Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorCakan, Niyaz
dc.contributor.authorIssa, Abduselam Abubeker
dc.contributor.authorAlsalman, Hamza
dc.contributor.authorAliyev, Emin
dc.contributor.authorDuden, Enes Ibrahim
dc.contributor.authorGurcan Bayrak, Kubra
dc.contributor.authorCaglar, Mujdat
dc.contributor.authorTuran, Servet
dc.contributor.authorErkartal, Mustafa
dc.contributor.authorSen, Unal
dc.date.accessioned2024-02-21T09:07:26Z
dc.date.available2024-02-21T09:07:26Z
dc.date.issued2023en_US
dc.identifier.issn1944-8244
dc.identifier.issn1944-8252
dc.identifier.otherWOS:001143046000001
dc.identifier.urihttps://doi.org/10.1021/acsami.3c15359
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1956
dc.description.abstractCeramic matrix composites (CMCs) reinforced with nanocarbon have attracted significant interest due to their potential to enhance mechanical, thermal, and electrical properties. Although the investigation of carbon-based materials such as graphene and carbon nanotubes as additives for advanced ceramics has been widespread, the utilization of metal-organic framework (MOF)-derived nanocarbons in CMCs remains largely unexplored. We extended our previous proof-of-concept investigations by demonstrating the effectiveness of a different type of MOF-derived carbon as a reinforcing phase in an alternative ceramic matrix. We employed spark plasma sintering (SPS) to consolidate yttria-stabilized zirconia (YSZ) and zeolitic imidazolate framework (ZIF-67) powder blends at 1300 degrees C and a uniaxial pressure of 50 MPa. YSZ serves as the ceramic matrix, whereas ZIF-67 serves as the nanocarbon source. The composite exhibits a highly significant improvement in fracture toughness with an increase of up to 13% compared to that of the YSZ monolith. The formation of ZIF-derived nanocarbon interlayers is responsible for the observed enhancement in ductility, which can be attributed to their ability to facilitate energy dissipation during crack propagation and inhibit grain growth. Furthermore, the room-temperature electrical conductivity of the sintered samples demonstrates a substantial improvement, primarily due to the in situ formation of nanocarbon-based fillers, reaching an impressive 27 S/m with 10 wt % ZIF-67 content. Based on the results, it can be inferred that the incorporation of in situ MOF-derived nanocarbons into CMCs leads to a substantial improvement in both the mechanical and electrical properties.en_US
dc.language.isoengen_US
dc.publisherAMER CHEMICAL SOCen_US
dc.relation.isversionof10.1021/acsami.3c15359en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectceramic matrix compositesen_US
dc.subjectmetal−organic framework-derived nanocarbonsen_US
dc.subjectzeolitic imidazolate frameworken_US
dc.subjectyttria-stabilized zirconiaen_US
dc.subjectspark plasma sinteringen_US
dc.titleEnhancing the Properties of Yttria-Stabilized Zirconia Composites with Zeolitic Imidazolate Framework-Derived Nanocarbonsen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0002-9772-128Xen_US
dc.contributor.institutionauthorErkartal, Mustafa
dc.identifier.volume15en_US
dc.identifier.issue50en_US
dc.identifier.startpage58931en_US
dc.identifier.endpage58939en_US
dc.relation.journalACS APPLIED MATERIALS & INTERFACESen_US
dc.relation.tubitak222M085
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster