Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorUnal, Ahmet Emin
dc.contributor.authorBoyar, Halit
dc.contributor.authorPak, Burcu Kuleli
dc.contributor.authorCem Yildiz, Mehmet
dc.contributor.authorErten, Ali Erman
dc.contributor.authorGungor, Vehbi Cagri
dc.date.accessioned2024-04-15T08:10:55Z
dc.date.available2024-04-15T08:10:55Z
dc.date.issued2023en_US
dc.identifier.isbn979-835031803-6
dc.identifier.urihttps://doi.org/10.1109/IISEC59749.2023.10416261
dc.identifier.urihttps://hdl.handle.net/20.500.12573/2077
dc.description.abstractAccurately predicting the cost is crucial for the success of complex industrial projects. There can be several sources contributing to the cost. Traditional methods for cost estimation may not provide the required accuracy and speed to ensure the success of the project. Recently, machine learning techniques have shown promising results in improving cost estimation in various industrial products. This study investigates the performance of gradient-boosting machine learning models and feature engineering techniques on a private dataset of metal sheet project man-hour costs. A comparison of distinct models is conducted, key aspects influencing cost are identified, and the implications of incorporating domainspecific knowledge, including its advantages and disadvantages, are assessed based on performance outcomes. Experimental results demonstrate that LightGBM and XGBoost outperform other models, and feature selection and synthetic data generation techniques improve the performance. Overall, this study highlights the potential of machine learning in metal sheet sampling projects and emphasizes the importance of feature engineering and domain expertise for better model performance.en_US
dc.description.sponsorshipThis work was supported by TÜBİTAK TEYDEB Program with Project no: 9210055. The dataset and the use case problem statement were provided by ERMETAL A.Ş.en_US
dc.language.isoengen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.isversionof10.1109/IISEC59749.2023.10416261en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectcomplex industrial productsen_US
dc.subjectmetal sheet stamping projectsen_US
dc.subjectwork man-hour predictionen_US
dc.subjectmachine learningen_US
dc.subjectgradient boostingen_US
dc.titleMan-hour Prediction for Complex Industrial Productsen_US
dc.typeconferenceObjecten_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0003-0803-8372en_US
dc.contributor.institutionauthorGungor, Vehbi Cagri
dc.identifier.startpage1en_US
dc.identifier.endpage6en_US
dc.relation.journal4th International Informatics and Software Engineering Conference - Symposium Program, IISEC 2023en_US
dc.relation.tubitak9210055
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster