Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorGurler, Kerem
dc.contributor.authorPak, Burcu Kuleli
dc.contributor.authorGungor, Vehbi Cagri
dc.date.accessioned2024-07-05T13:40:51Z
dc.date.available2024-07-05T13:40:51Z
dc.date.issued2023en_US
dc.identifier.isbn978-303134110-6
dc.identifier.issn1868-4238
dc.identifier.urihttps://doi.org10.1007/978-3-031-34111-3_6
dc.identifier.urihttps://link.springer.com/chapter/10.1007/978-3-031-34111-3_6
dc.identifier.urihttps://hdl.handle.net/20.500.12573/2263
dc.description.abstractEmployee attrition is a critical issue for the business sectors as leaving employees cause various types of difficulties for the company. Some studies exist on examining the reasons for this phenomenon and predicting it with Machine Learning algorithms. In this paper, the causes for employee attrition is explored in three datasets, one of them being our own novel dataset and others obtained from Kaggle. Employee attrition was predicted with multiple Machine Learning and Deep Learning algorithms with feature selection and hyperparameter optimization and their performances are evaluated with multiple metrics. Deep Learning methods showed superior performances in all of the datasets we explored. SMOTE Tomek Links were utilized to oversample minority classes and effectively tackle the problem of class imbalance. Best performing methods were Deep Random Forest on HR Dataset from Kaggle and Neural Network for IBM and Adesso datasets with F1 scores of 0.972, 0.642 and 0.853, respectively.en_US
dc.language.isoengen_US
dc.publisherSPRINGER LINKen_US
dc.relation.isversionof10.1007/978-3-031-34111-3_6en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectData imbalanceen_US
dc.subjectDeep learningen_US
dc.subjectEmployee attritionen_US
dc.subjectMachine learningen_US
dc.titleDeep Learning Based Employee Attrition Predictionen_US
dc.typeconferenceObjecten_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0003-0803-8372en_US
dc.contributor.institutionauthorGungor, Vehbi Cagri
dc.identifier.volume675en_US
dc.identifier.startpage57en_US
dc.identifier.endpage68en_US
dc.relation.journalArtificial Intelligence Applications and Innovations: AIAIen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster