
B
urak K

O
LU

K
ISA

MACHINE LEARNING APPROACHES FOR

INTERNET OF THINGS BASED VEHICLE TYPE

CLASSIFICATION AND NETWORK ANOMALY

DETECTION

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND COMPUTER

ENGINEERING

AND THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE OF

ABDULLAH GUL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By

Burak KOLUKISA

January 2024

A
 Ph.D

. Thesis
A

G
U

 2024

MACHINE LEARNING APPROACHES FOR

INTERNET OF THINGS BASED VEHICLE TYPE

CLASSIFICATION AND NETWORK ANOMALY

DETECTION

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND COMPUTER

ENGINEERING

AND THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE OF

ABDULLAH GUL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By

Burak KOLUKISA

January 2024

SCIENTIFIC ETHICS COMPLIANCE

I hereby declare that all information in this document has been obtained in accordance

with academic rules and ethical conduct. I also declare that, as required by these rules and

conduct, I have fully cited and referenced all materials and results that are not original to

this work.

Name-Surname: Burak KOLUKISA

Signature:

REGULATORY COMPLIANCE

Ph.D. thesis titled “Machine Learning Approaches for Internet of Things Based Vehicle

Type Classification and Network Anomaly Detection” has been prepared in accordance

with the Thesis Writing Guidelines of the Abdullah Gül University, Graduate School of

Engineering and Science.

Prepared By

Burak KOLUKISA

Advisor

Prof. V. Çağrı GÜNGÖR

Head of the Electrical and Computer Engineering Program

Asst. Prof. Samet GÜLER

v

ACCEPTANCE AND APPROVAL

Ph.D. thesis titled “Machine Learning Approaches for Internet of Things Based Vehicle

Type Classification and Network Anomaly Detection” prepared by Burak KOLUKISA

has been accepted by the jury in the Electrical and Computer Engineering Graduate

Program at Abdullah Gül University, Graduate School of Engineering and Science.

…../ …../ 2024

JURY:

Advisor: Prof. V. Çağrı GÜNGÖR

Member: Prof. Celal ÖZTÜRK

Member: Assoc. Prof. Özkan Ufuk NALBANTOĞLU

Member: Asst. Prof. Abdulkadir KÖSE

Member: Asst. Prof. Rıfat KURBAN

APPROVAL:

The acceptance of this Ph.D. thesis has been approved by the decision of the Abdullah

Gül University, Graduate School of Engineering and Science, Executive Board dated

…../….. / ……….. and numbered .…………..……. .

……….. /……….. / ………..

(Date)

Graduate School Dean
Prof. İrfan ALAN

vi

ABSTRACT

MACHINE LEARNING APPROACHES FOR INTERNET OF

THINGS BASED VEHICLE TYPE CLASSIFICATION AND

NETWORK ANOMALY DETECTION

Burak KOLUKISA

Ph.D. in Electrical and Computer Engineering

Advisor: Prof. V. Çağrı GÜNGÖR
January 2024

This thesis presents innovative approaches in the realms of Intelligent Transportation

Systems (ITS) and Network Intrusion Detection Systems (NIDS) within the Internet of

Things (IoT). Leveraging IoT technologies, a low-cost, battery-operated 3-D magnetic

sensor has been developed for ITS to enable the classification of vehicle categories. The

research presents machine learning and deep learning models that are improved by using

oversampling, feature selection and extraction methods, hyperparameter optimization,

and converting signals into 2-D images. New methods have been proposed for vehicle

type classification to boost classification performance and achieve an accuracy of up to

92.92%. Additionally, the increasing reliance on IoT devices for such applications

introduces significant cybersecurity risks. To mitigate these vulnerabilities, a novel

logistic regression model trained with a parallel artificial bee colony (LR-ABC) algorithm

has been proposed for network anomaly detection. This model incorporates

hyperparameter optimization to enhance detection capabilities, showcasing superior

performance on popular benchmark NIDS datasets with accuracies of 88.25% and

90.11%. Overall, this research contributes to the advancement of IoT and IoT

cybersecurity by offering robust, scalable, and efficient solutions. These innovations not

only enhance vehicle type classification and network security in the IoT era but also pave

the way for future IoT infrastructure development in an increasingly connected digital

landscape.

Keywords: Internet of Things (IoT), Intelligent Transportation Systems (ITS),

Network Intrusion Detection Systems (NIDS), Machine Learning, Deep Learning

vii

ÖZET

NESNELERİN İNTERNETİ TABANLI ARAÇ TİPİ

SINIFLANDIRMA VE AĞ ANOMALİSİ TESPİTİ İÇİN

MAKİNE ÖĞRENMESİ YAKLAŞIMLARI

Burak KOLUKISA

Elektrik ve Bilgisayar Mühendisliği Anabilim Dalı Doktora

Tez Danışmanı: Prof. Dr. V. Çağrı GÜNGÖR
Ocak 2024

Bu tez, Nesnelerin İnterneti kapsamında Akıllı Ulaşım Sistemleri ve Ağ Saldırı Tespit

Sistemleri alanlarında yenilikçi yaklaşımlar sunmaktadır. Nesnelerin İnterneti

teknolojilerinden yararlanılarak, Akıllı Ulaşım Sistemleri için düşük maliyetli, pil ile

çalışan 3 boyutlu manyetik sensör geliştirilmiştir ve bu sensör araç tiplerinin

sınıflandırılmasını sağlamaktadır. Araştırma, makine öğrenimi ve derin öğrenme

modellerini, aşırı örnekleme, özellik seçimi ve çıkarma yöntemleri, hiperparametre

optimizasyonu ve sinyallerin 2 boyutlu görüntülere dönüştürülmesi de dahil olmak üzere

bir dizi teknikle geliştirmektedir. Araç tipi sınıflandırması için yeni yöntemler önerilmiş,

bu yöntemler sınıflandırma performansını artırarak %92.92'ye varan bir doğruluk elde

etmiştir. Ayrıca, bu tür uygulamalar için IoT cihazlarına artan bağımlılık, önemli siber

güvenlik risklerini de beraberinde getirmektedir. Bu güvenlik açıklarını azaltmak için, ağ

anomalisi tespiti için paralel bir yapay arı kolonisi (LR-ABC) algoritması ile eğitilmiş

yeni bir lojistik regresyon modeli önerilmiştir. Bu model, tespit yeteneklerini geliştirmek

için hiperparametre optimizasyonunu içermekte ve popüler NIDS veri kümelerinde

%88.25 ve %90.11 doğruluk oranlarıyla üstün performans sergilemektedir. Genel olarak,

bu araştırma, sağlam, ölçeklenebilir ve verimli çözümler sunarak Nesnelerin İnterneti ve

Nesnelerin İnterneti siber güvenliğinde ilerlemeye katkıda bulunmaktadır. Bu yenilikler,

sadece Nesnelerin İnterneti çağında araç tiplerinin sınıflandırmasını ve ağ güvenliğini

artırmakla kalmayıp, giderek daha bağlantılı bir dijital manzarada gelecekteki IoT

altyapısının gelişimine de öncülük etmektedir.

Anahtar kelimeler: Nesnelerin İnterneti, Akıllı Ulaşım Sistemleri, Ağ Saldırı Tespit

Sistemleri, Makine Öğrenmesi, Derin Öğrenme

viii

Acknowledgements

First and foremost, I extend my deepest gratitude and sincere appreciation to my

supervisor, Dr. V. Çağrı GÜNGÖR. His constant support and insightful guidance have

been invaluable throughout my Ph.D. journey. He has not only been a mentor but also an

inspiration in shaping me into a diligent researcher. I am truly fortunate to have been his

doctoral student.

My cordial thanks also extend to Dr. Celal ÖZTÜRK, Dr. Özkan Ufuk

NALBANTOĞLU, Dr. Abdulkadir KÖSE, and Dr. Rıfat KURBAN for serving on my

dissertation defense committee.

Finally, my sincere appreciation goes to my parents and my wife. Their patience,

continuous support, and encouragement have been a source of strength in my pursuit of

this thesis.

ix

TABLE OF CONTENTS
1 INTRODUCTION .. 1

1.1 RESEARCH OBJECTIVES AND SOLUTIONS .. 3
1.1.1 A deep neural network approach with hyper-parameter optimization for vehicle

type classification using 3-D magnetic sensor .. 4
1.1.2 Deep learning approaches for vehicle type classification with 3-D magnetic

sensor .. 5
1.1.3 An efficient network intrusion detection approach based on logistic regression

model and parallel artificial bee colony algorithm ... 6

1.2 RESEARCH OUTLINES .. 7

2 A DEEP NEURAL NETWORK APPROACH WITH HYPER PARAMETER
OPTIMIZATION FOR VEHICLE TYPE CLASSIFICATION USING 3-D
MAGNETIC SENSOR ... 9

2.1 MOTIVATION AND RELATED WORK .. 9

2.2 MAGNETIC SENSOR .. 11
2.2.1 Sensor .. 13
2.2.2 Mote ... 14
2.2.3 Gateway .. 15
2.2.4 Backend ... 16
2.2.5 Battery lifetime ... 16

2.3 CLASSIFICATION METHODS ... 18
2.3.1 Decision trees (C4.5) .. 19
2.3.2 Random forest (RF) ... 21
2.3.3 Extreme gradient boosting (XGBoost) .. 21
2.3.4 Logistic regression (LR) ... 23
2.3.5 Support vector machine (SVM) .. 24
2.3.6 Deep neural network (DNN) .. 26

2.4 VEHICLE TYPE CLASSIFICATION .. 28
2.4.1 Evaluation metrics ... 28
2.4.2 Dataset .. 29
2.4.3 Feature extraction ... 30
2.4.4 ANOVA F-test feature selection method ... 32
2.4.5 Focal cross-entropy loss function ... 33
2.4.6 Grid search hyperparameter optimization ... 34
2.4.7 Experiments .. 37

2.5 RESUTLS AND DISCUSSION .. 39
2.5.1 Classification methods .. 39
2.5.2 Battery lifetime ... 43

3 DEEP LEARNING APPROACHES FOR VEHICLE TYPE
CLASSIFICATION WITH 3-D MAGNETIC SENSOR .. 45

3.1 MOTIVATION .. 45

3.2 METHODS .. 46
3.2.1 Synthetic minority oversampling technique (SMOTE) ... 46
3.2.2 Two-dimensional multi-color visualization ... 48
3.2.3 Support vector machine (SVM) .. 50
3.2.4 Recurrent neural networks (RNN) ... 50

x

3.2.5 Long short-term memory (LSTM) .. 52
3.2.6 Gated recurrent unit (GRU) ... 53
3.2.7 Transfer learning ... 54

3.3 EXPERIMENTS .. 55

3.4 RESULTS AND DISCUSSION .. 58

4 AN EFFICIENT NETWORK INTRUSION DETECTION APPROACH
BASED ON LOGISTIC REGRESSION MODEL AND PARALLEL
ARTIFICIAL BEE COLONY ALGORITHM .. 63

4.1 INTRODUCTION .. 63

4.2 RELATED WORK .. 66

4.3 MATERIALS AND METHODS ... 68
4.3.1 Evaluation metrics ... 68
4.3.2 Datasets .. 69
4.3.3 One hot encoding ... 70
4.3.4 Data normalization ... 70
4.3.5 Bayesian hyperparameter optimization .. 71

4.4 PROPOSED LR-ABC METHOD .. 72
4.4.1 Artificial bee colony (ABC) algorithm .. 72
4.4.2 LR-ABC classification method ... 73
4.4.3 Computation on GPU ... 77

4.5 EXPERIMENTS .. 78

4.6 RESULTS AND DISCUSSION .. 79

5 CONCLUSIONS AND FUTURE PROSPECTS ... 87
5.1 CONCLUSIONS .. 87

5.2 SOCIETAL IMPACT AND CONTRIBUTON TO GLOBAL SUSTAINABILITY 89

5.3 FUTURE PROSPECTS ... 90

xi

LIST OF FIGURES

Figure 1.1 An illustration of an integrated architecture of Internet of Things [1]. 2

Figure 2.1 Illustration of the node's size and shape in the three-dimensional magnetic

sensor system. .. 12

Figure 2.2 The illustration diagram of the proposed system using the three-dimensional

magnetic sensor for vehicle type classification. .. 12

Figure 2.3 The system architecture of a three-dimensional magnetic sensor node. 13

Figure 2.4 The sensor unit and the mote within the three-dimensional magnetic sensor

system. ... 15

Figure 2.5 Schematic representation of random forest classification model. 20

Figure 2.6 Schematic diagram for logistic regression classification model. 24

Figure 2.7 Hyperplane illustration of support vector machine classification model [37].

 ... 25

Figure 2.8 Illustration of a deep neural network classification model. 26

Figure 2.9 Signal patterns for Light, Medium, and Heavy vehicles as captured by the

three-dimensional magnetic sensor. .. 29

Figure 2.10 Comparison of focal loss with cross-entropy loss across different values of

focusing parameter 𝜆 for imbalanced multi-class classification [40], [41]. 34

Figure 2.11 Schematic representation of grid search for hyperparameter optimization

across two different hyperparameters for classifiers [44]. 35

Figure 2.12 Flowchart of the vehicle type classification process. 38

Figure 2.13 Flowchart of the selection of the best N features for each classifier. 38

Figure 2.14 Battery lifetime based on the number of samples taken from the vehicle. . 44

Figure 3.1 The X-axis representations of original and synthetic signals (processed by the

SMOTE Algorithm) for light vehicles. .. 47

Figure 3.2 The X-axis representations of original and synthetic signals (processed by the

SMOTE Algorithm) for heavy vehicles. ... 47

Figure 3.3 Examples of multi-color visualization of axis-curve data for light vehicles. 49

Figure 3.4 Examples of multi-color visualization of axis-curve data for medium vehicles.

 ... 49

Figure 3.5 Examples of multi-color visualization of axis-curve data for heavy vehicles.

 ... 49

xii

Figure 3.6 Basic illustration of the recurrent neural networks [50]. 51

Figure 3.7 Illustration of the architectural differences between recurrent neural networks,

a long short-term memory, and a gated recurrent unit [51]. 52

Figure 3.8 Schematic diagram of a transfer learning model: The first phase involves

training with Task 1, followed by training a new model for Task 2 that

leverages the knowledge acquired from the model developed for Task 1 [56].

 ... 55

Figure 3.9 Block diagram of the classification process. ... 56

Figure 3.10 Illustration of various types of data and tasks [57]. 57

Figure 3.11 Performance matrix of VGG16, LSTM, GRU, and custom ensemble

classification methods, respectively. ... 60

Figure 3.12 The loss history of VGG16 model on training and validation steps. 61

Figure 3.13 The loss history of LSTM model on training and validation steps. 61

Figure 3.14 The loss history of GRU model on training and validation steps. 62

Figure 4.1 The proposed LR-ABC method’s accuracy for each different attack type on

the UNSW-NB15 dataset. .. 85

Figure 4.2 The proposed LR-ABC method’s accuracy for each different attack type on

the NSL-KDD dataset. ... 85

xiii

LIST OF TABLES

Table 2.1 A summary of research using different technologies for vehicle type

classification. ... 10

Table 2.2 The sensor node's features. ... 14

Table 2.3 Detailed cost analysis of the mote in the three-dimensional magnetic sensor

system. ... 14

Table 2.4 Technical Specifications of the Gateway. .. 16

Table 2.5 Power consumption profile for vehicle sensing and sensor node operations. 18

Table 2.6 Traditional confusion matrix. ... 28

Table 2.7 List of extracted features from three-dimensional vehicle signal. 30

Table 2.8 Hyperparameter optimization settings for machine learning classifiers in

vehicle type classification. ... 36

Table 2.9 Configuration of Deep Neural Network layers for vehicle type classification.

 ... 38

Table 2.10 Performance results of the machine learning classifier under default and grid

search cross-validation hyperparameter settings on signal dataset. 39

Table 2.11 Performance results of the machine learning classifier under default and grid

search cross-validation hyperparameter settings on extracted dataset. 40

Table 2.12 Performance results of the machine learning classifier under default and grid

search cross-validation hyperparameter settings on extracted dataset with

different number of features. ... 41

Table 2.13 The best 30 features selected for the Deep Neural Network classifier. 42

Table 2.14 Optimum hyperparameters configurations for each machine learning classifier

using grid search cross-validation technique. .. 43

Table 3.1 Distribution of vehicle types in training and test sets prior to oversampling

technique. ... 47

Table 3.2 Distribution of vehicle types in training and test sets after oversampling

technique. ... 48

Table 3.3 Legend of Colors for Representation of Conditions Along X, Y, and Z Axes.

 ... 48

Table 3.4 Configuration of LSTM and GRU layers for vehicle type classification. 58

xiv

Table 3.5 Performance results of the machine learning and deep learning classifiers on

three-dimensional vehicle type classification. ... 59

Table 4.1 Traditional confusion matrix. ... 68

Table 4.2 Class distribution of UNSW-NB15 and NSL-KDD datasets. 69

Table 4.3 Hyperparameter ranges for classification methods for UNSW-NB15 and NSL-

KDD datasets. .. 71

Table 4.4 Algorithm of the ABC. ... 75

Table 4.5 Algorithm of the proposed LR-ABC classification method. 76

Table 4.6 Algorithm of the calculation of the fitness function. 77

Table 4.7 Performance results of the proposed and other classification methods with

default parameters on NSL-KDD datasets. ... 79

Table 4.8 Performance results of the proposed and other classification methods with

optimum hyperparameters found by Bayesian optimization on NSL-KDD

datasets. ... 80

Table 4.9 Performance results of the proposed and other classification methods with

default parameters on UNSW-NB15 datasets. .. 81

Table 4.10 Performance results of the proposed and other classification methods with

optimum hyperparameters found by Bayesian optimization on UNSW-NB15

datasets. ... 82

Table 4.11 Optimum parameters found by Bayesian optimization on UNSW-NB15 and

NSL-KDD Datasets. .. 83

Table 4.12 The training time of each classifier in seconds on UNSW-NB15 dataset. ... 86

xv

LIST OF ABBREVIATIONS

2-D Two-Dimensional

3-D Three-Dimensional

ABC Artificial Bee Colony

ANOVA Analysis of Variance

CE Cross-Entropy

CNN Convolutional Neural Networks

CPU Central Processing Unit

CV Cross-Validation

DL Deep Learning

DNN Deep Neural Network

DT Decision Tree

FL Focal Loss

FPR False Positive Rate

FNR False Negative Rate

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

GS-CV Grid Search Cross-Validation

IoT Internet of Things

ITS Intelligent Transportation Systems

KNN K-Nearest Neighbor

LDA Linear Discriminant Analysis

LR Logistic Regression

LR-ABC Logistic Regression trained by Artificial Bee Colony

LSTM Long Short-Term Memory

ML Machine Learning

MLP Multi-Layer Perceptron

NIDS Network Intrusion Detection Systems

OvO One-vs-One

PRE Precision

REC Recall

xvi

ReLU Rectified Linear Unit

RF Random Forest

RNN Recurrent Neural Network

SMOTE Synthetic Minority Oversampling Technique

SVM Support Vector Machine

XGBoost Extreme Gradient Boosting

xvii

To my family

1

Chapter 1

1 Introduction

In our rapidly evolving digital landscape, the Internet has become an indispensable

part of modern life, enabling people to access communication, information, education,

entertainment, and e-commerce in the easiest and fastest way possible. The Internet is a

network that connects computers, smartphones, tablets, and many other electronic

devices. With the development of smart devices using the Internet, the need for the

Internet of Things (IoT) has increased. Along with the IoT, many devices, from our homes

to cars, from industrial equipment to health devices, have become connected to the

internet without human intervention [1]. IoT encompasses a wide range of applications

and technologies where everyday objects and devices are connected to the internet,

enabling them to collect and exchange data for various purposes. Figure 1.1 depicts a

comprehensive illustration of the integrated architecture utilized within the scope of IoT

systems. The advent of IoT has paved the way for more specialized applications, such as

Intelligent Transportation Systems (ITS). ITS represents a convergence of information

technology and transportation infrastructure, aimed at enhancing traffic efficiency and

road safety [2].

ITSs are a specific application area within IoT that focuses on improving

transportation and mobility through the use of connected sensors, devices, and data

analytics. In the context of ITS, vehicle type classification using IoT technologies

involves equipping vehicles with sensors and communication devices to gather data about

their characteristics and behaviors. This data can include information about the type of

vehicle, its speed, location, and more. In this thesis, Machine Learning (ML), and Deep

Learning (DL) techniques are then applied to analyze this data and classify vehicles type

based on the signals captured by the Three-Dimensional (3-D) magnetic sensors.

Effective vehicle type classification is essential for improving traffic management and

2

congestion control, facilitating long-term infrastructure planning, enhancing public

transportation and urban planning, ensuring environmental monitoring, and promoting

road safety. These contributes significantly enhance the overall quality of urban life and

form the backbone of modern ITS solutions.

Figure 1.1 An illustration of an integrated architecture of Internet of Things [3].

The IoT encompasses a vast array of internet-connected entities, from sensors and

actuators to various smart devices, all generating immense volumes of data [4]. This wide

spread of IoT devices, along with their growing complexity and important integration into

infrastructures like ITS, makes them much more vulnerable to cyberattacks [5]. In this

context, Network Intrusion Detection Systems (NIDS) emerge as indispensable to the

security of IoT ecosystems. By providing comprehensive monitoring, robust protection

against threats, ensuring data integrity, and compliance with regulatory mandates, NIDS

are foundational to safeguarding IoT devices and their networks. Their role is not merely

protective but pivotal for the successful deployment and operational integrity of IoT

technologies. This thesis presents a machine learning approach to detect network

anomalies and mitigate the multifaceted challenges posed by networks, such as high

dimensionality, class imbalance, and the dynamic nature of network threats.

3

1.1 Research Objectives and Solutions

The IoT integrates a network of smart devices into our daily routines, establishing

a complex array of data and connections that present both opportunities and challenges

in terms of security and interpretation. This thesis recognizes the reality that each smart

device becoming a part of the vast IoT network unleashes enormous potential for

changing our lives, a potential that can only be realized with the development of advanced

artificial intelligence algorithms and rigorous security mechanisms. Therefore, this thesis

embarks on a pioneering exploration into vehicle type classification and network security

within the IoT framework, employing ML and DL algorithms.

The classification of vehicle types is critical for the efficient functioning of urban

traffic systems, the reduction of carbon emissions, and the improvement of transportation

infrastructure, which is increasingly vital due to urban growth. ITS exemplifies the

transformative impact of IoT in enhancing the efficiency and safety of movement within

our cities and beyond. The application of sophisticated machine learning and deep

learning techniques, when integrated with a single 3-D magnetic sensor and appropriate

preprocessing methodologies, is posited to effectively address the issues of high

dimensionality and class imbalance in vehicle datasets, consequently enhancing the

precision and efficacy of vehicle type classification. Accordingly, novel approaches to

vehicle type classification have been introduced in traffic management. However, the

scope of this thesis extends beyond vehicle type classification; it seeks to innovate in the

development of NIDS that serve as the sentinels of the IoT domain. As our reliance on

IoT devices for privacy and security grows, the centrality of NIDS in protecting the

integrity of our digital ecosystems becomes indisputable. This thesis tackles the

challenges associated with ML-based NIDS, including the complexity of processing high-

dimensional data, the persistent issue of class imbalance, and the elusive nature of

network threats. It posits that integrating the machine learning model with the swarm

intelligence algorithm will significantly enhance the efficacy of anomaly-based NIDS,

surpassing the capabilities of traditional systems. Additionally, the efficiency of the

proposed model is expected to benefit from parallel computing techniques, leading to

quicker processing and response times. In general, it aims to develop a robust defense

mechanism capable of not just detecting anomalies but also predicting and adapting to

emerging threat patterns, thereby establishing a secure framework for the IoT.

4

Overall, the thesis begins with an in-depth evaluation of vehicle type classification,

introducing two novel approaches. It then presents a novel approach for enhancing

network anomaly detection on NIDS. The research primarily delves into three specific

studies:

1. A deep neural network approach with hyper-parameter optimization for vehicle

type classification using 3-D magnetic sensor [6].

2. Deep learning approaches for vehicle type classification with 3-D magnetic sensor

[7].

3. An efficient network intrusion detection approach based on logistic regression

model and parallel artificial bee colony algorithm [8].

1.1.1 A deep neural network approach with hyper-parameter

optimization for vehicle type classification using 3-D magnetic sensor

This chapter endeavors to enhance vehicle type classification techniques within

ITS by leveraging innovative sensor technology and advanced ML algorithms. The aim

is to develop a system adept at distinguishing between different vehicle types using a

novel methodology. The proposed systems include a 3-D magnetic sensor placed on a

single-lane road to detect magnetic disturbances from vehicles. This system includes a

sensor mote to capture sensor readings, a gateway for data transmission to the data center,

and a web server for data processing and presentation.

Two datasets are generated: the signal data, derived from the magnetic sensor's

raw signal and processed through zero-padding, and the extracted data, comprising 44

features extracted from the signal data. Both datasets undergo normalization for

consistency. The raw signal data, while comprehensive, may contain excessive noise or

irrelevant information that could mislead ML models, leading to high dimensionality,

overfitting, and increased computational costs. Feature extraction and selection refine the

data, reducing dimensionality and computational demands while enhancing model

accuracy and interpretability. The extracted dataset, optimized with the best-selected

features for each classifier, addresses these challenges.

The thesis employs several classification algorithms, including C4.5, Random

Forest (RF), Logistic Regression (LR), Extreme Gradient Boosting (XGBoost), Support

5

Vector Machine (SVM), and Deep Neural Network (DNN), implemented using Python,

Scikit-Learn, and Keras. The DNN, specifically, is designed with a unique architecture to

enhance performance. It incorporates techniques like batch normalization and dropout

rates to prevent overfitting and employs the Focal Loss (FL) function, which is pivotal in

addressing class imbalance issues by focusing more on challenging cases. The

methodology also includes rigorous testing and validation protocols. The datasets are

split, with 70% used for training and 30% for testing. The training process involves 5-

fold Cross-Validation (CV) to ensure the robustness and generalizability of the models.

Hyperparameter optimization is carried out using a grid search optimization algorithm

with CV, fine-tuning each model for best performance.

Overall, the findings indicate that feature extraction and selection enhance the

performance of ML algorithms, while the FL function improves DNN results. Notably,

the DNN, optimized with the selected 30 features using Grid Search Cross-Validation

(GS-CV), achieves superior performance with an accuracy of 91.15% and an f-measure

of 91.50%.

1.1.2 Deep learning approaches for vehicle type classification with 3-D

magnetic sensor

In this chapter, a novel approach to vehicle type classification is explored by

applying advanced DL techniques, including Long Short-Term Memory (LSTM) and

Gated Recurrent Unit (GRU), and transfer learning algorithms such as VGG16, VGG19,

Xception, MobilNet, MobilNetV2, DenseNet121, DenseNet169, and DenseNet201.

Additionally, a custom soft voting ensemble model is employed to enhance performance

results. A key innovation is the conversion of vehicle signal data into Two-Dimensional

(2-D) image formats, enabling the use of sophisticated image-based DL models to

improve classification effectiveness.

The dataset is carefully segmented, allocating 30% as the test set using stratified

random sampling. The training set is enriched with the Synthetic Minority Oversampling

Technique (SMOTE) to increase sample diversity. The core classification strategy

involves LSTM and GRU models, which are well-suited for time-series data. This

requires reshaping the dataset and applying masking due to different sample lengths. The

transfer learning approach is also employed, where the vehicle signals are converted into

6

2-D images. This approach leverages pre-trained models, freezing their convolutional

base layers and retraining the top layers. In addition to these advanced classification

methods, the study also incorporates SVM for its simplicity and effectiveness in handling

classification tasks. Hyperparameter optimization using grid search ensures that SVM

classifiers are trained with the most suitable parameters.

Overall, the findings indicate that converting signal data into 2-D images enhances

the performance of the vehicle type classification. The custom soft voting ensemble

method, which combines time-series and image data for LSTM, GRU, and VGG16

models, demonstrates remarkable performance, achieving an accuracy of 92.92% and an

f-measure of 93.42%. This marks an improvement over previous studies, especially in

terms of accuracy and f-measure performance. The insights from this study can lead to

the development of more reliable and precise classification systems, potentially

integrating with an ensemble method to further improve classification performance.

1.1.3 An efficient network intrusion detection approach based on

logistic regression model and parallel artificial bee colony algorithm

This chapter develops a sophisticated approach to detecting anomalies in networks,

addressing the escalating cybersecurity challenges in the context of the exponential

growth of the Internet and IoT. Recognizing the limitations of current NIDS, particularly

in terms of accuracy, f1-measure, false positive rate, and false negative rate, the research

introduces a novel anomaly-based detection methodology.

The core of this innovative approach is a new anomaly-based NIDS approach using

LR, known for its straightforwardness, rapid classification in real-time, and efficiency.

To circumvent LR’s tendency to convergence to poor local minima, the system is

developed with the Artificial Bee Colony (ABC) algorithm. This algorithm, inspired by

the natural world, mimics the food-gathering patterns of honey bees and provides several

advantages: (i) it requires minimal prior knowledge about the data and human

intervention, allowing for classification without specific data preprocessing techniques;

(ii) hybridizing the ABC approach with ML techniques improves model results; (iii) the

ABC method is less dependent on known labels within the dataset compared to many ML

approaches; (iv) it is inherently distributed and performs well in parallel and distributed

computing environments.

7

The proposed model undergoes rigorous evaluation against ML and DL models on

two publicly available NIDS datasets, UNSW-NB15 and NSL-KDD, each providing

training and test sets. Essential data preprocessing steps, such as one-hot encoding and

data normalization, are applied to ensure accurate and efficient processing of the

categorical and numerical data within the NIDS datasets.

In summary, this chapter presents a comprehensive and efficient approach to NIDS

using an LR trained by the ABC algorithm (LR-ABC). The proposed LR-ABC model

stands out for its efficiency, particularly in reducing computational time through Central

Processing Unit (CPU) and Graphics Processing Unit (GPU) parallelization techniques.

The findings demonstrate the model's effectiveness, achieving a significant accuracy of

88.25% on the UNSW-NB15 dataset and 90.11% on the NSL-KDD dataset.

1.2 Research Outlines

The thesis is meticulously organized to ensure thoroughness and clarity. Chapter 2

details the specifications and functionalities of the 3-D magnetic sensor node. It then

comprehensively explains ML and DNN classification algorithms. The chapter

establishes a foundation by defining the evaluation metrics pivotal for measuring the

algorithms' efficacy. A description of the employed dataset sets. The process of feature

extraction is then systematically detailed, followed by a discourse on the ANOVA F-test

feature selection method, which is instrumental in pinpointing key features. The chapter

advances with a discussion on the adoption of the focal CE loss function, thoughtfully

chosen to counteract class imbalance within the dataset. A thorough examination of grid

search techniques follows, emphasizing their significance in hyperparameter optimization

to enhance model performance. The chapter concludes with a presentation of the

experimental procedures, the results obtained, and a comparative analysis of the proposed

approach against existing classification algorithms.

Chapter 3 further expands the methodological discourse, starting with an

introduction to the SMOTE for rectifying data imbalances. It introduces an innovative

method for 2-D multi-color data visualization, thereby enriching the analysis with a new

visual perspective. The chapter then provides an in-depth examination of recurrent neural

network (RNN) paradigms, including LSTM and GRU, alongside transfer learning

techniques. The narrative concludes with the integration of a custom soft voting ensemble

8

model, followed by a detailed presentation of experimental approaches and outcomes,

and a comparative analysis that benchmarks the proposed model against traditional

classification techniques. This chapter not only builds upon the foundational

methodologies presented in Chapter 2 but also showcases the fusion of various advanced

algorithms to create a robust vehicle classification system.

Chapter 4 provides a detailed description of the dataset used in NIDS and

establishes a foundation by defining the crucial evaluation metrics for assessing algorithm

efficacy. It explains the processes of normalization, one-hot encoding, and the

implementation of Bayesian hyperparameter optimization to fine-tune the detection

system. The chapter then introduces the fundamental concepts of LR and the ABC

algorithm, laying the theoretical groundwork for the proposed model and addressing

computation optimizations on CPUs and GPUs. Lastly, it presents a thorough analysis of

the model's performance on publicly available NIDS datasets.

Finally, Chapter 5 summarizes the research findings, explains the societal impact

and contribution to global sustainability, and outlines several potential areas for future

investigation.

9

Chapter 2

2 A deep neural network approach with

hyper parameter optimization for vehicle

type classification using 3-D magnetic

sensor
This chapter evaluates vehicle type classification using a single 3-D magnetic

sensor and ML algorithms. It introduces an innovative ML approach, leveraging DNN

with FL. This method incorporates hyperparameter optimization and feature extraction

and selection techniques to effectively address the challenge of vehicle type classification.

The proposed method is comprehensively investigated alongside other classification

techniques. The proposed method undergoes comprehensive investigation and

comparison with other classification techniques, providing a detailed analysis of its

effectiveness.

2.1 Motivation and Related Work

According to the latest published data from the International Organization of Motor

Vehicle Manufacturers, the total number of vehicles produced worldwide in 2019 was 92

million, and the current global vehicle population is approximately 1.32 billion [9]. The

significant increase in the number of vehicles has led to various problems. In recent years,

specific attention has been given to ITS to enhance the quality of life, improve traffic

administration, and plan road maintenance effectively [10]. In ITS, traffic monitoring

systems gather data, including the number, types, and speed of vehicles, to manage

roadway systems, predict transportation needs, and enhance safety.

10

In many countries, significant investments are being made to develop, implement,

and maintain traffic monitoring systems. For effective traffic planning, it is crucial to

classify vehicle types correctly. Recently, researchers have studied different vehicle

classification systems to accurately classify vehicle types. Due to significant technical

challenges, various systems have been proposed using different technologies, including

accelerometers [11, 12], acoustic sensors [13, 14], loop detectors [15, 16], LIDAR [17],

piezoelectric sensors [18], vibration sensors [19], [20], magnetic sensors [21-30], cameras

[31], and hybrid methods [32]. In Table 2.1, existing studies are compared and

summarized based on different technologies.

Table 2.1 A summary of research using different technologies for vehicle type

classification.

Study Technology Sample Size ACC (%) Cost Energy Efficiency

[3] Accelerometer 226 99.0 NA NA

[4] Accelerometer 142 89.0 NA NA

[5] Acoustic 160 73.42 NA NA

[6] Acoustic 106 71.69 NA NA

[24] Hybrid 50 90.0 NA NA

[7] Loop Detectors 1.330 94.21 NA NA

[8] Loop Detectors 21.600 91.0 NA NA

[10] LIDAR 872 86.90 NA NA

[11] Vibration 354 80.22 NA NA

[12] Vibration 415 89.41 NA NA

[13] Magnetic 5.837 88.0 NA NA

[14] Magnetic 188 83.0 $50 NA

[15] Magnetic 253 93.66 NA NA

[16] Magnetic 20.353 96.40 NA NA

[17] Magnetic 12.085 97.65 $80 NA

[18] Magnetic 1.442 80.55 NA NA

[19] Magnetic 300 95.46 NA NA

[20] Magnetic 732 95.40 NA NA

[21] Magnetic 412 94.41 NA NA

[22] Magnetic 6.042 97.83 NA NA

Developing vehicle type classification systems poses extremely challenging tasks.

Sensor types, hardware and parameter settings, configuration processes, operating

environments, resistance to weather and noise, durability (battery life), and even

11

maintenance and installation costs are important features and requirements for these

technologies. Compared to other technologies, magnetic sensors are particularly preferred

due to their extreme climate resistance, compact size, easy set-up, and reasonable price.

Additionally, given the effectiveness of the ML algorithms in various fields [33-37],

researchers are exploring the classification of vehicle types using 3-D magnetic sensors

based on ML. Several ML methods are applied, including Back Propagation Neural

Networks [26, 27], SVM [25-28], RF [26-28], XGBoost [26], C4.5 [25-28], K-Nearest

Neighbor (KNN) [25], [27], [28], Naive Bayes [25], and Convolutional Neural Networks

(CNN) [30], for vehicle type classification using 3-D magnetic sensors.

Overall, it is evident that there is a need to improve the classification of vehicle

types using ML algorithms. While a significant amount of research has been conducted

using ML algorithms, a comprehensive analysis of these algorithms is essential.

Therefore, this chapter efficiently addresses feature extraction, feature selection, and

hyper-parameterization. Additionally, a new method is proposed, demonstrating

improved results in vehicle type classification.

This chapter is organized as follows: Section 2.2 details the specifications and

functionalities of the 3-D magnetic sensor node. Section 2.3 outlines the proposed

approach and introduces the classification methods employed in this chapter. Section 2.4

is dedicated to the performance evaluation of the proposed approach, comparing it with

various classification algorithms. The final section provides a comprehensive discussion

of the results obtained in this chapter.

2.2 Magnetic Sensor

The proposed system consists of a 3-D magnetic sensor for measuring the intensity

of magnetic fields, a mote responsible for reading the sensor outputs, a gateway

responsible for transmitting the data provided by the sensor mote to the data center, and

a web server responsible for analyzing and displaying the collected data. The capsule

structure that protects the system from environmental factors is shown in Figure 2.1. The

proposed system diagram is displayed in Figure 2.2.

12

Figure 2.1 Illustration of the node's size and shape in the three-dimensional

magnetic sensor system.

Figure 2.2 The illustration diagram of the proposed system using the three-

dimensional magnetic sensor for vehicle type classification.

13

2.2.1 Sensor

In order to extract new features for the classification algorithms, a single 3-D

magnetic sensor is used as a sensing unit. The sensor node's features are as follows: The

supply voltage ranges from 0.9 to 3.6 volts (V), the maximum data rate is 5 kilobits per

second (kbps), the transmit (TX) power is +30 decibels relative to one milliwatt (dBm),

the radio frequency (RF) ranges from 863 to 876 megahertz (MHz), the RF

communication distance ranges from 100 to 700 meters (m), the operating temperature

ranges from -25 degrees Celsius (°C) to 80°C, and the mechanical robustness is up to

10,000 kilograms (kg). It has a waterproof ingress protection rating of IP67, signifying

its robust defense capabilities. The digit '6' refers to complete protection against solid

matter like dust, and the digit '7' refers to its ability to resist liquid intrusion (immersion

up to 1 meter). The battery’s lifetime is 2 years. The system architecture of a 3-D magnetic

sensor node is shown in Figure 2.3.

Figure 2.3 The system architecture of a three-dimensional magnetic sensor node.

The cost analysis of the mote is as follows: The microcontroller unit (MCU, model

CC1312) costs $7, the RF module (model SE2435L) costs $3, the magnetic sensor array

costs $5, the flash memory costs $1, the antenna costs $2, and the printed circuit board

(PCB) costs $7. The features of sensor nodes are shown in Table 2.2, and the cost of each

component is provided in Table 2.3. The proposed sensor node has a total cost of $25,

3D MAG
Sensor

Battery Management

8 bit Low Power Sensor Controller IC

Radio Unit

Cortex M3
ARM MCU

Cortex M0
ARM MCU

SDR based
Radio

Single IC for
Processing

Sensor Array

14

which is not mentioned in most of the studies. A limited number of recent studies [19],

[22] mentioned that their sensor costs are $50 and $80, respectively, while our sensor

node costs much less compared to these studies.

Table 2.2 The sensor node's features.

Feature Description

Voltage 0.9-3.6 V

Max. Date rate 5 kbps

Tx Power +30 dBm

RF Frequency 863–876 MHz

RF Communication distance 100 m–700 m

Operation temperature −25 +80 ◦C

Mechanical robustness 10 000 kg

Waterproof IP rating IP 67

Batter lifetime 2 years

Table 2.3 Detailed cost analysis of the mote in the three-dimensional magnetic sensor

system.

Component part Price

MCU (CC1312) $7

RF Module (SE2435L) $3

Magnetic sensor array $5

Flash memory $1

Antenna $2

PCB $7

Total $25

2.2.2 Mote

The developed mote includes a CC1312 wireless MCU, which features a 48-MHz

Cortex-M4F microcontroller, a special radio controller based on Cortex-M0, an ultralow-

power 8-bit sensor controller integrated circuit (IC), 80 kilobytes (kB) of static random

access memory (SRAM), a universal asynchronous receiver/transmitter (UART), an

inter-integrated circuit (I2C), and a serial peripheral interface (SPI) [38]. Communication

with the gateway is ensured by the CC1312 wireless MCU operating at the 868 MHz

15

band, adopting the low-rate wireless personal area network (LR-WPAN), which is an

Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 communication

protocol. An RF front-end module is adopted to increase the RF power output [39]. The

developed embedded software on the mote is used for sensor calibration, real-time sensor

measurement reading, temporary data processing and storage, and finally forwarding the

stored data to the gateway. A picture of the sensor and the mote is provided with labeled

components in Figure 2.4.

Figure 2.4 The sensor unit and the mote within the three-dimensional magnetic

sensor system.

2.2.3 Gateway

The gateway is equipped with the same mote hardware connected to a Raspberry

Pi [40]. The data acquired from sensor motes is transmitted to the data center via the

Linux operating system, which is run on the Raspberry Pi. The same type of transceiver

is used for the mote connection. The gateway features are as follows: The voltage supply

is 5 V; the TX power is +30 dBm; the RF frequency is between 863 and 876 MHz; the

Sensor

Rf front-end
module Low power

MCU JTAG port

Battery Management
Unit

Power Input

16

RF communication distance ranges from 100 to 700 m; the operation temperature range

is between −25 °C and 80 °C; and the maximum number of connected nodes can be up to

100. The gateway properties are provided in Table 2.4.

Table 2.4 Technical Specifications of the Gateway.

Feature Description

Voltage 5 V

Tx Power +30 dBm

RF Frequency 863–876 MHz

RF Communication distance 100 m–700 m

Operation temperature −25 +80 ◦C

Max. Number of connected nodes 100

2.2.4 Backend

The sensor values are stored along with a reference camera system to facilitate data

tagging and store the data for later offline processing. A backend cloud system has been

developed. By synchronizing the camera with the magnetic sensor node, the user selects

the time frame for cropping and tagging the videos with the magnetic sensor node’s data.

The video dataset is saved in the NoSQL database for future usage and long-term

retention.

2.2.5 Battery lifetime

Two different measurement methods are used to obtain the magnetic signature of

the vehicle. The first of these methods is the time-dependent measurement method, which

is continuously based on receiving data from sensors at certain time intervals. The

primary advantage of this method is energy consumption. However, there is a possibility

that the sensor cannot detect significant magnetic field changes, leading to an increase in

the error rate in the magnetic signature.

The second method, called vector magnitude-dependent measurement, is the

method that takes samples according to certain magnetic field changes (e.g., every 10

microteslas). The primary benefit of this method is that it captures all magnetic field

changes, allowing for a larger sample amount that can be processed and a more accurate

17

signature. However, adding timestamp information increases the size of the data to be

transmitted in a narrow band, leading to a significant increase in battery consumption.

In light of this information, during the project’s implementation, the second method

was used to detect magnetic changes during the vehicle’s entry and exit from the sensor.

The first method was used to sample the vehicle’s movement on the sensor based on time.

Power consumption is optimized in this way.

As the vehicle passes over a 3-D magnetic sensor node, the node wakes up, records

the vehicle’s measurements, transmits them to the gateway, and then sleeps again. The

sampling frequency of the sensor is set to 400 Hz, which is the maximum frequency, in

order to obtain better signal data and detect the vehicle’s passing with minimal time loss.

Reducing the sampling frequency would decrease the current consumption of the sensor,

thereby increasing the battery life of the sensor node. However, it would also result in a

decrease in data quality, adversely affecting the performance results of vehicle

classification.

The sensor node was mounted on a single-lane road. Magnetic distortions were

measured for a total of 50 different vehicles, and the threshold (T) and references for X,

Y, and Z were determined; the equation is shown in (2.1). For new vehicles, magnetic

distortions are denoted as 𝑋𝑜, 𝑌𝑜, and 𝑍𝑜, while the reference magnetic distortions for

the vehicles are 𝑋𝑟, 𝑌𝑟, and 𝑍𝑟. If the result of the equation is greater than the T value,

the vehicle's magnetic distortions are recorded. The magnetic distortions of the 50

different vehicles were used to determine that T is equal to 110.

'(𝑋! − 𝑋")# + (𝑌! − 𝑌")# + (𝑍! − 𝑍")#
! >T (2.1)

The sensor consumes 20 microamperes (uA) during the sleep period. The average

power consumption for a vehicle includes the sensor measurement period and packet

transmission, with durations of 8 milliseconds (ms) and 12 ms, respectively. Packet

transmission consists of pre-processing (10 milliamperes (mA) per ms, 2 ms), RX (1

amperes (A) per ms, 5 ms), TX (20 mA per ms, 3 ms), and post-processing (10 mA per

ms, 2 ms). The sensor measurement period uses 40 mA per ms, and packet transmission

18

uses 425 mA per ms. In total, the average power consumption for a vehicle is 5420 mA

with a duration of 20 ms. A vehicle's average power consumption is shown in Table 2.5.

Table 2.5 Power consumption profile for vehicle sensing and sensor node operations.
Name Average current (per ms) Duration

Sensor measurement 40 mA 8 ms

Packets transmit (Pre-processing) 10 mA 2 ms

Packets transmit (RX) 1 A 5 ms

Packets transmit (TX) 20 mA 3 ms

Packets transmit (Post-processing) 10 mA 2 ms

2.3 Classification Methods

This chapter presents a summary of the ML and DL techniques utilized in the

development of this thesis. The examination begins by considering Decision Trees (DTs),

with a particular focus on the C4.5 algorithm, known for its ability to process diverse data

types and generate clear decision rules. The C4.5 algorithm lays the groundwork for

advanced ensemble methods, such as RF and XGBoost, which enhance prediction

accuracy by combining the strengths of multiple models, thereby reducing individual

biases and increasing the overall model precision. In addition, the study examines LR,

which is well-known for its unique ability to do binary classification and its flexibility in

handling multiclass settings. SVM is also examined for its distinctive capability to

identify the best hyperplane, a crucial element in both binary and multiclass classification

applications. In the exploration of DNNs, the thesis uncovers their potential to reveal

complex patterns hidden within high-dimensional data, outperforming the more limited

linear models. The ensuing sections offer an in-depth review of these algorithms,

examining their theoretical foundations, practical implementations, and rigorous

empirical testing. The aim is to elucidate their strengths, pinpoint their limitations, and

demonstrate their capacity to turn raw data into insightful analyses.

19

2.3.1 Decision trees (C4.5)

Decision trees, specifically the C4.5 algorithm, are a type of supervised learning

method commonly employed in classification tasks. They are capable of handling both

categorical and continuous input and output variables. The goal is to construct a model

capable of predicting the value of the dependent variable by deriving straightforward

decision rules from the independent variables. Entropy (E) and Gini (G) are used to

determine these criteria in establishing these rules.

Entropy measures the uncertainty or unpredictability within a system, assessing the

level of randomness in the class distribution among the dataset's examples. In a dataset

with multiple classes, entropy for a dataset S can be calculated using equation (2.2), where

𝑝$ represents the proportion of samples belonging to class 𝑖 within the dataset.

Information Gain (IG) quantifies the difference in entropy between a dataset before and

after it is divided based on a particular feature. It is used to decide the characteristic on

which to divide at each stage of constructing the tree. IG is determined by subtracting the

entropy before the split from the weighted sum of the entropies of each subgroup resulting

from the split, as shown in equation (2.3). The aim is to identify the feature that yields the

most significant decrease in entropy (the highest IG) for the split. 𝑇 represents the set of

all possible outcomes (subsets) after the split. 𝑆% is the subset of 𝑆 corresponding to the

outcome 𝑡, and |𝑆%|	/𝑆 is the weight of the subset 𝑆%. By selecting splits that maximize

IG, the model incrementally increases the predictability of the outcome, leading to a

structured decision-making process that accurately captures the data's inherent patterns.

The resultant prediction model takes the form of a tree, where each path from the root to

a leaf represents a series of decisions culminating in a predicted outcome. Ideally, these

paths clearly and accurately categorize the input samples based on their attributes.

𝐸(𝑆) = 	−6 𝑝$
&

$'(
	 log#(𝑝$) (2.2)

𝐼𝐺(𝐴, 𝑆) = 𝐸(𝑆) −	6
|𝑆%|
𝑆%	*	+
	𝐸(𝑆%) (2.3)

𝐺(𝑆) = 1 −6 𝑝$#
&

$'(
 (2.4)

20

The Gini index evaluates the probability of incorrect labeling of an element in the

dataset if it were randomly labeled according to the distribution of labels in the subset.

The Gini impurity of a dataset 𝑆 may be represented quantitatively using equation (2.4),

where 𝑝$ is the probability of an item being categorized into a class 𝑖 in the dataset 𝑆, and

𝑛 represents the total number of classes. The probability 𝑝$ is calculated by dividing the

number of things classified with class 𝑖 by the total number of items in the dataset. To

compute the impurity, one subtracts the total of the squared probabilities of all classes

from one. The Gini index is often favored in DT algorithms because it is computationally

simpler than entropy. Unlike entropy, Gini does not need logarithmic computations,

which are needed to compute the logarithm of probabilities. Despite their different

mathematical formulations, Gini impurity and entropy often lead to the creation of similar

DTs. However, due to its computational efficiency—particularly with large datasets and

numerous features—the Gini index may be preferred in several implementations.

Figure 2.5 Schematic representation of random forest classification model.

21

2.3.2 Random forest (RF)

The Random Forest (RF) algorithm is an ensemble approach that constructs

multiple DTs during the training phase and determines the class through majority voting

based on the classifications provided by the individual trees [41]. The inherent nature of

RF enables it to enhance the predictive accuracy of individual DTs by aggregating their

results. By averaging out the biases of individual trees, the overall variance of the final

model is reduced, resulting in a more precise and robust classifier. Moreover, RF handling

overfitting effectively mitigates overfitting through the use of several trees in the

ensemble. The process begins with bootstrapping the dataset, which involves generating

numerous subsets from the original dataset using random sampling with replacement.

Each subset is then used to train an individual DT. In constructing a DT, unlike standard

DTs, each node is split using the best among a randomly chosen subset of predictors at

that node. This introduces randomness into the model, ensuring a diverse collection of

trees in the forest. Upon training completion for all the trees, predictions for new and

unseen data are made by aggregating the votes from each tree to determine the most

probable class. The final prediction of the RF is made by selecting the class with the

highest number of votes from all the trees. Figure 2.5 depicts the schematic representation

of RF classification.

2.3.3 Extreme gradient boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) is an ensemble learning method [42], which

means that it aggregates the predictions from multiple models to produce a final outcome.

Unlike bagging, as utilized in RF, XGBoost constructs trees sequentially. Each successive

tree is built to correct the errors of its predecessors. The term 'gradient boosting' refers to

the method's ability to minimize a loss function by successively adding weak learners,

typically DTs with limited depth, in a manner akin to gradient descent optimization. Weak

learners in XGBoost are characterized as shallow trees with few levels. Despite their

simplicity, when combined, these weak learners produce a powerful model. XGBoost

builds upon the basic gradient boosting framework by introducing a more regularized

model formulation, which helps to prevent overfitting and consequently leads to enhanced

performance. During each iteration, XGBoost adds a new tree designed to predict the

residuals or gradients of the cumulative model concerning the loss function. Furthermore,

XGBoost implements L1 (Lasso Regression) and L2 (Ridge Regression) regularization

22

methods. These methods serve to constrain the magnitude of the feature weights, thus

reducing the risk of overfitting and improving the model's ability to generalize to unseen

data.

The objective function of XGBoost is a combination of a loss function and a

regularization term. The aim is to minimize objective function as shown in equation (2.5),

where 𝜃 represents the parameters of the model and 𝑛 is the number of training instances.

The loss function 𝑙	(𝑦$, 𝑦C$) quantifies the discrepancy between the predicted value 𝑦$ and

the actual label 𝑦$. K is the number of trees and Ω(𝑓,) signifies the regularization term

for the k-th tree. The regularization term Ω(𝑓,), which penalizes the model’s complexity,

is defined in equation (2.4), where γ controls the complexity through the number of leaves

in the tree. 𝑇, is the count of leaves in the k-th tree, 𝜆 is the L2 regularization term

affecting the weights, and 𝑤, is the vector of leaf weights for the k-th tree.

𝑂𝑏𝑗(𝜃) = 	∑ 𝑙	(𝑦$, 𝑦C$)&
$'(+	∑ Ω(𝑓,)-

,'((2.5)

Ω(𝑓,) = 𝛾𝑇, +	
1
2 𝜆
‖𝑤,‖# (2.6)

At each iteration 𝑡, a new tree 𝑓% is added to the model to correct the errors made

by the existing ensemble of trees. This new tree is trained to predict the residual errors of

the model up to that point. The residual for the 𝑖-th instance following the (𝑡 − 1)-th

iteration is depicted in equation (2.7). Unlike the actual labels, 𝑓% is trained on these

residuals. This approach allows the new tree to refine the predictions made by the prior

ensemble. Once a tree is learned, the model undergoes an update, as specified in equation

(2.8), with 𝜂 being the learning rate that modulates the rate at which the model adapts.

This iterative process is repeated a set number of times or until the model converges. The

final prediction for any instance is the aggregate of the predictions from all trees, as

presented in equation (2.9).

𝑟$(%) =	𝑦$ −	𝑦C$
(%0() (2.7)

𝑦C$
(%) =	𝑦C$

(%0() + 	𝜂	𝑓%(𝑥$) (2.8)

𝑦C$ =	6 𝑓%(𝑥$)
+

%'(
 (2.9)

23

2.3.4 Logistic regression (LR)

Logistic regression (LR) is a fundamental statistical technique widely used for

binary and multi-class classification tasks [43] . It is very efficient in situations when the

goal is to classify data points into one of two distinct classes based on a set of input

features. This approach is based on the concepts of probability and works by evaluating

the chance that a given instance belongs to a certain class. The logistic function,

commonly referred to as the sigmoid function, plays a crucial role in LR, as seen in

equation (2.10). In this equation, z represents a linear combination of the input features,

where 𝐵 is bias and 𝑤(, 𝑤#, … , 𝑤& are coefficients for the inputs 𝑥(, 𝑥#, … , 𝑥& as illustrated

in equation (2.11). The model parameters, 𝑤(, 𝑤#, … , 𝑤& are estimated using a training

dataset. This is achieved by maximizing the probability of the observed data, often by

minimizing a cost function such as the CE loss. The LR cost function is defined by

equation (2.12), which 𝑚 is the number of training samples, 𝑦($) represents the observed

class label for the 𝑖 − 𝑡ℎ samples and 𝜎U𝑧($)W is the predicted probability that 𝑦($) = 1.

Gradient descent techniques are used to determine the parameters 𝑤 that minimize the

cost function 𝐽(𝛽). During the process of gradient descent, the parameters 𝑤 are updated

in an iterative manner, moving in the direction that results in the fastest drop of the cost

function. After the model has been trained, it is possible to make predictions on fresh data

by using the logistic function. Figure 2.6 displays the schematic diagram for LR

classification.

𝜎(𝑧) = 	
1

1 +	𝑒01 (2.10)

𝑧 = 	𝐵 +	𝑤(𝑥(+	𝑤#𝑥# +⋯+	𝑤&𝑥&	 (2.11)

𝐽(𝛽) = 	−
1
𝑚	6 \𝑦($) 	 log 𝜎U𝑧($)W + U1 −	𝑦($)W	log(1 − 𝜎U𝑧($)W)]

2

$'(
 (2.12)

24

Figure 2.6 Schematic diagram for logistic regression classification model.

2.3.5 Support vector machine (SVM)

A Support Vector Machine (SVM) is a robust and flexible supervised ML algorithm

utilized for the purposes of classification and regression. In binary classification, the core

objective of SVM is to identify the optimal hyperplane that effectively separates the data

points of one class from another. The hyperplane is selected to maximize the margin,

defined as the distance between the hyperplane and the nearest data point of any class.

For multiclass classification, the One-vs-One (OvO) approach is employed, wherein each

class is compared against every other class in a series of binary classification tasks. A

binary classifier is thus developed to predict the probability of a data item belonging to

one class as opposed to another. For each pair of classes, a dedicated binary classifier is

trained, and the class that predominates across all pairings is deemed the final

classification. In the OvO context, the decision function for a SVM is derived from the

principle of maximizing the margin between classes. This is usually expressed in equation

(2.13), where the weight vector 𝑤 is orthogonal to the hyperplane and 𝑥 represents the

input feature vector. The bias term, denoted as 𝑏, is responsible for offsetting the decision

border from the origin. Each binary classifier aims to determine the most discriminative

hyperplane that separates the two classes, as exemplified in Figure 2.7.

This is accomplished by solving the optimization problem presented in equation

(2.14), while adhering to the constraints outlined in equation (2.15). Notably, the function

𝜙(𝑥$) has the potential to map the input data to a space with a higher number of

dimensions. The label 𝑦$ represents the label assigned to the instance 𝑥$, where 𝑦$ belongs

to the set {-1,1}. The slack variables, 𝜉$, allow for degree of misclassification within the

soft margin framework. The penalty parameter C optimizes the balance between the

margin width and the classification error. In OvO SVM approach, the kernel function is

used to convert the data into a space with greater dimensions, facilitating its separation

25

with a linear decision boundary. Subsequently, the decision function is used to effectively

segregate the data inside this newly created domain.

Figure 2.7 Hyperplane illustration of support vector machine classification model

[44].

The kernel trick permits the SVM to learn a nonlinear decision boundary by

implicitly transforms the input features into a high-dimensional space and calculating the

inner products between the transformed data representation. Thus, relationships between

pairs are computed without the need for explicit coordinates in the expanded space. The

kernel function is defined as shown in the equation (2.16). After the SVM has undergone

training, a voting technique is used for the purpose of multiclass classification. Each

binary classifier provides a prediction for a novel input vector 𝑥. The class that receives

the highest number of votes from the K (K - 1) / 2 classifiers is selected as the final

prediction.

𝑓(𝑥) = 	𝑠𝑖𝑔𝑛(𝑤+𝑥 + 𝑏) (2.13)

𝑚𝑖𝑛3,5,6
1
2	
‖𝑤‖# + 𝐶	6 𝜉$

&

$'(
 (2.14)

26

c
𝑦$ 	(𝑤+𝜙(𝑥$) + 𝑏) ≥ 1 − 𝜉$,

𝜉$ 	≥ 0
𝑖 = 1,… , 𝑛

 (2.15)

𝐾U𝑥$, 𝑥7W = 	𝜙(𝑥$)+ 	𝜙(𝑥7) (2.16)

2.3.6 Deep neural network (DNN)

Deep Neural Network (DNN) is a type of classification model that effectively

discriminates between classes due to its non-linear capabilities. In a DNN, each neuron

holds a single value known as the neuron's activation. Each layer contains multiple

neurons, with the neurons in one layer connected to those in the subsequent layer through

a network. Figure 2.8 illustrates an example of a DNN-based classification model. This

model's architecture includes a single input layer, two hidden layers, and one output layer.

Figure 2.8 Illustration of a deep neural network classification model.

The computation for the first neuron in the first hidden layer is detailed and

illustrated in equation (2.17). The Rectified Linear Unit (ReLU) functions as the

activation mechanism within the hidden layers, and its mathematical formulation is

provided in equation (2.18). Subsequently, the computation for the first neuron in the

27

output layer is described in equation (2.19), where the sigmoid function is applied as the

activation function, as indicated in equation (2.20). The neurons 𝑦(and 𝑦# represent the

model's outputs. The closeness of these outputs to the actual values is evaluated using the

binary CE loss function, which is presented in equation (2.21). The optimizer leverages

this metric to incrementally adjust the model's weights, thereby enhancing the training

process via iterative optimization.

ℎ1(= 	𝑅𝑒𝐿𝑈(𝑥(∗ 𝑤8(,(+ 𝑥# ∗ 𝑤8#,(+	. . . +	𝑥& ∗ 𝑤&(,(+ 	𝐵1() (2.17)

𝑅𝑒𝐿𝑈(𝑥) 	= 	𝑚𝑎𝑥(0, 𝑥) (2.18)

𝑦(= 	𝑆𝑖𝑔𝑚𝑜𝑖𝑑(ℎ2(∗ 𝑤ℎ2(,(+ ℎ2# ∗ 𝑤ℎ2#,(+	. . . +	ℎ2, ∗ 𝑤ℎ2,,(+

	𝐵𝑦()
(2.19)

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) 	= 	
1

1	 +	𝑒(09)
	 (2.20)

𝐻:(𝑞) 	= 	−
1
𝑁6𝑦$ ∗ 𝑙𝑜𝑔(𝑝(𝑦$)) 	+	(1	 − 𝑦$) 	∗ 𝑙𝑜𝑔(1 − 𝑝(𝑦$))

;

$'(

	 (2.21)

The number of neurons in the input layer 𝑛 is variable and depends on the size of

the dataset in use. While this example demonstrates a network with two hidden layers,

the number of hidden layers can vary according to the complexity of the problem. In this

instance, the network's output layer features two neurons, designed to distinguish between

two class patterns. Should the research require a more nuanced classification (identifying

different types of classes), parameters including the number of neurons in the output layer,

the loss function, and the activation function of the output layer may be adjusted

accordingly.

28

2.4 Vehicle Type Classification

2.4.1 Evaluation metrics

Accuracy is an essential criterion for evaluating a model’s overall performance. The

major goal of the current research is to increase accuracy, but the accuracy criterion may

not be adequate in unbalanced datasets. Therefore, in addition to the accuracy metric, F1-

measure, Precision (PRE), and Recall (REC) are also used to evaluate the classification

performance. Precision reflects the proportion of correctly identified positive cases

among all cases classified as positive. Recall (or sensitivity) measures the proportion of

actual positive cases that are correctly identified. The F1-measure, the harmonic mean of

recall and precision, reflects the model’s sensitivity and robustness. These are important

details to be examined in this study. These performance metrics are given in equations

(2.22), (2.23), (2.24), and (2.25), respectively. These metrics help to assess the

performance of the model in several aspects. The traditional confusion matrix is shown

in Table 2.6.

Table 2.6 Traditional confusion matrix.

 Predicted Anormal Predicted Normal

Actual Abnormal TP FN

Actual Normal FP TN

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	(𝐴𝐶𝐶) = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝐹𝑁 (2.22)

Precision	(PRE) = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (2.23)

𝑅𝑒𝑐𝑎𝑙𝑙	(REC) = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (2.24)

𝐹1 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒	(𝐹1) = 	
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 (2.25)

29

2.4.2 Dataset

A 3-D magnetic sensor is built and mounted on a single-lane road. As vehicles pass

over the sensor, it records magnetic disturbances caused by the metal in the vehicles,

leading to varying signal changes. These distortions are primarily influenced by the

vehicle's speed, physical characteristics, and environmental factors. Vehicles are

classified into three groups according to their structure: light (L, including motorcycles

as class 1), medium (M, encompassing passenger cars as class 2), and heavy (H, covering

buses as class 3). In this classification, there are 376 labeled vehicle examples, with 46

light vehicles, 298 medium vehicles, and 32 heavy vehicles. Representative samples are

shown in Figure 2.9. 'T' and 'Gauss' refer to milliseconds (ms) and Gauss (Gs) units,

respectively. In each figure, the millisecond value varies according to the vehicle’s impact

on the sensor node. The 𝑋-axis values are negative, reflecting the sensor node's placement

on the mote. The sensor records raw data from the X, Y, and Z axes as vehicles pass, with

signal durations ranging from 13 to 207 ms. To standardize sample lengths, signals are

zero-padded to a maximum duration of 207 ms. Considering the three axes in the first

dataset (signal data), there are 621 features per sample. From the raw signal data, 44

features are extracted for the second dataset (extracted data).

Figure 2.9 Signal patterns for Light, Medium, and Heavy vehicles as captured by

the three-dimensional magnetic sensor.

30

2.4.3 Feature extraction

Excess data may complicate the classification process and lead to incorrect results.

To reduce feature size and obtain better performance results, feature extraction techniques

are employed. This process focuses on capturing the subtle changes in magnetic field

strength as vehicles traverse a 3-D magnetic sensor. These variations are encapsulated in

a set of features, each contributing uniquely to the vehicle classification profile. As shown

in Table 2.7, a total of 44 features are extracted. A total of 44 distinct features are extracted

to encapsulate these variations, as outlined in Table 2.7. Each feature is considered within

the three axes—X, Y, and Z. For instance, maximum values are extracted for each axis,

culminating in three separate features. The signal length remains constant across all axes,

resulting in a single feature.

Table 2.7 List of extracted features from three-dimensional vehicle signal.

No Features #

1 Maximum values (x, y, z) 3

2 Index of maximum (x, y, z) 3

3 Minimum values (x, y, z) 3

4 Index of minimum (x, y, z) 3

5 Length of signal (l) 1

6 Mean of the signals (x, y, z) 3

7 Median of the signals (x, y, z) 3

8 # of local maximum (x, y, z) 3

9 # of local minimum (x, y, z) 3

10 Mean of local maximum (x, y, z) 3

11 Mean of local minimum (x, y, z) 3

12 Variance 9

13 Energy (x, y, z, all) 4

 Total 44

The extraction of maximum and minimum values across the X, Y, and Z dimensions

signifies the peak magnetic interactions, correlating closely with the vehicle's size and

type. The indices of these peaks provide insight into the timing of the vehicle's presence,

which is crucial for understanding its speed and transit time. The length of the signal

disruption offers an estimate of the vehicle's speed and dimensions, while the mean and

31

median values across all dimensions provide a thorough assessment of the vehicle's mass

and overall magnetic profile. The counts of local maxima and minima, along with their

mean values, reflect the vehicle's structural complexity, aiding in the differentiation of

various vehicle types based on their magnetic signatures.

Variance features, denoted by 'V', differentiate between light, medium, and heavy

vehicles. 'A' denotes the magnetic distortion along the X, Y, and Z axes, while 'S' indicates

the sample size for each vehicle category. An average signal value is calculated for each

vehicle type across the three axes, from which nine features per sample are extracted, as

detailed in equations (2.26), (2.27), and (2.28), which describe the calculation of energy

features (𝐸𝑥, 𝐸𝑦, 𝐸𝑧, 𝐸𝑎𝑙𝑙) for the individual axes and in aggregate. 'L' represents the

length of the vehicle’s signal, and '𝑋𝑘' denotes the signal values at time 'L'. Four energy

features per sample are calculated by summing the squares of the signal values,

normalized by the length.

⎩
⎨

⎧ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒<" =	
∑ 𝑀𝑒𝑎𝑛(𝐴)=
(

𝑆

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒<" =	 �𝑀𝑒𝑎𝑛(𝐴) − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒<"
!

 (2.26)

⎩
⎪⎪
⎨

⎪⎪
⎧𝐸8 =	

∑ 𝑋(𝑘)#>
(

𝐿

𝐸? =	
∑ 𝑌(𝑘)#>
(

𝐿

𝐸1 =	
∑ 𝑍(𝑘)#>
(

𝐿

 (2.27)

𝐸@AA =	
∑ (𝑋(𝑘)# + 	𝑌(𝑘)# + 𝑍(𝑘)#)>
(

𝐿 (2.28)

These features collectively create a multidimensional feature space crucial for ML

algorithms to accurately classify vehicle types. They are carefully crafted to encompass

the full magnetic signature of vehicles, thus improving the precision and dependability of

the classification system within ITS. Such an approach markedly advances the vehicle

identification process, which is essential for optimizing traffic flow and bolstering

transportation security.

32

2.4.4 ANOVA F-test feature selection method

The model's performance depends on the quality of the inputs; higher-quality inputs

are expected to yield better results. Feature selection methods play a crucial role in this

context by eliminating or assigning lower scores to redundant features that lack relevance

or predictive power for the target variable. The primary goals of these methods are to

reduce model complexity, minimize noise, prevent overfitting, accelerate ML algorithms,

and enhance performance outcomes. The Analysis of Variance (ANOVA) F-test method

is utilized for this purpose [45], [46]. This statistical method compares the means of each

feature across different classes of the target variable to determine if the differences are

significant. The computed F-value for a feature, indicated in equation (2.29), is derived

from the Mean Square Between (MSB), which is the quotient of the Sum of Squares

Between Groups (SSB) and the degrees of freedom between groups, as specified in

equation (2.30). The SSB itself is the aggregate of squared deviations of group means

from the global mean, weighted by group size. The Mean Square Within (MSW) is

obtained by dividing the Sum of Squares Within (SSW) by the degrees of freedom within

groups, as specified in equation (2.31). The degrees of freedom, represented as 𝑑𝑓, are

statistical values that quantify the amount of independent information pertinent to

estimating another parameter. Specifically, 𝑑𝑓5B%3BB& between is 𝑘 − 1, where 𝑘 is the

number of class groups, indicating the number of independent ways class means can vary.

Similarly, 𝑑𝑓3$%C$& is 𝑁 − 𝑘, where 𝑁 is the total sample size, reflecting the number of

independent pieces of information that can be utilized to estimate variability within these

groups. 𝑛$ represents the count of observations within 𝑖, 𝑋𝑚𝑒𝑎𝑛$ is the average of

observations in group 𝑖, 𝑋𝑚𝑒𝑎𝑛 is the overall mean of the data, and 𝑥$7 is the 𝑗-th

observation in group 𝑖.

𝐹 = 	
𝑀𝑆𝐵
𝑀𝑆𝑊 (2.29)

𝑀𝑆𝐵 =	
𝑆𝑆𝐵

𝑑𝑓5B%3BB&
=
∑ 𝑛$(𝑋𝑚𝑒𝑎𝑛$ − 𝑋𝑚𝑒𝑎𝑛)#,
$'(

𝑘 − 1 (2.30)

𝑀𝑆𝑊 =	
𝑆𝑆𝑊
𝑑𝑓3$%C$&

	
∑ ∑ (𝑋$7 − 𝑋𝑚𝑒𝑎𝑛$)#

&#
7'(,

$'(

𝑁 − 𝑘 (2.31)

33

The F-value tests the null hypothesis, asserting that all group means are equivalent

within the population. Higher F-values imply a greater degree of variability between

groups relative to within them, signifying that the feature has strong discriminatory

capabilities between classes. Among the 44 features extracted, they are ranked based on

their importance using the ANOVA F-test method. In our experiments, the top N features

(ranging from 1 to 44; N increases incrementally from 1 to 44) are selected. Each

classification algorithm is then tested with these varying sets of selected features, as

shown in Figure 2.10.

2.4.5 Focal cross-entropy loss function

The Focal loss (FL), as proposed by Lin et al. [47], [48], addresses the class

imbalance problem by modifying the CE loss function. It introduces a modulating term

that focuses training on challenging samples and less easy ones, regardless of their

frequency. This strategy aims to shift the model's focus from abundant, simpler examples

to scarcer, more complex ones. The main differences between CE and FL are the

weighting factor (alpha, α) and the focusing parameter (gamma, γ). The gamma parameter

intensifies the focus on difficult examples, while alpha adjusts for class imbalance by

assigning a different weight to each class. The regular CE loss function is given by

equation (2.32), where 𝑝% is the model's estimated probability for the class with the true

label 𝑡, and α% is a class-specific weighting factor. The FL introduces a modulating term

to the CE loss, as shown in equation (2.33). The gamma parameter is tunable, decreasing

the contribution from easy examples (where 𝑝% is high) and increasing it from difficult

ones (where 𝑝% is low).

𝐶𝐸(𝑝%) = 	−𝑎%log	(𝑝%) (2.32)

𝐹𝐿(𝑝%) = 	−𝑎%(1 − 𝑝%)Dlog	(𝑝%) (2.33)

In FL, ‘alpha’ is pivotal for adjusting the weight given to each class, a critical aspect

when dealing with imbalanced classes, unlike CE, which treats all classes uniformly.

Meanwhile, gamma (γ) diminishes the loss contribution from easy examples—those for

34

which the model has high confidence—and emphasizes correction of the misclassified,

difficult examples. In situations where an imbalanced dataset has one class significantly

outnumbering the others, a model trained with CE might be biased towards the majority

class. FL counteracts this by steering the training focus towards the minority class, which,

though typically more challenging for the model to learn, is often crucial for accurate

predictions. As illustrated in Figure 2.10 from the study [47], [48], when gamma (γ) is

zero, FL is equivalent to CE, represented by the blue (top) curve. As gamma increases,

the loss curve changes to further discount "easy" examples with lower loss values, thus,

FL demonstrates substantial improvements over CE as gamma increases.

Figure 2.10 Comparison of focal loss with cross-entropy loss across different values
of focusing parameter 𝝀 for imbalanced multi-class classification [47], [48].

2.4.6 Grid search hyperparameter optimization

Hyperparameter optimization is a critical process that ensures the most appropriate

parameters are selected for a classification model. Before the training phase begins, these

parameters must be established; the model is then trained accordingly to these

specifications. Models are trained using a training set and subsequently evaluated on a

validation set for each hyperparameter configuration. The parameters yielding the best

performance on the validation set are then used to retrain the model with the entire

training set. Finally, this refined model is tested on the test set. For all classifiers,

hyperparameter values are determined using the GS-CV, a method commonly adopted

35

for such tasks [49], [50]. Figure 2.11 illustrates the hyperparameter optimization process

across two different hyperparameters for classifiers using grid search.

For the C4.5 classifier, fine-tuning entailed adjusting the 'min_samples_split', the

minimum number of samples required to split an internal node; 'max_depth', the

maximum depth that the tree can grow; and 'min_samples_leaf', the minimum number of

samples that must be present at a leaf node. These adjustments aim to balance the model's

sensitivity and mitigate the risk of overfitting. For the RF classifier, two parameters are

varied: 'max_depth', the maximum depth that each tree in the forest can reach, and

'n_estimators', the total number of trees in the forest. This variation aims to assess their

effects on model performance, focusing on enhancing accuracy without imposing

excessive computational demands. Additionally, for XGBoost models, the learning

rate—defined as the step size shrinkage used in updates—is adjusted from 0.1 to 1, along

with 'max_depth', to regulate the training pace and reduce the risk of overfitting.

Figure 2.11 Schematic representation of grid search for hyperparameter

optimization across two different hyperparameters for classifiers [51].

For the SVM model, two key parameters are varied: 'C', the regularization

parameter that balances the trade-off between a smooth decision boundary and classifying

training points correctly, and 'gamma', which defines the influence of a single training

sample. These adjustments are made to assess their impact on model performance.

Additionally, the selection of the most suitable 'kernel' function is crucial. The 'kernel'

36

function is responsible for transforming the input data into a higher-dimensional space,

enabling a linear separation of the classes. This comprehensive hyperparameter tuning

plays a vital role in enhancing the performance and accuracy of the SVM model. For the

LR classifier, grid search was employed to optimize several parameters: ‘penalty’,

specifying the norm used in penalization; ‘C’, representing the inverse of regularization

strength; ‘multi_class’, defining the approach when dealing with more than two classes;

and ‘solver’, indicating the algorithm used for optimization. These adjustments are crucial

for ensuring efficient training convergence and effective handling of multiclass scenarios.

The specific hyperparameters adopted for the classification algorithms in this study are

detailed in Table 2.8, which outlines the optimization settings for each ML classifier

involved in vehicle type classification.

Table 2.8 Hyperparameter optimization settings for machine learning classifiers in
vehicle type classification.

Classifier Parameters

C4.5

min samples split : [2–10]

max depth : [1–10]

min samples leaf : [1–5]

RF
max depth: 10, 20, 50, 80, 100

n estimator: 100, 200, 500, 1000

LR

penalty: l1, l2, none

C: logspace(−4, 4, 20)

multi class: auto, ovr, multinomial

solver: newton-cg, lbfgs, liblinear, sag, saga

SVM

C : 0.1, 1, 10, 100, 1000

gamma : 1, 0.1, 0.01, 0.001, 0.0001

kernel : linear, rbf, poly, sigmoid

DNN

neurons : 32, 64, 128

neurons2 : 32, 64, 128

dropout rate: 0.1, 0.3, 0.5

dropout rate2: 0.1, 0.3, 0.5

learning rate: 10e−2, 10e−3, 10e−4

batch size: 2, 4, 6, 8

XGBoost
learning rate = [0.1–1]

max depth : [1–20]

37

2.4.7 Experiments

In this experiment, a camera and a 3-D magnetic sensor node are utilized to generate

the dataset. The camera records videos, while the 3-D magnetic sensor node records

magnetic disturbances caused by vehicles, and these processes occur concurrently. The

labeling of magnetic disturbances is based on the recorded video. The first dataset, herein

referred to as 'signal data', was obtained after applying zero-padding to the raw signal

collected by the magnetic sensor node. From the raw signal, new features were extracted,

resulting in a second dataset comprising a total of 44 features, which is herein referred to

as 'extracted data'. Both datasets were normalized to a range between 0 and 1.

The classification process is applied to two datasets across three different

variations: (i) using the signal data, (ii) using the extracted data, and (iii) using the

extracted data augmented with the best-selected N features for each classifier. For the

third variation, the extracted data is used, and the ANOVA F-test method is applied to

rank the features according to their importance. The optimal Best-N features for each

classifier are determined through an exhaustive search. Six classification algorithms,

including C4.5, RF, LR, XGBoost, SVM, and DNN, are implemented in Python [52],

utilizing the Scikit-Learn [53] and Keras [54] libraries. The datasets are divided into two

parts: 70% for the training set and the remaining 30% for the test set. During model

building, a 5-fold CV is applied to the training set. The hyperparameters for the models

are determined using a portion of the training set, often referred to as the validation set.

After identifying the best parameters, the model is retrained using these parameters on

the entire training set. Subsequently, this finalized model is tested on the test set. Figure

2.12 presents a flowchart of the classification process, and Figure 2.13 illustrates the

methodology for identifying the best N features for each classifier.

The default DNN architecture consists of three layers with 32, 32, and 3 neurons,

respectively. The first two layers utilize the ReLU activation function, while the final

layer uses a SoftMax activation function. Kernel initializers are set to Glorot Uniform

with a specific seed to ensure reproducible outcomes. To prevent overfitting, batch

normalization and dropout rates are implemented after each layer. The Adam optimizer

is employed in conjunction with the FL function to mitigate class imbalance. The batch

size is set at 8, and the number of epochs is limited to 30, with an early-stopping

mechanism in place to halt training if no validation accuracy improvement is observed

38

after five epochs and to restore the best model weights. The details of the DNN's layer

configuration are provided in Table 2.9.

Figure 2.12 Flowchart of the vehicle type classification process.

Figure 2.13 Flowchart of the selection of the best N features for each classifier.

Table 2.9 Configuration of Deep Neural Network layers for vehicle type

classification.

Layer names DNN models

L1 Dense (32)

L2 Batch normalization

L3 Dropout (0.1)

L4 Dense 1 (32)

L5 Batch normalization 1

L6 Dropout 2 (0.1)

L7 Dense 2 (3)

39

2.5 Results and Discussion

2.5.1 Classification methods

This chapter presents a comprehensive performance evaluation of various

classification methods, including ML and DL techniques, applied to a dataset comprising

376 samples. The focus of this analysis is on key performance metrics: accuracy,

precision, recall, and F1-measure. This evaluation is particularly crucial due to the

imbalanced class distribution within the vehicle dataset. Tables 2.10, 2.11, and 2.12

display a comparison of classifiers under both default parameter settings and

hyperparameter optimization across three distinct scenarios.

Table 2.10 Performance results of the machine learning classifier under default and

grid search cross-validation hyperparameter settings on signal dataset.

Hyperparameter # of features Classifier ACC (%) PRE (%) REC (%) F1 (%)

Default 621

C4.5 78.76 81.58 71.15 79.76

RF 82.30 83.34 67.68 82.75

LR 78.76 79.42 66.08 78.90

SVM 83.18 83.13 62.03 82.17

XGBoost 84.95 84.84 70.81 84.88

DNN 78.76 79.42 66.08 78.90

GS-CV 621

C4.5 78.76 81.58 71.15 79.76

RF 82.30 83.34 67.68 82.75

LR 83.18 82.82 64.99 82.39

SVM 83.18 82.82 64.99 82.39

XGBoost 84.84 85.05 72.71 84.84

DNN 79.64 79.94 64.55 79.78

The study commences with an examination of classifiers using a signal dataset

under both default parameter settings and GS-CV hyperparameter optimization. The

performance results of the classifier are shown in Table 2.10. Notably, under the default

parameter, the XGBoost classifier consistently demonstrates superior performance,

achieving remarkable accuracy of 84.95% and F1-measure scores of 84.88%. This

performance indicates XGBoost’s robustness in handling the dataset without any specific

parameter tuning. While under GS-CV optimization, there is a slight decrease in accuracy

40

and F1-measure, this is counterbalanced by an increase in precision and recall metrics.

The reduction in accuracy and F1-measure suggests that the model, with optimized

hyperparameters, becomes slightly more conservative in its predictions. This could be a

result of the model being tuned to avoid overfitting, leading to a more generalized

approach to handling the dataset. Such a scenario is often witnessed when the model is

adjusted to be less sensitive to the noise within the training data, thereby potentially

missing out on some true positives, which affects both accuracy and the F1-measure.

Table 2.11 Performance results of the machine learning classifier under default and

grid search cross-validation hyperparameter settings on extracted dataset.

Hyperparameter # of features Classifier ACC (%) PRE (%) REC (%) F1 (%)

Default 44

C4.5 82.30 82.30 67.78 82.19

RF 82.30 82.70 65.67 82.49

LR 76.99 66.32 41.46 71.15

SVM 78.76 68.18 45.16 72.95

XGBoost 84.95 85.47 65.84 84.68

DNN 77.87 66.71 35.91 70.34

GS-CV 44

C4.5 84.95 84.45 69.86 84.53

RF 82.30 82.70 65.67 82.49

LR 89.38 89.38 77.75 89.38

SVM 89.38 89.82 80.71 89.56

XGBoost 87.61 87.76 72.99 87.61

DNN 82.30 82.30 66.73 82.30

Table 2.11 compares the performance of classifiers under both default and GS-CV

settings on an extracted dataset. Under default parameters, the XGBoost classifier notably

stands out, achieving an accuracy of 84.95% and an F1-measure of 84.68%, which

suggests its effectiveness in utilizing the extracted features. When subjected to GS-CV

optimization, both the SVM and LR classifiers exhibit remarkable improvements.

Specifically, the SVM reaches a high accuracy of 89.38% and an F1-measure of 89.56%,

while the LR demonstrates significant increases in accuracy and precision. This marked

improvement under GS-CV optimization indicates that the SVM and LR classifiers

benefit substantially from hyperparameter tuning, particularly with the extracted dataset.

This outcome suggests that optimal hyperparameter tuning can unlock the full potential

41

of these models, especially when aligned with the comprehensive feature set extracted

from the dataset.

In general, as observed in Table 2.11, this strategic feature extraction significantly

enhances the performance of nearly all the techniques. The extracted features, carefully

derived from the 3-D vehicle signal, offer a rich and nuanced perspective of the dataset,

capturing essential characteristics of the vehicles. When these detailed features are

coupled with GS-CV, an optimization method that meticulously tunes hyperparameters,

the classifiers demonstrate an augmented ability to interpret and analyze the data

effectively.

Table 2.12 Performance results of the machine learning classifier under default and

grid search cross-validation hyperparameter settings on extracted dataset with

different number of features.

Hyperparameter # of features Classifier ACC (%) PRE (%) REC (%) F1 (%)

Default

25 C4.5 84.07 85.41 74.45 84.52

11 RF 84.95 87.25 78.73 85.75

5 LR 78.76 68.18 45.16 72.95

18 SVM 84.95 85.73 64.79 84.20

15 XGBoost 86.72 87.19 69.55 86.42

17 DNN 86.72 86.09 67.65 86.15

GS-CV

25 C4.5 84.95 84.45 69.86 84.53

10 RF 85.84 88.63 83.12 86.60

27 LR 89.38 89.38 77.75 89.38

20 SVM 90.26 91.08 84.04 90.59

30 XGBoost 88.49 88.72 74.31 88.43

30 DNN 91.15 91.95 84.41 91.50

In a third scenario, the ANOVA F-test feature selection method is applied to

determine the most significant features for vehicle classification tasks on the extracted

dataset. The resulting feature rankings are used to enhance the performance of ML and

DNN algorithms. From Table 2.12, it is evident that the performance of classifiers such

as C4.5, LR, SVM, XGBoost, and DNN has been enhanced when operating optimized

hyperparameter settings obtained through GS-CV. The DNN and SVM classifiers, in

particular, have shown exceptional improvement post-optimization, indicating that these

42

algorithms benefit significantly from feature selection and hyperparameter tuning. For

instance, under default settings with 15 selected features, XGBoost achieves an accuracy

of 86.72% and an F1-measure of 86.42%. However, when optimized through GS-CV

with 30 features, the DNN classifier achieves a superior accuracy of 91.15% and an F1-

measure of 91.50%. The most effective 30 features are detailed in Table 2.13. In

conclusion, this study has demonstrated that feature selection through an ANOVA F-test

and careful hyperparameter tuning through GS-CV can significantly elevate the efficacy

of ML and DNN classifiers in a vehicle classification task.

Observations indicate that certain extracted features, including the mean of the

signal, variance, and energy, significantly impact performance, particularly on specific

axes. For variance features, only the Z-axis values are utilized. Additionally, attributes

such as the maximum and minimum values and their indices, the length of the signal, and

the count of local maxima and minima are pivotal across all axes. The performance results

suggest that classifiers produce improved outcomes when combined with feature

extraction, the best N feature selection, and hyperparameter optimization. The specific

hyperparameters optimized for each classifier are delineated in Table 2.14.

Table 2.13 The best 30 features selected for the Deep Neural Network classifier.

No Features #

1 Maximum values (x, y, z) 3

2 Index of maximum (x, y, z) 3

3 Minimum values (x, y, z) 3

4 Index of minimum (x, y, z) 3

5 Length of signal (l) 1

6 Mean of the signals (x) 1

7 Median of the signals (x, z) 2

8 # of local maximum (x, y, z) 3

9 # of local minimum (x, y, z) 3

10 Mean of local maximum (x, z) 2

11 Mean of local minimum (x, y, z) 3

12 Variance 1

13 Energy (x, all) 2

 Total 30

This comprehensive evaluation of ML and DL classifiers in vehicle type

classification reveals that hyperparameter optimization, coupled with strategic feature

43

extraction and selection, significantly enhances model performance. The XGBoost

classifier emerges as a standout performer, demonstrating consistent strength across

various scenarios. The notable improvements seen in SVM and LR under GS-CV

optimization highlight the impact of fine-tuning model parameters. Furthermore, the

DNN's marked performance improvement with the top 30 features underscores the

importance of targeted feature selection in dealing with complex, high-dimensional

datasets. Overall, this study contributes valuable insights into the effective application of

ML algorithms in vehicle type classification, emphasizing the critical role of methodical

feature selection and hyperparameter tuning in optimizing classifier performance. The

findings have important implications for future research in ML, particularly in scenarios

involving imbalanced datasets and the need for precise, nuanced classification.

Table 2.14 Optimum hyperparameters configurations for each machine learning

classifier using grid search cross-validation technique.

Classifier Parameters

C4.5 min samples split : 4, max depth : 4, min samples leaf : 1

RF max depth: 20, n estimator: 100

LR penalty: l1, C: 4.281, multi class: auto, solver: saga

SVM C: 100, Gamma: 0.1, kernel : rbf

DNN Neurons: 128, neurons2 : 32, dropout rate: 0.1, dropout rate2: 0.3

learning rate: 10e−2, batch size: 8

XGBoost learning rate = 0.3, max depth: 7

2.5.2 Battery lifetime

In this research, magnetic changes over the 3-D magnetic sensor nodes are detected

using a vector magnitude-dependent measurement method as vehicles pass. To sample

vehicle movement, a time-dependent measurement method is employed. The sensor's

current consumption in both sleep and active states (activated when a vehicle passes) is

measured using a power analyzer named EnergyTrace. It is observed that current

consumption during the sleep state is significantly low. However, communication

between the sensor and the gateway notably increases battery consumption. To address

this, a data aggregation technique is utilized in the communication process. This

technique optimizes power consumption by transmitting maximum information in

minimally sized packets. Additionally, Figure 2.14 illustrates the relationship between

44

the sensor node's lifetime and the number of samples collected from one hundred vehicles

per day. With an average of 53 samples obtained per vehicle in the dataset, the current

consumption characteristics of the magnetic sensor node suggest that the proposed node

can operate for up to two years without the need for new batteries.

Figure 2.14 Battery lifetime based on the number of samples taken from the vehicle.

45

Chapter 3

3 Deep learning approaches for vehicle type

classification with 3-D magnetic sensor

3.1 Motivation

In recent years, rapid population growth and vehicle demand have significantly

increased the number of vehicles in traffic, particularly in metropolitan cities. This

situation is increasing the need for ITS. Vehicle detection and classification have become

an indispensable part of ITS to increase human comfort, improve traffic management,

and enable future development of transport infrastructure. Significant investments are

being made and used in the development, implementation, and maintenance of traffic

monitoring systems in many countries [10]. Recently, in spite of the technical challenges,

several vehicle type classification systems have been developed based on accelerometers

[11], acoustic sensors [14], cameras [31], hybrid methods [32], loop detectors [15],

LIDAR [17], piezoelectric sensors [18], vibration sensors [19], and magnetic sensors [21-

30]. These technologies have important specific characteristics and requirements, such as

sensor types, hardware settings, setup processes, parameter settings, operating

environments, weather and noise resistance, battery lifetime, and even maintenance and

installation costs.

In the literature, it is shown that magnetic sensors are preferred for vehicle

classification due to their advantages, such as strong climate adaptation, small size, easy

installation, and low cost. Specifically, the study [26] focused on the classification of

similar vehicle sizes using multiple sensor nodes and utilized an XGBoost method. The

study [27] proposed the KNN method for the classification of vehicle types. In [28], the

magnetic waveforms obtained from two sensor nodes were fussed over, and a SVM was

used for classification. The study [30] focused on classifying vehicles with the CNN

46

method. In contrast to the existing studies and the previous work, to the best of our

knowledge, this chapter is the first study focusing on DL methods and soft voting

ensemble techniques to classify vehicle types with a single 3-D magnetic sensor node.

The performance comparison reveals that the suggested soft voting ensemble technique,

which ensembles DL classifiers, enhances both accuracy and f-measure scores, achieving

improvements of 92.92% and 93.42%, respectively.

The rest of the chapter is organized as follows: Section 3.2 elaborately describes the

DL methodologies and the proposed approach. Then, Section 3.3 shows the performance

results of the models comparatively and discusses the outcomes.

3.2 Methods

3.2.1 Synthetic minority oversampling technique (SMOTE)

The main reason for applying the oversampling method is that the number of

samples is insufficient to train DL models, and the unbalanced class problem causes poor

performance. In this study, the Synthetic Minority Oversampling Technique (SMOTE) is

applied [55] to increase the number of samples in the training set. The SMOTE algorithm

randomly generates new minority samples using the following rules: First, 𝑋$ 	sample is

randomly selected from the minority classes; then the five samples are determined based

on the KNN of the selected 𝑋$ data; and finally, randomly 𝑋, sample is selected. The new

synthetic data 𝑋&B3 	is between the 𝑋$ 	and 𝑋, samples according to the 𝜆 values, which is

randomly selected between (0,1). The formula is shown in equation (3.1) below:

𝑋&B3 =	𝑋$ + 	𝜆(𝑋, −	𝑋$) (3.1)

The sample sizes of the original vehicle dataset and the new sample sizes of the

vehicle types are shown in Tables 3.1 and 3.2. In the training dataset, minority classes

(light and heavy) are processed by the SMOTE algorithm and generate new synthetic

samples, as shown in Figures 3.1 and 3.2 for light and heavy vehicles, respectively.

During the analysis of the new synthetic samples, no absurdity was observed in the

waveforms.

47

Figure 3.1 The X-axis representations of original and synthetic signals (processed by

the SMOTE Algorithm) for light vehicles.

Figure 3.2 The X-axis representations of original and synthetic signals (processed by

the SMOTE Algorithm) for heavy vehicles.

Table 3.1 Distribution of vehicle types in training and test sets prior to oversampling

technique.

Vehicle Type Light Medium Heavy

Train 33 207 23

Test 14 89 10

Total 47 296 33

48

Table 3.2 Distribution of vehicle types in training and test sets after oversampling
technique.

Vehicle Type Light Medium Heavy

Train 207 207 207

Test 14 89 10

Total 221 296 217

3.2.2 Two-dimensional multi-color visualization

Transfer learning is a powerful network that tends to learn edges, textures, patterns,

and object parts in images [56] and yields satisfactory results. Therefore, in this study,

vehicle signals are converted into 2-D images in order to perform vehicle classification

by utilizing transfer learning models. Firstly, the lengths of samples are scaled to the

maximum signal length of 207. The next step is to color the area under the X, Y, and Z

curves. Each color represents a different condition. For example, the pink color represents

the area under the X curve and the upper area of the Y and Z curves. Table 3.3 shows the

combination of conditions during the coloring process. The converted images become

216 × 216 colored images, and the conversion of the signals to the images for the light,

medium, and heavy vehicles are shown in Figures 3.3, 3.4, and 3.5. Moreover, the study

explored the conversion of signals into visual representations employing lines and bars;

however, this approach was selected over others due to its superior performance.

Table 3.3 Legend of Colors for Representation of Conditions Along X, Y, and Z
Axes.

No Condition (Under Axis-Curve) Color

1 - Blue

2 X Purple

3 Y Red

4 Z Green

5 X, Y Black

6 X, Z Olive

7 Y, Z Turquoise

8 X, Y, Z White

49

Figure 3.3 Examples of multi-color visualization of axis-curve data for light

vehicles.

Figure 3.4 Examples of multi-color visualization of axis-curve data for medium

vehicles.

Figure 3.5 Examples of multi-color visualization of axis-curve data for heavy

vehicles.

50

Importantly, the shape of the dataset, i.e., ‘‘samples, features’’, is not suitable for

the LSTM and GRU methods. The shape of the dataset is reshaped into ‘‘samples, time-

steps, and features’’ which means one sequence is one sample, one sequence has multiple

time steps according to the length of the vehicle signal, and one feature corresponds to

one variety of signal. The reshaped dataset is ‘‘sample size, 207, 3’’, in which 207 means

the vehicle signal length and 3 means the X, Y, and 𝑍-axis.

3.2.3 Support vector machine (SVM)

It is a simple and effective ML method often used by the community for

classification, regression, and outlier detection. It has a simple method for separating

classes, which draws parallel lines between classes. Also, hyper parameter optimization

is applied, which ensures the classifiers are trained with the most suitable parameters. In

the implementation of the SVM classifier, hyperparameter optimization is applied using

the grid search method. The parameters are determined before the classification method,

and the best parameters are obtained using the training and validation sets, and the optimal

parameters are used on the test set. The hyperparameters are optimized for the SVM

classifiers as follows: C = {0.1, 1, 10, 100, 1000}, gamma = {1, 0.1, 0.001, 0.0001}, and

kernel = {linear, rbf, poly, sigmoid}.

3.2.4 Recurrent neural networks (RNN)

In traditional neural networks, each observation is considered independent, as the

networks do not retain past or historical information; they lack memory of previous

events. A Recurrent Neural Network (RNN) introduces an internal loop, enabling it to

process sequential data effectively. This capability is crucial for tasks such as language

modeling, text generation, speech recognition, and time-series analysis, where current

observations are influenced by previous ones, making them interdependent. As shown in

Figure 3.6, an RNN processes a sequence of inputs, such as a vehicle signal, across

different timesteps, considering both current and past data points for comprehensive

understanding. Unlike feedforward networks, an RNN's hidden layer output at any given

timestep is informed by the data from preceding timesteps. The output layer then

generates the final output, which can vary from a single value at the sequence's end for

classification tasks to a series of values for tasks like sequence labeling.

51

Figure 3.6 Basic illustration of the recurrent neural networks [57].

Figure 3.4 illustrates basic RNN architecture. At each timestep 𝑡, the standard RNN

cell takes two inputs: the current input 𝑋%, and the hidden state from the previous timestep

ℎ%0(. The updated hidden state ℎ% is computed using the equation (3.2), incorporating the

previous timestep's hidden state weight matrix 𝑊CC, the current input weight matrix 𝑊8C,

a bias term 𝑏C, and the hyperbolic tangent function 𝑡𝑎𝑛ℎ, which adds non-linearity and

outputs values between -1 and 1. This choice of activation function is not exclusive, and

other non-linear functions can be employed as required by the model design. The output

𝑜% at timestep 𝑡 is typically calculated using the hidden state ℎ% as shown in equation

(3.3), with 𝑊CE being the hidden-to-output weight matrix and 𝑏E the output bias.

ℎ% = tanh	(𝑊CC ∙ ℎ%0(+	𝑊8C ∙ 𝑥% +	𝑏C) (3.2)

𝑜% = 𝑊CE ∙ ℎ% + 𝑏E (3.3)

RNNs face the challenge of the vanishing gradient problem, where gradients can

shrink to the point that learning becomes extremely slow or halts. This issue hinders the

network's ability to capture long-range dependencies within the data. To overcome this,

advanced RNN variants like LSTM networks and GRUs have been developed. Figure 3.7

shows an illustration of the architectural differences between RNN, LSTM, and GRU.

52

Figure 3.7 Illustration of the architectural differences between recurrent neural

networks, a long short-term memory, and a gated recurrent unit [58].

3.2.5 Long short-term memory (LSTM)

Long Short-Term Memory networks [59], [60], commonly known as LSTMs, are

an advance type of RNN algorithm designed to address the vanishing gradient descent

problem and are adept at capturing long-range dependencies in data sequences. The

unique architecture of LSTMs incorporates a set of gates that modulate the memory flow

across time steps. The forget gate 𝑓% determines which information to discard from the

cell state as shown in equation (3.4), the input gate 𝑖% selects new data to update the cell

state as shown in equation (3.5), and the output gate 𝑜%	 controls the output based on the

cell state for the current time step as captured in equation (3.6). These gates are updated

at every time step 𝑡 by integrating the current input 𝑥%, the preceding hidden state ℎ%0(,

the former cell state 𝐶%0(, and employing weight matrices (𝑊 and 𝑈), and bias vectors 𝑏.

The sigmoid function (𝜎) plays a crucial role in this process by constraining the output

values between 0 and 1. The candidate cell state 𝐶�% combines the present input with the

prior hidden state, as indicated in equation (3.7). The new cell state 𝐶% evolves by

selectively forgetting and acquiring new information, formalized in equation (3.8). The

updated hidden state ℎ% is then computed as shown in equation (3.9), utilizing the tanh

function to scale the outputs.

𝑓% = σ	(𝑊F ∙ [ℎ%0(, 𝑥%] + 𝑏F) (3.4)

𝑖% = σ	(𝑊$ ∙ [ℎ%0(, 𝑥%] + 𝑏$) (3.5)

53

𝑜% = σ	(𝑊$ ∙ [ℎ%0(, 𝑥%] + 𝑏E) (3.6)

𝐶�% = 𝑡𝑎𝑛ℎ	(𝑊G ∙ [ℎ%0(, 𝑥%] + 𝑏G) (3.7)

𝐶% = 𝑓% ∗ 𝐶%0(+ 𝑖% ∗ 	𝐶� (3.8)

ℎ% = 𝑜% ∗	 tanh(𝐶%) (3.9)

The LSTM's ability to maintain a cell state through time and its use of gates to

control the flow of information make it ideal for tasks where understanding context and

remembering things from the past are essential, such as in language modeling and time

series prediction.

3.2.6 Gated recurrent unit (GRU)

Gated Recurrent Units (GRUs) [61] are a streamlined variant of RNN that are

structured to efficiently capture dependencies across varying time intervals in sequence

data. Similar to LSTM units but with fewer parameters, GRUs manage the flow of

information without the need for separate memory cells through a duo of gating units.

Update Gates controls the extent to which information from the previous state is carried

over to the current state, as shown in equation (3.4). It acts as a regulator for updating the

unit's activations and is analogous to the combined functionality of the forget and input

gates in an LSTM. The reset gate determines the amount of prior information to be

disregarded. It essentially modulates the influence of the previously computed state on

the current state's candidate activation, as shown in equation (3.5). The update gate 𝑧%

works to control the degree to which a GRU unit updates its content, dictating how much

of the past information should persist. The reset gate 𝑟% allows the GRU to forget the

previously computed state, influencing how much of the past state is relevant for the

current state calculation. The candidate hidden state is calculated by ℎ�%, which is a

combination of the current input and the previously computed state, modulated by the

reset gate as shown in equation (3.7). The final updated state is ℎ%, blending the old state

with the new candidate state, based on the update gate's output. In these equations, 𝑥%

represents input at time 𝑡, ℎ%0(is the hidden state from the previous time step, W, 𝑊1, 𝑊",

54

U,	 𝑈1,	 𝑈" 	 are weight matrices, 𝑏1 ,	 𝑏" ,	 𝑏C	 are bias terms, ∗ denotes element-wise

multiplication.

𝑧% = σ	(𝑊1 ∙ 𝑥% + 𝑈1 ∙ ℎ%0(+ 𝑏1) (3.4)

𝑟% = σ	(𝑊" ∙ 𝑥% + 𝑈" ∙ ℎ%0(+ 𝑏") (3.5)

ℎ�% = 𝑡𝑎𝑛ℎ	(𝑊 ∙ 𝑥% + 𝑈 ∙ (𝑟% ∗ 	ℎ%0() + 𝑏C) (3.7)

ℎ% = (1 − 𝑧%) ∗ ℎ%0(+𝑧% ∗ ℎ�% (3.8)

This gating mechanism helps GRUs to capture long-range dependencies and avoid

the vanishing gradient problem common in standard RNNs. GRUs have been shown to

perform on par with LSTMs on certain tasks, with a simpler model that can be easier to

modify and run faster due to fewer parameters.

3.2.7 Transfer learning

Transfer learning is a technique that leverages knowledge acquired from prior tasks

to inform a new task [62]. This technique is notably effective in transferring learned

features from one domain to another, especially valuable in scenarios with limited data

availability [56]. Transfer learning enhances learning efficacy and task performance by

employing features, weights, and biases developed through training on extensive datasets.

The process involves applying the insights obtained from solving a primary problem (task

1) to a secondary, related problem (task 2). Initially, a model is trained on task 1, forming

the foundational knowledge for task 2. Subsequently, for task 2, a new model is

constructed, adopting both the architecture and the learned parameters from the successful

segments of the original model. This new model is then fine-tuned using the specific

dataset for task 2. This methodical application of transfer learning is elucidated in Figure

3.8. The choice of transfer learning model depends on the specific requirements of the

task. While these models may be pre-trained on the same dataset, like ImageNet, they

offer a range of architectural choices and trade-offs.

In the realm of transfer learning for DNNs, three primary strategies could be

employed: First, the convolutional base, pretrained on extensive datasets like ImageNet,

55

is frozen, and only the upper layers, typically fully connected layers, are retrained to adapt

to the new task. Secondly, a more nuanced approach involves partially unfreezing the

convolutional base, particularly the last layers, and jointly retraining them with the top

layers, thereby fine-tuning the model to align more closely with the specific

characteristics of the new data. Lastly, the model can be entirely retrained from the ground

up, which, while more computationally intensive, allows for complete customization to

the new task, leveraging no prior learned patterns or features [63]. Each method presents

a unique balance between computational efficiency and the model's ability to adapt to the

specific characteristics of the new task. The choice of method is often dictated by the size

and nature of the new dataset, computational constraints, and the desired level of task

specificity.

Figure 3.8 Schematic diagram of a transfer learning model: The first phase involves

training with Task 1, followed by training a new model for Task 2 that leverages the

knowledge acquired from the model developed for Task 1 [63].

3.3 Experiments

In this chapter, the test set is obtained by selecting 30% of the total dataset using

stratified random sampling, and the remaining samples are used as a training set. The

SMOTE method is applied to increase the number of samples in the training set while

keeping the size of the test set same. In addition, for the hyperparameter optimization,

30% of the new training set is randomly selected for the validation set, and the rest is

stored as a training set for the SVM classifier. Others DL methods have been applied

directly. For the LSTM and GRU models, we reshaped the dataset, and for the transfer

56

learning model, we converted the vehicle signals to 2-D images. For this purpose,

VGG16, VGG19, Xception, MobilNet, MobilNetV2, DenseNet121, DenseNet169, and

DenseNet201 are implemented as DL models. The block diagram in Figure 3.9 outlines

how the classification process in this study is conducted. Models are trained on the

training set and validated on the validation set for DL models. Lastly, the model is

evaluated for the test set. Individual results are obtained for each classifier. All ML

approaches are implemented in the Python programming language. LSTM, GRU, and

transfer learning approaches are implemented using Keras libraries [54], and the SVM

method is implemented using scikit-learn libraries [53].

Figure 3.9 Block diagram of the classification process.

In traditional neural networks, each observation is treated independently, lacking

the capability to retain or utilize historical data. This aspect becomes especially critical

when dealing with data from 3-D magnetic sensors in vehicle signal analysis. In such

scenarios, not only does each vehicle's signal vary in duration, but each momentary signal

value is also intrinsically linked to its preceding value, creating a sequential dependency.

This necessitates the use of models like RNNs, which can process such sequential data

effectively. Figure 3.10 highlights the adaptability of RNNs and related sequence models

for managing diverse data types and tasks. This includes the one-to-one model, typical of

57

standard neural networks; the one-to-many model, which produces a sequence of outputs

from a single input; and the many-to-one model, where a series of inputs culminate in a

single output. For vehicle type classification in this study, a many-to-one model approach

is employed. The detailed architecture of the LSTM and GRU models used in this

research is outlined in Table 3.4. Considering the multi-class nature of the classification

problem, the SoftMax function is employed as the activation function for the final layer.

Optimization is performed using the Adam optimizer with a learning rate of 0.0001 and

the categorical CE loss function. The mini-batch size is set at 16, with an epoch limit of

200. ModelCheckpoint is utilized for saving model weights during training, with the

optimal epoch for the test set determined by validation loss. Batch normalization and

dropout are incorporated to regulate the models' parameters.

Figure 3.10 Illustration of various types of data and tasks [64].

On the other hand, transfer learning techniques are employed, involving the

freezing of the convolutional base layers while retraining the upper layers, like the fully

connected Multi-Layer Perceptron (MLP) layers. The frozen layers' weights are taken

from models previously trained on the ImageNet dataset. After the flattening layer in the

convolutional base, an MLP network with a single hidden layer containing 64 neurons is

applied. The SoftMax activation function is chosen for the last layer due to the multi-class

classification challenge. The Adam optimizer, with a learning rate of 0.01 and a

categorical CE loss function, is used. A mini-batch size of 16 is selected, the training is

capped at 50 epochs, and Model Checkpoint is deployed for saving model weights at each

stage. The most effective epoch for the test set is identified through validation loss. The

parameters of the models have been regularized using L2-norm regularization, dropout,

and batch normalization. Furthermore, data augmentation techniques [65] like rotation,

58

flipping, and cropping have been applied to enhance the diversity and quantity of training

images due to the limited number of samples available in the training set.

Table 3.4 Configuration of LSTM and GRU layers for vehicle type classification.

Layer names LSTM/GRU classifier

L1 Masking ()

L2 LSTM/GRU (32)

L3 Batch normalization

L4 Dropout (0.01)

L5 LSTM/GRU (16)

L6 Batch normalization

L7 Dropout (0.01)

L8 LSTM/GRU (8)

L9 Batch normalization

L10 Dropout (0.01)

L11 Dense (3)

3.4 Results and Discussion

In this chapter, using a camera and a 3-D magnetic sensor node, data is collected

on intermediate road traffic by taking 376 vehicle samples and identifying the types of

vehicles. LSTM, GRU, SVM, and transfer learning algorithms are applied to the dataset

for vehicle type classification. Transfer learning approaches include VGG16, VGG19,

Xception, MobilNet, MobilNetV2, DenseNet121, DenseNet169, and DenseNet201.

Models are trained on a training set and validated on a validation set, and then the model

is also tested on the test set. The accuracies of LSTM and GRU models are obtained as

74.33% and 81.41%, respectively, with the following hyperparameters: a dropout rate of

0.2, a learning rate of 0.001, L2 norm regularization at 0.0001, and the Adam optimizer.

Subsequently, transfer learning methods are applied, wherein the convolutional base

layers of the models are frozen and the top layers are retrained. The same hyperparameters

are used for this process: a dropout rate of 0.2, a learning rate of 0.001, L2 norm

regularization set at 0.0001, and the optimizer chosen is Adam. The VGG16 model

obtained the best results, with an accuracy of 92.03%. Moreover, the SVM model

accuracy is obtained at 83.18% with the following optimum hyperparameters: C = 100,

59

gamma = 0.001, kernel = sigmoid. Table 3.5 shows all the performance results we

obtained in this chapter for vehicle type classification.

Table 3.5 Performance results of the machine learning and deep learning

classifiers on three-dimensional vehicle type classification.

Classifier Accuracy (%) Precision (%) Recall (%) F1-measure (%)

LSTM 74.33 85.83 84.17 76.63

DenseNet201 78.76 75.40 47.27 76.10

DenseNet169 79.64 81.76 69.62 80.15

GRU 81.41 84.35 76.28 82.29

DenseNet121 82.30 84.33 82.93 71.79

MobileNetV2 83.18 81.55 61.18 82.19

SVM 83.18 82.82 64.99 82.39

Xception 84.07 76.84 49.62 79.33

VGG19 88.49 82.14 63.53 85.18

MobileNet 90.26 83.01 66.29 86.48

VGG16 92.03 92.67 70.00 88.94

Ensemble 92.92 94.35 91.08 93.42

In the analysis of 3-D vehicle type classification using DL techniques, the results

indicate that the choice of model has a significant impact on the classification outcomes,

particularly when discriminating between different vehicle types. It has been observed

that transfer learning models like VGG16, when fine-tuned, excel at distinguishing light

and medium vehicles with notable precision, yet they underperform in classifying heavy

vehicles, as illustrated in Figure 3.11(a). On the other hand, LSTM and GRU models,

despite not securing the top spot for overall accuracy, exhibit superior capability in

identifying medium and heavy vehicles, as depicted in Figures 3.11(b) and 3.11(c). This

suggests their enhanced ability to capture complex patterns and temporal dependencies

that are characteristic of these vehicle categories, a feature that is particularly beneficial

in situations where accurate detection of larger vehicles is paramount for safety and

compliance reasons.

Taking a comprehensive view of the performance metrics, the ensemble method

employing custom soft voting emerges as a standout strategy. This method synergizes the

strengths of the individual models, combining VGG16's proficiency with light and

60

medium vehicles and LSTM/GRU's effectiveness with medium and heavy ones to deliver

superior classification performance. In this study, the ensemble method employs custom-

weighted soft voting, with higher weights assigned to VGG16 for light and medium

vehicle classes and elevated weights for LSTM and GRU for medium and heavy vehicle

classes. The result is an impressive overall accuracy rate of 92.92% and an F1-measure

of 93.42%, as shown in Figure 3.11(d). This nuanced application of weights within the

soft voting framework allows for precise differentiation across all vehicle categories, as

shown in Figure 3.11(d), which shows only 8 misclassified samples, underscoring the

potency of ensemble methods in addressing complex classification tasks.

Figure 3.11 Performance matrix of VGG16, LSTM, GRU, and custom ensemble

classification methods, respectively.

The loss history of the LSTM, GRU, and VGG16 models throughout training and

validation, shown in Figures 3.12, 3.13, and 3.14, highlights the intricate dynamics

involved in model training. The figure illustrates that the optimal loss rates for the

validation sets are 1.1445, 0.3642, and 0.1970, achieved after 33, 162, and 200 iterations

on the VGG16, LSTM, and GRU models, respectively. The VGG16 model exhibits fast

convergence towards a reduced loss value, suggesting that it is effectively learning

information from the training data. A sharp decrease in the loss value, particularly during

the early stages of training, indicates that the model's parameters are being modified

considerably to minimize the prediction error. If the validation loss exhibits a similar

pattern, it would suggest that the model is not just overfitting to the training data but also

effectively generalizing to new, unseen data. The LSTM model appears to have a more

61

gradual reduction in loss over a larger number of training steps. This could indicate that

the LSTM, with its ability to capture long-term dependencies, is slowly assimilating the

patterns in the sequential data. The GRU model, known for its simpler structure compared

to LSTM, seems to be showing an interesting pattern where the validation loss is lower

than the training loss. This phenomenon may occur when dropout or other regularization

methods are used during the training phase. The decrease in validation loss suggests that

the GRU model has a higher capacity to generalize to unfamiliar data, possibly attributed

to its capability to prevent overfitting by using regularization approaches. Overall, the

loss history figure is essential for comprehending the learning dynamics of different

models. It helps in evaluating the convergence of the model, identifying problems of

overfitting or underfitting, and providing guidance for additional enhancements to the

model.

Figure 3.12 The loss history of VGG16 model on training and validation steps.

Figure 3.13 The loss history of LSTM model on training and validation steps.

62

Figure 3.14 The loss history of GRU model on training and validation steps.

To summarize, the findings of this study confirm that vehicle type classification is

a complex task requiring various methodological approaches. Transforming vehicle

signals into 2-D images and employing transfer learning methods have proven to enhance

performance scores. At the same time, LSTM and GRU methods have demonstrated the

ability to accurately classify even the most challenging samples, albeit with a generally

lower performance rate. The study indicates that while individual models each have their

strengths, integrating their predictions through a soft voting ensemble method can create

a more reliable and precise classification system. The insights gained from this study

could lead to the development of more advanced ensemble strategies, potentially

including a wider array of models and techniques, to further improve classification

performance.

63

Chapter 4

4 An efficient network intrusion detection

approach based on logistic regression

model and parallel artificial bee colony

algorithm

4.1 Introduction

In recent years, the number of people and applications using the internet has

expanded dramatically, largely due to the development of smart technology. According

to Data Reportal, which collects data about internet usage worldwide, approximately one

million new internet users are added each day, with the total number of internet users

increasing by 13% in 2020 compared to the previous year [66]. The increased usage of

the internet has also brought numerous security challenges. Cybercrime and threat

activities have become a critical concern, underscoring the growing importance of

cybersecurity. SonicWall reported that around 4.8 trillion intrusion attempts occurred in

2020, representing a 20% increase from the previous year [67]. These intrusion attempts

aim to penetrate information systems to steal or compromise sensitive data. To mitigate

security vulnerabilities, technologies like firewalls, data encryption, and user

authentication methods are employed. While these security measures are effective against

a wide range of cyber threats, they fall short in conducting in-depth packet analysis and,

consequently, may not detect all attacks or types of attacks. Therefore, as a result of these

concerns, NIDS have been created to compensate for the deficiencies of the security

methods, which monitor the network continually for malicious attacks and warn users

when intrusions or attacks occur. NIDS are typically divided into two categories:

64

Signature-based and anomaly-based. Signature-based systems rely on a database of

known malware signatures and can be less effective due to the ever-increasing variety of

attacks; attackers can easily circumvent these systems with slight modifications to their

methods. Moreover, as signature databases grow, these systems can become slower due

to the continuous need to update and maintain the database. In contrast, anomaly-based

detection systems establish patterns of normal behavior without relying on signatures and

identify threats using the learned model. Thanks to their underlying ML algorithms, these

models can conduct more in-depth data analysis.

Anomaly-based detection systems employ a range of ML methods, such as rule

mining, classification, clustering, and DL algorithms, to protect network security by

detecting intrusions and attacks with high accuracy and f1-measure. However, ML

methods on their own are not without challenges; they often require additional data

preprocessing steps guided by human expertise to address issues, which requires expert

input, and they can struggle with issues such as anomaly detection, the significant impact

of errors, discrepancies between results and their interpretation, variability in network

traffic, the diversity of attack types, and difficulties in data evaluation [68]. Recently, it

was shown that a variety of critical issues can be handled, such as massive network traffic,

diverse data distribution, and continuously changing environmental circumstances, by

integrating the ABC approach with ML methods [69]. To this end, the ABC algorithms

offer several advantages: (i) they require less prior knowledge and expert intervention,

enabling classification without specific data preprocessing [70]; (ii) hybridization with

ML techniques enhances model performance [68]; (iii) ABC is less dependent on

predefined labels in the dataset [71]; and (iv) it is inherently distributed, performing

efficiently in parallel and distributed computing settings [72]. This study proposes a novel

network anomaly detection approach using LR, renowned for its uncomplicated design,

swift processing in real-time scenarios [73], and high operational efficiency. To address

LR’s inclination towards suboptimal local solutions, training is conducted using the ABC

[74] algorithm. This algorithm, inspired by natural phenomena, emulates the foraging

behavior of honeybees, leveraging the principles of swarm intelligence.

To the best of our knowledge, this study builds the first network anomaly detection

approach that utilizes the LR model and ABC algorithm together. The ABC algorithm is

effective in dealing with multimodal and complex, high-dimensional problems [75], [76].

It possesses a harmonious blend of exploration and exploitation capabilities, making it a

65

suitable choice for anomaly-based NIDS. Additionally, the computational time of the

suggested solution is decreased via the use of parallel computing techniques, and the

Bayesian hyperparameter optimization technique is used to optimize ML algorithms’

hyperparameters. The proposed approach is evaluated using two publicly available

network datasets: UNSW-NB15 and NSL-KDD. The performance of the proposed model

is evaluated with state-of-the-art ML and DL models, such as DT, Linear Discriminant

Analysis (LDA), LR, MLP, RF, SVM, XGBoost, DNN, LSTM, and GRU. Comparative

experiments on the UNSW-NB15 and NSL-KDD datasets show that the proposed model

outperforms other methods in accuracy, False Positive Rate (FPR), and F1-measure for

UNSW-NB15, as well as in accuracy, False Negative Rate (FNR), and F1-measure for

NSL-KDD, while reducing the training time. The proposed model achieves an accuracy

of 88.25% on the UNSW-NB15 dataset and 90.11% on the NSL-KDD dataset, and F1-

measures of 88.26% and 90.15%, respectively. Additionally, thanks to GPU

parallelization, the proposed model’s training time was approximately 4.45 times faster

than the CPU version of the LR-ABC approach, indicating a significant improvement in

execution speed. Overall, the major contributions of this chapter can be summarized as

follows:

• This chapter proposes an efficient approach based on an LR-ABC algorithm for

NIDS.

• To overcome the high computational time of the standard LR-ABC models, an

efficient model has been developed based on CPU and GPU parallelization

techniques to significantly reduce training time.

• The performance of the proposed approach outperforms the state-of-the-art ML

and DL models in terms of accuracy, FPR, FNR, and F1-measure.

• Comparative performance evaluations are based on the publicly available UNSW-

NB15 and NSL-KDD datasets, which are among the most comprehensive

available datasets. The high performance of the proposed approach shows that the

proposed model is reliable and robust to detect various attack types, and it

provides a scalable solution for adapting to the dynamic and evolving landscape

of cybersecurity threats.

66

• The Bayesian hyperparameter optimization method has been utilized to

automatically optimize the hyperparameters of the proposed LR-ABC approach

and state-of-the art machine learning and deep learning methods.

This chapter is organized as follows: Section 4.2 provides an overview of the

current ML-based NIDS. Section 4.3 describes evaluation metrics, available datasets,

preprocessing steps, and the hyperparameter optimization method. In Section 4.4, the

proposed LR-ABC approach and the parallel computing method are explained. Section

4.5 outlines the experimental steps. Section 4.6 presents the performance results of the

proposed LR-ABC and other classification methods.

4.2 Related Work

In recent years, attackers have been upgrading themselves and the software that

they use and inventing new malicious activities. Until now, different ML-based NIDS

have been developed. Anomaly-based NIDS are favored for their ability to identify novel

attack types, unlike signature-based systems. Due to the automated nature of ML

techniques, they are able to develop a variety of models without the strong involvement

of human skills [77], which is sometimes a constraint and costly. For this purpose, many

studies aim to increase the performance of anomaly-based NIDS for different types of

cybersecurity attacks.

Hajisalem et al. [78] suggest a hybrid method for anomaly-based NIDS that

combines the ABC and Artificial Fish Swarm algorithms. This hybrid method generates

rules through the use of fuzzy C-means clustering and correlation-based feature selection

techniques. They generate if-then rules using the CART technique to distinguish normal

and anomalous records. Qureshi et al. [79] suggest a NIDS that utilizes a random neural

network trained with the ABC algorithm to discover the ideal weights for the neurons,

followed by a comparison to the classic gradient descent based RNN model. Mazini et al.

[80] suggest a hybrid method that combines an ABC algorithm for feature selection to

select the best subset of related features and an AdaBoost meta-algorithm for

classification. Gu et al. [81] create a NIDS that uses SVM with the tabu-ABC for feature

selection and parameter optimization at the same time. They adopted the tabu search

algorithm to enhance the neighborhood search of ABC. It is utilized for reducing the

feature size dimensions, and meanwhile, SVM parameters are optimized. Finally, the

67

dataset is utilized to train the SVM classifier model using the appropriate feature subset

and hyperparameters. Rani et al. [82] use the ABC algorithm for the feature selection

process and an RF classifier for classification tasks. Additionally, they demonstrate in

other research why feature selection procedures result in overfitting and are unable to

improve classification accuracy on NIDS [83]. In our previous studies [84], the ABC

algorithm was applied to LR on e-mail spam filtering tasks and then evaluated on three

public datasets. The proposed approach is compared with other ML algorithms. The

suggested methodology outperforms other approaches in terms of classification accuracy

and FPR. The proposed model demonstrates a high degree of effectiveness on unbalanced

and nonlinear spam datasets. However, the suggested method has a shortcoming as it

requires more training time compared to the other methods.

On the other hand, several studies on NIDS have focused on different preprocessing

steps and used individual classifiers such as DT [85], LDA [86], LR [87], MLP [88], and

SVM [89] on the NIDS dataset. While these studies provide valuable insights into NIDS,

none have explored the LR-ABC classification for anomaly-detection in NIDS. In this

study, the proposed LR-ABC approach is compared to the state-of-the-art ML and DL

algorithms, which include DT, LDA, LR, MLP, RF, SVM, XGBoost, DNN, LSTM, and

GRU classifiers, using the UNSWNB15 and NSL-KDD datasets. Additionally, this study

emphasizes that no cleaning process was applied to the datasets, and feature selection

methods were not used. While some preprocessing methods could potentially increase

accuracy, such enhancements are outside the scope of this study.

Overall, ML and metaheuristic methods have been widely used for NIDS. However,

existing studies on NIDS usually suffer from low performance results such as accuracy,

F1-measure, FPR, and FNR. Moreover, current studies generally do not use automatic

parameter tuning techniques. To address these challenges, this chapter proposes a novel

approach based on a LR model trained using a parallel ABC algorithm with a

hyperparameter optimization technique. To overcome the high computational time of the

LR-ABC models, an efficient LR-ABC model has been developed based on CPU and

GPU parallelization techniques to significantly reduce training time. To the best of our

knowledge, this chapter proposes the first anomaly-based NIDS approach that employs

the parallel ABC as an LR learning algorithm.

68

4.3 Materials and Methods

Table 4.1 Traditional confusion matrix.

 Predicted Anormal Predicted Normal
Actual Abnormal TP FN
Actual Normal FP TN

4.3.1 Evaluation metrics

Accuracy is an essential criterion for evaluating a model’s overall performance. The

major goal of the current research is to increase the accuracy of NIDS, but the accuracy

criterion may not be adequate in NIDS, especially in anomaly detection. Therefore, in

addition to the accuracy metric, F1-measure, FPR, and FNR metrics, training time is also

used to evaluate the classification performance. The FPR measures the rate of normal

traffic falsely detected as anomalies, while the FNR indicates the rate of actual anomalies

mistakenly classified as normal. The F1-measure, the harmonic mean of recall and

precision, reflects the model’s sensitivity and robustness. These are important details to

be examined in the NIDS. These performance metrics are given in equations (4.1), (4.2),

(4.3), and (4.4), respectively. These metrics help to assess the performance of the model

in several aspects. The traditional confusion matrix is shown in Table 4.1.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	(𝐴𝐶𝐶) = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝐹𝑁 (4.1)

𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑅𝑎𝑡𝑒	(𝐹𝑃𝑅) = 	
𝐹𝑃

𝑇𝑁 + 𝐹𝑃 (4.2)

𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝑅𝑎𝑡𝑒	(𝐹𝑃𝑅) = 	
𝐹𝑁

𝑇𝑃 + 𝐹𝑁 (4.3)

𝐹1 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒	(𝐹1) = 	
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 (4.4)

69

4.3.2 Datasets

The UNSW-NB15 [90] and NSL-KDD [91] are benchmark network traffic datasets

well-known in NIDS research. The goal of dataset generation is to provide a robust and

realistic dataset. The UNSWNB15 dataset provides training and testing datasets

separately. This dataset provides both multiclass and binary class labels. The training set

contains a total of 175,341 samples, of which 56,000 are labeled ‘‘normal’’ and 119,341

are labeled ‘‘abnormal’’. Similarly, the testing set consists of 82,332 samples, of which

37,000 are labeled ‘‘normal’’ and 45,332 are labeled ‘‘abnormal’’ traffic samples. The

dataset contains 45 features and abnormal classes containing nine attack types, including

backdoors, analysis, DoS, exploits, fuzzers, generic, reconnaissance, shell code, and

worms.

Table 4.2 Class distribution of UNSW-NB15 and NSL-KDD datasets.

Datasets Class Training Set Test Set

UNSW-NB15

Normal 56.000 37.000

Fuzzers 18.184 6.602

Analysis 2.000 677

Backdoors 1.746 583

Dos 12.264 4.089

Exploits 33.393 11.132

Generic 40.000 18.871

Reconnaissance 10.491 3.496

Shellcode 1.131 378

Worms 130 44

Total 175.341 82.332

NSL-KDD

Normal 67.343 9.711

Dos 45.927 7.458

Probe 11.656 2.421

U2R 52 200

R2L 995 2.754

Total 125.973 22.544

The NSL-KDD is divided into two parts: KDDTrain+ and KDDTest+. The training

set has 125,973 samples, with 67,343 labeled ‘‘normal’’ and 58,630 labeled ‘‘abnormal’’,

including 22 attack types, which are categorized into four attack classes. The test set has

70

22,544 samples, of which 9711 are labeled ‘‘normal’’, and 12,833 are labeled

‘‘abnormal’’, including 37 attack types, also grouped into four attack classes. The

distribution of four classes is: denial of service (DoS) attacks, root-to-local attacks (R2L),

user-to-root attacks (U2R), and probing attacks (Probe). The NSL-KDD dataset contains

41 features.

4.3.3 One hot encoding

ML algorithms consider the magnitude of numerical values as the importance or

significance of features. In other words, based on the categorical values, it will consider

the higher number more important or superior to a lower number. Therefore, on the

UNSW-NB15 dataset, which has categorical features, one hot encoding technique is

applied to transform categorical features into numeric values. For instance, the ‘state’

feature has nine categorical values: ‘FIN’, ‘INT’, ‘CON’, ‘ECO’, ‘REQ’, ‘RST’, ‘PAR’,

‘URN’, and ‘no’. These were turned into binary vectors using the one-hot encoding

method as follows: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0], . .. , [0, 0, 0, 0,

0, 0, 0, 0, 0, 1]. The ‘service’, ‘state’, and ‘proto’ are the three categorical features in the

UNSW-NB15, dataset and after encoding, the total number of features increases to 199.

Similarly, the NSL-KDD dataset contains categorical features such as ‘protocol type’,

‘service’, and ‘flag’, which, after binary encoding, expand the total feature count to 122.

4.3.4 Data normalization

Normalization eliminates the influence of various scales across features, thereby

reducing the time required to train the model. There are several normalization approaches.

To choose the most suitable one, the dataset is analyzed for sparsity, a measure indicating

how prevalent zeros are. This metric indicates that max-abs normalization strategies

should be used before classification. This max-abs normalization technique scales and

transforms each feature independently, ensuring that each feature in the training set has a

maximum absolute value of 1.0 and does not center or shift the values, hence preserving

any sparsity. So, the max-abs normalization methods are applied to scale the feature

values into the numeric range between 0 and 1.

71

Table 4.3 Hyperparameter ranges for classification methods for UNSW-NB15 and

NSL-KDD datasets.

Classifier Parameter Lowest Highest

DT Min Samples Split 2 100
Min Samples Leaf 1 100

DL

Batch Size 8 64
Learning Rate 10^-6 10^-2
Neuron1 1 128
Neuron2 1 128
Neuron3 1 128

LDA Shrinkage 0 1
LR C 10^-4 10^4

LR-ABC

LB -64 0
UB 0 64
Evaluation Number 10.000 160.000
Limit 10 500
P 10 100
MR 0.02 0.5
L2 0 0.1

MLP

Learning Rate 10^-8 10^-1
Number of Hidden Units 2 40
Batch Size 1 1024
Number of Epochs 1 50

RF Number of Trees 1 200
SVM C 0.001 1

XGBoost
Eta 0.1 1
Depth 1 40

4.3.5 Bayesian hyperparameter optimization

In ML, there are numerous parameter optimization strategies that guarantee the

model will achieve the best performance in the given space. For this reason,

hyperparameter selection is a critical procedure during training the model. The main

advantage of hyperparameter selection is that it is applicable to handling parameter tuning

for many different models. The parameter tuning process has a strong impact on the

performance or efficacy of a model, but this usually requires a large number of runs. This

makes the tuning process time-consuming, which is the main disadvantage of

hyperparameter optimization [92]. The second disadvantage is that determining the

parameter value is still challenging. Bayesian hyperparameter optimization enables the

search of a larger hyperparameter space. For each parameter, the method accepts an

interval (i.e., min and max values) and can consider any value within that interval.

Another advantage is that Bayesian hyperparameter optimization can be completed in a

72

matter of days for the same search space and computational resources, whereas standard

techniques can take up to a year [93]. Table 4.3 shows the hyperparameter ranges for

classification methods in this study.

4.4 Proposed LR-ABC Method

4.4.1 Artificial bee colony (ABC) algorithm

The ABC algorithm, developed by Karaboga [74], is an optimization technique that

emulates the food-gathering habits of honeybees. The ABC algorithm consists of

employed bees that are actively engaged in the process, onlooker bees that observe and

make decisions based on their observations, and scout bees that seek out new

opportunities. In this context, the location of a food supply represents a potential

resolution, whereas the quantity of nectar available at the food supply indicates the caliber

of that resolution. The algorithm's main objective is to determine the food supply that has

the greatest amount of nectar. The stages of the algorithms are detailed in Algorithm 1 on

Table 4.4.

Employed bees have the task of remembering the more advantageous areas

surrounding food sources. They communicate the details about food quantities and

location to the onlooker bees in the dance area. The onlooker bees then decide which

source to visit by observing the dance of the employed bees. The ABC algorithm mimics

this dance and the effective selection of food sources using a stochastic selection

technique. This technique incorporates a positive reaction, meaning that if a food source

is rich in nectar, it attracts more onlooker bees to that particular source.

If a new solution discovered by an employed bee contains more nectar than the

present one, the employed bee saves this new solution in its memory, replacing the old

one. This occurs within the greedy selection phases of stages 4 and 8. Conversely, if the

new solution isn't an improvement, the bee maintains the existing solution and adds one

to its associated tally. These tallies keep track of how frequently a food source has been

tapped and aid in determining when a source is exhausted during the scout bee stage. A

food supply is deemed depleted when its counter exceeds a certain preset threshold.

During each iteration of the fundamental algorithm, a maximum of one employed bee is

allowed to transform into a scout bee. If multiple employed bees find their food sources

73

depleted, the algorithm selects the one with the highest tally value for this transformation.

The bees abandon depleted sources, and scout bees then embark on a search for new,

unexplored sources to take their place.

4.4.2 LR-ABC classification method

The LR model faces certain challenges with its gradient descent algorithm, such as

the prerequisite of a continuous cost function. To overcome these limitations, the LR

model is trained using the ABC method, which is a successful heuristic approach. In

addition to making no assumptions about the function or parameter search space, the ABC

algorithm can successfully search for both local and global solutions in the search space.

The weights of the LR model trained with the ABC algorithm are similar to the locations

of the food sources in the ABC algorithm. As a result, the method initially generates a

population of starting weights and bias values. The bee stages aim to find the optimal

weight set 𝑤��⃑ $ and bias value that minimize the mean squared error at the model’s output.

The algorithm’s steps are provided in Algorithm 2 on Table 4.5.

After a training set is given {(𝑥⃑(, 𝑦(), … , (𝑥2, 𝑦2)}	𝑦$ 	 ∈ 	 {0, 1}	and 𝑥(∈ 𝑅&, 1 ⩽ 𝑖

⩽ 𝑚, LR-ABC classification model determines the class of the vector 𝑥⃑$ by using

equation (4.5), where 𝑝$ is computed as seen in equation (4.6) and the function 𝜎

corresponds to sigmoid function, which is given in equation (4.7). The LR-ABC method’s

objective is to find the weights (𝑤��⃑) that minimize the cost function, which is provided by

equation (4.8). As can be seen from equation (4.8), the cost function includes the mean

square error function with ridge regression (L2 regularization) used to avoid overfitting.

𝑝$ =	 �
	0, 𝑝$ < 0.5		
1, 𝑝$ ≥ 0.5

(4.5)

𝑝$ = 	𝜎	(𝑤(𝑥$(+	𝑤#𝑥$# +⋯+	𝑤&𝑥&(+ 𝑏) (4.6)

𝜎	(𝜃) = 	
1

1 +	𝑒0H
 (4.7)

74

𝐶(𝑤) = 	
1
	𝑚	6(𝑦$ − 𝑝$)# +	

𝜆
	𝑛

2

$'(

	6(𝑤7)#
&

7'(

 (4.8)

𝑓A =	
1

1 +	𝐶A 	

(4.9)

The LR-ABC algorithm first randomly generates a total of P food source positions,

as described in step 2 of Algorithm 2. Each food source’s position corresponds to a weight

vector. For each set of weight vectors, the LR-ABC model computes an output based on

these weights and bias values. The fitness value of a solution is inversely proportional to

the value returned by the cost function for that solution, as given in equation (4.9).

Therefore, a solution with a higher cost value will have a lower fitness value. The fitness

function directs the approach to the better locations in the search space, and Algorithm 3

on Table 4.6 demonstrates the calculation of the fitness value.

After evaluating the first group of bees, the approach continues to iterate through

the phases of bees until the specified termination requirements are met. In the stage of the

employed bee, a local search is undertaken around each current solution, leading to the

generation of a new solution as outlined in the third step of Algorithm 1. In Algorithm 2,

τ�⃑ is a vector that keeps track of the number of times each solution has failed to be

improved, and in the scout bee phase, if there is a solution in this vector that is higher

than the limit value, this solution is replaced with a new one.

75

Table 4.4 Algorithm of the ABC.

1: Determine the number of food source (𝑷), maximum evaluation number ⟮𝑴𝑬𝑵⟯, limit and the number of
parameters to be optimized (𝒏)

2: Randomly create the food source locations

				for	i ← to P∶

								for	j ← to n∶

												𝑤!"#$ ← 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑

												𝑤!"%& ← upper𝑏𝑜𝑢𝑛𝑑

												ϕ#! 	← 𝑟𝑎𝑛𝑑𝑜𝑚	(0, 1⟯

												𝑤#! =	𝑤!"#$+ϕ#! 	𝑥	(𝑤!"%& −𝑤!"#$)

3: Perform local searches around food source locations using employed bees

				for	i ← to P∶

								ϕ←	𝑟𝑎𝑛𝑑𝑜𝑚	[-1,	1]	

								k	←	𝑟𝑎𝑛𝑑𝑜𝑚Int	[1,	P]	provided	that	𝑖 ≠ 𝑘

								j	←	𝑟𝑎𝑛𝑑𝑜𝑚Int	[1,	n]

								𝑣#! =	𝑥#! + 	ϕ	x	(𝑥#! −	𝑥'!)

4: Perform greedy selection

5: Calculate the fitness value for each food source; that is, evaluate the quality of each solution

				for	i ← to P∶

								𝑓𝑖 ← 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑤YY⃑)

6: Calculate the probability value of each solution proportional to its quality

				for	i ← to P∶

								𝜌𝑖 ← 0.9 × (!
)*+	(()

 + 1

7: Onlooker bees select food sources by considering probability values

				𝑖	← 0, 𝑗 ← 0 	

								𝑤ℎ𝑖𝑙𝑒 𝑡 < 𝑃 ∶

												𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚⟮0, 1⟯ < 𝑝𝑖 ∶

																𝜙 ← 𝑟𝑎𝑛𝑑𝑜𝑚 [−1, 1]

																𝑘 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑡 [1, 𝑃] 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑡ℎ𝑎𝑡 𝑖 ≠ 𝑘	

																𝑗 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑡 [1, 𝑛]

																𝑣/! =	𝑥#! + 	ϕ	x	(𝑥#! −	𝑥'!)

												𝑡 ← 𝑡 + 1

												𝑖 ← 𝑖 + 1

												𝑖𝑓 𝑖 ⩾ 𝑃 ∶

																𝑖 ← 0

8: Perform greedy selection

9: Scout bee phase: If there is an exhausted food source i then:

				𝑓𝑜𝑟 𝑗 ← 0 𝑡𝑜 𝑁 ∶

								ϕ#! 	← 𝑟𝑎𝑛𝑑𝑜𝑚⟮0, 1⟯

								𝑤#! 	 = 𝑤!"#$+ϕ#! 	𝑥	(𝑤!"%& −𝑤!"#$)

76

Table 4.5 Algorithm of the proposed LR-ABC classification method.

Input: Input matrix 𝑿𝑴𝒙𝑵, target 𝒚YY⃑ 𝑴, number of food sources 𝑷, position of the food sources 𝑾𝑷𝒙𝑫, maximum
evaluation number (𝑴𝑬𝑵),	lower bound 𝑙𝑏, upper bound 𝑢𝑏

Output:

1 : 𝐷 ← 𝑁 + 1

2 : 𝑊5&6 ← 𝑙𝑏 + 𝑟𝑎𝑛𝑑(𝑃, 𝐷) × (𝑢𝑏 − 𝑙𝑏)

3 : 𝑊7 ← 𝑊

4 : 𝑓𝚤𝑡YYYYY⃑ ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑊)

5 : τY⃑ 	← 𝑧𝑒𝑟𝑜𝑠(𝑃)

6 : 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟 ← 0

7 : while 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟 < 𝑀𝐸𝑁 do

8 :				Perform employed bee phase

9 :				𝑠𝑓𝚤𝑡YYYYYYY⃑ ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑊7)

10:				𝚤𝑛𝑑YYYYYY⃑ ← 𝑠𝑓𝚤𝑡YYYYYYY⃑ > 𝑓𝚤𝑡YYYYY⃑

11:				𝑟𝚤𝑛𝑑YYYYYYYYY⃑ ← 𝑠𝑓𝚤𝑡YYYYYYY⃑ > 𝑓𝚤𝑡YYYYY⃑

12:				𝜏[𝚤𝑛𝑑YYYYYY⃑] ← 0

13:				𝑊[𝚤𝑛𝑑YYYYYY⃑] ← 𝑊′[𝚤𝑛𝑑YYYYYY⃑]

14:				𝑓𝚤𝑡YYYYY⃑ [𝚤𝑛𝑑YYYYYY⃑] ← 𝑠𝑓𝚤𝑡YYYYYYY⃑ [𝚤𝑛𝑑YYYYYY⃑]

15:				𝜏YY⃑ [𝑟𝚤𝑛𝑑YYYYYYYYY⃑] ← 	𝜏YY⃑ [𝑟𝚤𝑛𝑑YYYYYYYYY⃑] + 1

16:				Calculate probability values of all solutions

17:				Perform onlooker bee phase

18:				𝑠𝑓𝚤𝑡YYYYYYY⃑ ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑊7)

19:				for 𝑖 ← 1 ∶ 𝑃 do

20:								𝑡 ← 𝑡𝑚𝑝𝐼𝐷YYYYYYYYYYYYY⃑ [𝑖]

21:								if 𝑠𝑓𝚤𝑡YYYYYYY⃑ [𝑖] > 𝑓𝚤𝑡YYYYY⃑ [𝑡] then

22:													𝜏YY⃑ [𝑡] ← 0

23:												𝑊[𝑡, ∶] ← 𝑊′[𝑖, ∶]

24:												𝑓𝚤𝑡YYYYY⃑ [𝑡] ← 𝑠𝑓𝚤𝑡YYYYYYY⃑ [𝑖]

25:								else

26:												 	𝜏YY⃑ [𝑡] ←	𝜏YY⃑ [𝑡] + 1

27:								end if

28:				end for

29:				Perform scout bee phase

30:				Memorize best source

31: end while

32: Return global best solution

77

Table 4.6 Algorithm of the calculation of the fitness function.

procedure 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝜙)

1: 𝑤 ← 𝜙 [∶, 1 ∶]

2: 𝑏 ← 𝜙 [∶, 0]

3: 𝑝 ← 𝜎 (𝑋.𝑑𝑜𝑡(𝑤8) + 𝑏)

4: 𝑓 ← 𝑚𝑒𝑎𝑛 ((𝑦9YYYYY⃑ 	− 	𝑝): , 𝑎𝑥𝑖𝑠 = 0)

5: 𝑓 ← ;
((<;)

6: 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟 ← 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟 + 𝑙𝑒𝑛(𝑓)

7: 𝑟𝑒𝑡𝑢𝑟𝑛 𝑓

4.4.3 Computation on GPU

The CPU version of the LR-ABC and state-of-the-art ML methods are implemented

using the NumPy [94] library, which does not support GPU computations. NumPy is

widely used in ML methods, and the Python community has built packages like scikit-

learn on top of NumPy. With the rapid development of GPU technologies over the last

few years, researchers have increasingly focused on parallel computing to accelerate

algorithms. However, the CPU version of the LR-ABC method still has limitations due

to its high computational time. Due to the large size of the training datasets (175,341 ×

199 and 125,973 × 122 matrices for UNSW-NB15 and NSL-KDD, respectively),

accelerating our model became imperative. Specifically, by harnessing GPU

parallelization for vectorized loops, we significantly enhanced overall speed and

efficiency. Additionally, we parallelized common array operations such as searching,

comparing, addition, subtraction, and matrix multiplications on a GPU. We achieved this

using CuPy [95], an open-source library that accelerates matrix operations using NVIDIA

GPUs. CuPy is compatible with NumPy and enables full use of modern GPU capabilities

through a NumPy-compatible interface. The improved parallel LR-ABC method was

developed with the CuPy library. As a result, as shown in the performance results in

Section 4.6, the training time has been dramatically reduced by approximately 4.5 times

compared to the CPU version of LR-ABC. A detailed implementation of the GPU version

can be accessed in the references [96], [97].

78

4.5 Experiments

In our experiment, eleven classification algorithms – DT, LDA, LR, MLP, RF,

SVM, XGBoost, DNN, LSTM, GRU, and the proposed LR-ABC method – are evaluated

using the publicly available UNSW-NB15 and NSL-KDD datasets. In the preprocessing

steps for both datasets, the one hot encoding technique is applied to transform categorical

features into numeric values. Max-abs normalization methods are used to map the

numeric feature values into the range 0 to 1. The classification methods are implemented

with a default parameter and using the Bayesian optimization technique, where for each

classifier, the run count limit is set to 100. Table 4.3 shows the hyperparameter ranges for

classification methods for the UNSW-NB15 and NSL-KDD datasets. Individual results

in terms of accuracy, FPR, FNR, and F1-measure are obtained for each classifier. Since

both the UNSW-NB15 and NSL-KDD datasets contain separate training and test sets,

each model is trained on the training set and evaluated on the test set.

The architectures of the DNN, LSTM, and GRU models consist of an input layer,

three hidden layers, and an output layer. The hidden layers are configured with 64, 64,

and 16 neurons, respectively, each employing a ReLU activation function. The last layer

utilizes a sigmoid activation function. To prevent the risk of overfitting, batch

normalization is implemented after each layer. The training process utilizes the Adam

optimizer with the binary CE loss function. Additionally, an early stopping mechanism

stops model training if the validation loss does not improve after five epochs, at which

point the best model weights are reinstated. The learning rate is set to its default value,

and the models are trained with a mini-batch size of 32 for a maximum of 100 epochs.

All ML models are implemented using the Scikit-Learn library [53], while all DL

models are implemented using Keras [54]. The proposed approach was developed in the

Python programming language [52].

79

4.6 Results and Discussion

In this chapter, the proposed LR-ABC method, along with seven different ML

methods (DT, LDA, LR, MLP, RF, SVM, and XGBoost) and three different DL methods

(DNN, LSTM, and GRU), is experimented with two publicly available NIDS datasets for

anomaly detection in network traffic. Each classifier is trained with a default parameter

and with hyperparameter optimization using the Bayesian technique.

Table 4.7 Performance results of the proposed and other classification methods

with default parameters on NSL-KDD datasets.

Classifier Accuracy (%) FPR FNR F1-measure (%)

DT 79.73 0.0489 0.3189 79.66

LDA 76.16 0.0678 0.3673 75.98

LR 75.39 0.0743 0.3759 75.20

LR-ABC 74.48 0.0728 0.3932 74.21

MLP 81.83 0.0783 0.2597 81.89

RF 81.23 0.0702 0.2765 81.25

SVM 76.29 0.0732 0.3610 76.14

XGBoost 78.69 0.0282 0.3529 78.49

DNN 78.54 0.0723 0.3220 78.50

LSTM 77.24 0.0333 0.3745 76.96

GRU 75.67 0.0390 0.3977 75.31

Performance results of the proposed and other classification methods with default

parameters on NSL-KDD are shown in Table 4.7. The MLP classifier shows the highest

accuracy, FNR, and F1-measures, with 81.83%, 0.2597, and 81.89%, respectively,

suggesting it is well-suited to this dataset. In contrast, the proposed LR-ABC method has

lower accuracy and F1-measure, indicating that the default parameters are not optimal for

this model; it requires more careful tuning to match the dataset's characteristics,

highlighting the necessity for hyperparameter optimization. Also, the LR model has one

of the lowest accuracies and F1-measures, with 75.39% and 75.20%, respectively. This

might be due to the linear nature of LR, which could struggle with the complex, non-

linear relationships in the NSL-KDD data. The XGBoost classifier has a relatively low

FPR, which is desirable in many security applications to avoid over-alerting. However,

80

its FNR is high, which could be more critical as it implies missing actual threats.

Conversely, the MLP has a lower FNR compared to other models but compensates with

a higher FPR, which might be more acceptable depending on the cost of false alarms

versus missed detections in the application context. The better performance of tree-based

methods (DT, RF, and XGBoost) suggests that the dataset has feature interactions and

non-linear decision boundaries that these models can capture effectively. The observed

performances suggest that while some models like MLP and XGBoost are quite adaptable

to the NSL-KDD dataset with default parameters, others, including the proposed LR-

ABC method, require careful tuning and consideration of the unique characteristics of the

dataset.

Table 4.8 Performance results of the proposed and other classification methods with

optimum hyperparameters found by Bayesian optimization on NSL-KDD datasets.

Classifier Accuracy (%) FPR FNR F1-measure (%)

DT 82.42 0.0310 0.2851 82.40

LDA 78.70 0.0303 0.3511 78.51

LR 75.67 0.0747 0.3707 75.49

LR-ABC 90.11 0.0756 0.1163 90.15

MLP 85.86 0.0778 0.1894 85.93

RF 84.02 0.0314 0.2569 84.03

SVM 76.53 0.0733 0.3567 76.40

XGBoost 81.46 0.0282 0.3042 81.39

DNN 81.75 0.0475 0.2845 81.74

LSTM 81.75 0.0374 0.2922 81.71

GRU 84.12 0.1398 0.1729 84.19

Table 4.8 shows the performance results of the proposed and other classification

methods using Bayesian hyperparameter optimization on the NSL-KDD dataset. The LR-

ABC classifiers show the highest accuracy, FNR, and F1-measures, with 90.11%, 0.1163,

and 90.15%, respectively, with the following optimum hyperparameters: LB = −2, UB =

46, Evaluation Number = 48296, Limit = 196, P = 10, MR = 0.40421, L2 = 0.06280, and

a threshold of 0.8. The improvement in LR-ABC's performance after optimization is

particularly striking, suggesting that its default parameter setting is suboptimal and that it

benefits significantly from the Bayesian optimization process. Generally, the

81

optimization process has led to a performance enhancement in most classifiers, as seen

by comparing these results to those obtained with default parameters. This underscores

the importance of tuning hyperparameters specific to the dataset and the model. The

varying degrees of improvement across classifiers suggest that the NSL-KDD dataset

may contain complex feature interactions that are better captured by models with

sufficient flexibility and capacity, like LR-ABC and MLP.

Table 4.9 Performance results of the proposed and other classification methods with

default parameters on UNSW-NB15 datasets.

Classifier Accuracy (%) FPR FNR F1-measure (%)

DT 86.17 0.2493 0.0475 85.94

LDA 80.89 0.4217 0.0026 79.76

LR 80.54 0.3995 0.0271 79.63

LR-ABC 80.97 0.4227 0.0005 79.82

MLP 84.94 0.3199 0.0123 84.42

RF 86.64 0.2713 0.0211 86.31

SVM 81.59 0.4050 0.0035 80.58

XGBoost 87.37 0.2609 0.0162 87.07

DNN 86.14 0.2844 0.0195 85.76

LSTM 87.52 0.2564 0.0173 87.23

GRU 83.60 0.3573 0.0060 82.89

Table 4.9 shows the results of the proposed and other classification methods with

default parameters on the UNSW-NB15 dataset. The LSTM model achieves the highest

accuracy and F1-measure with 87.52% and 87.23%, respectively, suggesting that its

ability to process sequences in the data is highly beneficial for the UNSW-NB15 dataset.

Conversely, the DT model, despite having the lowest FPR with a 0.2493, shows

compromised accuracy and F1-measure, pointing towards a potential underfitting issue.

The default parameters have yielded mixed outcomes, and classifiers such as LSTM and

XGBoost have performed well, suggesting their default configurations are robust for the

UNSW-NB15 dataset. The high FPR for LDA and LR might suggest that their default

decision boundaries are too lenient, causing many negative instances to be classified as

positive. The MLP and RF classifiers show a good balance between FPR and FNR, which

is reflected in their strong F1 measures. This balance suggests that they are good

82

candidates for scenarios where both types of classification errors are equally undesirable.

The varying FPR and FNR rates among the classifiers could also point to the diverse

nature of the attacks represented in the dataset. Some attacks may be easier to detect,

leading to low FNR for certain classifiers, while others may closely mimic normal

behavior, leading to high FPR for other classifiers.

Table 4.10 Performance results of the proposed and other classification methods

with optimum hyperparameters found by Bayesian optimization on UNSW-NB15

datasets.

Classifier Accuracy (%) FPR FNR F1-measure (%)

DT 86.81 0.2642 0.0237 86.5

LDA 80.91 0.4218 0.0023 79.77

LR 80.89 0.3892 0.0292 80.04

LR-ABC 88.25 0.1212 0.1143 88.26

MLP 83.37 0.3500 0.0162 82.72

RF 86.79 0.2679 0.0211 86.47

SVM 81.59 0.4050 0.0035 80.58

XGBoost 86.93 0.2650 0.0210 86.62

DNN 87.81 0.2492 0.0174 87.54

LSTM 85.86 0.0161 0.2946 85.45

GRU 84.64 0.3233 0.0150 84.10

Table 4.10 shows the performance results of the proposed and other classification

methods with hyperparameter optimization found by the Bayesian technique on the

UNSW-NB15 dataset. Hyperparameter ranges for classification methods and optimum

parameters found by the Bayesian technique are shown in Table 4.11. For the UNSW-

NB15 dataset, the proposed LR-ABC method achieved the highest accuracy (88.25%),

F1-measure (87.86%), and lowest FPR (0.1212) with the following optimum

hyperparameters: lower bound (LB) = −20, upper bound (UB) = 10, Evaluation Number

= 77885, Limit = 141, population size (P) = 15, mutation rate (MR) = 0.0100, L2

Regularization (L2) = 2.8368, and a threshold of 0.8. The optimization of

hyperparameters using the Bayesian technique has likely contributed to the classifier. For

instance, the DT, LDA, LR, XGBoost, DNN, and GRU classifiers showed slight

improvements in accuracy. MLP and LSTM's accuracy and F1-measure decreased after

83

Bayesian optimization. The proposed LR-ABC method showed the most dramatic

improvement with optimization, suggesting that its performance is highly dependent on

the right set of hyperparameters. In general, some classifiers like MLP and DT performed

well with default parameters, suggesting a natural compatibility with the dataset. In

contrast, the LR-ABC method required optimization to achieve its best performance,

highlighting the importance of tailored model configuration for anomaly detection tasks.

Table 4.11 Optimum parameters found by Bayesian optimization on UNSW-NB15

and NSL-KDD Datasets.

Classifier Parameter UNSW-NB15 NSL-KDD

DT Min Samples Split 99 19
Min Samples Leaf 42 3

DL

Batch Size 55 60
Learning Rate 10.0052 0.0040
Neuron1 37 9
Neuron2 29 84
Neuron3 127 50

LSTM

Batch Size 31 20
Learning Rate 0.0028 0.0013
Neuron1 115 73
Neuron2 74 38
Neuron3 118 94

GRU

Batch Size 44 61
Learning Rate 0.0062 0.0036
Neuron1 28 95
Neuron2 122 94
Neuron3 46 73

LDA Shrinkage 5.26e-05 0.8579
LR C 50.000 48.214,53

LR-ABC

LB -20 -2
UB 10 46
Evaluation Number 77.885 48.296
Limit 141 196
P 15 10
MR 0.0100 0.40421
L2 2.836e-05 0.0628

MLP

Learning Rate 0.0714 0.7574
Number of Hidden Units 22 13
Batch Size 527 603
Number of Epochs 10 47

RF Number of Trees 173 4
SVM C 0.9965 0.7331

XGBoost Eta 0.2305 0.2148
Depth 37 4

84

Bayesian optimization has notably improved the performance of the LR-ABC

method, as evidenced by the significant increase in accuracy and F1-measure relative to

its baseline performance with default parameters on the NSL-KDD and UNSW-NB15

datasets. The observed trade-offs between FPR and FNR across various classifiers

underscore the critical importance of model selection in accordance with the specific error

costs pertinent to the application domain. The NSL-KDD dataset, characterized by its

unique challenges, appears to be well addressed by sophisticated models, particularly

when they are fine-tuned. Conversely, while fine-tuning did not uniformly benefit all

classifiers on the UNSW-NB15 dataset, it notably promoted the performance of the LR-

ABC models, thereby underscoring their potential as formidable contenders for network

anomaly detection tasks. The study underscores the need for a carefully calibrated balance

between false alarms and missed detections, tailored to the unique requirements and

constraints of network security.

In the UNSW-NB15 dataset, as depicted in Figure 4.5, the LR-ABC method

demonstrates variable accuracy across different attack types. It performs exceptionally

well on backdoor, DoS, reconnaissance, and analysis types, achieving accuracies of 91%

or higher. However, it notably falls short in correctly identifying 'generic' attacks, with

an accuracy of only 60%. As presented in Figure 4.6, concerning the NSL-KDD dataset,

the model shows strong performance on DoS and Probe attacks with accuracies of 94%

and 92%, respectively. Yet, there is a significant drop in accuracy for R2L and U2R attack

types, down to 73% and 69%, highlighting areas that require improvement. The LR-ABC

model's varied performance across both datasets suggests that it is adept at detecting

certain attack types, such as backdoors and DoS, which likely have more distinct and

recognizable patterns. The diminished ability to identify 'Fuzzers' attacks in UNSW-

NB15 and 'U2R' and 'R2L' attacks in NSL-KDD, which are less represented in the

datasets, indicates that these attack types may be more complex or less defined, posing

challenges for the model's classification capabilities. The sparse representation of 'U2R'

attacks, in particular, may contribute to the classifiers' difficulties in accurate

identification.

85

Figure 4.1 The proposed LR-ABC method’s accuracy for each different attack

type on the UNSW-NB15 dataset.

Figure 4.2 The proposed LR-ABC method’s accuracy for each different attack

type on the NSL-KDD dataset.

In practical applications, particularly within the domain of network security,

training time is a critical measure of an algorithm's efficiency, along with performance

metrics. The LR-ABC method demonstrates this, utilizing the NumPy and CuPy libraries

to optimize training time on both CPU and GPU platforms. Its GPU implementation

significantly cuts the average training time down to 121.56 seconds, outperforming the

CPU version and rivaling classifiers such as XGBoost. Table 4.12 displays the average

training times for each classifier across ten iterations. The LR-ABC model's swift training

capability bolsters its suitability for dynamic environments that require timely model

updates. While the precision of threat detection remains paramount, the ability to quickly

train and retrain models is equally crucial in cybersecurity, allowing for rapid adaptation

to new and emerging threats.

86

Table 4.12 The training time of each classifier in seconds on UNSW-NB15 dataset.

Classifier Best Worst Mean Std.

DT 3.04 3.11 3.09 0.88

LDA 7.57 7.65 7.60 0.02

LR 6.69 6.75 6.73 0.02

LR-ABC (CPU) 541.61 542.51 541.91 0.25

LR-ABC (GPU) 121.38 122.41 121.56 0.28

MLP 436.60 790.39 534.09 109.93

RF 165.30 168.69 166.83 1.12

SVM 1437.91 1559.12 1505.68 53.15

XGBoost 120.21 120.96 120.47 0.25

DNN 129.91 391.74 246.37 82.38

LSTM 827.90 2322.50 1637.03 517.88

GRU 384.75 1130.84 716.75 309.28

87

Chapter 5

5 Conclusions and Future Prospects

5.1 Conclusions
This thesis contributes to the fields of ITS and NIDS within the broader realm of

the IoT. It addresses challenges and proposes innovative solutions. In ITS, the escalating

need for efficient and effective vehicle type classification is driven by population growth.

Effective vehicle type classification is essential for improving traffic management and

congestion control, facilitating long-term infrastructure planning, enhancing public

transportation and urban planning, ensuring environmental monitoring, and promoting

road safety. These contributes significantly enhance the overall quality of urban life and

form the backbone of modern ITS solutions.

This research addresses this need by developing an affordable, battery-operated 3-

D magnetic sensor for accurate vehicle type classification. The integration of a DNN

classifier, enhanced with hyperparameter optimization, feature selection, and extraction

methods, is an important advancement to vehicle type classification. This approach

achieves a high accuracy of 91.15% and an f-measure of 91.50%. Furthermore, in the

second phase of research, DL techniques are combined with a custom soft voting

ensemble method, which achieves even higher accuracy of 92.92% and an f-measure of

93.42%. In conclusion, this thesis has made significant contributions to the field of

vehicle type classification. It has been demonstrated that while individual models possess

inherent strengths, the confluence of these models through sophisticated ensemble

methods can yield a classification system of remarkable accuracy and reliability. This

advancement in vehicle type classification technology is important for the sustainable

development of transportation infrastructure, particularly on side roads, enhancing

comfort and road safety, and paving the way for the development of smart cities. It is

88

marking a pioneering approach in terms of energy-efficient traffic monitoring systems,

addressing the growing environmental concerns and operational costs associated with

ITS.

Meanwhile, NIDS are fundamentally important to the security of IoT devices and

networks. The IoT domain, encompassing diverse internet-connected entities such as

sensors, actuators, and a variety of smart devices, generates substantial data volumes. As

IoT devices and networks proliferate, securing data and network infrastructure has

become a critical concern. Protecting these devices from cyber threats is critical. NIDS

are one of the keys to detecting and addressing potential security vulnerabilities within

IoT networks and ensuring the integrity and reliability of data transmitted across IoT

networks. These systems provide critical capabilities in monitoring, protecting against

threats, ensuring data integrity, and complying with regulatory standards, which are all

essential for the successful deployment of IoT technologies. They underscore the

importance of cybersecurity in the IoT era. This research addresses inherent challenges

in ML-based NIDS, such as handling high dimensionality, class imbalance, and the

dynamic nature of network threats.

To effectively addressing these challenges, an efficient LR-ABC algorithm is

proposed. The LR-ABC model demonstrates superior performance in network anomaly

detection, outperforming existing ML and DL models with high accuracy and F1-

measures on benchmark UNSW-NB15 and NSL-KDD datasets. The development of

CPU and GPU versions of this model marks a significant improvement in training times,

enabling rapid adaptation to evolving cybersecurity threats, which is essential for

maintaining the security of IoT networks. The findings from this research are pivotal in

enhancing both ITS and NIDS within the IoT context. This thesis not only contributes

significantly to the advancement of ITS and NIDS but also lays the groundwork for future

research.

By leveraging IoT technologies, this research paves the way for developing more

robust, efficient, and adaptable systems, crucial for the rapidly evolving digital landscape

and the growing demands of modern urban environments and cybersecurity.

89

5.2 Societal Impact and Contribution to Global

Sustainability

The United Nations has unveiled the 2030 Agenda for Sustainable Development,

a global initiative aimed at eradicating poverty, safeguarding the environment, and

promoting peace and prosperity for everyone. At the center of this agenda are the 17

Sustainable Development Goals (SDGs), which form a collective blueprint, both in the

present and for the future. These interconnected goals provide solutions to worldwide

issues such as poverty, inequality, climate change, environmental decay, and social

justice.

The disciplines of electrical and computer engineering are ideally positioned to

make significant contributions toward these goals. Through innovative technologies and

solutions, it has the potential to drive progress in various areas, from climate action to

sustainable cities, equitable healthcare, and beyond. Especially, ML presents unparalleled

opportunities to accelerate sustainable development with its ability to analyze vast data,

derive insights, predict outcomes, and automate complex processes. This thesis

contributes to the field within the context of the IoT, which has notable societal impacts

and contributions to global sustainability. The research aligns with several SDGs,

including Industry, Innovation, and Infrastructure (SDG 9), Sustainable Cities and

Communities (SDG 11), Climate Action (SDG 13), Peace, Justice, and Strong Institutions

(SDG 16), and Partnerships for the Goals (SDG 17).

In the realm of sustainable development, the creation of resilient infrastructure,

promotion of inclusive and sustainable industrialization, and support for innovation are

crucial objectives, as highlighted by the 9th SDG. The development of algorithms for

vehicle type classification and the implementation of a 3-D magnetic sensor align with

these objectives, enhancing smarter transportation systems and contributing to

infrastructure innovation. Furthermore, the 11th SDG emphasizes transforming cities and

human settlements into inclusive, safe, resilient, and sustainable environments. This goal

is supported by the advancements in vehicle type classification technology, which,

through the integration of ML, aid in effective traffic management and urban planning.

This not only mitigates traffic congestion but also improves road safety, thereby

contributing to sustainable urban development. Addressing climate change and its

impacts, a core focus of the 13th SDG, is also a significant aspect of this research.

90

Implementing ML in traffic monitoring and management contributes not just to improved

transportation efficiency but also significantly aids in the reduction of greenhouse gas

emissions. This is in line with worldwide initiatives aimed at combating climate change.

The 16th SDG underscores the importance of reducing cyber violence and increasing the

accountability and transparency of digital systems. In this context, NIDS are critical. They

ensure the protection of essential data and information, safeguarding public access and

fundamental freedoms. Additionally, the 17th SDG brings to light the importance of

global partnerships in achieving sustainable development. The interdisciplinary approach

of this research, which encompasses computer science, artificial intelligence,

transportation, and cybersecurity, exemplifies the necessity of collaborative efforts across

various sectors and fields. Such collaborations are pivotal in driving innovation and

achieving the SDGs.

This thesis demonstrates how advancements in electrical and computer

engineering, especially in ITS and network security, extend beyond technological

achievements; they are vital for promoting sustainable development and significantly

contribute to the overarching goals of the SDGs.

5.3 Future Prospects
Building upon the significant contributions of this thesis to ITS and NIDS, several

promising avenues for future research emerge. These prospects aim to extend the current

findings and address emerging challenges in these rapidly evolving fields.

In ITS, expanding the data set and diversifying the type of vehicle can be effective

in increasing the robustness and applicability of classification models. Another exciting

possibility in ITS lies in the exploration of advanced model architectures for vehicle type

classification. The use of cutting-edge architectures like EfficientNet, Inception, and

NasNet, especially in conjunction with transfer learning techniques, can promise

significant improvements in classification accuracy and efficiency. Transfer learning

methods, known for their high performance in image and pattern recognition tasks, can

provide significant benefits when applied to vehicle type classification using 3-D

magnetic sensor data. The implementation and testing of developed ITS models in real-

world scenarios are very important. This includes deploying 3-D magnetic sensor systems

in real traffic environments to verify their effectiveness and reliability under changing

91

traffic conditions and environmental factors. Real-world tests will provide invaluable

information about the practical challenges and performance of the systems and will guide

further improvements.

As the IoT continues to grow, developing NIDS to protect IoT networks will

become increasingly important. Future research should focus on developing NIDS that

are not only effective in detecting a wide variety of attacks but also capable of rapidly

adapting to new and evolving threats. This involves exploring advanced ML techniques

to increase the accuracy and speed of network anomaly detection. Moreover, there is a

need for models to achieve high performance not only in binary classification but also in

multi-class classification models. Future work should focus on developing models that

improve the detection and classification of various network attacks. This is particularly

important for ensuring comprehensive security in complex network environments. The

direct integration of developed NIDS models into IoT devices presents a promising

research direction. This integration, allowing for more decentralized and efficient

network monitoring and attack detection, will potentially provide faster response times

and less network load.

Finally, both ITS and NIDS will greatly benefit from collaborative and

interdisciplinary research efforts. Collaboration between traffic engineers, cybersecurity

experts, data scientists, and urban planners can lead to more holistic solutions that address

the multifaceted challenges in these fields. Additionally, interdisciplinary research can

facilitate the development of innovative approaches that benefit from insights and

techniques from different fields. As a result, the future of ITS and NIDS research is

vibrant and full of potential. By building on the foundations laid by this thesis and

exploring these future expectations, significant advancements can be made that contribute

to smarter, safer, and more secure transportation systems and network environments.

92

BIBLIOGRAPHY

[1] M. A. Jabraeil Jamali, B. Bahrami, A. Heidari, P. Allahverdizadeh, and F. Norouzi,

“Towards the Internet of Things,” 2020, doi: 10.1007/978-3-030-18468-1.
[2] M. Won, S. Sahu, and K. J. Park, “DeepWiTraffic: Low cost WiFi-based traffic

monitoring system using deep learning,” Proceedings - 2019 IEEE 16th
International Conference on Mobile Ad Hoc and Smart Systems, MASS 2019, pp.
476–484, Nov. 2019, doi: 10.1109/MASS.2019.00062.

[3] “System brings deep learning to ‘internet of things’ devices | MIT News |
Massachusetts Institute of Technology.” Accessed: Dec. 15, 2023. [Online].
Available: https://news.mit.edu/2020/iot-deep-learning-1113

[4] Kamaldeep, M. Dutta, and J. Granjal, “Towards a Secure Internet of Things: A
Comprehensive Study of Second Line Defense Mechanisms,” IEEE Access, vol.
8, pp. 127272–127312, 2020, doi: 10.1109/ACCESS.2020.3005643.

[5] A. O. Alzahrani and M. J. F. Alenazi, “future internet Designing a Network
Intrusion Detection System Based on Machine Learning for Software Defined
Networks,” 2021, doi: 10.3390/fi.

[6] B. Kolukisa, V. C. Yildirim, C. Ayyildiz, and V. C. Gungor, “A deep neural
network approach with hyper-parameter optimization for vehicle type
classification using 3-D magnetic sensor,” Comput Stand Interfaces, vol. 84, 2023,
doi: 10.1016/j.csi.2022.103703.

[7] B. Kolukisa, V. C. Yildirim, B. Elmas, C. Ayyildiz, and V. C. Gungor, “Deep
learning approaches for vehicle type classification with 3-D magnetic sensor,”
Computer Networks, vol. 217, 2022, doi: 10.1016/j.comnet.2022.109326.

[8] B. Kolukisa, B. Kagan Dedeturk, H. Hacilar, and V. C. Gungor, “An efficient
network intrusion detection approach based on logistic regression model and
parallel artificial bee colony algorithm,” Comput Stand Interfaces, vol. 89, p.
103808, 2024, doi: 10.1016/j.csi.2023.103808.

[9] “www.oica.net.” Accessed: Dec. 06, 2023. [Online]. Available:
https://www.oica.net/

[10] F. H. Somda, H. Cormerais, and J. Buisson, “Intelligent transportation systems: A
safe, robust and comfortable strategy for longitudinal monitoring,” IET Intelligent
Transport Systems, vol. 3, no. 2, 2009, doi: 10.1049/iet-its:20080042.

[11] W. Ma et al., “A wireless accelerometer-based automatic vehicle classification
prototype system,” IEEE Transactions on Intelligent Transportation Systems, vol.
15, no. 1, 2014, doi: 10.1109/TITS.2013.2273488.

[12] D. Obertov and B. Andrievsky, “Vehicle classification using measurements from
accelerometers mounted on the road surface,” in 2014 19th International
Conference on Methods and Models in Automation and Robotics, MMAR 2014,
2014. doi: 10.1109/MMAR.2014.6957389.

[13] J. George, L. Mary, and K. S. Riyas, “Vehicle detection and classification from
acoustic signal using ANN and KNN,” in 2013 International Conference on
Control Communication and Computing, ICCC 2013, 2013. doi:
10.1109/ICCC.2013.6731694.

[14] H. Liu, J. Ma, T. Xu, W. Yan, L. Ma, and X. Zhang, “Vehicle Detection and
Classification Using Distributed Fiber Optic Acoustic Sensing,” IEEE Trans Veh
Technol, vol. 69, no. 2, 2020, doi: 10.1109/TVT.2019.2962334.

93

[15] S. Meta and M. G. Cinsdikici, “Vehicle-classification algorithm based on
component analysis for single-loop inductive detector,” IEEE Trans Veh Technol,
vol. 59, no. 6, 2010, doi: 10.1109/TVT.2010.2049756.

[16] M. Wasilewska and B. Golenko, “Convolutional neural network based vehicle
classification,” in 2019 Signal Processing Symposium, SPSympo 2019, 2019. doi:
10.1109/SPS.2019.8882050.

[17] M. I. Asborno, C. G. Burris, and S. Hernandez, “Truck Body-Type Classification
using Single-Beam Lidar Sensors,” Transp Res Rec, vol. 2673, no. 1, 2019, doi:
10.1177/0361198118821847.

[18] S. A. Rajab, A. Mayeli, and H. H. Refai, “Vehicle classification and accurate speed
calculation using multi-element piezoelectric sensor,” in IEEE Intelligent Vehicles
Symposium, Proceedings, 2014. doi: 10.1109/IVS.2014.6856432.

[19] M. Stocker, M. Ronkko, and M. Kolehmainen, “Situational knowledge
representation for traffic observed by a pavement vibration sensor network,” IEEE
Transactions on Intelligent Transportation Systems, vol. 15, no. 4, 2014, doi:
10.1109/TITS.2013.2296697.

[20] H. Zhao, D. Wu, M. Zeng, and S. Zhong, “A Vibration-Based Vehicle
Classification System using Distributed Optical Sensing Technology,” Transp Res
Rec, vol. 2672, no. 43, 2018, doi: 10.1177/0361198118775840.

[21] M. Bottero, B. Dalla Chiara, and F. P. Deflorio, “Wireless sensor networks for
traffic monitoring in a logistic centre,” Transp Res Part C Emerg Technol, vol. 26,
2013, doi: 10.1016/j.trc.2012.06.008.

[22] S. Taghvaeeyan and R. Rajamani, “Portable roadside sensors for vehicle counting,
classification, and speed measurement,” IEEE Transactions on Intelligent
Transportation Systems, vol. 15, no. 1, 2014, doi: 10.1109/TITS.2013.2273876.

[23] B. Yang and Y. Lei, “Vehicle detection and classification for low-speed congested
traffic with anisotropic magnetoresistive sensor,” IEEE Sens J, vol. 15, no. 2, 2015,
doi: 10.1109/JSEN.2014.2359014.

[24] F. Li and Z. Lv, “Reliable vehicle type recognition based on information fusion in
multiple sensor networks,” Computer Networks, vol. 117, 2017, doi:
10.1016/j.comnet.2017.02.013.

[25] W. Balid, H. Tafish, and H. H. Refai, “Intelligent Vehicle Counting and
Classification Sensor for Real-Time Traffic Surveillance,” IEEE Transactions on
Intelligent Transportation Systems, vol. 19, no. 6, 2018, doi:
10.1109/TITS.2017.2741507.

[26] H. Dong, X. Wang, C. Zhang, R. He, L. Jia, and Y. Qin, “Improved Robust Vehicle
Detection and Identification Based on Single Magnetic Sensor,” IEEE Access, vol.
6, 2018, doi: 10.1109/ACCESS.2018.2791446.

[27] C. Xu, Y. Wang, X. Bao, and F. Li, “Vehicle classification using an imbalanced
dataset based on a single magnetic sensor,” Sensors (Switzerland), vol. 18, no. 6,
2018, doi: 10.3390/s18061690.

[28] X. Zhang and H. Huang, “Vehicle Classification Based on Feature Selection with
Anisotropic Magnetoresistive Sensor,” IEEE Sens J, vol. 19, no. 21, 2019, doi:
10.1109/JSEN.2019.2928828.

[29] X. Chen, X. Kong, M. Xu, K. Sandrasegaran, and J. Zheng, “Road Vehicle
Detection and Classification Using Magnetic Field Measurement,” IEEE Access,
vol. 7, 2019, doi: 10.1109/ACCESS.2019.2908006.

[30] W. Li, Z. Liu, Y. Hui, L. Yang, R. Chen, and X. Xiao, “Vehicle Classification and
Speed Estimation Based on a Single Magnetic Sensor,” IEEE Access, vol. 8, 2020,
doi: 10.1109/ACCESS.2020.3008483.

94

[31] J. Chang, L. Wang, G. Meng, S. Xiang, and C. Pan, “Vision-based occlusion
handling and vehicle classification for traffic surveillance systems,” IEEE
Intelligent Transportation Systems Magazine, vol. 10, no. 2, 2018, doi:
10.1109/MITS.2018.2806619.

[32] E. H. Ng, S. L. Su-Lim Tan, and J. G. Guzmant, “Road traffic monitoring using a
wireless vehicle sensor network,” in 2008 International Symposium on Intelligent
Signal Processing and Communication Systems, ISPACS 2008, 2009. doi:
10.1109/ISPACS.2009.4806673.

[33] R. Espinosa, D. García-Saiz, M. Zorrilla, J. J. Zubcoff, and J. N. Mazón,
“S3Mining: A model-driven engineering approach for supporting novice data
miners in selecting suitable classifiers,” Comput Stand Interfaces, vol. 65, 2019,
doi: 10.1016/j.csi.2019.03.004.

[34] Y. Song, “Web service reliability prediction based on machine learning,” Comput
Stand Interfaces, vol. 73, 2021, doi: 10.1016/j.csi.2020.103466.

[35] S. H. Chin, C. Lu, P. T. Ho, Y. F. Shiao, and T. J. Wu, “Commodity anti-
counterfeiting decision in e-commerce trade based on machine learning and
Internet of Things,” Comput Stand Interfaces, vol. 76, 2021, doi:
10.1016/j.csi.2020.103504.

[36] A. A. Afuwape, Y. Xu, J. H. Anajemba, and G. Srivastava, “Performance
evaluation of secured network traffic classification using a machine learning
approach,” Comput Stand Interfaces, vol. 78, 2021, doi:
10.1016/j.csi.2021.103545.

[37] P. K. Roy, A. K. Tripathy, T. H. Weng, and K. C. Li, “Securing social platform
from misinformation using deep learning,” Comput Stand Interfaces, vol. 84, 2023,
doi: 10.1016/j.csi.2022.103674.

[38] “CC1312R data sheet, product information and support | TI.com.” Accessed: Dec.
06, 2023. [Online]. Available: https://www.ti.com/product/CC1312R

[39] “Skyworks | Home.” Accessed: Dec. 06, 2023. [Online]. Available:
https://www.skyworksinc.com/

[40] “Teach, learn, and make with the Raspberry Pi Foundation.” Accessed: Dec. 06,
2023. [Online]. Available: https://www.raspberrypi.org/

[41] L. Breiman, “Random forests,” Mach Learn, vol. 45, no. 1, pp. 5–32, Oct. 2001,
doi: 10.1023/A:1010933404324/METRICS.

[42] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in
Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016. doi: 10.1145/2939672.2939785.

[43] D. W. Hosmer, S. Lemeshow, and R. X. Sturdivant, Applied Logistic Regression:
Third Edition. 2013. doi: 10.1002/9781118548387.

[44] O. Oyebode and D. E. Ighravwe, “Urban water demand forecasting: A comparative
evaluation of conventional and soft computing techniques,” Resources, vol. 8, no.
3, 2019, doi: 10.3390/RESOURCES8030156.

[45] E. R. Girden, ANOVA : Repeated Measures Sage University Papers Series.
Quantitative Applications in the Social Sciences ; No. 07-084. 1992.

[46] M. Kuhn and K. Johnson, Feature engineering and selection: A practical approach
for predictive models. 2019. doi: 10.1201/9781315108230.

[47] T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal Loss for Dense
Object Detection,” IEEE Trans Pattern Anal Mach Intell, vol. 42, no. 2, 2020, doi:
10.1109/TPAMI.2018.2858826.

95

[48] T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal Loss for Dense
Object Detection,” in Proceedings of the IEEE International Conference on
Computer Vision, 2017. doi: 10.1109/ICCV.2017.324.

[49] T. Yu and H. Zhu, “Hyper-Parameter Optimization: A Review of Algorithms and
Applications,” Mar. 2020, [Online]. Available: http://arxiv.org/abs/2003.05689

[50] L. Yao, Z. Fang, Y. Xiao, J. Hou, and Z. Fu, “An Intelligent Fault Diagnosis
Method for Lithium Battery Systems Based on Grid Search Support Vector
Machine,” Energy, vol. 214, 2021, doi: 10.1016/j.energy.2020.118866.

[51] “Hyperparameter tuning. Grid search and random search | Your Data Teacher.”
Accessed: Jan. 11, 2024. [Online]. Available:
https://www.yourdatateacher.com/2021/05/19/hyperparameter-tuning-grid-
search-and-random-search/

[52] G. Van Rossum and F. L. Drake, Python 3 Reference Manual, Scotts Valley. 2009.
[53] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal of

Machine Learning Research, vol. 12, 2011.
[54] “GitHub - keras-team/keras: Deep Learning for humans.” Accessed: Dec. 06,

2023. [Online]. Available: https://github.com/keras-team/keras
[55] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE:

Synthetic minority over-sampling technique,” Journal of Artificial Intelligence
Research, vol. 16, 2002, doi: 10.1613/jair.953.

[56] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on
Knowledge and Data Engineering, vol. 22, no. 10. 2010. doi:
10.1109/TKDE.2009.191.

[57] R. M. Schmidt, “Recurrent Neural Networks (RNNs): A gentle Introduction and
Overview arXiv : 1912 . 05911v1 [cs . LG] 23 Nov 2019,” ArXiv, no. 1, 2019.

[58] “A Brief Introduction to Recurrent Neural Networks | by Jonte Dancker | Towards
Data Science.” Accessed: Jan. 11, 2024. [Online]. Available:
https://towardsdatascience.com/a-brief-introduction-to-recurrent-neural-
networks-638f64a61ff4

[59] K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmidhuber,
“LSTM: A Search Space Odyssey,” IEEE Trans Neural Netw Learn Syst, vol. 28,
no. 10, 2017, doi: 10.1109/TNNLS.2016.2582924.

[60] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput,
vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi: 10.1162/NECO.1997.9.8.1735.

[61] K. Cho et al., “Learning Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation,” Jun. 2014, [Online]. Available:
http://arxiv.org/abs/1406.1078

[62] E. Baykal, H. Dogan, M. E. Ercin, S. Ersoz, and M. Ekinci, “Transfer learning with
pre-trained deep convolutional neural networks for serous cell classification,”
Multimed Tools Appl, vol. 79, no. 21–22, 2020, doi: 10.1007/s11042-019-07821-
9.

[63] B. Kolukısa, Y. Görmez, and Z. Aydın, “A Transfer Learning Approach for Skin
Cancer Subtype Detection,” 2023. doi: 10.1007/978-3-031-31956-3_28.

[64] “The Unreasonable Effectiveness of Recurrent Neural Networks.” Accessed: Jan.
11, 2024. [Online]. Available: https://karpathy.github.io/2015/05/21/rnn-
effectiveness/

[65] “Image data loading.” Accessed: Dec. 06, 2023. [Online]. Available:
https://keras.io/api/data_loading/image/

96

[66] “Digital 2019: Global Digital Overview — DataReportal – Global Digital
Insights.” Accessed: Dec. 06, 2023. [Online]. Available:
https://datareportal.com/reports/digital-2019-global-digital-overview

[67] SonicWall, “2021 SonicWall Cyber Threat Report,” 2021.
[68] R. Sommer and V. Paxson, “Outside the closed world: On using machine learning

for network intrusion detection,” in Proceedings - IEEE Symposium on Security
and Privacy, 2010. doi: 10.1109/SP.2010.25.

[69] A. Thakkar and R. Lohiya, “Role of swarm and evolutionary algorithms for
intrusion detection system: A survey,” Swarm Evol Comput, vol. 53, 2020, doi:
10.1016/j.swevo.2019.100631.

[70] Bäck, T., Fogel, D. B., & Michalewicz, Z. (Eds.). (2018). Evolutionary
computation 1: Basic algorithms and operators. CRC press.

[71] V. R. Balasaraswathi, M. Sugumaran, and Y. Hamid, “Feature selection techniques
for intrusion detection using non-bio-inspired and bio-inspired optimization
algorithms,” Journal of Communications and Information Networks, vol. 2, no. 4,
2017, doi: 10.1007/s41650-017-0033-7.

[72] Peltier, T. R. (2016). Information Security Policies, Procedures, and Standards:
guidelines for effective information security management. CRC press.

[73] Y. Han, M. Yang, H. Qi, X. He, and S. Li, “The improved logistic regression
models for spam filtering,” in 2009 International Conference on Asian Language
Processing: Recent Advances in Asian Language Processing, IALP 2009, 2009.
doi: 10.1109/IALP.2009.74.

[74] D. Karaboga, “An idea based on Honey Bee Swarm for Numerical Optimization,”
Technical Report TR06, Erciyes University, no. TR06, 2005.

[75] D. Karaboga and B. Akay, “A comparative study of Artificial Bee Colony
algorithm,” Appl Math Comput, vol. 214, no. 1, 2009, doi:
10.1016/j.amc.2009.03.090.

[76] B. Akay and D. Karaboga, “A modified Artificial Bee Colony algorithm for real-
parameter optimization,” Inf Sci (N Y), vol. 192, 2012, doi:
10.1016/j.ins.2010.07.015.

[77] H. Liu and B. Lang, “Machine learning and deep learning methods for intrusion
detection systems: A survey,” Applied Sciences (Switzerland), vol. 9, no. 20. 2019.
doi: 10.3390/app9204396.

[78] V. Hajisalem and S. Babaie, “A hybrid intrusion detection system based on ABC-
AFS algorithm for misuse and anomaly detection,” Computer Networks, vol. 136,
2018, doi: 10.1016/j.comnet.2018.02.028.

[79] A. U. H. Qureshi, H. Larijani, N. Mtetwa, A. Javed, and J. Ahmad, “RNN-ABC:
A new swarm optimization based technique for anomaly detection,” Computers,
vol. 8, no. 3, 2019, doi: 10.3390/computers8030059.

[80] M. Mazini, B. Shirazi, and I. Mahdavi, “Anomaly network-based intrusion
detection system using a reliable hybrid artificial bee colony and AdaBoost
algorithms,” Journal of King Saud University - Computer and Information
Sciences, vol. 31, no. 4, 2019, doi: 10.1016/j.jksuci.2018.03.011.

[81] T. Gu, H. Chen, L. Chang, and L. Li, “Intrusion detection system based on
improved abc algorithm with tabu search,” IEEJ Transactions on Electrical and
Electronic Engineering, vol. 14, no. 11, 2019, doi: 10.1002/tee.22987.

[82] “Employing Artificial Bee Colony Algorithm for Feature Selection in Intrusion
Detection System | IEEE Conference Publication | IEEE Xplore.” Accessed: Dec.
22, 2023. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9441363

97

[83] M. Rani and Gagandeep, “Effective network intrusion detection by addressing
class imbalance with deep neural networks multimedia tools and applications,”
Multimed Tools Appl, vol. 81, no. 6, 2022, doi: 10.1007/s11042-021-11747-6.

[84] B. K. Dedeturk and B. Akay, “Spam filtering using a logistic regression model
trained by an artificial bee colony algorithm,” Applied Soft Computing Journal,
vol. 91, 2020, doi: 10.1016/j.asoc.2020.106229.

[85] S. M. Kasongo and Y. Sun, “Performance Analysis of Intrusion Detection Systems
Using a Feature Selection Method on the UNSW-NB15 Dataset,” J Big Data, vol.
7, no. 1, 2020, doi: 10.1186/s40537-020-00379-6.

[86] S. Solani and N. K. Jadav, “A novel approach to reduce false-negative alarm rate
in network-based intrusion detection system using linear discriminant analysis,” in
Lecture Notes in Networks and Systems, 2021. doi: 10.1007/978-981-15-7345-
3_77.

[87] S. Meftah, T. Rachidi, and N. Assem, “Network based intrusion detection using
the UNSW-NB15 dataset,” International Journal of Computing and Digital
Systems, vol. 8, no. 5, 2019, doi: 10.12785/ijcds/080505.

[88] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret, “Shallow neural
network with kernel approximation for prediction problems in highly demanding
data networks,” Expert Syst Appl, vol. 124, 2019, doi:
10.1016/j.eswa.2019.01.063.

[89] D. Jing and H. B. Chen, “SVM based network intrusion detection for the UNSW-
NB15 dataset,” in Proceedings of International Conference on ASIC, 2019. doi:
10.1109/ASICON47005.2019.8983598.

[90] N. Moustafa and J. Slay, “UNSW-NB15: A comprehensive data set for network
intrusion detection systems (UNSW-NB15 network data set),” in 2015 Military
Communications and Information Systems Conference, MilCIS 2015 -
Proceedings, 2015. doi: 10.1109/MilCIS.2015.7348942.

[91] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the
KDD CUP 99 data set,” in IEEE Symposium on Computational Intelligence for
Security and Defense Applications, CISDA 2009, 2009. doi:
10.1109/CISDA.2009.5356528.

[92] C. Huang, Y. Li, and X. Yao, “A Survey of Automatic Parameter Tuning Methods
for Metaheuristics,” IEEE Transactions on Evolutionary Computation, vol. 24, no.
2. 2020. doi: 10.1109/TEVC.2019.2921598.

[93] Y. Gormez, Z. Aydin, R. Karademir, and V. C. Gungor, “A deep learning approach
with Bayesian optimization and ensemble classifiers for detecting denial of service
attacks,” International Journal of Communication Systems, vol. 33, no. 11, 2020,
doi: 10.1002/dac.4401.

[94] C. R. Harris et al., “Array programming with NumPy,” Nature, vol. 585, no. 7825.
2020. doi: 10.1038/s41586-020-2649-2.

[95] R. Okuta, Y. Unno, D. Nishino, S. Hido, and C. Loomis, “CuPy: A NumPy-
Compatible Library for NVIDIA GPU Calculations.” [Online]. Available:
https://github.com/cupy/cupy.

[96] “abcLR · PyPI.” Accessed: Dec. 06, 2023. [Online]. Available:
https://pypi.org/project/abcLR/

[97] “GitHub - kagandedeturk/ABC-LR.” Accessed: Dec. 06, 2023. [Online].
Available: https://github.com/kagandedeturk/ABC-LR

98

CURRICULUM VITAE

2011 – 2016 B.Sc., Computer Engineering,

Erciyes University, Kayseri, TÜRKİYE

2018 – 2020 M.Sc., Electrical and Computer Engineering,

Abdullah Gül University, Kayseri, TÜRKİYE

2020 – 2024 Ph.D., Electrical and Computer Engineering,

Abdullah Gül University, Kayseri, TÜRKİYE

2018 – present Research Assistant, Computer Engineering,

Abdullah Gül University, Kayseri, TÜRKİYE

SELECTED PUBLICATIONS AND PRESENTATIONS

J1) B. Kolukisa, B. K. Dedeturk, H. Hacilar, V. C. Gungor, An efficient network intrusion

detection approach based on logistic regression model and parallel artificial bee colony

algorithm, published in Elsevier Journal of Computer Standards & Interfaces (2024).

J2) B. Kolukisa, V. C. Yildirim, C. Ayyildiz, V. C. Gungor, A deep neural network

approach with hyper-parameter optimization for vehicle type classification using 3-D

magnetic sensor, published in Elsevier Journal of Computer Standards & Interfaces

(2023).

J3) B. Kolukisa, B. Bakir-Gungor, Ensemble feature selection and classification methods

for machine learning-based coronary artery disease diagnosis, published in Elsevier

Journal of Computer Standards & Interfaces (2023).

J4) B. Adanur-Dedeturk, B. Kolukisa, S. Tonyali, Privacy-Preserving Wireless Indoor

Localization Systems, published in DergiPark Kocaeli Journal of Science and

Engineering (2023).

J5) B. K. Dedeturk, B. Kolukisa, M. Ozmen, CLUSTER-BASED CLONAL

SELECTION ALGORITHM FOR VEHICLE ROUTING PROBLEMS WITH TIME

WINDOWS, published in DergiPark Journal of Adıyaman Üniversitesi Mühendislik

Bilimleri Dergisi (2023).

J6) B. Kolukisa, V. C. Yildirim, B. Elmas, C. Ayyildiz, V. C. Gungor, Deep learning

approaches for vehicle type classification with 3-D magnetic sensor, published in Elsevier

Journal of Computer Networks (2022).

99

J7) B. Kolukisa, L. Yavuz, A. Soran, B. Bakir-Gungor, D. Tuncer, A. Onen, V. C.

Gungor, Coronary artery disease diagnosis using optimized adaptive ensemble machine

learning algorithm, published in International Journal of Bioscience, Biochemistry and

Bioinformatics (2020).

J8) B. Kolukisa, H. Hacilar, M. Kuş, B. Bakır-Gungor, A. Aral, V. C. Gungor, Diagnosis

of coronary heart disease via classification algorithms and a new feature selection

methodology, published in International Journal of Data Mining Science (2019).

J9) G. Goy, B. Kolukisa, B. Bakir-Gungor, I. Ugur, V. C Gungor, Weighted Association

Rules and Scoring Methodology for Cardiovascular Diseases, published in International

Journal of Bioscience, Biochemistry and Bioinformatics (2019).

C1) B. Kolukisa, Y. Gormez, Z. Aydin, A Transfer Learning Approach for Skin Cancer

Subtype Detection, In International Conference on Artificial Intelligence and Applied

Mathematics in Engineering Cham: Springer International Publishing (2022).

C2) B. Kolukisa, B. K. Dedeturk, B. A. Dedeturk, A. Gulsen, G. Bakal, A Comparative

Analysis on Medical Article Classification Using Text Mining & Machine Learning

Algorithms. In 6th IEEE International Conference on Computer Science and Engineering

(2021).

C3) B. Kolukisa, V. C. Gungor, B. Bakir-Gungor, An Ensemble Feature Selection

Methodology That Incorporates Domain Knowledge for Cardiovascular Disease

Diagnosis. In 28th IEEE Signal Processing and Communications Applications

Conference (2020)

C4) G. GOY, B. Kolukisa, C. Bahcevan, V. C. Gungor, Ensemble churn prediction for

internet service provider with machine learning techniques, In 5th IEEE International

Conference on Computer Science and Engineering (2019)

C5) B. Kolukisa, H. Hacilar, G. Goy, M. Kus, B. Bakir-Gungor, A. Aral, V. C. Gungor,

Evaluation of classification algorithms, linear discriminant analysis and a new hybrid

feature selection methodology for the diagnosis of coronary artery disease, In IEEE

International Conference on Big Data (2018).

