drake Jr (1995) and is 

now considered one of the most important programming languages to study (Saabith, 

Fareez, & Vinothraj, 2019). 

It is open source, compatible with all platforms across Windows, Mac, Ubuntu 

and Linux, and has low system requirements, so anyone can write code in Python. 

Furthermore, there is already a vast community spanning various disciplines and skill 

levels. From ordinary people to leading researchers, individuals have created fascinating 

data science projects, machine learning, artificial intelligence, app and game 

development, as well as scientific research and more. These projects showcase a wide 

range of innovative solutions and promising possibilities for the future. Python 

resources are readily available thanks to the open-source community that continually 

improves its language capabilities. The community also offers extensive resources, 

which can be accessed simply by adding the keyword "Python" to any search.   Such 

resources include courses, source code, solutions to frequently encountered issues, 

video instructions, and additional resources. These materials are frequently available at 

no cost and address common issues encountered by developers at varying levels of 

difficulty. 

By using this approach, you can save time, increase experimental control, and let 

your creativity guide your research designs, ultimately optimizing your research 

efficiency. With these targets in mind, this manual has been designed to help you start 

your research on a solid footing. As quickly as possible, this will show you how to use 

the Anaconda deployment toolset to install the packages in the most efficient way. The 

guide will cover the usage of these packages, essential terminology, various Python 

interfaces, and implementing your initial few lines of code to create a functional 

program. This task aims to prepare you for the next few steps in learning Python. 

Using a research management tool can save time, increase experimental control, 

and optimize productivity. It also allows for more creative research designs. [31]  

3.2.1 Anaconda 



18 

 

Anaconda is a software that can be freely downloaded and is designed for 

scientific research purposes. By installing Anaconda, you will have access to several 

environments which can be used for coding in both Python and R. These environments, 

known as integrated development environments (IDEs), are useful platforms that 

simplify the code development process. IDEs play a comparable function to text 

processors such as Microsoft Word, Google Docs, and Pages for text composition, 

however, they offer much more. These Integrated Development Environments are 

packed with a multitude of helpful features for composing, modifying, and debugging 

code, inspecting as well as visualizing data, storing variables, presenting outcomes, and 

collaborating on projects. Although IDEs can vary in appearance and complexity, the 

underlying programming language remains the same. Therefore, changing IDEs within 

Anaconda does not significantly alter the Python in the code. The learning curve for 

understanding Python's syntax is a significant factor. Once you have learned how to 

code in one IDE, you will be able to transfer this skill to another with ease. No single 

IDE is objectively better than another, as each may have its own advantages and 

disadvantages. The choice of IDE should be based on personal preference. [31]  

3.2.2 Anaconda Navigator and IDEs 

As previously stated, the Anaconda Navigator is a graphical user interface (GUI). 

The website serves as the homepage for Anaconda and provides easy access to various 

Python programming integrated development environments (IDEs). This negates the 

need to utilise terminal commands to launch the IDEs. This is a set of IDEs that are 

specifically designed for Python programming. They can be installed using Anaconda. 

To start an IDE, simply click on its icon located in the Navigator main window. [31] 

3.2.3 Jupyter Notebook: The Classic Notebook Interface 

Jupyter Notebook is a web-based integrated development environment that 

utilizes your default web browser. Each block of code can be executed separately, 

enabling great flexibility and experimentation. This feature permits the use of various 

kinds of text in one Notebook, including code outputs, visualisations, equations, and 

plain text. This is an effective tool for creating and sharing documents, presenting code 

and results in an organised and attractive manner.  As it is web-based, it facilitates 

sharing Notebooks with others and is optimal for collaborations. [31]  



19 

 

3.2 VHS-22 Dataset 

The source data is a fusion of multiple datasets, including CTU-13, CICIDS 2017, 

ISOT, Booters, and traffic examples from MTA. This selection is based on verifiable 

facts. All datasets and network traffic patterns are marked, freely available and source 

independent. [32] 

The CICIDS 2017 dataset contains network traffic that was generated and 

collected in a simulated university network. Therefore, it provides a reliable 

representation of traffic in real networks. [32] 

The CICIDS 2017 dataset categorises attacks by threat type, including the most 

commonly reported ones. [8]. The following are examples of cyber threats: DoS and 

DDoS attacks, web attacks, web scanning, brute force attacks, botnet traffic, infiltration, 

and exploitation of the Heartbleed vulnerability. This dataset provides a comprehensive 

representation of real-world cyber threats. [32] 

The traffic on the MTA website is current and generated by genuine malicious 

samples. Each sample in Booters contains over 100 attack records, providing typical 

examples of DDoS threats. [32] 

CTU-13 includes non-peer-to-peer traffic, which is uncommon among other 

datasets. [32] 

The ISOT dataset is a composite of four other datasets and includes typical traffic 

produced by various everyday applications, including games, among other things. This 

provides additional value. [32] 

Therefore, it is believed that the dataset resulting from diverse sources will be 

highly heterogeneous, posing a challenge in the design of intrusion detection 

algorithms. [32] 

The dataset consists of various attack types such as botnet, malware, web attacks, 

brute-force, DDoS, and DDoS Booter attacks. [32]  

Table 3.1 The VHS-22 provides access to extracted stream parameters, including 

descriptions of flow level and network level properties. 

 Feature Description 

1 ip_src_str               IP address of the source 

2 ip_dst_str               IP address of the destination 

3 ip_protocol             This document outlines the requirements 



20 

 

for addressing and routing data on the 

Internet 

4 sport This is a number that indicates the port to 

which the source IP address is connecting 

5 dport This is a number that indicates the port to 

which the destination IP address is 

connecting 

6 in_packets                The total number of packages in the 

stream 

7 b_packet_total          The total number of bytes in the stream 

8 first_timestafirst        The value of timestamp in the stream 

9 last_timestamp          The value of last timestamp in the stream  

10 duration Flow time 

11 flags_sum                  The total number of TCP flags  

12 urg_nr_count             The total number of URG flag in the 

stream  

13 ack_nr_count             The total number of ACK flag in the 

stream 

14 rst_nr_count               The total number of RST flag in the 

stream 

15 fin_nr_count               The total number of SYN flag in the 

stream 

16 psh_nr_count             The total number of PSH flag in the 

stream 

17 syn_nr_count              The total number of SYN flag in the 

stream 

18 b_packet_max             size value of the biggest package 

19 b_packet_min              size value of the minimum package 

20 b_packet_mean           size value the average package 

21 b_packet_median        The median value of the package 

22 b_packet_first_q  First quartile value of package 

23 b_packet_third_q The 75th percentile  value of packages 

24 b_packet_std               The standard deviation of the package is 



21 

 

as follows 

25 b_packet_total             The total size value of flow in bytes 

26 iat_min                         The least inter-arrival times 

27 iat_max                        value of the top inter-arrival times 

28 iat_first_q                     First quartile value of inter-arrival times 

29 iat_third_q                    The 75th percentile value of inter-arrival 

times 

30 iat_std                          The standard deviation of inter-arrival 

times 

31 iat_mean                      value of the mean of inter-arrival times 

32 iat_median                   value of the median of inter-arrival times 

33 iat_var                          value of the variance of inter-arrival times 

34 connections_from_this_host               Inbound traffic from the specified host 

35 connections_to_this_host                   Number of connections to the host 

machine   

36 connections_rst_to_this_host             Number of connections to host ended with 

RST flag 

37 connections_rst_from_this_host         Inbound traffic from the host ended with 

RST flag 

38 connections_to_this_port                    Number of traffic with the same 

destination port 

39 connections_from_this_port               Number of traffic with the same source 

port 

40 connections_ratio_from_this_host      The percentage of connections to the host 

with the same destination address. 

41 connections_ratio_to_this_host          The percentage of incoming connections 

from hosts with the same source address 

42 connections_ratio_rst_to_this_host    The percentage of connections that ended 

with the RST flag sent by the host. 

43 connections_ratio_rst_from_this_ho

st 

The percentage of incoming connections 

from the host computer that ended with 

the RST flag 

44 connections_ratio_to_this_port           The percentage of connections to the host 



22 

 

with the same destination port 

45 connections_ratio_from_this_port       The percentage of incoming connections 

from the host with the same source port 

 



23 

 

Chapter 4 

Results 

4.1 Sample Dataset 

The VHS-22 dataset is a heterogeneous collection at the stream level, which 

consolidates the datasets of ISOT, CICIDS-17, Booters, and CTU-13, in addition to 

traffic gathered from the Malware Traffic Analysis (MTA) site. The dataset promotes 

enhanced diversity in both legitimate and illegitimate traffic flows. It features 27.7 

million flows, comprising 20.3 million legitimate flows and 7.4 million attack flows. 

The flows are represented in the form of 45 features. 

As the dataset was excessively large, we created a new sample comprising 5.5 

million traffic flows consisting of 27% attacks and 73% normal network traffic flows. 

Following this, we carried out experiments on this sample. The sample network includes 

110 unique categories of attack traffic. 

 

 

We conducted our work in the Jupyter Notebook web application due to its user-

friendly, streamlined, and document-centric design. Some data blocks were presented as 

Figure 4.1 Distribution of sample dataset  



24 

 

objects, and to address this, we implemented the LabelEncoder Library on Jupyter 

Notebook to transform the object values into numeric values. 

By using Standardscaler, the dataset was adjusted to have a mean of zero and a 

standard deviation of one for every attribute value. This process helps the learning 

algorithms perform optimally, especially when the dataset has characteristics at diverse 

scales. 

With the assistance of "VarianceThreshold(threshold=(.8 * (1 - .8)))", low 

variance features were identified and eliminated from the dataset. The following 

features were removed: 

 iat_first_q,  

 iat_third_q, 

 urg_nr_count, 

 connections_rst_from_this_host, 

 connections_ratio_from_this_host, 

 connections_ratio_to_this_host, 

 connections_ratio_rst_from_this_host, 

 connections_ratio_to_this_port. 

Then, we deleted the label and attack_file columns from dataset. 

We utilized the StratifiedGroupKFold function in Python to partition the sample 

dataset into training and test datasets. This function executes StratifiedGroupKFold 

cross-validation on a Python dataset comprising two group labels. The cross-validation 

technique, StratifiedGroupKFold, partitions the data into train and test sets, maintaining 

the distribution of the target variable and the groups. This function requires the input of 

features, the target variable, and group labels for each sample, and yields a generator 

object generating train and test indices for each fold. The function allows for the 

specification of the number of folds as an optional argument, utilizing the 

StratifiedGroupKFold implementation as provided by the scikit-learn library. For this 

purpose, we combined the ip_src_str and ip_dst_str columns, resulting in a new column 

named ip_str (data["ip_str"] = data["ip_src_str"] + '_' + data["ip_dst_str"]). In the case 

of splitting, such as the training and test dataframes, we used this ip_str variable that we 

created. After parsing the train and test sets, we removed the columns for ip_str, 

ip_src_str and ip_dst_str from both datasets.  



25 

 

A clustering analysis was conducted on the dataset to separate the information 

into groups according to certain proximity criteria. The K-Means assignment 

mechanism, one of the most widely used unsupervised learning methods, was employed 

during the clustering analysis, as it allows each data point to belong to only one cluster 

[36]. This resulted in the creation of a new cluster feature on the dataset. 

   

4.2 Random Forests Classifier 

Random Forests Classifier is a machine learning algorithm that is widely 

employed, and it is trademarked by Leo Breiman and Adele Cutler. The algorithm 

amalgamates the outcomes of numerous decision trees to produce a singular outcome. 

we felt the need to use it because of its ease of use and flexibility, and because it 

addresses both classification and regression problems. In this model, we have chosen 

the n_estimators attribute and assigned it a value of 100, which represents the number of 

trees we wish to generate before taking the maximum votes or prediction averages. 

Balanced class weights can be automatically calculated with the sample weight 

function. To adjust the weights inversely proportional to the class frequencies in the 

input data, we have set class_weight='balanced'. We have attained 99% success in 

multi-class classification. Given the remarkable success rate, we investigated whether it 

could be attributed to a feature associated with the Attack label. We have identified the 

most significant features using the feature_importances_ attribute in Random Forests 

Classifier. 

 



26 

 

 

Figure 4.2.1 Feature importances associated with Attach Label feature.  

 

We discovered the top 5 significant features (last_timestamp, first_timestamp, 

ip_str, dport, sport) and implemented the model again after eliminating them from the 

dataset. This approach produced a more accurate success rate of 90.70%.  

Table 4.2 The scores obtained by applying the Random Forest model are presented 

below.  

RandomForestClassifier Values 

Dataset  Sample Dataset-  %20 VHS-22 Dataset 

Accuracy Score 0.9070 

Cross_Validation_Score [0.9871, 0.9872, 0.9871, 0.9873, 0.9872] 

f1_score 0.9402 

precision_score  0.9788 

recall_score 0.9070 

AUC 0.6195 

 

 

4.3 XGBoost Classifier 

XGBoost is a machine learning system that combines gradient boosting and 

decision tree-based methods. We initially applied this model to the datasets that we 

acquired.  

 XGBClassifier(objective="multiclass:softmax", num_class=110) 

In this study, a multiclass objective was selected, and it was specified that there 

were 113 categories. This approach produced success rate of 73.59%. 



27 

 

Table 4.3 The scores obtained by applying the XGBoost Classifier model are 

presented below.  

XGBoost Classifier Values 

Dataset  Sample Dataset-  %20 VHS-22 Dataset 

Accuracy Score 0.7359 

Cross_Validation_Score [0.8584, 0.8539, 0.9165, 0.8483, 0.9301] 

f1_score 0.7347 

precision_score 0.7342 

recall_score 0.7359 

AUC 0.5032 

 

  

4.4 K-NN Classifier 

In K-nearest neighbor (K-NN) classification, a class membership is determined by 

a majority vote of the nearest neighbors assigned to an object. The object is 

subsequently assigned to the class that is most frequent amongst its k-nearest neighbors. 

By default, I have selected 5 neighbors to be used for K-NN queries. With this method, 

we attained a 73.% success rate. 

Table 4.4 The scores obtained by applying the K-NN Classifier model are 

presented below.  

K-Nearest Neighbors Classifier Values 

Dataset  Sample Dataset-  %20 VHS-22 Dataset 

Accuracy Score 0.9739 

Cross_Validation_Score [0.9850, 0.9862, 0.9859, 0.9863, 0.9859] 

f1_score 0.9722 

precision_score 0.9724 

recall_score 0.9739 

AUC 0.5345 

  

4.5 SVM 

The algorithm is designed for solving classification problems, utilizing a more 

flexible representation of class boundaries and automatic complexity control. It is 

capable of finding a single global minimum in polynomial time. Our successful 

application of this approach yielded a 91.09 % success rate.  



28 

 

Table 4.5 The scores obtained by applying the Random Forest model are presented 

below.  

SVM Values 

Dataset  Sample Dataset-  %2 VHS-22 Dataset 

Accuracy Score  0.9109 

Cross_Validation_Score [0.9102, 0.9095, 0.9099, 0.9094, 0.9118] 

f1_score 0.9013 

precision_score 0.9077 

recall_score 0.9109 

AUC 0.5902 

 

4.6 LightGBM Classifier 

LightGBM is a gradient boosting framework that uses tree based learning 

algorithms. We felt the need to use this model due to its faster training speed and higher 

efficiency, lower memory usage, better accuracy, support for parallel, distributed and 

GPU learning, and its ability to process large-scale data. We implemented it with 

attributes values objective="multiclass", num_class=110, n_estimators=100. We 

achieved 87.83 % success with this method.  

Table 4.6 The scores obtained by applying the LightGBM Classifier are presented 

below.  

LightGBMClassifier Values 

Dataset  Sample Dataset-  %20 VHS-22 Dataset 

Accuracy Score 0.8783 

Cross_Validation_Score [0.7318, 0.5178, 0.5144, 0.8073, 0.6996] 

f1_score 0.8653 

precision_score 0.8715 

recall_score 0.8783 

AUC 0.5054 

 

  

4.7 Hyperparameter Optimisation 

The results were obtained by using different parameters for each model and 

applying GridSearchCV, RandomizedSearchCV, and BayesSearchCV techniques on 

separate models. 



29 

 

Table 4.7 The scores obtained by applying GridSearchCV, RandomizedSearchCV, 

and BayesSearchCV techniques are presented below.  

Modeller 
Accuracy 

Score 

Cross Validation 

Score 

f1 

Score 

Precision 

Score 

Recall 

Score 
AUC 

Random Forest 

Classifier 
0.9070 

[0.9871, 0.9872, 

0.9871, 0.9873, 0.9872] 
0.9402 0.9788 0.9070 0.6195 

XGB Classifier 0.7359 
[0.8584, 0.8539, 

0.9165, 0.8483, 0.9301] 
0.7347 0.7342 0.7359 0.5032 

LGBM Classifier 0.8783 
[0.7318, 0.5178, 

0.5144, 0.8073, 0.6996] 
0.8653 0.8715 0.8783 0.5054 

K-NN Classifier 0.9739 
[0.9850, 0.9862, 

0.9859, 0.9863, 0.9859] 
0.9722 0.9724 0.9739 0.5345 

SVM  0.9109 
[0.9102, 0.9095, 

0.9099, 0.9094, 0.9118] 
0.9013  0.9077 0.9109  0.5902 

GridSearchCV- 

XGBClassifier 
0.9798 

[0.9795 0.9791 0.9785 

0.9791 0.9789] 
0.9756 0.9734 0.9798 0.9099 

GridSearchCV-

LGBMClassifier 
0.8752 

[0.9119 0.8933 0.8654 

0.8580 0.9178] 
0.9174 0.9667 0.8752 0.2185 

GridSearchCV-

KNeighborsClassifier 
0.9788 

 [0.9831, 0.9839, 

0.9837, 0.9837, 0.9839] 
0.9760 0.9742 0.9788 0.5352 

GridSearchCV-SVM  0.9374 
 [0.9527, 0.9524, 

0.9514, 0.9511, 0.9515] 
0.9638  0.9620 0.9663  0.8492 

GridSearchCV-

Random Forest 

Classifier 

0.9397 
 [0.9527, 0.9524, 

0.9514, 0.9511, 0.9515] 
0.9554 0.9723 0.9397 0.6095 

RandomizedSearchCV- 

XGB Classifier 
0.9800 

[0.9864, 0.9858, 

0.9854, 0.9859, 0.9858] 
0.9761 0.9736 0.9800 0.9576 

RandomizedSearchCV-

LGBM Classifier 
0.6923 

[0.6764, 0.8511, 

0.5124, 0.8111, 0.8169] 
0.6491 0.6603 0.6923 0.5005 

RandomizedSearchCV-

K-NN Classifier 
0.9786 

[0.9826, 0.9826, 

0.9829, 0.9831, 0.9828] 
0.9756 0.9736 0.9786 0.5350 

RandomizedSearchCV-

SVM 

  

0.9663 

[0.9240 0.9224, 0.9237, 

0.9227, 0.9248] 

  

0.9638 

  

0.9620 

  

0.9663 
 0.8800 

RandomizedSearchCV-

Random Forest 

Classifier 

  

0.9374 

[0.9437, 0.9418, 

0.9519, 0.9428, 0.9446] 
0.9542 0.9724 0.9374 0.6275 

BayesSearchCV- XGB 

Classifier 
0.9811 

[0.9878, 0.9872, 

0.9870, 0.9873, 0.9875] 
0.9772 0.9751 0.9811 0.9504 

BayesSearchCV- 

LGBM Classifier 
 0.8339 

[0.8553, 0.7570, 

0.8388, 0.7139, 0.7055] 
0.8726  0.9178 0.8339 0.5123 

BayesSearchCV - K-

NN Classifier 
 0.9788 

[0.9861, 0.9855, 

0.9854, 0.9858, 0.9851] 
0.9759  0.9741 0.9788  0.5351 

BayesSearchCV-SVM 
  

0.9663 

[0.9709, 0.9724, 

0.9708, 0.9715, 0.9712] 
0.9638 0.9620 0.9663  0.8995 

BayesSearchCV-

Random Forest 

Classifier 

 0.9399 
[0.9412, 0.9425, 

0.9500, 0.9423, 0.9460] 
0.9555  0.9722 0.9399  0.6288 

 

The highest and most accurate score was obtained from the XGBoost Classifier 

model with the help of BayesSearchCV technique. 

 



30 

 

 

 

Chapter 5 

Conclusions and Future Prospects  

5.1 Conclusions 

Investigating new methods of identifying network threats, such as those associated 

with malware, necessitates large and varied datasets. Many network traffic datasets have 

been suggested and utilised by the research community. Nonetheless, the majority of 

these datasets are homogeneous and make it relatively easy to detect threats. 

Consequently, they achieve an accuracy rate of nearly 100%, rendering them no longer 

challenging. In our research, we have conducted a comprehensive analysis of a diverse 

range of network traffic data. The dataset was created using a software network probe in 

combination with pre-existing datasets.  We contend that the information contained in 

the dataset necessitates meticulous scrutiny, thereby affording an outstanding prospect 

to enhance our proficiency in pinpointing network threats. Our utilization of machine 

learning algorithms has yielded highly precise results in identifying these threats.  



31 

 

5.2 Societal Impact and Contribution to Global 

Sustainability 

This study aims to further scientific research in the eradication of vulnerabilities 

in Internet network communication against network attacks. The findings of this study 

will inform the development of software that can enhance the overall health of Internet 

network security. It will also provide a basis for future studies to build upon.   The 

safeguarding of sensitive data in public or private institutions will mitigate economic 

damages and protect corporate reputation. Ensuring the security of company-specific 

information will prevent financial losses. Confidential information and documents 

remain secure within the internet-based communication network of national security 

institutions, bolstering security measures. 

5.3 Future Prospects 

The model created in this research will have a significant impact on reducing 

network attacks. However, applying machine learning algorithms to this model may 

cause increased computational overheads when training the system to identify network 

attacks. Since new types of network attacks arise frequently, this model may not be able 

to prevent these novel attacks entirely in the future. It is important to note that the 

performance of the model largely depends on the accuracy of machine learning 

algorithms. In order to achieve greater accuracy of results, it could be necessary to 

employ suitable machine learning algorithms and datasets, and to conduct further 

studies encompassing new forms of attacks.  

 

 

 

 

 

 

 

 

 



32 

 



33 

 

BIBLIOGRAPHY 

 

[1] KILINÇ, F., EYÜPOĞLU, C., (2023). Ağ Ortamındaki Saldırı Türleri: Saldırı 

Senaryo Örnekleri, Journal of Technology and Applied Sciences 6-1 pp99-109 

DOI: 10.56809/icujtas.1282687 

 

[2] Elleithy, Khaled M. et al., "Denial of Service Attack Techniques: Analysis, 

Implementation and Comparison." Journal of Systemics, Cybernetics, and 

Informatics 3.1, pp. 66-71, 2005. 

 

[3] Lau, F., Rubin, S. H., Smith, M. H., & Trajkovic, L. (2000, October). Distributed 

denial of service attacks. In Smc 2000 conference proceedings. 2000 ieee 

international conference on systems, man and cybernetics.'cybernetics evolving 

to systems, humans, organizations, and their complex interactions'(cat. no. 

0 (Vol. 3, pp. 2275-2280). IEEE. 

 

[4] CERP Coordination Center, Cert Advisories: “CA-2000-01 denial-of-service 

developments:” http://www.cert.org/advisories/CA-2000-01.html; “CA-99-17 

denial-of service tools,” http://www.cert.org/advisories/CA-99-17-denial-of-

servicetools.html; “CA-98-1 3-tcp-denial-of-service: vulnerability in certain 

TCP/IP implementations,” http://www.cert.org/advisories/CA-98-13-tcp-denial-

of-service.html. 

 

[5] B. Martin, “Have script, will destroy (lessons in DOS),” Feb. 2000, 

http://www.attrition.org. 

 

[6] CERP Coordination Center, “Results of the distributed systems intruder tools 

workshop,” Nov. 1999, http://www.cert.org/reports/dsit-workshop.pdf 

 

[7] B. McCarty, “Botnets: big and bigger,” IEEE Security and Privacy, vol. 1, no. 4, pp. 

87–90, 2003. 

 

[8] P. Bacher, T. Holz, M. Kotter, and G. Wicherski, “Know your Enemy: Tracking 

Botnets,” http://www.honeynet.org/papers/bots. 

 

[9] F. C. Freiling, T. Holz, and G. Wicherski, “Botnet tracking: exploring a root-cause 

methodology to prevent distributed denial-of-service attacks,” in Proceedings of 

the 10th European Symposium on Research in Computer Security (ESORICS 

’05), vol. 3679 of Lecture Notes in Computer Science, pp. 319–335, Springer, 

Milan, Italy, September 2005. 



34 

 

 

[10] K. Pappas, “Back to basics to fight botnets,” Communications News, vol. 45, no. 5, 

p. 12, 2008. 

 

[11] P. Sroufe, S. Phithakkitnukoon, R. Dantu, and J. Cangussu, “Email shape analysis 

for spam botnet detection,” in Proceedings of the 6th IEEE Consumer 

Communications and Networking Conference (CCNC ’09), pp. 1–2, Las Vegas, 

Nev, USA, January 2009. 

 

[12] K. Chiang and L. Lloyd, “A case study of the restock rootkit and spam bot,” in 

Proceedings of the 1st Workshop on Hot Topics in Understanding Botnets, p. 10, 

Cambridge, Mass, USA, 2007. 

 

[13] A. Brodsky and D. Brodsky, “A distributed content independent method for spam 

detection,” in Proceedings of the 1st Workshop on Hot Topics in Understanding 

Botnets, p. 3, Cambridge, Mass, USA, 2007. 

 

[14] Y. Xie, F. Yu, K. Achan, R. Panigrahy, G. Hulten, and I. Osipkov, “Spamming 

botnets: signatures and characteristics,” in Proceedings of the ACM SIGCOMM 

Conference on Data Communication (SIGCOMM ’08), vol. 38, pp. 171–182, 

Seattle, Wash, USA, August 2008. 

 

[15] Liu, J., Xiao, Y., Ghaboosi, K., Deng, H., & Zhang, J. (2009). Botnet: 

classification, attacks, detection, tracing, and preventive measures. EURASIP 

journal on wireless communications and networking, 2009, 1-11. 

 

[16] Dave, K. T. (2013). Brute-force attack ‘seeking but distressing’. Int. J. Innov. Eng. 

Technol. Brute-force, 2(3), 75-78. 

 

[17] Aamir, M., Rizvi, S. S. H., Hashmani, M. A., Zubair, M., & Ahmad, J. (2021). 

Machine learning classification of port scanning and DDoS attacks: A 

comparative analysis. Mehran University Research Journal Of Engineering & 

Technology, 40(1), 215-229. 

 

[18] “NMAP: The Network Mapper – Free Security Scanner”, https://nmap.org/, [Last 

Visited on 27th November 2023. 

 

[19] Beheshti, Z., & Shamsuddin, S. M. H. (2013). A review of population-based meta-

heuristic algorithms. Int. j. adv. soft comput. appl, 5(1), 1-35. 

 



35 

 

[20] Yusof, I., & Pathan, A. S. K. (2014, November). Preventing persistent Cross-Site 

Scripting (XSS) attack by applying pattern filtering approach. In The 5th 

International Conference on Information and Communication Technology for 

The Muslim World (ICT4M) (pp. 1-6). IEEE. 

 

[21] Gupta, M. K., Govil, M. C., & Singh, G. (2015, July). Predicting Cross-Site 

Scripting (XSS) security vulnerabilities in web applications. In 2015 12th 

international joint conference on computer science and software engineering 

(JCSSE) (pp. 162-167). IEEE. 

 

[22] Van Gundy, M., & Chen, H. (2009, February). Noncespaces: Using Randomization 

to Enforce Information Flow Tracking and Thwart Cross-Site Scripting Attacks. 

In NDSS. 

 

[23] Khari, M., & Sangwan, P. (2016, March). Web-application attacks: A survey. 

In 2016 3rd International Conference on Computing for Sustainable Global 

Development (INDIACom) (pp. 2187-2191). IEEE. 

 

[24] Nasteski, V. (2017). An overview of the supervised machine learning 

methods. Horizons. b, 4, 51-62. 

 

[25] Talwar, A., & Kumar, Y. (2013). Machine Learning: An artificial intelligence 

methodology. International Journal of Engineering and Computer Science, 2(12), 

3400-3404. 

 

[26] Caruana, R., & Niculescu-Mizil, A. (2006, June). An empirical comparison of 

supervised learning algorithms. In Proceedings of the 23rd international 

conference on Machine learning (pp. 161-168). 

[27] Sandhya, N., & Charanjeet, K. R. (2016). A review on machine learning 

techniques. International Journal on Recent and Innovation Trends in Computing 

and Communication, 4(3), 451-458. 

 

[28] Taunk, K., De, S., Verma, S., & Swetapadma, A. (2019, May). A brief review of 

nearest neighbor algorithm for learning and classification. In 2019 international 

conference on intelligent computing and control systems (ICCS) (pp. 1255-

1260). IEEE. 

 

[29] Asselman, A., Khaldi, M., & Aammou, S. (2023). Enhancing the prediction of 

student performance based on the machine learning XGBoost 

algorithm. Interactive Learning Environments, 31(6), 3360-3379. 

 



36 

 

[30] Boswell, D. (2002). Introduction to support vector machines. Departement of 

Computer Science and Engineering University of California San Diego, 11. 

 

[31] Rolon-Mérette, D., Ross, M., Rolon-Mérette, T., & Church, K. (2016). Introduction 

to Anaconda and Python: Installation and setup. Quant. Methods Psychol, 16(5), 

S3-S11. 

 

[32] Szumelda, P., Orzechowski, N., Rawski, M., & Janicki, A. (2022, June). Vhs-22–a 

very heterogeneous set of network traffic data for threat detection. In Proceedings 

of the 2022 European Interdisciplinary Cybersecurity Conference (pp. 72-78). 

 

[33] Scikit-learn, S. Available online: https://scikit-learn.org/stable/modules/generated/ 

sklearn.model_selection. GridSearchCV.html (accessed on 28 November 2023). 

 

[34] Scikit-learn, S. Available online: https://scikit-learn.org/stable/modules/generated/ 

sklearn.model_selection. RandomizedSearchCV.html (accessed on 28 November 

2023). 

 

[35] Scikit-optimize, S. Available online: https://scikit-

optimize.github.io/stable/modules /generated/skopt. BayesSearchCV.html 

(accessed on 28 November 2023). 

 

[36] Kodinariya, Trupti M., and Prashant R. Makwana. "Review on determining number 

of Cluster in K-Means Clustering." International Journal 1.6 (2013): 90-95. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



37 

 

 

 

 

 

CURRICULUM VITAE 

2001 – 2007 B.Sc., Computer Education And Instructional Technology, Middle 

East Technical University, Ankara, TURKEY 

2014 – Present M.Sc., Electrical and Computer Engineering, Abdullah Gül 

University, Kayseri, TURKEY 

 

https://ceit.metu.edu.tr/en

