Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorTasdemir, Kadim
dc.contributor.authorYildirim, Isa
dc.contributor.authorMoazzen, Yaser
dc.date.accessioned2023-08-17T08:04:40Z
dc.date.available2023-08-17T08:04:40Z
dc.date.issued2015en_US
dc.identifier.issn2151-1535
dc.identifier.issn1939-1404
dc.identifier.otherWOS:000358569400012
dc.identifier.urihttps://doi.org/10.1109/JSTARS.2015.2424292
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1735
dc.description.abstractUnsupervised clustering of high spatial resolution remote-sensing images plays a significant role in detailed landcover identification, especially for agricultural and environmental monitoring. A recently promising method is approximate spectral clustering (SC) which enables spectral partitioning for large datasets to extract clusters with distinct characteristics without a parametric model. It also facilitates the use of various information types via advanced similarity criteria. However, it requires an empirical selection of a similarity criterion optimal for the corresponding application. To address this challenge, we propose an approximate SC ensemble (ASCE2) which fuses partitionings obtained by different similarity representations. Contrary to existing spectral ensembles for remote-sensing applications, the proposed ASCE2 employs neural gas quantization instead of random sampling, advanced similarity criteria instead of traditional distance-based Gaussian kernel with different decay parameters, and a two-level ensemble. We evaluate the proposed ASCE2 with three measures (accuracy, adjusted Rand index, and normalized mutual information) using five remote-sensing images, two of which are commonly available. We apply the ASCE2 in two applications for agricultural monitoring: 1) land-cover identification to determine orchard fields using a WorldView-2 image (0.5-m spatial resolution) and 2) finding lands in good agricultural condition using multitemporal RapidEye images (5-m spatial resolution). Experimental results indicate a significant betterment of the resulting partitionings obtained by the proposed ensemble, with respect to the evaluation measures in these applications.en_US
dc.description.sponsorshipTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) 112E195 EU FP7 Marie Curie Career Integration IAM4MARSen_US
dc.language.isoengen_US
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INCen_US
dc.relation.isversionof10.1109/JSTARS.2015.2424292en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectApproximate spectral clustering (SC)en_US
dc.subjectcluster ensembleen_US
dc.subjectclusteringen_US
dc.subjectgeodesic similarityen_US
dc.subjectland-cover identificationen_US
dc.titleAn Approximate Spectral Clustering Ensemble for High Spatial Resolution Remote-Sensing Imagesen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümüen_US
dc.contributor.institutionauthorYildirim, Isa
dc.identifier.volume8en_US
dc.identifier.issue5en_US
dc.identifier.startpage1996en_US
dc.identifier.endpage2004en_US
dc.relation.journalIEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSINGen_US
dc.relation.tubitak112E195
dc.relation.ecIAM4MARS
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster