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1. Introduction

The main objective of composite materials is to combine two or
more materials to produce unique characteristics. Building up

materials in mechanical applications has
often required the incorporation of fibers,
whiskers, particles, and layers. The specific
type of matrix that requires reinforcement
depends on its intended application.[1]

Fiber-reinforced composites have found
widespread application across various
industries, including aerospace, energy,
mechanical manufacturing, and automo-
tive, owing to their superior mechanical
properties, lightweight nature, and ease
of manufacturing. These advanced proper-
ties come from their complex hierarchical
and/or hybrid microstructures. However,
this complexity also makes them harder
to use safely. Mechanical and thermal
stresses can compromise the integrity of
the more vulnerable elements within a
composite, leading to potential damage
during operational use. Therefore, detect-
ing such damage is crucial to preventing

premature deterioration of composite structures.[2] A key aspect
of understanding and predicting the behavior of composites
under stress involves examining their response to lateral
loading.[3]

Lateral loading significantly impacts the durability of carbon
fiber composites by causing various types of damage, such as
matrix cracking, fiber-matrix debonding, delamination, and fiber
breakage.[4] As lateral pressures are applied, microcracks develop
and propagate within the resin matrix, leading to a reduction in
the composite’s stiffness and strength. The failure of the bond
between the fibers and the matrix, often associated with matrix
cracking, further reduces the load-carrying capacity of the com-
posite. Delamination, which involves the separation of layers
along with fiber breakage, further compromises the stability
and load-bearing capability of the composite, particularly under
high stress or extensive damage.[5] These complex damage
dynamics underscore the critical need for rigorous health moni-
toring to ensure the structural integrity and longevity of
composites.

Nondestructive testing methods such as computer tomogra-
phy, visual testing, microscopy, ultrasonic testing, and acoustic
emission (AE) are available for monitoring the health of compos-
ite materials.[6] AE is known for its capability to detect damage at
the exact moment it happens, including on very small scales.[7]

This method monitors acoustic waves that result from
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Acoustic emission (AE) serves as a noninvasive technique for real-time structural
health monitoring, capturing the stress waves produced by the formation and
growth of cracks within a material. This study presents a novel ensemble feature
selection methodology to rank features highly relevant with damage modes in AE
signals gathered from edgewise compression tests on honeycomb-core carbon
fiber-reinforced polymer. Two distinct features, amplitude and peak frequency,
are selected for labeling the AE signals. An ensemble-supervised feature selection
method ranks feature importance according to these labels. Using the ranking
list, unsupervised clustering models are then applied to identify damage modes.
The comparative results reveal a robust correlation between the damage modes
and the features of counts and energy when amplitude is selected. Similarly,
when peak frequency is chosen, a significant association is observed between the
damage modes and the features of partial powers 1 and 2. These findings
demonstrate that, in addition to the commonly used features, other features,
such as partial powers, exhibit a correlation with damage modes.
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microstructural changes, offering important insights into the
sources of damage.[8] Interpreting these signals, especially in
materials with complex structures, is challenging due to the intri-
cate nature of the data and structural variations. This highlights
the necessity of precise signal classification to improve the per-
formance of monitoring systems.[9]

Machine learning methods are rapidly evolving in the field of
damage characterization in composite structures and can be
broadly categorized into supervised and unsupervised learning
approaches.[8] Unsupervised learning is particularly useful when
the damage classes are unknown, as it groups similar AE signals to
help characterize damage modes. However, significant challenges
include linking these groups to specific damage modes and deter-
mining the optimal number of clusters.[8] Adding more in situ
observations, like computer tomography,[10] microscopy,[11] digital
image correlation,[12] or simulating AE patterns[13] to make a
labeled dataset for supervised learning can often help with these
problems. In contrast, supervised learning requires prior knowl-
edge of damage classes and involves training models on labeled
data. Despite its effectiveness, this method faces the additional
obstacle of the complex task of collecting data related to the crack-
ing of individual components within a composite.

In this study, the AE technique is employed to investigate
damage modes in carbon fiber-reinforced polymer (CFRP) com-
posites. During compression testing, both time and frequency
features of AE signals are extracted. An ensemble-supervised fea-
ture selection approach is then utilized to identify relevant AE
features for damage characterization, with a focus on the ampli-
tude and peak frequency (PF) reference intervals associated with
specific damage modes. These selected AE features are subse-
quently classified using clustering models, and the performance
of these models is comparatively analyzed. This methodology
provides a complete overview of how to accurately describe dam-
age in CFRP composites. It showed how AE techniques can be
combined with advanced machine learning methods to improve
damage characterization and description. The novelty of this
study lies in three primary areas: 1) The examination of crack
formation and propagation in carbon fiber composite sand-
wiches under edgewise loading through AE measurements.
2) The application of an ensemble supervised feature selection
method that utilizes reference intervals for amplitude and PF fea-
tures as established in existing literature. 3) A comprehensive
analysis of the most effective features through the evaluation
of clustering model outcomes.

The article’s main contributions are summarized as follows:
1) Four individual and one ensemble supervised feature selection
methods are employed to identify key AE features, investigating
the reliability and generalizability of the ranges defined in the
literature. 2) Five clustering models are applied to classify AE
features, and their results are aggregated to more accurately
define the damage characterization associated with AE signals.
3) Our experimental findings reveal that, in addition to com-
monly used features, partial powers also correlate with damage
modes. Employing clustering models based on selected features
and evaluating their efficacy provides profound insights into the
damage mechanisms associated with AE signals.

This study is organized as follows: Section 2 reviews the liter-
ature on AE techniques for classifying damage characterization.
Section 3 describes the experimental setup and the composite

structures used. Section 4 outlines ensemble-supervised feature
selection and clustering methods. Section 5 offers a comparative
analysis of the results and discusses the findings. Finally,
Section 6 concludes the article with a concise summary and
conclusion.

2. Related Work

The literature contains a significant amount of research on the
mathematical, analytical, and experimental assessment of dam-
age mechanisms in CFRP materials subjected to tensile, bend-
ing, and compression testing.[14] Numerous studies have
investigated the various damage modes associated with AE waves
generation.[15] The extraction of AE features from waveforms is a
widely used method for damage classification. Within the exist-
ing research, many efforts focus on either a single-parameter
approach or employ classifiers to link specific damage modes
to AE features.[16] In composites, particularly CFRP, common
AE features for damage assessment include amplitude, PF,
counts, rise time, energy, and average frequency (AF).[14,17]

Most studies utilize unsupervised learning models such as
K-Means,[18,19] fuzzy C-means (FCM),[20,21] K-Meansþþ,[22,23]

and Gaussian mixture models (GMMs)[24,25] for clustering these
AE signals.

Before performing clustering analysis, it is essential to select
the relevant AE features to accurately distinguish damage char-
acterization. In the literature, various feature selection methods,
including the Laplacian score,[26,27] correlation coefficient,[23,26]

Davies–Bouldin index,[28,29] and principal component analysis
(PCA),[30,31] are employed to identify the essential features. In
Table 1, the most recent studies that use AE for damage mode
classification of composites are compared and summarized. In
trg. [27], authors used Laplacian scores for feature selection
and K-Means clustering to discover feature relationships.
Researchers discovered a robust association between the ampli-
tude and the frequency centroid (FC). The study in ref. [19] uti-
lized AE features, which include count, signal strength (SS),
duration, rise time, and energy, as training data, and used ampli-
tude as the target in a regression process, selecting features based
on shapley additive explanations (SHAP) values. In ref. [26],
authors applied correlation analysis and Laplacian scores to select
optimal features for K-Meansþþ clustering. Despite these
advancements, selecting the optimal feature remains challenging
due to the incomplete utilization of all AE features and various
clustering models.

The literature indicates that different damage mechanisms in
composite materials typically generate AE signals with distinct,
almost unique features. For example, matrix cracking is typically
characterized by low amplitude, low frequency, long duration,
long rise time, and large counts. In contrast, we can identify
delamination by its intermediate amplitude, low frequency,
and extremely long duration. Conversely, fiber breakage is asso-
ciated with signals that have high amplitude, high frequency, and
a short rise time. These results show that amplitude and PF are
the main AE features used to group AE signals.[32,33] There is a
consensus in the literature regarding the correlation between
these features and specific damage mechanisms in composite
materials.[14,19,25,34–37] This agreement reinforces the reliability
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of using these AE features to effectively identify and characterize
various types of damage.

3. Experimental Section

3.1. Materials

Sandwich panel members consist of core material, top and bot-
tom face sheets, and adhesive. CFRP prepreg laminates were pre-
pared with VTP H 300 epoxy matrix and high-strength carbon
fibers with a density of 210 gm�2. The nominal thickness of
the ply is 0.210mm. The core material constituting the sandwich
structure is polypropylene honeycomb. The number of plies, the
stacking sequence, and other dimensional details of the sand-
wich specimen are given in Table 2. Composite face sheets were
produced by the hot pressing method by stacking prepregs and
placing them in the mold. The production was completed under
appropriate pressure and temperature conditions and cut in
sandwich structure geometry. After the honeycomb material
was cut to the 100� 150mm dimensions, the composite plates
were ready for sandwich-making. The composite plates were
cleaned with ethanol. After the surface of the composite plates

was cleaned with ethanol, the upper surfaces of the core materi-
als were cleaned with a brush, respectively. Epoxy was applied to
the face-sheets surface, bonded with core material, and passed to
the mold stage for curing.

3.2. Testing Methods

The mechanical test was carried out following ASTM C364–
Standard Test Method for Edgewise Compressive Strength of
Sandwich Constructions.[38] The compression test system and
AE equipment are shown in Figure 1b. The compression load
was applied under displacement-controlled mode at a constant
crosshead displacement of 1 mmmin�1. Figure 1b shows AE
sensor position and deformed specimen. According to the
ASTM standard, the test was completed after at least five repe-
titions. While the success of sandwich structures against loads
such as compression and impact is obvious, the mechanical
behavior and damage mechanism in the direction of weakness
constitute a behavioral limit. In this respect, the damage mecha-
nism and crack modes were investigated by applying an edgewise
compression test to the sandwich structure.

4. AE Analysis

In this research, 19 features are derived from the AE waveforms
for analysis, with each feature detailed in Table 3. Figure 2 illus-
trates a typical AE signal with commonly used features, which
have been extensively discussed in the literature.[14,15,39]

Figure 3 provides a visual representation of the methodology.

Table 1. A summary of research using AE for damage mode classification of composites.

References Year Material Type of the Test Feature
Selection

Clustering Models Best
Features

Approach

[18] 2012 CFRP Double cantilever
beam

Laplacian
score

K-Means A, RT, E, C,
AF, D

Harmony search K-Means clustering was
applied to defined features.

[20] 2012 Glass fiber
reinforced

polyester (GFRP)

Double cantilever
beam

PCA FCM – FCM and PCA were employed to find the
correlation.

[26] 2014 GFRP Tensile Laplacian
score, PCA

K-Meansþþ A, PF, FC,
(RT/A)

Laplacian and PCA utilized to find the best
features and applied K-Meansþþ to find the

clusters.

[22] 2016 CFRP Tensile PCA K-Meansþþ A, PF K-Meansþþ and PCA utilized to find the
clusters.

[49] 2021 CFRP Tensile PCA FCM A, IF, RF FCM and PCA applied to find the correlation.

[27] 2022 CFRP Tensile Laplacian
score

K-Means A,FC Laplacian scores were used to identify the
best features, and K-Means clustering was
employed to establish their correlation.

[19] 2023 GFRP Tensile SHAP K-Means A, SS, D,
CTP

Ensemble learning models and SHAP values
are utilized to find the best features and
K-Means is applied to find the correlation.

PP 2024 CFRP Compression ANOVA
F-test, CS, MI,

ridge

K-Means, MiniBatch K-Means,
balanced iterative reducing and
clustering using hierarchies

(BIRCH), agglomerative, GMM

C, E, PP1,
PP2

Ensemble supervised feature selection is
utilized to find the best features and
K-Means, MiniBatch K-Means, BIRCH,

agglomerative, GMM clustering models are
applied to find the correlation.

Table 2. Sandwich specimen geometry and characteristics.

Length [mm] Width
[mm]

Thickness
[mm]

Number
of plies

Face-sheets-CFRP150 100 2,1 10 [0/90°]

Core-polypropylene honeycomb 150 100 15 –
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This study introduces an innovative ensemble feature selection
approach to rank features that are highly relevant to damage
modes in AE signals from edgewise compression tests on
honeycomb-core CFRP. The AE signals are labeled using two
key features: amplitude and PF. The ensemble-supervised

feature selection method ranks the features based on their
importance to these labels. Subsequently, unsupervised cluster-
ing models are used to identify the damage modes based on the
ranked features. In the following sections, we explain the experi-
ments and the methods.

Figure 1. a) Setup of the compression test system and AE equipment, including sensors, preamplifier, and the compression test system with the speci-
men. b) Position of the AE sensors and the deformed specimen after the compression test.

Table 3. Descriptions of the features extracted from the AE signals.

Feature Description

Counts [C] The aggregate number of times the AE signal exceeds the predefined threshold throughout the measurement period [count].

Energy [E] The total energy of the AE signal from the time it exceeds the detection threshold until the signal ends [aJ].

Duration [D] The measure is the time from when the signal first crosses the detection threshold to when it last [μs].

Counts To Peak [CTP] The number of signal counts observed from the initial crossing of the threshold to the point where the signal amplitude is at its
maximum [counts].

Rise time [RT] The moment when the signal exceeds a predefined threshold level [μs].

Average signal level The average value of the fluctuating AE signal’s amplitude over time.

RMS Root mean square of the constantly fluctuating AE voltage.

RF (C—CTP)/(D—RT) [kHz].

Initiation frequency [IF] CTP/RT (kHz).

SS The overall magnitude of the AE signal, determined by the integral of the rectified voltage signal over the duration of the AE
waveform in pVs [picovolt-seconds].

Absolute energy Calculated by integrating the voltage squared and then dividing by the reference resistance over the entire duration of the
waveform [aJ].

AF The proportion of the total counts and duration of the waveform [kHz].

FC Weighted mean of frequency components, determined by conducting fast Fourier transform (FFT) and executing calculations on
each FFT element [kHz].

PF The frequency at which the AE signal’s amplitude is at its maximum, measured from the FFT data [kHz].

Amplitude [A] The maximum voltage level of the AE signal, often expressed in decibels relative to a reference voltage [dB].

Partial power 1 [PP1] Indicates the portion of the signal power that exists in the frequency spectrum of the signal between 0 and 200 [kHz].

Partial power 2 [PP2] Indicates the portion of the signal power that exists in the frequency spectrum of the signal between 200 and 400 [kHz].

Partial power 3 [PP3] Indicates the portion of the signal power that exists in the frequency spectrum of the signal between 400 and 600 [kHz].

Partial power 4 [PP4] Indicates the portion of the signal power that exists in the frequency spectrum of the signal between 600 and 800 [kHz].
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4.1. Ensemble-Supervised Feature Selection

The objective of feature selection is to enhance model robustness
by eliminating unnecessary features that lack relevance to the tar-
get variable or possess inadequate predictive capability. In this
study, we utilize four feature selection techniques: ANOVA F-test
(AFT), Chi-squared (CS), MI, and ridge regression (RD)[40] aimed
at improving clustering performance. Each method assesses the
relevance of features according to distinct criteria: AFT considers
linear relationships; CS focuses on dependencies between cate-
gorical variables; MI evaluates mutual dependencies of informa-
tion; and RD incorporates regularization to control overfitting.

In this study, PF and amplitude features are utilized as target
values respectively. These features have been found to be highly

relevant to the presence of defects in numerous studies, which
are discussed in the literature. The reference interval of each fea-
ture for damage modes is defined based on the related works. For
the amplitude, the reference intervals are selected as 40–60 dB
(matrix cracking), 60–80 dB (delamination), and 80–100 dB (fiber
breakage) based on the results of this research.[41] The reference
intervals of PF are selected as 60–120 kHz (matrix cracking),
120–210 kHz (delamination), and 200–350 kHz (fiber breakage)
according to the outcomes of this study.[42] The collected dataset
is labeled based on these intervals.

In the ensemble-supervised feature selection approach, first,
the amplitude is set as the target value, and feature selection
is applied to all features except PF during training. Second,
PF is chosen as the target value, and feature selection is

Figure 2. Illustration of key signals: amplitude, rise time, duration, energy, and counts, with a marked threshold.

Figure 3. Schematic representation of the proposed methodology, including compression test, AE signal acquisition, feature extraction, feature selection
and ranking, and clustering to identify damage characterization.
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conducted on all features except amplitude during training. This
approach allows for the evaluation of the relationship between
amplitude and PF individually, providing a comprehensive under-
standing of their predictive capabilities. The best features, which
are defined by each feature selectionmethod, are ranked from best
to worst, with the best being seventeen and the worst being one.
The new rank of each feature is determined by calculating the
median of all rank values assigned by the methods. By considering
the median rank, we can identify the most consistently valuable
features across different methods and make more informed deci-
sions in selecting the optimal set of features for our analysis.

4.2. Clustering Models

In this study, the five widely recognized clustering models
(K-Means, MiniBatch K-Means, GMM, Agglomerative, and
BIRCH) were chosen for their unique strengths in handling
diverse data types. K-Means and MiniBatch K-Means are optimal
for large datasets, while GMM excels at modeling complex dis-
tributions. Agglomerative clustering offers flexibility in identify-
ing hierarchical structures, and BIRCH provides efficiency for
large datasets with many features.

The clustering models are applied to the new rank that is
defined for each feature. Initially, clustering models are executed
on various subsets of features in the new rank, specifically
excluding the target value (amplitude). Three clusters are
obtained as a result for each model. To evaluate the clustering
performance of the models, the labeled data is compared with
clusters, and the v-measure scores are obtained for different
numbers of features in the new rank. The v-measure is a
measure of the similarity between the predicted clusters and
the true labels. It provides an evaluation of how well the cluster-
ing models perform in terms of accurately assigning data points
to their respective clusters. Additionally, this comparison allows
for an assessment of which clustering model yields the highest
v-measure, indicating its effectiveness in capturing the underly-
ing patterns and structure in the data. Subsequently, we replicate
this entire process using PF as the target variable.

4.2.1. K-Means Clustering

K-Means clustering is a versatile unsupervised machine learning
algorithm used for segmenting datasets across various domains.
In image processing, it aids in segmenting images based on
pixel attributes, while in business analytics, it is utilized for cus-
tomer segmentation to tailor marketing strategies effectively.
Additionally, K-Means facilitates document clustering in text
mining, improving information retrieval, and is employed in
anomaly detection to identify outliers in datasets such as network
security. This clustering technique is pivotal in extracting action-
able insights from complex datasets, thereby informing decision-
making in both commercial and scientific fields.[43]

The model aims to divide a dataset into K separate, noninter-
secting groups to reveal inherent structures within the data. The
algorithm operates on a dataset X ¼ fx1, x2, : : : , xng, where each
xi is a d-dimensional vector. It aims to minimize the within-
cluster sum of squares, formally represented by the objective
function in Equation (1)

JðC, μÞ ¼
XK
k¼1

X
xi∈Ck

jjxi � μkjj2 (1)

here, Ck denotes the kth cluster, and μk is its centroid, calculated
as the mean of all vectors in Ck.

The algorithm initiates with a set of randomly selected cent-
roids or employs more sophisticated models like K-Meansþþ for
initialization. These centroids serve as the starting points for
each cluster. In the assignment phase, data points are allocated
to the cluster that minimizes the Euclidean distance jjxi � μkjj,
effectively updating the cluster assignments as in Equation (2)

Ck ¼ fxi∶ jjxi � μkjj ≤ jjxi � μjjj ∀j, 1 ≤ j ≤ Kg (2)

Subsequently, the centroids μk are recalculated in the update
phase as the mean of all points in Ck, essentially averaging the
data to find the new centroid. The algorithm performs iterative
calculations to optimize the positions of the centroids and halts
when the centroids have stabilized or when a predefined number
of iterations has been reached.

4.2.2. Agglomerative Clustering

Agglomerative clustering, a hierarchical clustering model, is
utilized across diverse fields for its ability to build cluster hierar-
chies and offer insights at various granularities. In the biological
sciences, it aids in classifying species and understanding genetic
relationships, proving particularly useful in cancer classification
through gene expression data. In marketing, it enables nuanced
customer segmentation without prespecifying cluster counts,
thus enhancing personalized marketing strategies. This model
also improves information retrieval by clustering similar docu-
ments, benefiting digital libraries, and is employed in social net-
work analysis to identify user communities and understand
social dynamics.[44]

The primary objective of the model is to group similar
data points based on their observed characteristics, thereby
facilitating the identification of underlying patterns or relation-
ships within the data. The algorithm operates on a dataset
X ¼ fx1, x2, : : : , xng, where each xi is a d-dimensional vector.
In contrast to partitioning techniques such as K-Means, the
agglomerative clustering approach does not necessitate predefin-
ing the total number of clusters, K, before beginning the analysis.

The process begins with the algorithm considering each indi-
vidual data point as its own separate cluster. It then progressively
combines these clusters according to a chosen linkage strategy
that uses Euclidean distance as a measure, continuing this merg-
ing until it consolidates all points into one singular cluster.
Common linkage methods include single, complete, average,
and ward linkage, each with its own strengths and weaknesses.
For instance, single linkage tends to create elongated, chain-like
clusters, while complete linkage generally results in more com-
pact, spherical clusters. The linkage criterion is formalized as a
dissimilarity measure DðA,BÞ between sets of observations A
and B, and it can vary depending on the chosen method.

The algorithm constructs a dendrogram, a tree-like diagram
that illustrates the sequence of cluster merges, with the height
of each merge corresponding to the value of the linkage criterion
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at that point. The dendrogram can be cut at a desired level to
obtain clusters at varying levels of granularity.

4.2.3. Gaussian Mixture Clustering

GMM is particularly effective in applications like speech
recognition, where it models the acoustic properties of different
phonemes, capturing the variability in speech sounds. In image
segmentation, GMM separates objects based on pixel intensities,
and in anomaly detection, it identifies abnormal patterns by
modeling normal behavior using Gaussian distributions.
These diverse applications underscore the versatility and robust-
ness of GMM in capturing complex data structures, although it is
sensitive to initial parameter estimates and may converge to a
local optimum.[45]

It operates on the premise that the dataset originates from a
blend of K distinct Gaussian distributions, with each one corre-
sponding to a separate cluster. Unlike partition-based models
such as K-Means, GMM assigns probabilities to data points,
allowing them to belong to multiple clusters simultaneously.
This provides a more nuanced understanding of cluster
assignment and enables the capture of complex relationships
within the data.

Mathematically, given a dataset X ¼ fx1, x2, : : : , xng, where
each xi is a d-dimensional vector, the GMM aims to model
the data using the likelihood function in Equation (3)

pðxijΘÞ ¼
XK
k¼1

πkN ðxijμk,ΣkÞ (3)

Here, Θ represents the model parameters, which include the
mixing coefficients πk, the means μk, and the covariance matrices
Σk. The algorithm employs the Expectation-Maximization (EM)
method for parameter estimation, which alternates between
the E-step and M-step. In the E-step, the algorithm computes
the posterior probabilities wik that each data point xi belongs
to each Gaussian distribution k in Equation (4). In the M-step,
these probabilities are used to update the parameters Θ, thereby
maximizing the likelihood of the observed data.

wik ¼
πkN ðxijμk,ΣkÞP
K
j¼1 πjN ðxijμj ,ΣjÞ

(4)

The algorithm iteratively updates these parameters until con-
vergence is reached, resulting in the final clustering and density
estimation.

4.2.4. Birch

The BIRCH algorithm is a scalable and memory-efficient cluster-
ing model specifically designed for large datasets. One key appli-
cation of BIRCH is in customer behavior analysis, where it
clusters vast amounts of customer data to identify behavior pat-
terns and trends, aiding businesses in segmenting their market
and tailoring marketing strategies.[46] Additionally, BIRCH is
used for anomaly detection in network traffic.[47] By clustering
data points, BIRCH can quickly identify unusual patterns that

deviate from the norm, which are potential indicators of security
threats or failures.

The algorithm incrementally constructs a height-balanced tree
structure known as the clustering feature tree (CF Tree), which
serves as a compact representation of the dataset. This summary,
which is stored in memory, strives to condense the dataset’s
memory footprint by encapsulating dense data clusters into con-
cise CF entries. Mathematically, a CF is a tuple CF ¼ ðN, LS, SSÞ,
where N is the number of data points in a cluster, LS is the linear
sum of the data points, and SS is the square sum of the data
points. Given a dataset X ¼ fx1, x2, : : : , xng, where each xi is
a d-dimensional vector, the CF for a cluster C containing N data
points is defined as in Equation (5)

CF ¼ N ,
XN
i¼1

xi,
XN
i¼1

xi2

 !
(5)

The CF Tree is parameterized by two key factors: the branch-
ing factor B and the threshold T. The branching factor limits the
maximum number of child nodes that each internal node can
have, while the threshold controls the maximum number of
entries in each leaf node, effectively determining the diameter
of the subclusters.

The algorithm operates through multiple phases, beginning
with the initialization phase where an empty CF Tree is created.
This is followed by the loading Phase, where each data point xi is
inserted into the CF Tree while maintaining its CF properties
and adhering to the threshold T. Optionally, a condensation
phase can be executed if the CF Tree exceeds memory limita-
tions, serving to reduce its size. Finally, a global clustering phase
is carried out, where a global clustering algorithm such as K-
Means or agglomerative clustering is applied to the leaf nodes
to derive the final clusters.

4.2.5. MiniBatch K-Means

TheMiniBatch K-Means algorithm is an optimized version of the
traditional K-Means clustering algorithm, designed to improve
computational efficiency, particularly when dealing with large
datasets, such as image or video processing, where it significantly
reduces computational costs and accelerates convergence.
MiniBatch K-Means is also employed in online learning scenar-
ios, where data arrives in streams, and quick adaptation to new
data is crucial, making it suitable for dynamic environments like
financial market analysis or real-time sensor data clustering in
IoT applications.[48] Unlike the standard K-Means, which uses
all data points to update the centroids of clusters, MiniBatch
K-Means employs a subset of randomly selected data points,
known as a “MiniBatch,” in each iteration. This approximation
speeds up the optimization process, reducing computational
time while slightly compromising the quality of the clustering.

The algorithm starts with the initialization phase where initial
centroids are randomly selected. This is followed by the
MiniBatch selection phase, where a subset of data points, known
as a “MiniBatch,” is randomly chosen from the dataset. In the
centroid update phase, these MiniBatches are used to iteratively
update the centroids using a learning rate, which is often deter-
mined by the reciprocal of the number of data points assigned to
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each centroid as the algorithm progresses. This learning rate
effectively reduces the number of iterations required for the algo-
rithm to reach convergence. The algorithm continues to iterate
through the MiniBatch selection and centroid update phases
until no significant changes in the clusters are observed, signal-
ing that convergence has been achieved.

4.3. Performance Metrics

The V-measure is an evaluation metric for clustering algorithms
that provides a balanced assessment of clustering quality when
ground truth labels are available. It is the harmonic mean of two
components: homogeneity and completeness.

Homogeneity quantifies the extent to which a cluster com-
prises solely elements from one particular class. Complete homo-
geneity is achieved when each cluster in a clustering solution
exclusively consists of elements from a single class. The formula
for calculating homogeneity h is presented in Equation (6), where
K represents the count of clusters, C signifies the number of
actual classes, nk,c is the number of elements in cluster k that
are also in class c, nk denotes the count of all elements
within cluster k, and N is the total count of elements across
the dataset.

h ¼ 1�
XK
k¼1

XC
c¼1

nk,c
N

log
nk,c
nk

� �
(6)

Completeness c serves to quantify the degree to which all
instances of a particular class are grouped into a singular cluster.
A clustering outcome is deemed to exhibit completeness if each
class is predominantly represented within a single, unique clus-
ter. The formal mathematical representation of completeness is
articulated in Equation (7). In this equation, K signifies the aggre-
gate number of clusters, C denotes the whole amount of ground
truth classes, nk,c indicates the quantity of data points in cluster k
that are also members of class c, nc is the cumulative count of
data points in class c, and N encapsulates the overall data point
count in the dataset

c ¼ 1�
XC
c¼1

XK
k¼1

nk,c
N

log
nk,c
nc

� �
(7)

The V-measure is defined as in Equation (8) where h and c are
the homogeneity and completeness scores, respectively. The V-
measure ranges from 0 to 1, where a value of 1 indicates a perfect
clustering that is both homogeneous and complete, and a value
of 0 indicates the worst possible clustering

V ¼ 2� h� c
hþ c

(8)

5. Results and Discussion

5.1. Ensemble Supervised Feature Selection

In this study, the dataset is labeled separately using two features:
amplitude and PF. Four different supervised feature selection
methods (AFT, CS, MI, and RD) along with an ensemble feature
selection method are used. The results of each feature selection
method and the ensemble feature selection for the dataset
labeled with amplitude are shown in Figure 4. Each feature selec-
tion method assigned a score of 17 to the most relevant feature
and 1 to the least relevant feature. For the ensemble method, the
feature ranking is calculated by taking the median of scores
obtained from the four feature selection methods. According
to this new ranking, counts, energy, duration, root mean square
(RMS), and partial power 2 are found to have a strong correlation
with amplitude, while reverberation frequency (RF), AF, partial
power 1, initiation frequency, and SS exhibited a weak correla-
tion with amplitude. The same process is applied by selecting
PF as the target. The results of the feature selection methods
and the ensemble feature selection for PF are shown in
Figure 5. According to the ensemble feature selection, partial
power 1, partial power 2, RF, FC, and partial power 3 exhibited
a strong correlation with PF, whereas counts to peak, duration,
average signal level, counts, and energy showed a weak correla-
tion with PF. This method offers a more thorough and robust set
of features, effectively capturing a broad range of feature inter-
actions and dependencies.

Figure 4. Results of four individual and one ensemble supervised feature selection methods labeled with amplitude.
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5.2. Clustering

In this study, five unsupervised clustering models, including K-
Means, MiniBatch K-Means, GMM, agglomerative, and BIRCH,
are used to cluster signal data. The clustering results are
compared with the labeled dataset based on amplitude and PF.
The performance of each model is evaluated using the
V-measure. In the clustering performance results for the PF tar-
get, BIRCH achieved a V-measure score of 39.7%, outperforming
the other models, which suggests its effectiveness in capturing
the underlying patterns in the data, as illustrated in Figure 6.
This notable difference in V-measure scores indicates that the
preset labeling intervals for PF in the dataset, as determined
by previous studies, may not fully apply to CFRP composites.
The high V-measure scores achieved by features partial power
1 and partial power 2 for all clustering models indicate that these
features capture essential information related to PF. The inclu-
sion of the third (RF), fourth (FC), and fifth (partial power 3)
features results in a decrease in the V-measure score for all
clustering models, indicating that these features may introduce
noise or irrelevant information. The models consistently show a
decline in performance as the number of input features
increases, indicating that an abundance of features can lead to

complexity rather than clarity, potentially introducing noise or
irrelevant variables.

The clustering performance results for the amplitude target
show varying trends across different numbers of features, as
illustrated in Figure 7. The GMM and MiniBatch K-Means clus-
tering models achieve V-measure scores of 48.75% and 40.68%,
respectively. The MiniBatch and GMM clustering models demon-
strate greater robustness compared to other models with the
increase in feature size, whereas K-Means, agglomerative, and
BIRCH show a negative impact. As the number of input features
increases, the models exhibit a continuous decline in perfor-
mance, suggesting that an excess of features may introduce com-
plexity instead of clarity, possibly due to the inclusion of noise or
irrelevant variables. This observation highlights the challenges
posed by a high number of features used in clustering tasks, where
the inclusion of additional features can dilute data clusters instead
of refining them, resulting in reduced clustering performance.

The GMM consistently achieves high V-measure scores in
both targets, indicating its effectiveness as an initial clustering
model in AE studies. Figure 8 shows the GMM clustering results
using amplitude as the target for four different feature combina-
tions: a) counts and energy, b) counts, energy, duration, and
RMS, c) counts, energy, duration, RMS, and partial power 2,

Figure 5. Results of four individual and one ensemble supervised feature selection methods labeled with PF.

Figure 6. Comparison of clustering scores (V-measure) for various algo-
rithms across different numbers of features under the PF target.

Figure 7. Comparison of clustering scores (V-measure) for various algo-
rithms across different numbers of features under the amplitude.
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d) all features. In Figure 8a, clusters are defined by specific
amplitude ranges: cluster 1 ranges from 45 to 76 dB, cluster 2
from 50 to 92 dB, and cluster 3 maintains a steady amplitude
of 93 dB. These clusters correspond to matrix cracking, delami-
nation, and fiber breakage, respectively. The amplitude range of
cluster 3 aligns with the values documented in the literature.
Nevertheless, cluster 3 experiences frequent misclassification,
often leading to erroneous grouping of points into cluster 2.
Although the initial range of cluster 2 closely matches the litera-
ture, there is a significant misclassification rate for amplitudes
between 50 and 60 dB, frequently leading to incorrect assign-
ments to cluster 1. The V-measure, at ≈50%, indicates potential
limitations in the generalizability of the literature’s defined
amplitude ranges, which may contribute to the observed cluster-
ing errors. Moreover, according to Figure 8b,c, the overlap
between clusters 1 and 2 contributes to the decrease in
V-measure scores. In Figure 8d, cluster 1 shows precise detec-
tion, whereas clusters 2 and 3 display notable misclassification.

These findings highlight the significance of ensemble feature
selection in improving clustering performance and underscore

its importance in precise damage characterization. The signifi-
cant decline in performance at 18 features could imply that add-
ing too many features introduces noise or irrelevant information,
leading to complications in the clustering process.

6. Conclusion

This study investigates the use of AE features to damage charac-
terization in CFRP composites during compression tests. We uti-
lized supervised ensemble feature selection methods (including
AFT, CS, MI, and ridge) and unsupervised clustering models
(such as K-Means, MiniBatch K-Means, GMM, agglomerative,
and BIRCH) to examine damage mechanisms. In the beginning,
the dataset was labeled based on insights from prior studies con-
cerning amplitude and PF. Ensemble feature selection methods
were applied to obtain feature ranks, in which the highest corre-
lation has higher scores and the lower correlation has lower
scores. Clustering algorithms were then employed on these
ranked features, and their performance was rigorously evaluated

Figure 8. GMM clustering results with different number of features for amplitude target. Missed indicates incorrectly clustered points. The x-axis is scaled
logarithmically. a) Amplitude versus counts with counts and energy features, b) amplitude versus counts with counts, energy, duration, and RMS features,
c) amplitude versus counts with counts, energy, duration, RMS, and partial power 2 features, and d) amplitude versus counts with all features.
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using the V-score metric. The results demonstrate a good align-
ment in the supervised ensemble feature selection methods for
both amplitude and PF targets. Furthermore, although all clus-
tering models produced reliable results for PF, GMM and
MiniBatch K-Means exhibited significantly better performance
in amplitude-based clustering. The study thus provides impor-
tant perspectives on the utility of AE features for damage char-
acterization in CFRP composites and underscores the efficacy of
combining ensemble supervised feature selection methods and
unsupervised clustering models.
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