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Abstract We investigated the association between the textur-
al features obtained from '*F-FDG images, metabolic param-
eters (SUVmax, SUVmean, MTV, TLG), and tumor histo-
pathological characteristics (stage and Ki-67 proliferation in-
dex) in non-small cell lung cancer (NSCLC). The FDG-PET
images of 67 patients with NSCLC were evaluated. MATLAB
technical computing language was employed in the extraction
of 137 features by using first order statistics (FOS), gray-level
co-occurrence matrix (GLCM), gray-level run length matrix
(GLRLM), and Laws’ texture filters. Textural features and
metabolic parameters were statistically analyzed in terms of
good discrimination power between tumor stages, and select-
ed features/parameters were used in the automatic classifi-
cation by k-nearest neighbors (k-NN) and support vector
machines (SVM). We showed that one textural feature
(gray-level nonuniformity, GLN) obtained using GLRLM
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approach and nine textural features using Laws’ approach
were successful in discriminating all tumor stages, unlike
metabolic parameters. There were significant correlations
between Ki-67 index and some of the textural features
computed using Laws’ method (» = 0.6, p = 0.013). In
terms of automatic classification of tumor stage, the accu-
racy was approximately 84% with k-NN classifier (k = 3)
and SVM, using selected five features. Texture analysis of
FDG-PET images has a potential to be an objective tool to
assess tumor histopathological characteristics. The textural
features obtained using Laws’ approach could be useful in
the discrimination of tumor stage.

Keywords Texture analysis - PET - Tumor heterogeneity -
Tumor histopathological characteristics - Ki-67

Oguzhan Ayyildiz
ayyildizned @gmail.com

Department of Nuclear Medicine, Saglik Bilimleri University,
Kayseri Training and Research Hospital, 38010 Kayseri, Turkey

Department of Biomedical Engineering, Erciyes University,
Engineering Faculty, Kayseri, Turkey

Department of Electrical and Electronics Engineering, Abdullah Giil
University, Engineering Faculty, Kayseri, Turkey

Department of Pathology, Saglik Bilimleri University, Kayseri
Training and Research Hospital, Kayseri, Turkey

Department of Computer Technologies, Erciyes University, Develi
Hiiseyin Sahin Vocational College, Kayseri, Turkey

Department of Nuclear Medicine, Acibadem University, School of
Medicine, Istanbul, Turkey


mailto:seyhan.karacavus@sbu.edu.tr
http://crossmark.crossref.org/dialog/?doi=10.1007/s10278-017-9992-3&domain=pdf

J Digit Imaging (2018) 31:210-223

211

Introduction

Positron emission tomography (PET) is a useful functional
imaging technique whose effectiveness to stage or restage
tumors, evaluate tumor response to treatment, define patient
prognosis, and guide surgery and radiotherapy for patients
with cancers of non-small cell lung cancer (NSCLC) is proven
[1, 2]. Exact tumor stage evaluation is important to plan ther-
apy protocol accurately and to prevent unnecessary surgery.
The uptake of 'SF-FDG used extensively in PET studies is
closely related to the parameters determining the biological
behavior of the lesion such as in healthy, tumorous, and in-
flammatory cells, growth index, tissue blood supply, and hyp-
oxia [3]. These tumor characteristics can affect the degree and
heterogeneity of tumor FDG uptake and semi-quantitative pa-
rameters, such as standard uptake value (SUV), total lesion
glycolysis (TLG), and metabolic tumor volume (MTV) [4]. In
addition, these parameters are mostly histogram based and
have the shortcomings of histogram analysis. Histogram-
based parameters cannot describe the gross texture coming
from relationships of two or more voxels [5]. On the other
hand, it is a well-known fact that the characterization of the
lesion using excisional or fine-needle biopsy, considered as
the golden standard, might have sampling error, which would
not represent the actual biological behavior and the intra-
tumoral heterogeneity. Therefore, a more meaningful feature
of the tumor uptake from PET images for the determination of
intra-tumoral heterogeneity has recently been investigated
intensively.

The field of radiomics proposes the extraction of additional
features from different data coming from various imaging mo-
dalities. We know that medical images contain more valuable
information than may be obtained by visual analysis. In this
context, texture features noninvasively extracted from PET
images may allow us to characterize the histopathological tu-
mor properties in vivo at molecular level. In this kind of stud-
ies, including ours, the goal is to find one or more biomarker/s
(feature/s) carrying predictive and prognostic information.

Owing to the increase in PET scanners’ spatial resolution,
there has been a tendency among researchers towards using
image processing tools/approaches on PET images recently.
Among these are image texture analysis methods, which can
assess radiotracer uptake that reflects the image heterogeneity,
and in turn, biological heterogeneity of the underlying tumor
[6-8] relatively accurately. Texture analysis includes a set of
pattern analysis approaches that quantify the interrelationship
of the pixels or voxels via different mathematical methods.
The parameters derived from texture analysis have been found
to be useful in better lesion characterization, image segmenta-
tion, monitoring and predicting of therapy response, and prog-
nosis [9—-12]. In this context, numerous texture parameters
have been proposed so far. However, to give a general sense
of some of these parameters, in a certain region of interest

(ROI) on the medical image (especially PET images here),
lower uniformity, higher entropy, higher standard deviation,
lower skewness, and higher kurtosis computed using the pixel
distribution represent increased heterogeneity. Nevertheless,
the relationship between these textural parameters and com-
monly used semi-quantitative parameters and tumor stage,
type, and histopathological features has not been fully defined
or explored in NSCLC.

When we scan the literature, we obverse that (i) in some
studies, researchers included only a small number of patients
(n <=20) in their analysis [13, 14] and some other studies used
patients from different cancer types but did not focus on a
NSCLC group, and therefore, few number of NSCLC patients
were examined [8, 9]; (ii) most studies used only a few texture
analysis methods and thus extracted limited number of texture
parameters [15]; and (iii) there are only a few studies that
considered using textural parameters for automatic classifica-
tion of tumor stage or subtype [16, 17].

In this study, we investigated the relationship between the
textural features obtained from '*F-FDG images and other
metabolic parameters (SUVmax  SUVmean, MTV, TLG),
and tumor histopathological characteristics (stage and Ki-67
proliferation index), and whether these textural features could
be used in the automatic discrimination/classification of tumor
stage in NSCLC. In addition, an important contribution of this
study is to introduce a texture analysis approach, called Laws’
texture filter, in the intra-tumoral heterogeneity quantification
for NSCLC. Here, the superiority of this technique compared
to the approaches reported in the PET texture analysis litera-
ture is presented in terms of correlation with metabolic param-
eters, tumor stage, proliferation index, and automatic
classification.

Our and many other groups’ goal in this kind of research is
to find more robust features indicating the heterogeneity of the
lesion extracted from the PET images that could be used in
malignancy analysis, stage discrimination (especially difficult
to stage cases), subtype determination, prognosis, and therapy
response monitoring. It would be very beneficial to perform
these analyses using a noninvasive approach like texture anal-
ysis. In recent years, this has been a hot topic of research in
medical image analysis that has the potential to pave new
ways in the noninvasive characterization of the tumors.

Methods
Patient Population

In this retrospective study, 83 patients with non-small cell lung
cancer (NSCLC) that previously underwent '*F-FDG-PET/
CT imaging for cancer staging before surgery, chemotherapy,
or radiotherapy treatment according to the stage of their dis-
ease from March 2010 to April 2014 were evaluated in the
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Acibadem Kayseri Hospital. Malignant disease was con-
firmed by histopathological verification in all patients.
Patients were grouped as stage I, II, III, or IV, using conven-
tional CT criteria for tumor size and local invasion and PET
assessments of nodal and distant metastases by well-trained
imaging specialists according to the seventh edition of the
American Joint Committee on Cancer (AJCC) TNM classifi-
cation guidelines [18]. In patients without histopathological T-
stage, N-stage, or M-stage verification, clinical follow-up
served as the standard of reference for T, N, and M stages.
Ten patients were excluded because their tumors were con-
glomerating with regional lymph nodes and/or conjugating
inflammatory lesions. In addition, six patients with a tumor
volume smaller than 5 ml were not included in this study,
because the number of voxels was not sufficient to obtain a
robust statistic as suggested by [19]. The remaining 67 patients
consisted of 8 females and 59 males, with a mean age of
62.4 + 8.7, were evaluated in this study. In order to balance
the group sizes, patients with stages I and II were combined to
form one group, giving a total of three groups (stages I and II,
stage III, and stage IV). The number of patients with TNM
stage I-11, I1I, or IV was 27, 19, and 21, respectively. The tumor
subtypes were also balanced (45% adenocardinomas—ADCs
and 55% squamous carcionomas—SqCCs). Patient character-
istics are presented in Table 1. In addition, immunohistochem-
ical examination was performed by the pathology expert in our
team on a subgroup containing 40 of all patients, because sam-
ples were not available for the rest of the group, i.e., for remain-
ing 27 patients. This study was approved by the research ethics
committee of the Kayseri Research and Training Hospital. All
procedures performed in studies involving human participants
were in accordance with the ethical standards of the institution-
al and/or national research committee and with the 1964
Helsinki Declaration and its later amendments or comparable
ethical standards. Informed consent was obtained from all in-
dividual participants included in the study.

PET/CT Study

Images were acquired at the Acibadem Hospital Nuclear
Medicine Department, Kayseri, Turkey, using a PET/CT scan-
ner (Siemens Biograph 6, Hi-Rez). The scanner had energy
resolution less than 15%, lutetium oxyorthosilicate (LSO) de-
tector, 98-mm°> volumetric resolution, 4.3-mm spatial resolu-
tion (Hi-Rez property), and high-quality imaging capability
and 6-slice multi-detector CT system.

Ten to fifteen millicuries (370-555 MBq) of '*F-FDG was
intravenously injected to the patients whose blood glucose
level was below 150 mg/dl. The PET/CT acquisitions were
performed 60.4 + 4.2 min after the injection in the supine
position between the head and the femur. First, CT and, then
in the same range at eight or nine bed positions (2-3 min at
each position), PET scanning were carried out for all patients.
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Table 1  Clinical and demographical characteristics and metabolic
parameters of all patients (n = 67)

Clinical features

Age 62.4+8.7
Gender (F/M) 8/59
Tumor type

Adenocarcinoma 30

Squamous cell carcinoma 37
TNM stage

1 7

I 20

I 19

v 21

PET semi-quantitative values

SUVmax 16.1 £8.3
SUVmean 89+45
MTV 47.9+392
TLG 463.7 £435.4

SUV standardized uptake value, MTV metabolic tumor volume, 7LG total
lesion glycolysis

After the reconstruction of the acquired images using 3D iter-
ative reconstruction algorithm, two nuclear medicine experts
assessed the 3D whole body projection (maximum intensity
projection, MIP) and the coronal, sagittal, and transverse
cross-sections visually and semi-quantitatively using the e-
Soft software platform (Siemens, USA). The regions of inter-
est (ROIs) on the target lesions were determined semiautomat-
ically, starting with the expert’s initial rectangular area selec-
tion followed by the scanner’s built-in software. The mean
SUV (SUVmean), maximum SUV (SUVmax), metabolic tu-
mor volume (MTV), and total lesion glycolysis (TLG) values
were computed using the same platform (Fig. 1). The MTV
and TLG values were computed using the approach described
by Larson et al. [20]. TLG was computed by the multiplication
of the MTV and SUVmean values. For patients with multiple
lesions, TLG was obtained by the summation of TLG values
computed from each lesion.

Histopathological Examination

The pathological specimens were acquired using excisional or
fine-needle biopsy. The immunohistochemical (IHC) staining
was performed on the 5-pum-thick sections cut from the tissue
blocks, which were composed of formalin-fixed, paraffin-
embedded specimens from all available materials. IHC stain-
ing was examined by using of avidin-biotin-peroxidase meth-
od. The 5-um sections were prepared for investigating the Ki-
67 expression (Thermo Scientific Ki-67, Rabbit Monoclonal
Antibody). The Ki-67 expression was assessed by obtaining
the labeling index (LI positive epithelial cells/100 epithelial
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Fig. 1 Regions of interest on PET/CT images for the MTV and TLG computations on a patient

cells) for each section. Ki-67 immunohistochemistry study
was performed in a subgroup of 40 patients out of all 67
patients. The nuclear staining was considered as positive for
Ki-67. IHC staining was performed using an automated sys-
tem (Autostainer Leica Bond-max, Leica Microsystems,
Bannockburn, IL, USA). For Ki-67, the most intense area that
has the nuclear staining in the tumor tissue was examined. The
Ki-67 score as the percentage of tumor cells was graded as
follows by an expert pathologist with a 6-year experience
score (+) for 10-29%, score (++) for 30-49%, and score
(+++) for 50-100%.

Image Processing

PET/CT images and acquisition details were saved as DICOM
image files. The PET/CT slices that contained tumor lesions
were evaluated using the graphical user interface of the acqui-
sition system in fused and separate modes. The slice with the
highest SUVmax value in the ROI of the target lesion was
determined. When the adjacent FDG-avid lesions or structures
(inflammation, lymph nodes, etc.) could not be identified, the
case was excluded from the study. The screenshot of this slice
from the monitor of the workstation has been saved as a ref-
erence for further analysis.

The image processing steps were performed using
MATLAB (MathWorks, MA, USA) technical computing en-
vironment based on those selected/specific PET slices (one
slice for each subject). The processing steps were as follows:
(1) tumor segmentation, (ii) binning, and (iii) texture analysis
(Fig. 2). Before the segmentation step, a rectangular region
that contained the target lesion on the associated PET slice
was visually selected with the help of the nuclear medicine
expert in our research team (SK), as the initial ROI, to work
on. On this region, a popular segmentation approach called
Otsu’s method [21] was used to distinguish the background
from the tumor. Otsu’s method is used to perform clustering-
based image thresholding or the binarization of an image. This
method involves iterating through all the possible threshold
values and calculating a measure of spread (intra-class
variance) for the pixels that fall either in foreground or in
background. The algorithm assumes that the image contains
bi-modal histogram then calculates the optimum threshold
separating those two classes so that their combined intra-
class variance is minimal. Otsu’s segmentation approach was
previously used in segmentation of brain magnetic resonance
images [22], cerebrovascular segmentation [23], nuclei extrac-
tion [24], and small animal PET/CT [25].

In the binning step, for an efficient texture analysis, the
pixel values on the segmented region that contains the tumor
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Fig. 2 ROI selection and
segmentation steps shown on a
tumor located on the left lung

ROI

were scaled. The binning is done in such way that the wide
range of intensity values was linearly mapped to be between 1
and 64. Different binning levels like 16, 32, 64, and 128 were
tested, and it is found that 64 was the optimal value in terms of
resolution and computational time. As Clausi [26] has shown,
more than 64 levels do not improve classification accuracy
and levels less than 24 can produce unreliable results.

Texture Analysis

The final step involved performing texture analysis on the
binned regions with tumors. A total of 137 features were ex-
tracted using first order statistics [27] (FOS, 7 features) and
three different texture analysis approaches. The texture analy-
sis approaches were the gray-level co-occurrence matrix
(GLCM, 21 features), gray-level run length matrix
(GLRLM, 11 features), and the Laws’ texture features
(Laws, 98 features) [27-30].

In the FOS, the properties were extracted from the seg-
mented tumor (i.e., not binned), which did not take the neigh-
boring pixel values into account. In this approach, from the
pixel intensity values, /(x,y), a histogram depicting the ratio of
the number of pixels with a certain gray level to the total
number of pixels in the region was formed. Using the pixel
intensity values and the histogram features, whose definitions
were given in [27], shown in Table 2, the features were
computed.

The second feature extraction approach used was the
GLCM, which describes the relationship between the neigh-
bor pixels and depicts the occurrence rate of the brightness
levels on the image at fixed distances and orientations.
GLCMs were computed for 0, 45, 90, and 135° with 1-pixel
distance. All the features mentioned below were computed
and averaged over these four angles in order to make them
rotationally invariant. In this approach, scaled ROIs were used
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in order to describe or characterize the relationship between
the neighbors in a standardized manner. For further details on
GLCM computation, we refer the reader to [28]. The final
GLCM gives the probabilities of co-occurrences, which is
then used in the derivation of texture features (see Table 2).
The definitions of these features are given in [31]. In our
case, the binning was performed to make final images of
64 gray levels and the final (normalized) GLCMs were
64 % 64 matrices.

The third feature extraction approach was the GLRLM.
The term gray level run in the GLRLM approach means the
sequential pixels with the same gray level in the same direc-
tion. GLRLM is a 2D matrix and each element shows how
many times the gray level i runs in length of j in the angle
direction occurred [29]. When the number of neighbor pixels
that have the same gray level is low, the texture has a fast
variation. The most common 11 GLRLM features were pro-
posed by Galloway [29], Chu et al. [32], and Dasarathy and
Holder [33]. All the features shown in Table 2 were computed
and averaged over 0, 45, 90, and 135° in order to make them
rotationally invariant. The angles used in the GLCM and
GLRLM computation are commonly used for 2D image tex-
ture analysis.

The last texture analysis approach we used was the
Laws’ texture features. To our knowledge, the feasibility/
performance of this approach has not been investigated in
the PET image analysis area until now. It has been used on
ultrasound images of the fatty liver [34], on high-resolution
digital radiographs of the bones [35], and on CT images of
the lungs [36].

In this approach, local masks or filters are employed in
detecting various types of textures. In order to generate these
local masks, one-dimensional kernels known as “Level (L),
Edge (E), Spot (S), Wave (W), and Ripple (R)” are convolved
[30] to produce two-dimensional (2D) 5 x 5 kernels. L gives a

Scaled image




J Digit Imaging (2018) 31:210-223 215
Table 2 Texture features and
metabolic parameters according Tumor Stage I i v
to TNM stage of all patients
Texture
features
FOS
Energy 5.26 + 4,69*° 634 +5.11° 7.81 +543°
Entropy ~3.74 +3.93%° -5.08 +3.52° 739+ 6.79°
Std 2.86+2.42° 257+142 227+123°
Mad 245+2.11° 2.11+123 1.92 +1.02°
GLCM
Contrast 206.79 + 82.91%° 157.97 £ 69.71° 133.577 + 76.73°
Coenergy 0.16 £ 0.04* 0.19 +£0.03 0.18 £ 0.03
Homogeneity 0.025 +0.014*° 0.012 + 0.006 0.014 +0.007°
Autocorre 0.485 +0.195° 0.620 + 0.138 0.578 £0.144
Cluspromi 0.082 + 0.037° 0.109 + 0.033 0.101 +0.032
Maxprobap 11.539 +2.643% 9.031 +1.973 9.906 + 2.352
Sumosquare 3.877 +0.551° 4.533 +0.433* 4.447 +0.624°
Sumaverage 0.037 + 0.016*° 0.024 + 0.009* 0.025 +0.014°
Difentropy 3.033 + 0.486™° 3.554 £0.332% 3.349 £ 0.479°
Infeorrl 0.0012 + 0.0003*° 0.0009 + 0.0002° 0.0008 = 0.0001°
Infcorr2 2.585 +0.262*° 2764 £0.132* 2785 +0.144°
Invdifnor —0.752 + 0.59*° —0.664 + 0.574° —0.673 +0.091°
Homogemat 0.857 +0.027* 0.884 +0.022 0.874 +0.026
Corrematv 0.955 +0.017° 0.970 +0.011 0.965 + 0.014
GLRLM
GLN 1.97 +0.37¢ 2.56 £ 0.61° 333+121°
RLN 56.04 + 19.04*° 86.11 +23.41° 108.58 + 49.29°
LGRE 0.057 +0.022° 0.043 +£0.014 0.042 + 0.025°
SRLGE 0.055 +0.021° 0.042 +0.014 0.041 + 0.024°
LRLGE 0.062 + 0.026" 0.047 £0.016 0.045 + 0.027°
Laws®¢
(entropy)
E5L5 21.75+4.73 29.21 + 6.04 36.57 £2.67
S5L5 12.73 + 1.87 16.82 +3.79 22.38 +8.74
R5L5 10.61 =3.17 15.14 = 4.64 21.38 £9.49
W5E5 4.03+1.09 537137 7.39+2.77
R5E5 471+ 145 6.61 =1.83 9.13 +3.96
w585 227+0.78 3.21+0.87 4.63+1.97
R5W5 3.14 £ 1.06 471+1.97 6.86 +3.23
E5E5 8.89 + 1.64 11.07 +£2.44 13.97 + 4.44
S585 2.21+0.95 337+1.02 4.87+231
Metabolic
parameters
SUVmax 17.8+10.8 149 +5.1 148 +6.6
SUVmean 96+54 94+35 75+4.1
MTV 50.6 + 47.3*° 445 +33.1° 47.9 + 41.5°
TLG 490 + 439*° 399.8 + 343" 499 + 435"

# Statistically significant difference between TNM stages I-1I with stage III (p < 0.05)
® Statistically significant difference between TNM stages I-1I with stage IV (p < 0.05)

¢ Statistically significant difference between TNM stages of all groups from each other (p < 0.05)

948 out of 98 features computed using Laws’ approach were able to discriminate at least two stages. The list here

only depicts the ones that were successful in discriminating three stages together.
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center-weighted local average, E responds to row or column
step edges, S detects spots, and R detects ripples. In our case,
the lengths of L, E, S, W, and R kernels were 5. For instance, L
and E are convolved to produce LSES filter, Wave and Ripple
are convolved to produce W5RS5 filter, and so on (please refer
to Table 2 for all filters). These filters are later used in deter-
mining the strength or energy of different types of textures.
Once a filter is applied to the image, resultant filtered image is
further processed by windowing, offset, and normalization
operations [35]. Here, each pixel in the filtered image is re-
placed with a normalized texture energy measure (TEM) at
that pixel, yielding a new image that is referred to as the
TEM_NR image. In our application, direction of texture fea-
tures was not important; therefore, we have combined
TEM_NR images, which were obtained to detect texture fea-
tures at different orientations, into a single rotationally invari-
ant texture energy measurement/image by averaging them
(Fig. 3). After these steps, 14 final “texture energy images”
corresponding to different texture features were obtained, and
7 FOS figures were calculated from each of these texture
energy image. Hence, a total of 14 x 7 = 98 Laws’ texture
features were obtained and used in the statistical analysis and
classification part of our study.

It is important to note that all the features (metabolic pa-
rameters and the ones computed with different texture analysis
approaches) were normalized to be between 0 and 1 for pat-
tern classification phase of the study.

Statistical Analysis

Statistical analysis was performed using SPSS 18.0 software
package (IBM, Armonk, New York, USA). Parameters were
depicted as mean + standard deviation. The inter-variance
differences were evaluated by Student’s ¢ test for normally
distributed parameters. When more than two groups were
compared, ANOVA test and, in the assessment of differences
between groups, post hoc Tukey test [37] were employed. For
the parameters that had significant difference in tumor stages,
error bar graphs were used.

G [ & [ S | W
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Fig. 3 Illustration of an example organized in a matrix form for Laws’
filters applied on a tumor
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The correlation between the parameters obtained from the
texture analysis and the PET/CT quantitative parameters and
the clinical stage and histopathological data was analyzed
using Pearson (for continuous variables) and Spearman (for
categorical variables) correlation tests. Correlation coeffi-
cient was depicted as r and the statistical significance level
was selected as p < 0.05. The aim of the correlation anal-
ysis was to determine parameter/s that can discriminate all
three tumor stages.

Automatic Classification of Tumor Stages

When there are many parameters or features influencing the
outcome, it may be a better idea to resort to the techniques of
pattern classification, which can handle/analyze the contribu-
tions of all parameters at once. For instance, in our case, we
have over 100 texture features generated using automated im-
age analysis. Instead of working with these features or param-
eters one-by-one, we can design a classifier and quickly and
efficiently see and assess the classification or discriminating
power in these features for identifying different classes, TNM
stage, or tumor subtype in our case. This is the motivation
behind using the classification approach in this context.
Further, when there are many stages, using features separately
may lead to the problem multiple testing [38].

One of the aims of our study was to analyze the feasibility
of using pattern classification approaches for the discrimina-
tion of three tumor stages (stages I-11, stage III, and stage IV)
with the help of textural features and other metabolic param-
eters like SUVmax, SUVmean MTV, and TLG.

The classification method we chose was the k-nearest
neighbors (k-NN) approach [39], which is a commonly
known and simple to use approach. We have also investi-
gated the usage of support vector machines (SVM) for this
data set [40], and the results showed that &-NN performed
at least as good as SVM although it is a highly simple
approach.

In £-NN, the samples were multi-dimensional feature vec-
tors each with a tumor stage or subtype label. In the classifi-
cation phase, a feature vector coming from one ROI was
assigned to the class that was most frequently encountered
among the k-nearest samples (k = 3, we have tested £ = 5 or
7 and found k& = 3 to be the best choice for this problem), using
a proper distance metric such as Euclidean distance. Once a
training dataset is formed, a test feature vector is classified by
assigning it to the class of the most frequently seen neighbors
among the & training samples nearest to that vector (if there is a
tie, then a random assignment is made among the tying
groups). In the testing phase, the samples are randomly divid-
ed into three approximately equal and balanced (in terms of
containing enough number samples from each class) subsets.
Then, each subset is excluded from the complete set and
employed as the test set. The remaining samples are used
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as the training set. This is repeated over three subsets and
the resultant classification performance values is averaged
to produce an overall prediction accuracy rate, which is
known as the “3-fold cross-validation (CV)” accuracy rate
[41]. The confusion matrices are also generated in order to
visualize and evaluate classification performance/results in
some detail.

In SVM [40], the training samples (features coming from
texture analysis approaches) are labeled as a member of one of
two (or more) categories/classes. A model, which is a non-
probabilistic binary linear classifier, assigns new samples into
one class or the other. This model is a depiction of the samples
as points in space, mapped so that the samples of the different
classes are separated by a well-defined gap that is as wide as
possible. Finally, new samples are projected on that same
space and estimated to go to a class according to the side of
the gap they fall on. In addition, kernels, which map the input
parameters into high-dimensional feature spaces, can also be
used to perform a non-linear classification. In the classifica-
tion of part our study, there were three TNM stage classes or
two tumor subtype classes. SVM one versus one and one
versus all methods were executed with the Gaussian radial
basis function kernel. For the SVM applications, the built-in
functions available in MATLAB called “fitcsvm” and
“predict.” The ¢ and gamma values were not optimized for
simplicity and used as one. Same as above, a threefold cross-
validation was performed.

One of the important steps employed in the classification
procedure is called the feature selection in which the best
subset representing the original feature set is chosen. For in-
stance, in our study, only 5 out of 137 features were selected to
be used in the classification phase. We used sequential for-
ward selection (SFS) method as it is easy to implement and
offers reasonable performance [42]. In this method, the
“selected features set” is initiated with an empty set and
the feature yielding the highest accuracy in the classifica-
tion of tumor stages is added to the “selected features set.”
Then, other/remaining features are sequentially included in
the selected feature set (now has two features) and the
combination/set of features yielding the highest perfor-
mance becomes the new selected features set and so on.
This is continued until five features are gathered or select-
ed. We have observed that typically after five features, the
performance did not increase.

Another study to compare the classification perfor-
mance of each texture parameter family (FOS, GLCM,
GLRLM, or Laws) was executed for tumor stage discrim-
ination. In that final study, the SFS method was employed
to select five features not from all available parameters but
only from each texture parameter family separately. The
accuracy, sensitivity, and specificity values for each clas-
sification method and each texture parameter family were
computed and compared.

Results

Relationship Between Textural or Metabolic
Features/Parameters and Tumor Stage

The analysis of variance (ANOVA) and post hoc Tukey test
were used to determine the histogram (FOS) and textural
(GLCM, GLRLM, and Laws) features and metabolic
(SUVmax, SUVmean, MTV, and TLG) parameters that per-
form best in the discrimination of tumor stages (I-11, III, and
IV). The comparisons were made for each parameter (total of
141 parameters, 137 texture plus 4 metabolic parameters)
separately.

The results of the statistical analysis showed that one tex-
tural feature (GLN) obtained using GLRLM approach and
nine textural features (entropy values of ESLS, S5L5, R5LS,
WSES, R5ES, W5S5, RSWS, ESES, and S5S5) using Laws’
approach were successful in discriminating all three TNM
stages. As indicated in Table 2, there were some other textural
features that yielded statistically significant differences be-
tween stages -1 and IlI, and stages I-1I and IV, but not be-
tween stages I and IV. Figure 4a, b demonstrates two exam-
ples of textural parameters (GLN from GLRLM and entropy
of ESLS5 from Laws’ approaches) that were successful in dis-
criminating against all three stages. Error bars correspond to
95% confidence intervals.

In contrast to the performance of textural features, the met-
abolic parameters did not show any potential in discriminating
all TNM stages. There was no statistically significant differ-
ence between the means of SUVmax or SUVmean values in
different stages. On the other hand, the means of MTV and
TLG parameters were significantly different between stage I—
IT and III or IV, but not between stages Il and IV.

In addition, there was a good correlation between the TNM
stage and some textural features such as GLN feature
(r = 0.606 and p < 0.001) coming from GLRLM, and the
entropy value of LSES (»=0.724 and p < 0.001) coming from
Laws with the highest  values. On the other hand, although a
significant correlation was not observed between FOS,
GLCM, GLRLM, and Laws with SUVmax, some textural
parameters showed a significant correlation with SUVmean,
MTYV, and TLG. Table 3 summarizes the correlation analysis
results.

Automatic Classification of Tumor Stages

In this part of the study, we used pattern recognition ap-
proaches for automatic classification of tumor stages. Along
these lines, the classification accuracy, sensitivity, and speci-
ficity values were given in Table 4 for &~-NN approach and
SVM approach with one versus one (OvsO) and one versus
all (OvsA) paradigms.
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Fig. 4 a, b Two SPSS plots of a

textural parameters (GLN and
ESLS5_entropy from Laws) all
three stages
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Approximately 84% accuracy with &-NN classifier (k = 3),
82% OvsO, and 81% OvsA, using five features, were selected
with the SFS method (Table 4 all row). The &-NN classifier
also gave the best sensitivity and specificity values, 93 and
91%, respectively. The increase in the number of features
included in the classification phase beyond five did not im-
prove the classification accuracy significantly. According to
our investigation, this value was optimal for this study. In this
part of the study, again, one textural feature (LRLGE)
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computed using GLRLM and four features (means of
WS5S5, RSWS, S5L5, and the skewness of S5S5) coming from
Laws’ approach were found to be the five best features in the
classification of three TNM stages. It is important to note
that none of the metabolic parameters were selected by
our algorithm to be one of the best features/parameters.
This underlines the importance of the texture parameters
and the benefits of texture-based image analysis in classi-
fying TNM stage automatically.
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Table 3  The highest correlations values obtained between textural features, metabolic parameters, and TNM stages

TNM FOS GLCM GLRLM Laws
TNM 1 —0.343 (0.005) 0.428 (<0.001) 0.606 (<0.001) 0.724 (<0.001)
SUVmax —0.099 (0.428) —0.152 (0.204) 0.017 (0.893) —0.044 (0.727) —0.008 (0.949)
SUVmean —0.129 (0.303) —0.287 (0.019)* 0.324 (0.008)* —0.337 (0.006)* —0.245 (0.047)*
MTV 0.386 (0.001) —0.515 (0.001)* —0.611 (<0.001)* 0.606 (<0.001)* 0.684 (<0.001)*
TLG 0.337 (0.006) —0.497 (0.001)* —0.477 (<0.001)* —0.548 (<0.001)* —0.641 (<0.001)*

*p < 0.005 or p < 0.001 statistical significance levels

When we compared the texture parameter families, it was
observed that Laws’ approach outperformed other texture
analysis approaches quite significantly. The accuracy level
was around 84% for five selected Laws’ features and 65%
for five selected features from other families.

Correlations Between Textural or Metabolic Parameters
and Histopathological Characteristics

In the 40-patient subgroup, the textural features obtained
using Laws’ approach such as skewness of ESES, entropy of
S5S5, energy of R5R5, mean of R5S5, mean absolute devia-
tions of W5S5, and E5SE5S were correlated with Ki-67 (maxi-
mum level was » = —0.606 and p = 0.013). There were no
correlation between FOS, GLCM, and GLRM features and
TNM stage with Ki-67. On the other hand, only TLG among
metabolic parameters was correlated with Ki-67 (» = 0.558
and p = 0.025).

Discussion

The '"*F-FDG-PET is an imaging technique commonly used to
study cellular metabolism in oncology. FDG is a glucose an-
alogue that is trapped by cells [43]. Tumor cells typically show
augmented glucose metabolism and thus an increased FDG
uptake compared to healthy cells. This characteristic helps the
imaging of tumor cells by using PET [44]. In digital PET
images, pixels have gray-level intensity values that represent

Table4  The confusion matrix for the automatic classification of TNM
stages

Predicted stage
-1 I v
Actual stage -1 24 1
il 2 14 3
v 1 2 18

the metabolic rate of glucose corresponding those particular
locations/tissues in space [45].

Previous studies have explored the potential use of texture
analysis in ultrasonography, computed tomography, and mag-
netic resonance imaging, and reported results supporting the
idea that texture features obtained from these images can dif-
ferentiate the tissue types [46—48]. In contrast to its abundant
use and reasonably good performance in such anatomical im-
aging settings, usage of texture analysis in PET images has
progressed relatively slowly, as PET images have relatively
poorer spatial resolution compared to anatomical images. In
recent years, there has been an increased effort to demonstrate
the feasibility of texture analysis on PET images, for the eval-
uation of tumor heterogeneity [49]. The findings of limited
number of studies in the literature [6, 11] and our results reveal
that certain textural features have more predictive and prog-
nostic power compared to metabolic parameters such as
SUVmax or SUVmean.

Some textural features in NSCLC PET images have al-
ready been described/used in the literature. For example,
Cook et al. evaluated PET textural features in NSCLC and
their relationship with response and survival after chemora-
diotherapy [10]. Recently, van Gomez et al. assessed the cor-
relation between the texture features like energy, entropy, con-
trast, correlation, and homogeneity of FDG-PET images, with
metabolic parameters like SUVmax, SUVmean, MTV, and
TLG, and pathologic staging in 38 NSCLC patients [50].
Furthermore, Orlhac et al. investigated the correlations be-
tween 5 first order statistics and 31 features derived using
gray-level co-occurrence matrix, gray-level run length ma-
trix, neighborhood gray-level different matrix, and gray-
level zone length matrix approaches [8]. Furthermore, in
a recent study, texture features of '*F-FDG uptake hetero-
geneity in NSCLC were compared with visual assessment
performed by two experts showing a moderate correlation
between visual scoring results and some texture features
[8]. These studies showed that textural features derived
from PET images might bring an additional insight into
tumor biological behavior.

A more recent review article authored by Sollini et al. pro-
vides a comprehensive review of literature describing the state
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of the art of FDG-PET/CT texture analysis in NSCLC [51].
The authors cited 85 studies and summarized them in a table
that included the effect of segmentation method on tumor
volume estimation, comparison of different discretization
methods for textural features, sensitivity of texture features
to tumor motion, variability of PET textural features using
different reconstruction methods, iteration numbers, and voxel
size, features for tumor staging, prognosis, and survival. This
most recent review showed that the number of studies in-
vestigating the use of Laws’ features obtained from PET
images of NSCLC patients is highly limited. There is only
one study [52] in which Laws’ features were used to pre-
dict the distant metastases.

In this study, our principal aim was to perform a compre-
hensive investigation on the textural features and metabolic
parameters in terms of their correlation, potential in the auto-
matic classification of TNM stages. In addition, we have also
demonstrated the feasibility and superior performance of
Laws’ texture features in this context. We may argue that some
textural parameters can serve as a better indicator for tumor
stage when compared to metabolic parameters. For example, a
textural parameter (entropy of ESLS) can go high as the stage
becomes worse. Currently, a further study on the prognostic
value of certain textural parameters with a large patient data-
base is pursued in our laboratory.

Our study comprised of images from 67 NSCLC patients,
which was one of the most inclusive among the studies pub-
lished until now. The pairwise correlations were calculated
between 141 textural features obtained from '*F-FDG-PET
images using four different approaches (FOS, GLCM,
GLRLM, and Laws’ methods) and metabolic parameters like
SUVmax, SUVmean, MTV, and TLG. The Laws’ approach
was used in the correlation and classification context for the
first time for the analysis of PET images and has shown better
tumor classification/staging performance compared to other
(relatively more popular) texture feature extraction methods.
In addition, the correlations between textural features/
metabolic parameters and Ki-67 proliferation index and the
tumor stage were explored.

It is important to note that none of the metabolic parameters
(SUV, MTV, and TLG) could discriminate all three stages at
the same time. However, ten texture features were found to be
successful in this respect (Table 2). In addition, as the tumor
stage increased, the means of all these texture features cor-
responding to the heterogeneity also increased. The means
of SUVmax and SUVmean decreased as the stage in-
creased. This might be due to tissue differentiation or de-
generation/deterioration.

One critical finding in our study is that certain Laws’ fea-
tures have a significant potential in the discrimination of TNM
stages. Similarly, Laws’ features were correlated better with
TNM stages when compared to other metabolic parameters
and texture features. Furthermore, four Laws’ features were
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selected to the five most effective parameters set in the auto-
matic classification of TNM stages.

In the classification part of the study, we used two classifi-
cation approaches, namely £-NN and SVM, along with a sim-
ple feature selection method, namely sequential forward se-
lection. Here, our aim was to demonstrate the feasibility of
using such pattern classification approaches that can scrutinize
predictive value of many features simultaneously.

Furthermore, Soussan et al. found in their study on invasive
breast cancer that Ki-67 (percentage of positive cells) was
correlated only with SUVmax and not with textural features
[16]. In contrast to this study, for NSCLC, we found a rela-
tionship between Ki-67 and certain Laws’ features and TLG.
TLG has been proposed as a reliable marker of the viable
tumor volume, which combines the functional and anatomical
information of FDG-PET. Ki-67 is commonly used as a bio-
marker to determine proliferation of tumor cells and is asso-
ciated with poorer prognosis. Vessele et al. claimed that FDG-
PET might be used to evaluate NSCLC proliferation noninva-
sively, which might help identifying fast growing NSCLCs
with poor prognosis, a potential beneficiary for preoperative
chemotherapy [53]. They showed that Ki-67 expression was
correlated strongly with FDG uptake ( = 0.73; p < 0.0001).

Finally, we should note here that there are some limitations
associated with the textural features based on analysis and
assessment of tumors on PET images: (i) Explaining each
textural feature with a specific physiologic process inside the
tumor is a daunting task; (ii) due to the low spatial resolution
of PET, small tumors cannot be evaluated properly using these
features; and (iii) in many studies, the tumor with the largest
cross-sectional area is assessed rather than the whole tumor
volume. Another limitation of the study is that we obtained the
metabolic parameters like MTV and TLG by the summation of
all values computed from each lesion (primary tumor and
lymph nodes). This is actually how the evaluation of tumor
stage and prognosis is performed in clinical practice.
However, we have performed the textural analysis only on
the primary lesions in order to analyze/determine the stage
of the tumor.

In addition to the limitations of the textural features, there
are several limitations related to the other steps of the analysis
of PET images such as segmentation and classification. For
the segmentation of tumors, the researchers have been inves-
tigating the use of various approaches: semiautomatic and
automatic. Semiautomatic approaches require the selection
of an initial region of interest, which is subjective.
Automatic approaches may converge to other bright areas on
the image such as the heart. Each approach may result in
different results, which might affect the computed textural
features. The effect of different segmentation approaches on
the textural features and classification accuracy has not been
investigated in a systematic manner until now. As a group,
currently, we are conducting a research on this issue.
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However, the absence of a ground truth is the main limitation
in this part of the study. The performances of the segmentation
step can only be compared with the experts’ manual delinea-
tion, which is assumed to be the ground truth. In the context of
the limitations of the automatic classification of tumor stages,
several other approaches might have been added to the study
such as linear or quadrature discriminant analysis and neural
networks. We preferred using one simple (k-NN) and one
relative advanced (SVM) approach. The limitations of A&~NN
approach are the followings: (i) There is a need to determine
the value of &, which might affect the performance. Usually,
trial and error is used to optimize that value; (ii) distance
type is critical and it is a subjective issue to choose which
type is the best for a particular study; and finally, (iii) the
computation cost of this approach is high. The limitations
of SVM are the followings: (i) The theory covers the de-
termination of the parameters for a given value of the reg-
ularization, kernel parameters, and choice of kernel; (ii)
kernel models can be sensitive to over-fitting the model
selection criterion [54]; and (iii) the computation cost of
optimization of RBF parameters may be high. For general
limitations of the field radiomics, readers can refer to [55]
for a comprehensive review.

Currently, a further study on the prognostic value of certain
textural parameters computed from three-dimensional (3D)
tumor volumes with a large patient database is pursued in
our laboratory. Because the lesions are 3D structures, the 3D
texture analysis is more desirable to represent the characteris-
tics of the lesion for a better prognosis and assessment of the
treatment response. In addition, the 3D textural analysis can
show a stronger association between metabolic parameters
and histopathological characteristics.

Even though the number of subjects included in our study
is comparable to the other studies performed in this area, we
consider that more comprehensive studies, multi-center stud-
ies for instance, which will involve relatively large number of
subjects will follow our study in the very near future. We
believe that the findings of these upcoming studies will further
establish reliability and reproducibility of our findings, i.e., the
relevance and importance of texture analysis (especially using
Laws’ features) in evaluating tumors in PET images.

As an outcome of this study, we suggest that along with the
parameters employed routinely in the clinic, semiautomatic
FDG-PET texture feature extraction/analysis approaches
may also be included as a module in image visualization and
analysis software(s). In addition, these features may shed light
on and improve the understanding of biological behavior of
tumors. Furthermore, we believe that the use of texture fea-
tures in the objective evaluation of the PET images has a
strong potential in determining the TNM stage and tumor
histopathological characteristics. We anticipate that future
studies will also include the quantification of the therapy re-
sponse and prognosis potentially useful for patient

stratification and management, using the methods that we
have introduced in this study.

Conclusions

Textural features might reflect the biologic abnormalities that
underlie disease and have the potential to be used as a new tool
to assess tumor metabolism, stage, and histopathological fea-
tures in clinical practice in addition to SUVmax, TLG, and
MTV. We found that the textural features obtained using
Laws’ approach could be useful in the discrimination of tumor
stage. Laws’ features were also correlated with Ki-67 prolif-
eration index.

ADC, adenocardinoma; AJCC, American Joint Committee
on Cancer; FDG-PET, '*F-fluorodeoxyglucose-positron emis-
sion tomography; FOS, first order statistics; GLCM, gray-
level co-occurrence matrix; GLRLM, gray-level run length
matrix; IHC, immunohistochemical; MTV, metabolic tumor
volume; NSCLC, non-small cell lung cancer; SqCC, squa-
mous carcionoma; SUVmax, maximum and mean standard-
ized uptake value; SUVmean, mean standardized uptake val-
ue; TLG, total lesion glycolysis
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