Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorCoşkun, Mustafa
dc.date.accessioned2022-11-30T11:51:32Z
dc.date.available2022-11-30T11:51:32Z
dc.date.issued2022en_US
dc.identifier.urihttps://doi.org/10.28948/ngumuh.957488
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1411
dc.description.abstractGraph representationion learning (network embedding) is at the heart of network analytics techniques to reveal and examine the complex dependencies among nodes. Owing its importance, many computational methods have been proposed to solve a large volume of learning tasks on graphs, such as node classification, link prediction and clustering. Among various network embedding techniques, linear Matrix Factorization-based (MF) network embedding approaches have demonstrated to be very effective and efficient as they can be stated as singular value decomposition (SVD) problem, which can be efficiently solved by off-the-shelf eigen-solvers, such as Lanczos method. Despite the effectiveness of these linear methods, they rely on high order proximity measures, i.e., random walk restarts (RWR) and/or Katz, which have their own limitations, such as degree biasness, hyper-parameter dependency. In this paper, to alleviate the RWR and Katz depended high proximity usage in the linear embedding methods, we propose an algorithm that uses label propagation and shift-and-invert approach to resort RWR and Katz related problems. Testing our methods on realnetworks for link prediction task, we show that our algorithm drastically improves link prediction performance of network embedding comparing against an embedding approach that uses RWR and Katz high order proximity measures.en_US
dc.language.isoengen_US
dc.publisherNiğde Ömer Halisdemir Üniversitesien_US
dc.relation.isversionof10.28948/ngumuh.957488en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGraph representation learningen_US
dc.subjectNode embeddingen_US
dc.subjectLinear embeddingen_US
dc.titleA high order proximity measure for linear network embeddingen_US
dc.title.alternativeAğ gömülümü için yüksek boyutlu yakınsaklık ölçüsüen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0003-4805-1416en_US
dc.contributor.institutionauthorCoşkun, Mustafa
dc.identifier.volume11en_US
dc.identifier.issue3en_US
dc.identifier.startpage477en_US
dc.identifier.endpage483en_US
dc.relation.journalNiğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster