A Novel Procedure for the AHP Method for the Site Selection of Solar PV Farms
Abstract
This study proposes a novel approach to enhance the analytic hierarchy process (AHP) for the selection of suitable sites for solar photovoltaic (PV) farms. This approach is particularly beneficial when it is possible to establish a predefined objective relation in the final weights of the AHP method. The methodology focuses on achieving this predefined relation introducing a systematic revision of the constants of related constraints. In this study, the costs of constructing a unit transmission line and road in the Kayseri Province are objectively related, and the initial constant matrix of the AHP method is iteratively revised until the relation of the final weights converges to the predefined one. The suitability of solar PV farm locations is classified into five classes, revealing approximately 28% (40-100% of suitability) of the province as favorably suitable and designating about 67% as restricted zones. The findings reveal notable distinctions between the revised weights and those derived from the conventional AHP method. The disparity in weights for various constraints varies from 13.5% to 7.2%. Consequently, the alterations in the area of suitability regions range from 3.4% to 50%. The revision of AHP weights results in a reduction in higher-suitability areas, coupled with a significant expansion in the region exhibiting lower suitability. Notably, the extent of change in the suitability map increases when the difference in ratios between two criteria obtained from the AHP and the predefined objective relation is high. The proposed method demonstrates its applicability in regions like Kayseri where an objective relation between criteria can be established. Given the inherent subjectivity of the AHP method, the proposed procedure becomes essential to attain more objective weights. Since the methodology objectively adjusts weights based on known ratios, it increases the accuracy and reliability of site selection studies.