Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorFidan, Fatma Şener
dc.contributor.authorAydoğan, Sena
dc.contributor.authorAkay, Diyar
dc.date.accessioned2024-07-03T12:52:07Z
dc.date.available2024-07-03T12:52:07Z
dc.date.issued2024en_US
dc.identifier.isbn978-981996061-3
dc.identifier.issn2195-4356
dc.identifier.urihttps://link.springer.com/chapter/10.1007/978-981-99-6062-0_18
dc.identifier.urihttps://hdl.handle.net/20.500.12573/2242
dc.description.abstractLinguistic summarization, a subfield of data mining, generates summaries in natural language for comprehending big data. This approach simplifies the incorporation of information into decision-making processes since no specialized knowledge is needed to understand the generated language summaries. The present research employs linguistic summarization to examine the circumstances surrounding the Carbon Border Adjustment Mechanism, one of the most significant regulations confronting exporting nations to the European Union, and will be adopted to support sustainable growth. In this paper, associated with several attributes of the countries and product flow from exporting countries to European countries were defined as nodes and relations, respectively. Before the modeling phase, fuzzy c-means automatically identified fuzzy sets and membership degrees of attributes. During the modeling phase, summary forms were generated using polyadic quantifiers. A total of 1944 linguistic summaries were produced between exporting countries and European countries. Thirty-five summaries have a truth degree greater than or equal to the threshold value of 0.9, which is considered reasonable. The provision of natural language descriptions of the Carbon Border Adjustment Mechanism is intended to aid decision-makers and policymakers in their deliberations.en_US
dc.language.isoengen_US
dc.publisherSPRINGERen_US
dc.relation.isversionof10.1007/978-981-99-6062-0_18en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCarbon leakageen_US
dc.subjectClimate policyen_US
dc.subjectData Miningen_US
dc.subjectEU CBAMen_US
dc.subjectFuzzy Set Theoryen_US
dc.subjectLinguistic summarizationen_US
dc.subjectSustainable Developmenten_US
dc.titleGenerating Linguistic Advice for the Carbon Limit Adjustment Mechanismen_US
dc.typeconferenceObjecten_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0002-2397-3628en_US
dc.contributor.institutionauthorFidan, Fatma Şener
dc.identifier.startpage188en_US
dc.identifier.endpage199en_US
dc.relation.journalLecture Notes in Mechanical Engineering (LNME): 12th International Symposium on Intelligent Manufacturing and Service Systemsen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster