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ABSTRACT 

DEVELOPING A LABEL PROPAGATION APPROACH FOR 

CANCER SUBTYPE IDENTIFICATION PROBLEM 

 

Pınar GÜNER 

M.Sc. in Electrical and Computer Engineering 

Advisor: Assist. Prof. Dr. Burcu BAKIR-GÜNGÖR 

Co-Advisor: Assist. Prof. Dr. Mustafa COŞKUN 

July 2021 

 

The term of cancer is used to describe diseases in which abnormal cells that grow out of 

control and invade other tissues. There are multiple types of cancer and many types of 

cancer have various subtypes with different clinical and biological implications. These 

differences show that diverse methods should be followed for the treatment of different 

subtypes of cancer. Discovering cancer subtypes is an important problem in 

bioinformatics, as it can help improve personalized medicine. Knowing the subtype of 

cancer is useful for determine the treatment steps and prognosis. Computational 

bioinformatics methods help performing cancer analysis to design targeted treatments by 

exposing the common molecular pathology of different cancer subtypes. Thus far, several 

computational methods have been proposed to discover cancer subtypes or to stratify 

cancer into informative subtypes. However, existing works do not consider the sparseness 

of data, and result in ill-conditioned solution. To resort this shortcoming, in this thesis, 

we propose an alternative unsupervised computational method to stratify cancer into 

subtypes using applied numerical algebra techniques. More specifically, we applied this 

label propagation-based approach to stratify somatic mutation profiles of colon, head and 

neck, uterine, bladder and breast tumors. We then evaluated the performance of our 

method by comparing it to the baseline methods. Extensive experiments demonstrate that 

our approach highly renders tumor classification tasks by largely outperforming the state-

of-the-art unsupervised and supervised approaches. 

 

Keywords: Machine Learning, Label Propagation, Cancer Subtype, Personalized 

Medicine 
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ÖZET 

KANSER ALT TİPİ TANIMLAMA PROBLEMİ İÇİN BİR 

ETİKET YAYMA YAKLAŞIMI GELİŞTİRME 

 

Pınar GÜNER 

 Elektrik ve Bilgisayar Mühendisliği Anabilim Dalı Yüksek Lisans 

Tez Yöneticisi: Dr. Öğr. Üyesi Burcu BAKIR-GÜNGÖR 

Eş Danışman: Dr. Öğr. Üyesi Mustafa COŞKUN 

Temmuz 2021 

 

Kanser terimi, anormal hücrelerin kontrolden çıkıp diğer dokuları istila ettiği hastalıkları 

tanımlamak için kullanılır. Çok sayıda kanser türü vardır ve birçok kanser türü, farklı 

klinik ve biyolojik etkileri olan çeşitli alt tiplere sahiptir. Bu farklılıklar, kanserin farklı 

alt tiplerinin tedavisi için farklı yöntemlerin izlenmesi gerektiğini göstermektedir. 

Kişiselleştirilmiş tıbbın geliştirilmesine yardımcı olabileceğinden, kanser alt tiplerini 

keşfetmek biyoinformatikte önemli bir problemdir. Kanserin alt tipinin bilinmesi, tedavi 

basamaklarının ve öngörünün belirlenmesinde faydalıdır. Hesaplamalı biyoinformatik 

yöntemler, farklı kanser alt tiplerinin ortak moleküler patolojisini ortaya çıkararak 

hedeflenen tedavileri tasarlamak için kanser analizi yapmaya yardımcı olur. Şimdiye 

kadar, kanser alt tiplerini keşfetmek veya kanseri bilgilendirici alt tiplere ayırmak için 

çeşitli hesaplamalı yöntemler önerildi. Ancak, mevcut çalışmalar verilerin seyrekliğini 

dikkate almamakta ve kötü koşullu (tersi alınamayan) çözümle sonuçlanmaktadır. Bu 

eksikliği gidermek için, bu tezde, uygulamalı sayısal cebir tekniklerini kullanarak kanseri 

alt tiplerine ayırmak için alternatif bir denetimsiz hesaplama yöntemi öneriyoruz. Daha 

detaylı olarak, bu etiket yayma tabanlı yaklaşımı kolon, baş ve boyun, rahim, mesane ve 

meme tümörlerinin somatik mutasyon profillerini sınıflandırmak için uyguladık. Sonra, 

yöntemimizin performansını temel yöntemlerle karşılaştırarak değerlendirdik. Kapsamlı 

deneyler, yaklaşımımızın, modern denetimsiz ve denetimli yaklaşımlardan büyük ölçüde 

daha iyi performans göstererek tümör sınıflandırma görevlerini yüksek oranda yerine 

getirdiğini kanıtlamaktadır. 

 

Anahtar kelimeler: Makine Öğrenmesi, Etiket Yayma, Kanser Alt Tipi, Kişiselleştirilmiş 

Tıp 
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Chapter 1 

Introduction 

Cancer is a complex and deadly disease, according to the report published by the 

World Health Organization (WHO) in 2018, 18.1 million new cancer cases were 

predicted and 9.6 million people around the world died from the disease. There are many 

factors that causes cancer to be deadly, such as tumor type, stage of cancer, clinical factors 

and among many others. Thus, to improve the survival rates, cancer patients should be 

given the best possible treatment plan based on the aforementioned factors [1]. 

Currently, people who are diagnosed with cancer generally receive the same 

treatment as others who have the same type of cancer. However, different patients may 

respond to the same treatment differently since the types of tumors of patients have the 

different genetic changes that cause cancer to grow and spread differently. The genetic 

changes in one person's cancer may not occur in other with the same type of cancer. 

Furthermore, changes that cause the same cancer can also be found in the other cancer 

types. The area of personalized medicine has been established to deal with personalized 

treatment with one of the objectives, personalized cancer treatment [2]. The first step to 

apply personalized medicines is to stratify (classify or cluster) cancer patients into 

meaningful subtypes based on the tumor molecular profiles and specific mutations. To 

facilitate the personalized medicine, computational methods have been soaring many 

research attentions to remedy the cancer subtype identification problem since in vitro 

experiments and clinical trials are costly and time consuming [3-7].  

In this thesis, we aim at developing such an effective computational method for 

cancer subtype stratification. More specifically, we propose an alternative unsupervised 

computational method based on the idea of sparsity the given cancer data and by 

capitalizing applied numerical algebra techniques to cluster tumors into meaningful 

subtypes with a better clustering accuracy comparing the existing supervised and 

unsupervised approaches [3, 7]. To evaluate the proposed method, we used various cancer 
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datasets, such as colon, head and neck, uterine, bladder and breast tumors extracted from 

the TCGA (The Cancer Genome Atlas) project [8]. Extensive experiments on these cancer 

datasets from TCGA show that our unsupervised stratification method significantly 

outperforms the state-of-the-art unsupervised computational methods [3] for identifying 

cancer subtypes; even its performance exceeds the supervised approaches [7]. 

 

1.1 Problem Definition: Cancer Subtype Identification 

Problem 

Subtyping (stratifying) cancer or identification of cancer subtypes is one of the 

essential steps in personalized medicine for determining the accurate diagnosis and most 

effective follow-up therapy to increase survival of cancer patients. To date, various 

subtypes of cancer tumors have been comprehensively investigated [9-12] and it has been 

shown that different subtypes of cancer are often caused by different genetic mutations 

[13]. There are two main approaches for cancer subtype discovery: (i) in vitro 

experiments based on examination of a biopsy and (ii) computational methods based on 

advanced machine learning techniques. The first and traditional methods are time 

consuming as well as the results of the analysis are subject to human error [14]. Thus, the 

second approach, computational methods, have been gaining many research attentions to 

mitigate the associated costs of the experimental approaches to identify cancer subtypes. 

To do so, the computational approaches rely on basic premise: cluster patients into 

different subgroups based on their genetic profiles and clinical symptoms [15] and they 

are validated on The Cancer Genome Atlas (TCGA) and International Cancer Genome 

Consortium (ICGC) which generate genetic profiles thousands of patients from several 

tumor types [16,17].  
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1.2  Thesis Organization 

 

This thesis organized as follows. In Chapter 2, background information for cancer 

and cancer subtype is given, including the omics datasets used in cancer research. Also, 

computational background of the cancer subtype identification and performance 

evaluation methods is given. Chapter 3 reviews methods in the literature about identifying 

tumor subtypes. Chapter 4 defines the input data and presents the algorithmic background 

behind our proposed method. Chapter 5 covers the results of using the proposed method 

on different data, compared to state-of-the-art methods. Chapter 6 discusses the results of 

the proposed method. And finally, Chapter 7 summarizes the thesis, gives main 

contributions of the thesis, and explains where the results lead us and what might be the 

future studies. 
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Chapter 2 

Background 

2.1 Biological Background 

2.1.1 Cancer and Cancer Subtypes 

Cancer is a genetic and complex disease for which body cells divide indefinitely 

and spread to neighboring tissues. It can develop in different tissues and cells. Normally, 

a healthy person's cells grow and die when the cells become old or damaged so that new 

cells can be substituted with the dead ones. However, a cancer patient cells do not die 

when they grow older; rather they continue to spread other tissues. These cells grow with 

an uncontrolled way, termed as tumor [18]. Here, in a specific cancer type, cancer subtype 

is defined as the smaller group in the cancer type that is formed based on molecular 

profiles and specific mutations [19]. Many cancer types have various subtypes each of 

which with its own clinical implications, such as patient survival time and the response 

to drug resistance. Thus, knowing these subtypes of cancers is important to determine the 

treatment steps, prognosis, and response to treatment [3]. As a result, separating patients 

into different groups based on their cancer subtypes can guide the selection of drugs that 

minimize side effects and provide more effective outcomes. 

2.1.2 Omics Data for Cancer 

With the advent of the recent advanced technologies in genomics have contributed 

to the collection of high-throughput molecular datasets by large-scale projects, such as 

The Cancer Genome Atlas (TCGA). These types of large amount of datasets curated in 

public repositories is a very important source of information for cancer researchers [20]. 

Furthermore, as one of the important issues for cancer researchers is cancer subtype 



5 

 

identification, along this line, the subtype datasets have been generated, such as mRNA 

and microRNA expression levels, methylation data, copy number alterations, somatic 

mutation data [21]. In the following subsections, these datasets are given in details. 

 

2.1.2.1 Gene Expression Data 

  

Gene expression is a term used for the process of conversion of genetic information 

from genes to functional protein structures via messenger RNA (mRNA), which links 

genes to proteins [22]. These mRNAs play crucial roles in producing proteins which are 

vital for human body.  Additionally, Micro RNAs (miRNA) are non-coding RNA 

molecules that have a function in gene expression regulation. Thus, miRNAs have been 

at the heart of cancer research, as they are identified as potential biomarkers for human 

cancer diagnosis [23]. Thanks to the advancement of DNA microarray technology, it is 

possible that expression levels of thousands of genes can be measured simultaneously 

under specified experimental environments and conditions. This technology also enables 

the production of large-scale gene expression data ready to be analyzed. The use of the 

high‐throughput technologies for gene expression analyses have provided new 

classifications of cancer patients. Cancer subtypes based on gene expression have been 

comprehensively investigated, as they are associated with different cellular, molecular 

and clinical properties [11, 24, 25]. 

 

2.1.2.2 DNA Methylation Data  

 

Another important data used in the cancer research is DNA methylation, which is 

defined as an epigenetic mechanism involving a methyl group is added to the DNA 

molecule [26] as DNA methylation patterns are altered in many diseases, such as cancer. 

Several research projects on DNA methylation have specifically focused on the cancer 

and tumor suppressor genes [27-29]. Since DNA hyper-methylation can accurately 

characterize type of a specific tumor, the usage of DNA methylation markers has been 

demonstrated to be promising for identification of tumor subtypes [29]. 
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2.1.2.3 Copy Number Alterations 

 

Copy number alterations (CNAs) are the repetition or deletion of large parts of the 

genetic code. CNAs are common in many cancer types and by examining these 

alterations, one can infer which cancers will be more deadly [30]. The ability to examine 

copy number alterations in tumors may also guide doctors to tailor treatment for a specific 

tumor [31]. 

 

2.1.2.4 Somatic Mutation Data 

 

Alterations (mutations) in the DNA sequence of the genomes of cancer cells cause 

cancer. Broadly speaking, these mutations are classified into two types, germline and 

somatic. Germline mutations occur in sperm and egg cells, so they are inherited from 

parents and transmitted to children [13]. 

Somatic mutations, on the other hand, can arise in any part of the body except the 

germ cell, thus, they are not transmitted to descendants [32]. These mutations are the most 

common cause of cancer, so they have an important part in cancer development and 

disease progression. Therefore, subtype classification based on somatic mutation profiles 

could be informative to identify subgroups of patients who might respond to different 

treatments [21]. In recent years, as a result of the development of high-throughput 

platforms, somatic mutation profiles have become a new and promising data source for 

tumor classification. However, the somatic mutation profiles of tumors are 

heterogeneous, meaning that there are many differences between and within different 

cancers. To alleviate the heterogeneity, recent studies have been incorporating protein-

protein interaction (networks) information as an additional information source to somatic 

mutation data [3,7].  
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2.2 Computational Background 

2.2.1 Machine Learning for Cancer Subtype Identification Problem 

Recent advances in Machine learning have been used for cancer subtype 

identification problem. In the context of biology, various machine learning techniques 

have been used for many purposes, such as diagnosis, prognosis, screening, treatment in 

cancer [33]. We can broadly generalize, machine learning techniques used in cancer 

research into 4 sub-categories: supervised learning, semi-supervised learning, 

unsupervised learning and reinforcement learning [34]. 

Supervised learning is a machine learning method in which a supervised model is 

trained on a labeled dataset. In supervised learning there are both input and output data.  

In general setting, the supervised learning methods can be seen as a function which maps 

the dataset onto label set [35]. To do so, the dataset is divided into training and test data 

and the function is trained on the training data and evaluated on the test data, these 

processes are named as classification or regression depending on the label.  

Another machine learning technique is called semi-supervised learning (SSL) 

where label information is limited [36]. The objective of SSL is using some propagation 

rules to expand the label set information by using small labeled examples with the idea 

of “guilt-by-association”. 

Unsupervised learning refers to machine learning methods that try to explain the 

relationship in the data without knowledge of label. To build an unsupervised model, we 

create an objective function that tries to measure the latent “closeness” of data. In 

unsupervised learning, the goal is to discover hidden patterns in the input data and to 

detect which samples belong to which class [35]. 

Reinforcement learning is another widely adopted machine learning approach that 

can be seen as supervised method without label and changing dataset. In a trail-error 

fashion, labels are generated based on a predefined reward function that aims at 

maximizing (or minimizing) a pre-defined goal [35].  

Among these computational machine learning approaches, supervised classification 

and unsupervised clustering are well-adopted for molecule-based cancer subtype 

discovery, which is an important topic in personalized medicine. More specifically, to 

mitigate the aforementioned heterogeneity, see Section 2.1.2.4, network-based supervised 
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and unsupervised methods are popular methods used for cancer subtype identification 

problem as following [3,7]. 

 

2.2.1.1 Unsupervised Tumor Stratification 

 

Tumor stratification problem can be loosely defined as clustering patients (tumors), 

via molecular data, into classes or subcategories. As obtaining labeled data is mostly 

difficult, costly, and time consuming, unlabeled molecular data, on the other hand, is easy 

to access; thus, unsupervised clustering machine learning methods have been employed 

for the tumor stratification problem [37]. While solely using molecular data has been 

shown to be effective for the tumor stratification, heterogeneity of this data limits ability 

of clustering methods [37]. Thus, as additional protein-protein interaction network 

information has been invoked to smooth and resolve heterogeneity problem of the data.  

More specifically, somatic mutation profiles are combined with molecular network 

information in network-based tumor stratification approaches. Using the network 

propagation techniques, such as random walk with restarts (RWR), the influence of each 

somatic mutation profile is propagated across its network neighborhood and clustering 

approaches are applied over the smoothed somatic mutation profiles. We can summarize 

the clustering procedure as follows: 

1- A certain part of the rows (patients) and columns (mutated genes) of the binary 

somatic mutation data are subsampled at random without replacement.  

2- Binary somatic mutation data is propagated over the network. 

3- Quantile normalization technique is applied to the network smoothed mutation data. 

4- Graph (or network) regularized non-negative matrix factorization (GNMF) is used to 

decompose network data into k clusters. 

Finally, consensus clustering is applied over network smoothed mutation profiles. 

 

• Network Smoothing: Network propagation is at the core of a large number of 

network analyses tasks, such as protein function prediction, gene prioritizing and 

disease module discovery. In the context of computational biology, network 

propagation algorithms are based on the assumption that information on known 

disease genes flows over the network via nearby proteins [38]. In terms of tumor 

stratification, network propagation has been used for serving the same purpose: to 

capture the similarity among nodes in the molecular network [39]. The basic idea 
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behind network propagation is to employ a random walk [40] model to diffuse 

information about tumor mutations using molecular interaction networks 

associations. Mathematically, we can define this network propagation as follows: 

 

 𝐅𝐭+𝟏 =  𝛂𝐅𝐭𝐀 + (𝟏 −  𝛂)𝐅𝟎 (2.1) 

 

𝐅𝟎  (patient-by-gene binary matrix) is each tumor's mutation profile, 𝐀 is a degree 

normalized adjacency matrix of the molecular interaction network. The parameter 

𝛂  controls the random walker that determines how much a mutation signal should 

diffuse on the network and set to be in the range between 0 and 1. Iterative 

computation is performed via 𝐭 values (0, 1, 2, …) until 𝐅𝐭+𝟏converges. At 

convergence ( 𝐅𝐭+𝟏 ≈ 𝐅𝐭 ),  𝐅𝐭 (propagated mutation profiles) denotes a patient -

by- gene binary matrix in which each tumor's mutation profile has been smoothed 

across the network. After obtaining propagated mutation profiles, the non-

negative factorization is applied to this matrix to identify clinically and 

biologically meaningful subtypes [3, 7]. 

 

• Non-negative matrix factorization (NMF): In machine learning problems, the 

high dimensional problem in the input data matrix adversely affects the learning 

task. Therefore, to resolve the high dimensionality problem matrix factorization 

techniques, dimensionality reduction, have become frequently used for data 

representation [41]. As such, one of the dimensionality reduction technique, non-

negative matrix factorization (NMF) has been used for many learning tasks for 

which the constraint, lower dimensional matrices have to be positive, i.e., the 

input matrix 𝐕 is factorized into a feature set 𝐖 and hidden variables 𝑯. In the 

matrix factors 𝐖 and 𝐇 do not contain negative elements [42].  

 

 𝐕 ≈ 𝐖𝐇 (2.2) 

                                                                                                                   

Non-negative matrix factorization (NMF) has proven to be one of the best 

methods for learning the components of objects such as text documents [43]. 

However, vanilla NMF ignores the geometric structure of the data space, which 

might be useful for data classification and clustering tasks. Thus, in the context of 

unsupervised tumor stratification problem, graph (or network) regularized version 
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of non-negative matrix factorization (GNMF) is used to minimize the objective 

function given in the Equation 2.3 [3, 41, 43, 44].  

 

 ‖𝐅 − 𝐖𝐇‖𝟐 + 𝛌 𝐓𝐫(𝐇𝐋𝐇𝐓) (2.3) 

                                                         

In GNMF, vanilla NMF is extended by graph topological information as in the 

last equation. If we do not have readily available graph, we can employ K-nearest-

neighbor (KNN) to create a network from influence matrix [45] of the reference 

molecular network. Then, the graph Laplacian of this KNN network is used as the 

regularizer in the NMF steps. 

In the Equation 2.3, 𝐖 and 𝐇 are a decomposition of 𝐅 (patient-by-gene matrix) 

formed as a result of network smoothing. 𝐖 (genes-by-k) and 𝐇 (k-by-patients) 

are the basis and patient cluster matrices. 𝐓𝐫() represents the trace of a matrix and 

𝑳 = 𝐃 − 𝐀 is the graph Laplacian of the K-nearest-neighbor network, where 𝐃 

denotes diagonal degree matrix of the KNN network and 𝐀 is the adjacency matrix 

of the KNN network. 𝛌 is the regularization constant to scale network regularizer 

(𝐋) term in GNMF.  

Multiple instances of 𝐇 matrix will be combined together during the consensus 

clustering step of the algorithm.  

 

• Consensus clustering: This methodology serves to represent consensus among 

multiple clustering algorithm runs. Also, it is used to detect the number of clusters 

in the data and evaluates the stability of the identified clusters. Resampling 

techniques can be used to simulate data perturbations. The clustering algorithm 

can then be implemented to each perturbed dataset and the consensus among the 

multiple runs can be evaluated. To represent the agreement among the clustering 

a consensus matrix (N × N) is defined (The number of elements in a dataset is 

denoted by N). A consensus matrix is calculated for each cluster and each element 

in the matrix denotes the proportion of clustering runs in which two samples 

clustered together [46]. In unsupervised tumor stratification problem, GNMF is 

performed multiple times on subsamples of the dataset. Then, the set of clustering 

outcomes is transformed into a co-clustering matrix. Each element in the co-

clustering matrix represents the frequency with each two tumors was discovered 
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that belong to the same cluster. In order to obtain co-clustering matrix, the 

following procedure is implemented [47]:  

1- For each 𝐇 matrix, generated after multiple iterations, the column-wise 

argmax of each row is computed and the patient is assigned to that cluster 

number. 

2- A matrix is created to count how many times each patient pair appears in the 

same 𝐇 matrix. 

3- A matrix is generated to count how many times each patient pair has been 

assigned to the same cluster. 

4- The matrix obtained in step 3 is divided by the matrix obtained in step 2 

(element-wise division) for normalization. 

Then, a patient linkage map is created from this co-clustering matrix and patient 

clusters are assigned from the patient link map hierarchy. 

 

2.2.1.2 Supervised Tumor Classification 

 

As opposed to the unsupervised methods, supervised methods classify tumors into 

predefined subtypes using labeled datasets. Inspired by supervised random walk approach 

presented in [48] cancer classification is used to identify potential biomarkers as well as 

predict patient survivability and cancer prognosis [49]. In this section, we first explain 

the basic ideas behind the supervised learning-based tumor classification [7].  

Given a graph 𝒢 with nodes and edges, the nodes denote genes, and the edges denote 

molecular interactions between genes.  Random Walk with Restarts (RWR) procedure is 

given in the Equation 2.4 is conducted iteratively as follows: 

 

 𝐏(𝐭+𝟏) = (𝟏 −  𝛂)𝐏(𝐭)𝐐 + 𝛂𝐏(𝟎) (2.4) 

                                                                     

In this equation, 𝐏(𝟎) represents a tumor-by-gene matrix and 𝐐 denotes degree normalized 

adjacency matrix of 𝒢. With the RWR, an activation score is computed for each edge and 

a weighted transition matrix is calculated. 

The center of each subtype cluster is learned from training data during the network 

based supervised classification training procedure. Each tumor sample is assigned to one 

of these subtypes during the validation stage. This operation is performed according to 
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the shortest Euclidean distance to the centers. Based on this explanation, the value of the 

cost function is calculated. 

Total number of tumors is represented by 𝐦 and row 𝐮 of 𝐏 is represented by 𝐩𝐮. 

The centroid vector of tumor 𝐮’s true subtype 𝐚 is 𝐜𝐚, described as follows, is and 𝐦𝐚 

represents the number of tumors in subtype 𝐚. 

 

 𝐜𝐚 =  
𝟏

𝐦𝐚 − 𝟏
∑ 𝐩𝐮

𝐯𝛜𝐚,𝐯≠𝐚

 
 

(2.5) 

                                              

Training the model is performed iteratively through gradient descent. To obtain 

local optimum of the optimization problem, the gradient of each parameter with respect 

to the edge feature weights 𝐰 is calculated using the chain rule and 𝐰 is updated 

correspondingly. When convergence is achieved, the final feature weights, transition 

matrix, and propagated mutation profiles, are produced. 

Finally, to predict the subtype of a new tumor 𝐳 with mutation profile 𝐏𝐳
(𝟎)

 

following equation is used (𝐬 is the predicted subtype of 𝐳 and 𝐀 is the set of all subtypes): 

 

 𝐚𝐫𝐠𝐦𝐢𝐧
𝐬∈𝐀

‖𝐩𝐳 − 𝐜𝐬‖𝟐
𝟐 (2.6) 

 

                                                    

 

2.2.2 Performance Evaluation Metrics 

In supervised learning, the performance of the model can be tested in a reserved 

evaluation set, as there are labels for each sample. Therefore, there are numerous well-

adopted evaluation metrics for supervised learning. In unsupervised learning, cluster 

evaluation is not well developed because of there are unlabeled data. Even so, there are 

many metrics that analyze the quality of clustering results of model without labeled data. 

In this thesis, following evaluation metrics are used [46, 50-53]. We use two evaluation 

schemes to visualize the results: t-Distributed Stochastic Neighbor Embedding (t-SNE) 

and co-clustering heat map. More evaluation and computational methods for gene 

clustering from the perspective of cluster quantification can be found [54]. Clustering 

validity indexes mentioned in this paper such as Silhouette coefficient, Davies-Bouldin 
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index and average of sum of intra-cluster distances were used to evaluate the quality of 

the proposed approach in this thesis. 

 

2.2.2.1 t-Distributed Stochastic Neighbor Embedding 

 

t-Distributed Stochastic Neighbor Embedding (t-SNE), a dimensionality reduction 

technique, visualizes high dimensional data in a low-dimensional space of two or three 

dimensions. It models objects in a dataset, by keeping the low-dimensional 

representations of dissimilar data points far apart and bringing similar data points close 

together. t-SNE is also able to recover well-separated clusters [50]. 

Figure 2.1 shows the experiment results of Mateen and Hinton with t-SNE [50]. 

They compared the results with the existing visualization techniques, and they found that 

t-SNE produced a map in which the distinction between digit classes was almost perfect. 

Each class is represented in a different color on the map. The use of coloring helps to 

assess how well the map preserves the similarities within each class. As shown in the 

figure, most classes are grouped into a single heap. Hence, t-SNE is useful for finding a 

representation that can distinguish between classes. 

 

Figure 2.1 Visualization by t-SNE [50] 
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The t-SNE algorithm calculates a similarity measure between pairs of samples and 

uses a cost function to optimize these two similarity measures.  In this study, this method 

was used to observe the distribution of stratified tumor subtypes. 

 

2.2.2.2 Co- Clustering Heat Map 

 

The purpose of using consensus clustering is to assess the consistency of the 

detected clusters. The consensus matrix mentioned in the section 2.2.1.1 can be visualized 

and used to evaluate composition and number of the clusters. Figure 2.2 is an example of 

consensus clustering heat map [46]. It shows two heat maps obtained by performing 

consensus clustering to two different datasets. Here, it is assumed that the 0 to 1 range of 

real numbers are represented by a color scale, so that 0 corresponds white color and 1 

corresponds red color. A darker red color indicates higher co-clustering. A color-coded 

heat map with red blocks along the diagonal on a white background symbolizes a perfect 

consensus since items in the same cluster are located close to each other. In the example 

of Figure 2.2, the heat map for the Gaussian3 consensus matrix shows a well-defined 3-

cluster structure, while the heat map for the Uniform1 consensus matrix displays no such 

structure. 

 

 

Figure 2.2 Co-clustering heat map example [46] 
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2.2.2.3 Silhouette Coefficient 

 

The silhouette coefficient is a metric that indicates each data point's proximity to its 

own cluster and the separation between different clusters. It is a famous method of 

evaluating the clustering quality [51]. The silhouette value of data point 𝐢 (𝐬(𝐢)) is 

calculated as Equation 2.7. Here, 𝐚(𝐢) is the average distance of object 𝐢 to all other 

objects in its cluster and 𝐛(𝐢) is the minimum of all average distances of object 𝐢 to all 

objects in any other cluster. 

 

 
𝐬(𝐢) =

𝐛(𝐢) − 𝐚(𝐢)

𝐦𝐚𝐱 (𝐚(𝐢), 𝐛(𝐢))
 

 

(2.7) 

                                                                                                 

The value of silhouette coefficient ranges from -1 to 1. Values closer to -1 means 

that clusters are not assigned correctly. Values closer to 1 indicates that clusters are well 

apart from each other, and the better clustering result. Silhouette coefficient is calculated 

for all data points and an average value is obtained as an overall measure (𝐬𝐤). In the 

Equation 2.8, the number of clusters is 𝐤, and the Silhouette coefficient is calculated for 

all data points and an average value is obtained as an overall measure number of data 

points is 𝐧. 

 

 𝐬𝐤 =  
𝟏

𝐧
∑ 𝐬(𝐢)

𝐧

𝐢≠𝟏
 

 

(2.8) 

                                                                        

2.2.2.4 Davies-Bouldin Index (DB Index) 

 

The Davies-Bouldin Index is used to estimate the clustering results and it measures 

average similarity between each cluster and the cluster to which it is most similar. [52]. 

The formula for DB index is given in the Equation 2.9. 

 

 
𝐃𝐁 =  

𝟏

𝐤
 ∑ 𝐦𝐚𝐱

𝐢≠𝐣
{

�̂�𝐢 + �̂�𝐣

�̂�𝐢,𝐣

}
𝐤

𝐢,𝐣=𝟏
 

 

(2.9) 

                                                            

Here, 𝐤 is the number of clusters and �̂�𝐢 is the average distance from each data point in 

cluster 𝐢 to the centroid of cluster 𝐢; �̂�𝐣 is the average distance from each data point in 

cluster 𝐣 to the centroid of cluster 𝐣; and �̂�𝐢,𝐣 is the Euclidean distance between the 
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centroids of cluster 𝐢 and 𝐣. The minimum value of DB Index is zero and values closer to 

zero indicate a better partition [54]. 

 

2.2.2.5 Intra-cluster Distances  

 

Intra-cluster distance is the distance between data points belonging to same cluster. 

Intra-cluster distance should be minimum to get the best clustering result. Three methods 

are used to calculate intra-cluster distance [53]. 

The complete diameter distance calculates the distance between two most remote 

data points belonging to the same cluster. It is defined as the Equation 2.10. Here, 𝐒 is the 

cluster formed using partition, 𝐝(𝐱, 𝐲) is the distance between two data points, 𝐱 and 𝐲, 

belonging to cluster 𝐒. 

 

 ∆𝟏(𝐒) =  𝐦𝐚𝐱
𝐱,𝐲 ∈ 𝐒

{𝐝(𝐱, 𝐲)} (2.10) 

                                                                                    

The average diameter distance is the average distance between all the data points 

belonging to the same cluster. It is defined as the Equation 2.11. Here, |𝐒| is the number 

of data points in cluster 𝐒. 

 

 ∆𝟐(𝐒) =  
𝟏

|𝐒|. (|𝐒| − 𝟏)
∑ {𝐝(𝐱, 𝐲)}

𝐱,𝐲 ∈ 𝐒
𝐱 ≠ 𝐲

 
 

(2.11) 

                                                                            

The centroid diameter distance represents the double average distance between all 

the data points and the center of cluster. It is defined as the Equation 2.12. 

 

 
∆𝟑(𝐒) = 𝟐 (

∑ 𝐝(𝐱, �̅�)𝐱 ∈ 𝐒

|𝐒|
) 

 

(2.12) 

 

Here, �̅� is calculated as: 

 �̅� =
𝟏

|𝐒|
∑ 𝐱

𝐱 ∈ 𝐒

 
 

(2.13) 
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Chapter 3 

Literature Review 

Large-scale cancer omics studies aim to understand the molecular mechanisms of 

cancer and have demonstrated that cancer subtypes have a strong association with clinical 

outcomes. Several studies have been proposed to identify tumors into subtypes. Cancer 

subtyping studies in the literature can be divided into basically two: unsupervised 

clustering and supervised classification. Prominent approaches for cancer subtype 

identification use different data types. Some of them stratify tumors with molecular 

profiles using mRNA expression data [11, 12, 56, 57]. As a result of these studies 

subtypes of breast and glioblastoma cancers are identified. The other data used for tumor 

stratification is somatic mutation profiles that is essential in the development of cancer 

research. Similarities and differences in patient tumor mutation profiles provide 

information for tumor subtype stratification. However, some challenges are created by 

the fact that somatic mutation profiles are sparse and heterogeneous. To overcome these 

challenges, some studies used the network-based approach to discover cancer subtypes 

[3-6, 58, 59]. The following are some studies in the literature related to cancer subtype 

identification. 

Lee et al. introduced a disease classification technique based on pathway activities 

inferred for each patient. This gene expression-based classification technique shows that 

pathway markers can increase the classification accuracy [60]. 

The Cancer Genome Atlas (TCGA) used mRNA and miRNA expression and DNA 

methylation of ovarian adenocarcinomas for subtype identification. In a TCGA project, 

four ovarian cancer transcriptional subtypes, three microRNA subtypes, four methylation 

subtypes were obtained using non-negative matrix factorization consensus clustering 

[11]. 

Yuan et al. presented a nonparametric Bayesian model that combines copy number 

and expression data to discover cancer subtypes. This discovery method combining 
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genomics and transcriptomics, provides more comprehensive understanding of the 

functional components and pathway regulations for each cancer subtype [61]. 

Shen et al. presented an integrative subtype analysis of glioblastoma (TCGA GBM) 

dataset. They demonstrated that this clustering analysis method provided a biologically 

diverse source for subtype discovery [62]. 

Levine et al. developed a clustering algorithm, named SuperCluster to obtain 

overall subtypes for the samples based on their cluster memberships of different data 

types. And their results classified endometrial cancers based on integrated genomics data 

[63]. 

Verhaak et al. described a gene-expression-based molecular classification of GBM 

into four subtypes. To detect robust clusters, they used consensus clustering [64]. 

Cho and Przytycka developed a new technique for modeling of cancer 

heterogeneity. This unsupervised method models the individual cancer cases as mixtures 

of subtypes [65]. In their study, they suggested that GBM could be better explained by 

three subtypes instead of four subtypes as previously propose [64]. 

Hofree et al. introduced a new approach named Network-based stratification (NBS) 

to stratify tumors into meaningful subtypes by cluster patients with mutations in similar 

network regions [3]. NBS is known as the first method in which somatic mutation profiles 

have been used for stratifying patients. This method integrates gene networks with tumor 

molecular profiles to overcome some problems, such as somatic mutation profiles are 

very sparse and unusually heterogeneous. NBS considers the sparsity of mutations at 

network level, and it is used to identify subgroups of patients by spreading the influence 

of each mutation profile in a gene interaction network. As described in the section 2.2.1.1, 

basic algorithm of NBS is a network propagation [38] that aggregates mutations 

impacting the same subnetwork regions. It uses a random walk model (Random Walk 

with Restarts, RWR). Also, in their study to derive a stratification of the input cohort a 

variant of NMF (GNMF) [42] was used. Finally, the technique of consensus clustering 

[46] was used to identify robust cluster assignments.  

Wang et al. introduced an approach named ‘Similarity Network Fusion’ (SNF) that 

provides clinically relevant patient subtypes. SNF constructs networks of patients for each 

individual data type and then fuse these data into one single network. In this way it 

improved the performance of popular integrative approaches at the time [66]. 

Speicher NK and Pfeifer N proposed that unsupervised multiple kernel learning be 

used to discover biologically meaningful subtypes for five different cancer types in their 

https://tureng.com/tr/ingilizce-esanlam/technique
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work [67]. This method provided more flexibility for each data type than SNF since it 

generates a variety of dimension reduction approaches [66]. 

Yang et al. [68] used a protein-protein interaction network and somatic mutation 

profiles to classify patients into molecular subtypes. In their study, to overcome the 

heterogeneity of mutation profiles network propagation algorithm was employed. And 

the final smoothed mutation profiles of prostate cancer were input into the graph 

regularized NMF (GNMF) algorithm. Lastly unsupervised consensus clustering was used 

to identify a predefined number of subtypes. However, since the true subtypes for prostate 

cancer were unknown until then, no clear result could be given about validation 

performance of the stratification. 

intNMF (an integrative approach for disease subtype classification based on NMF) 

was proposed by Chalise et al. and it aims to classify disease into distinct subtypes. It was 

stated that it has advantages over other clustering algorithms that need distributional 

assumptions because it makes no assumptions about the data's distributional form [69].  

A study published in 2017, combined somatic mutation (endometrial cancer) and 

gene expression data to identify patient clusters [70]. Unlike the NBS method [3], cancer-

type-specific significant co-expression networks (SCNs) were created instead of using a 

fixed gene network in all cancers. 

Kuijjer et al. described a new method to identify cancer subtypes using tumor 

somatic mutation profiles. This method uses biological pathways to overcome sparseness 

and heterogeneity of the somatic mutation data [21]. 

Zhang et al. [7] introduced a supervised method named Network-Based Supervised 

Stratification to classify tumors as described in the section 2.2.1.2. It extends the 

Supervised Random Walk algorithm by including a new loss function used for 

classification of cancer subtypes. It uses the network propagation technique for 

aggregation of mutations affecting the same subnetwork regions, same as other methods. 

Unlike these methods, this method uses supervised learning to adjust the weight of each 

molecular interaction. 

Mun et al. [71] presented proteogenomics analysis of diffuse gastric cancers (GCs) 

in young populations. In this study, four subtypes of diffuse gastric cancers were 

identified by integrating analysis of mRNA and protein data. 

Xu, et al. (2020) [72] introduced a partial multi-omics integrative technique for 

cancer subtyping. The method named MSNE (Multiple Similarity Network Embedding) 
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is a network embedding based integrative method and it can capture the similarity of 

samples, even though some samples are not found in the same omics as others. 

Rohani and Eslahchi (2020) [73] presented a study to discover subtypes of breast 

cancer using the somatic mutations and CNAs data. They used network propagation 

method to make the somatic mutation profiles dense. Then, they used the deep embedded 

clustering method to classify breast tumors into subtypes. 

Liu et al. (2021) [74] developed a network-based deep learning algorithm to identify 

patient subtypes from somatic mutation profiles. This stratification methodology based 

on network embedding and argues that two tumors can be classified into the same 

subtypes if the somatic mutated genes of these tumors are found in similar network 

regions of interaction network. 

Although all these existing studies provide valuable contributions to cancer subtype 

discovery, they have some limitations. Subtypes derived from expression profiles are not 

associated with clinical outcomes such as patient survival and response to therapy. In 

studies that stratify tumors into subtypes using somatic mutation profiles, the use of 

Random Walk with Restart (RWR) method may cause ill-conditioning problem. In this 

thesis, our aim is to elude this ill-conditioning problem using our approach. Network 

embedding-based methods have classified tumor subtypes using supervised learning and 

training stage can take a long time. Also, our approach has simple and easy 

implementation compared to them. 

 

 

 

 

 

 

 



21 

 

 

Chapter 4 

Materials and Methods 

4.1 Input Data 

The method proposed in this thesis requires two input data to cluster tumor mutation 

profiles into robust tumor subtypes:  a molecular interaction network (reference molecular 

network) that contains gene-gene interactions and a tumor-by-gene binary matrix that 

represents somatic tumor mutation profile of cancer patients. 

Gene-gene interaction networks describe the functional interactions between pairs 

of genes. Knowledge of these interactions could provide essential information about 

complex diseases. The causative drivers of tumor growth are thought to be contained in 

the mutations as stated in the section 2.1.2.4. So, somatic mutation profiles could be 

informative for tumor stratification.  

For a better understanding, representation of somatic tumor mutation profiles was 

shown in Equation 4.1 as a tumor-by-gene binary matrix. 1 indicates the mutated genes 

and 0 indicates the wild types (non-mutated). Figure 4.1 is a visualized version of a small 

excerpt of the colon cancer somatic mutation data. The mutated genes are shown in blue.           

  

 

[
𝟎 𝟎 ⋯  𝟏 ⋯ 𝟎 𝟎

⋮ ⋱ ⋮
𝟎 𝟎 ⋯ 𝟎 ⋯ 𝟎 𝟎

] 

  

 

 

(4.1) 
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Figure 4.1 An example for somatic tumor mutation profiles 

 

In this thesis, a reference molecular (gene-gene interaction) network and somatic 

tumor mutation profiles of different types of cancer were used for the stratification of 

tumors into subtypes. As a reference molecular network, a filtered network retaining only 

cancer genes was used. This filtered network has 2291 nodes [47]. The tumor mutation 

profiles derived from the TCGA (The Cancer Genome Atlas) belong to the following 

cancer types: Colon: colorectal adenocarcinoma, uterine: uterine corpus endometrial 

carcinoma, head and neck: head-neck squamous cell carcinoma, bladder: urothelial 

bladder carcinoma and breast cancer.  

For five tumor mutation datasets, the number of tumors and genes are shown in 

Table 4.1. 
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Table 4.1 Descriptive statistics of the datasets 

Dataset Number of tumors Number of genes 

COAD (Colon) 315 17390 

UCEC (Uterine) 248 17341 

HNSC (Head and Neck) 510 16521 

BLCA (Bladder) 395 17201 

BRCA (Breast) 286 571 

 

4.2 Label Propagation 

By considering 𝐅𝟎 ∈ ℝn×K , where K ≪ n, (tumor-by-gene binary matrix) as a label 

set matrix, we can define the tumor stratification problem as a well-known label 

propagation algorithm [75]. To be more specific, we will use the indicator values of each 

column of the 𝐅𝟎 matrix as a label of that of tumor. Since 𝐾 ≪ 𝑛  we need to interpret the 

rest of the known label methodology. To this end, we will define known labels as  𝐘𝐋 =

(𝐲𝟏, … … 𝐲𝐊) and unknown labels as 𝐘𝐔 = (𝐲𝐊+𝟏, … … 𝐲𝐊+𝐮=𝐧). Now, our objective is to 

determine the set of 𝐘𝐔 by depending on 𝐘𝐋 and the graph’s topological structure. To be 

more consistent with the terminology, we will call  𝐘𝐋 = 𝐅𝟎.  

 

4.3 Proposed Method 

By using the above defined 𝐅𝟎 ∈ ℝn×K (tumor-by-gene binary matrix) as known 

labels in our setting, we will define the tumor stratification problem as a label propagation 

approach. Let 𝐟𝟎 ∈ ℝn denotes a prior known vector, where the location of 1s indicates 

that the belonging of the nodes to the clusters.  In this thesis, the basic premise is that we 

assume the manifold smoothness of known labels and penalize the sparseness of unknown 

labels (𝐟�̂�). Mathematically, we define the smoothness as follows [76]: 

 

 

 
𝑺𝒎𝒐𝒐𝒕𝒉𝒏𝒆𝒔𝒔 (𝐟�̂�) =  ∑ 𝐀𝐢,𝐣

𝐧

𝐢,𝐣=𝟏

(𝐟𝟎𝐢
− 𝐟�̂�𝐣

)𝟐 

                                                         =  ∑ 𝐀𝐢,𝐣
𝐧
𝐢,𝐣=𝟏 (𝐟𝟎𝐢

𝟐 − 𝟐𝐟𝟎𝐢
𝐟�̂�𝐣

+ 𝐟�̂�𝐣

𝟐
) 

                                                         = 𝟐𝐟�̂�𝐣

𝑻
(𝐃 − 𝐀)𝐟𝟎𝐢

 

 

 

 

(4.2) 
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                                                            = 𝟐𝐟�̂�𝐋𝐟𝟎 

           

Here, 𝑳 denotes the graph Laplacian, and defined as 𝑳 = 𝑫 − 𝑨. 𝑨 is the degree 

normalized adjacency matrix of 𝒢 and 𝑫 represents the diagonal degree matrix of 𝑨. 

The sparsity of the assignments can be measured as follows: 

 
𝐒𝐩𝐚𝐫𝐬𝐢𝐭𝐲 (𝐟�̂�) =  ∑(𝐟�̂�𝐢

)𝟐

𝐧

𝐢=𝟏

  

                  =  ‖𝐟�̂�‖
𝟐
 

 

 

(4.3) 

                 

Formalization of the objective function is obtained by combining these two 

equations. Then we have following objective: 

 

 𝐉(𝐟�̂�)  =  𝐟�̂�𝐋𝐟𝟎  +  𝛔‖𝐟�̂�‖
𝟐

             (4.4) 

 

Here, we aim to find the 𝐟�̂� that minimizes 𝐽(𝐟�̂�).  The final term serves applying 

sparsity penalizing to solutions which are too far from zero. The parameter 𝝈 configures 

the effect of this penalization. By taking the partial derivative of 𝑱 with respect to 𝐟�̂�, the 

following equation is obtained: 

 

 𝛛𝐉

𝛛𝐟�̂�

 =  𝐟�̂�𝐋 +  𝛔𝐟�̂� 
 

(4.5) 

 

If the Equation 4.5 set to 0 then 𝐟�̂� that minimizes 𝐽(𝐟�̂�) can be calculated as: 

 

 𝐟�̂�  =  (𝐋 +  𝛔𝐈)−𝟏𝐟𝟎 (4.6) 

                                                                      

 

Now, by using the above equation, we try to find the clusters of 𝐟�̂� by relying on 

graph Laplacian, we stratify the tumors. Our approach here is a reflection of Ridge 

regularization on tumor clustering. 

Firstly, we rewrite the Random Walk with Restarts (RWR) equation as follows [77]: 
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 𝐅𝐭+𝟏 =  𝛂(𝐈 − (𝟏 −  𝛂)𝐀)−𝟏𝐅𝟎 (4.7)     

                                                                                                                                                                  

Hofree et al. [3] uses random walk model to diffuse information about tumor 

mutations using molecular interaction knowledge in the network. Instead, here in this 

thesis, we propose the above label propagation approach by changing the part of 𝛼(𝐈 −

(1 −  α)𝐀) with 𝐋 +  σ𝐈,  so that we can elude the ill-conditioning problem that might be 

introduced by RWR approach. Finally, we define the diffuse strategy of tumor mutations 

using knowledge of molecular interaction as: 

 

 𝐅𝐭+𝟏 =  (𝐋 +  𝛔𝐈)−𝟏𝐅𝟎 (4.8)           

                                                                                                                                                           

In the Equation 4.8 the parameter 𝜎 is set to 0.01, 0.1 and 0.2 to use a different value 

in each run. After obtaining propagated mutation profiles we applied non-negative matrix 

factorization to get patient clusters. 80% of somatic mutation matrix rows and columns 

was subsampled without replacement. Graph regularized NMF (GNMF) was performed 

100 times on subsamples of the dataset to stratify the input cohort. To produce robust 

patient clusters consensus clustering is used and a final stratification of the patients into 

clusters is recovered.  Aggregate GNMF results of 100 samples was converted into a co-

clustering matrix as described in section 2.2.1.1. Each element in this matrix represents 

the frequency with each two tumors was discovered to belonging the same cluster among 

all clustering iterations. 
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Chapter 5 

Performance Results 

This section presents the performance results of our proposed method evaluated on 

various datasets. To evaluate the performance of our method, the results are compared 

against the state-of-the-art unsupervised and supervised methods. Our method was tested 

in colon: colorectal adenocarcinoma, uterine: uterine corpus endometrial carcinoma, head 

and neck: head-neck squamous cell carcinoma and bladder: urothelial bladder carcinoma 

datasets. And we present the comparative results with the NBS method (unsupervised) 

are given in the section 5.1. Our method also tested in breast cancer dataset. And the 

comparative results with the validation performance of NBS2 method (supervised) are 

given in section 5.2. 

 

5.1 Comparison of our proposed method with 

unsupervised tumor stratification 

To make fair comparisons with NBS [3], we evaluate our proposed method on the 

datasets used in their python implementation paper [74]. We applied the NBS and our 

method to cluster somatic mutation profiles of four cancer: colon (COAD), uterine 

(UCEC), head and neck (HNSC), and bladder (BLCA). As a reference molecular 

network, we used a filtered network which has to preserve only cancer genes. This filtered 

network has 2291 nodes [74].  

Our label propagation-based method was executed with 3 different 𝛔 values (0.01, 

0.1, 0.2) for each data. Both these results and the results of the NBS method were 

evaluated and presented in the following section. In this thesis, to evaluate the clustering 

performances, following metrics mentioned in the section 2.2.2 are used: Silhouette 
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coefficient, Davies-Bouldin index, intra-cluster distance, t-Distributed Stochastic 

Neighbor Embedding (t-SNE) and Co-clustering heat map.  

Each method was run five times, each time the Silhouette coefficient and Davies-

Bouldin index were measured, and the results were shown by the boxplots. A higher 

average Silhouette coefficient and a lower Davies-Bouldin index indicates better 

clustering quality. Intra cluster distance values (complete, average, and centroid) are 

calculated separately for each extricated cluster. For a better assessment, the calculated 

values for each cluster were averaged and the results are shown by tables. Tables should 

be interpreted considering the information that intra-cluster distance should be minimum 

to obtain the best clustering result. Therefore, the lowest distance in each column is 

highlighted in bold. 

Clustering of colon cancer: By applying the NBS and our method to colon cancer 

data, patient profiles are clustered into 3 predefined subtypes. Figure 5.1 shows the 

performances of clustering methods for colon cancer (COAD). The boxplot shows the 

Silhouette coefficient and Davies-Bouldin index scores obtained by running each method 

five times. The intra cluster distance results are given in the Table 5.1. Figure 5.2 shows 

visualization of the clusters of COAD found using different methods. (A) Co-clustering 

maps: In all maps except of NBS, blue blocks along the diagonal on a white background. 

And these maps represent well-defined 3-cluster structure. (B) t-SNE plots: When tumor 

mutation profiles are stratified using our method, it is seen that 3 clusters are well grouped 

among themselves.  
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Figure 5.1 Performance evaluation for COAD 

 

Table 5.1 Intra cluster distances for COAD 

  

Complete 

 

Average 

 

Centroid 

NBS 7,906 3,038 2,274 

σ = 0.01 6,180 1,193 1,110 

σ = 0.1 6,118 1,107 1,101 

σ = 0.2 7,372 1,516 1,213 

 

Algorithm 

Distance 
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Figure 5.2 Visualizing clusters of COAD 

A 

B 
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Clustering of uterine cancer: Using uterine cancer data, patient profiles are 

clustered into 4 predefined subtypes. Figure 5.3 shows the performances of clustering 

methods for uterine cancer (UCEC). The boxplot shows the Silhouette coefficient and 

Davies-Bouldin index scores obtained by running each method five times. Intra cluster 

distance results of UCEC are shown in the Table 5.2. Figure 5.4 shows the visualization 

of clustering results. (A) Co-clustering maps: In all maps except of NBS, 4 blue blocks 

along the diagonal on a white background. And these maps represent well-defined 4-

cluster structure. (B) t-SNE plots: When tumor mutation profiles are stratified using our 

method, it is seen that 3 clusters are well grouped among themselves. 

 

 

Figure 5.3 Performance evaluation for UCEC 
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Table 5.2 Intra cluster distances for UCEC 

  

Complete 

 

Average 

 

Centroid 

NBS 5,581 2,658 1,870 

σ = 0.01 4,195 1,704 1,141 

σ = 0.1 4,385 1,841 1,256 

σ = 0.2 4,853 1,963 1,384 

 

Algorithm 

Distance 
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Figure 5.4 Visualizing clusters of UCEC 

 

A 

B 
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Clustering of head and neck cancer: Using head and neck cancer data, patient 

profiles are clustered into 4 predefined subtypes. Figure 5.5 shows the performances of 

clustering methods for head and neck cancer (HNSC). The boxplot shows the Silhouette 

coefficient and Davies-Bouldin index scores obtained by running each method five times. 

Intra cluster distance results of HNSC are shown in the Table 5.3.  Figure 5.6 shows the 

visualization of clustering results for head and neck cancer (HNSC). (A) Co-clustering 

maps: Although there is no clear difference between the maps, 4 blue blocks on maps 

belonging to our method are defined better. (B) t-SNE plots: Visualization of clusters 

grouped among themselves is given. 

 

 

 

Figure 5.5 Performance evaluation for HNSC 
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Table 5.3 Intra cluster distances for HNSC 

  

Complete 

 

Average 

 

Centroid 

NBS 8,967 3,732 2,738 

σ = 0.01 8,202 3,130 2,147 

σ = 0.1 8,142 3,207 2,214 

σ = 0.2 8,396 3,389 2,309 

 

 

Algorithm 

Distance 
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Figure 5.6 Visualizing clusters of HNSC 

 

A 

B 
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Clustering of bladder cancer: When the NBS and our method are applied to 

bladder cancer data, patient profiles are clustered into 4 predefined subtypes. Figure 5.7 

shows the performances of clustering methods for bladder cancer (BLCA). The boxplot 

shows the Silhouette coefficient and Davies-Bouldin index scores obtained by running 

each method five times. Intra cluster distance results of BLCA are shown in the Table 

5.4.  Figure 5.8 shows the visualization of clustering results for bladder cancer (BLCA). 

(A) Co-clustering maps: There is no clear difference between the co-clustering maps. 

When examining the maps given here, the information that a darker blue color 

corresponds to higher clustering for tumor pairs should be considered. (B) Visualization 

of clusters grouped among themselves is given. 

 

 

 

Figure 5.7 Performance evaluation for BLCA 
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Table 5.4 Intra cluster distances for BLCA 

  

Complete 

 

Average 

 

Centroid 

NBS 6,624 2,371 1,677 

σ = 0.01 6,153 2,290 1,420 

σ = 0.1 6,182 2,264 1,494 

σ = 0.2 6,480 2,300 1,501 

 

 

 

Algorithm 

Distance 
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Figure 5.8 Visualizing clusters of BLCA 

 

A 

B 
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5.2 Comparison of our proposed method with 

supervised tumor classification 

In this section we applied Network-based Supervised Stratification (NBS2) which 

is the baseline supervised method for cancer subtype identification [7] on breast cancer 

data and compared validation performance of NBS2 to performance of our proposed 

method. Training dataset used for the NBS2 method contains 577 tumors and 571 genes 

while validation dataset contains 286 tumors and 571 genes. Also  reference molecular 

network with 557 genes was used. The accuracy of 286-tumor validation set increased 

from 54 to 58% at the end of 316 iterations in total. It is not easy to compare a supervised 

method and an unsupervised method comprehensively. So, to compare our unsupervised 

method with the NBS2 we used a comparison just as Zhang et al. did [7]. To make 

validation set predictions NBS2 calculates the cluster centroids of the training set. We 

evaluated the performances of algorithms and our method achieved 60% accuracy as the 

best score, a performance 2% upper than that of NBS2 as seen in the Figure 5.9. 

Classification accuracy is plotted against the number of NBS2 iterations on the validation 

data. Accuracy of unsupervised methods are equal for each iteration.  

 

 

Figure 5.9 Performances of algorithms for breast cancer subtype identification 
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Chapter 6 

Discussions 

Experiments are performed on five different disease datasets: colon, head and neck, 

uterine, bladder and breast cancer in order to evaluate the performance of the proposed 

method in this thesis. These datasets consist of 315, 510, 248, 395 and 286 tumor samples 

respectively. 

In order to interpret the outcomes, the proposed method is compared with network-

based stratification method (NBS) [3] which is an unsupervised method. To evaluate the 

clustering performance of our method on colon, head and neck, uterine, bladder datasets; 

Silhouette coefficient, Davies-Bouldin index, intra-cluster distance, t-Distributed 

Stochastic Neighbor Embedding (t-SNE) and co-clustering heat map are used. According 

to the performance evaluation results given in section 5.1 our label propagation-based 

method (with all three σ values) drastically outperforms the NBS method in subtype 

stratification. We have seen that 𝝈 parameter can be tuned and changing it may have 

different conclusions for stratification results. 

To make a comparison with a supervised method (NBS2) [7], we use breast cancer 

dataset and calculated the cluster centroids of the training set. Although results given in 

section 5.2 does not seem to make any sense mathematically, considering that our method 

is an unsupervised model, it is a promising result that the performance of subtype 

identification without using any label obtains close results with the subtype classification 

using label. 

Supervised methods use labeled datasets and node-labelling is often expensive and 

time consuming. And this can be disadvantageous in some cases. So, a method can show 

a competitive performance even without any label would be very useful to identification 

of cancer subtypes. 
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Chapter 7 

Conclusions and Future Prospects 

7.1 Conclusions 

Response of many types of cancer treatment varies from patient to patient. This 

variability emerges the need to identify characteristics of patient tumor mutation profiles 

and cluster patients based on their genomic similarity. Discovering cancer subtypes is one 

of the research subject of cancer informatics. To date, various approaches have been 

developed for cancer subtype identification using many types of omics data. In this thesis, 

a new unsupervised method is presented for stratify tumor mutation profiles into 

meaningful subtypes. This method is based on label propagation, and it takes two input 

datasets: a reference molecular network and tumor mutation profile of a cohort. Using 

various datasets and extensive experimental configurations on these datasets, we show 

that our proposed approach outperforms the alternative methods in identifying cancer 

subtypes in large margin.  

7.2 Societal Impact and Contribution to Global 

Sustainability  

This study, which is based on the division of a heterogeneous tumor population into 

informative subtypes as determined by the similarity of molecular profiles, contributes to 

cancer subtype identification which has an important place in cancer informatics. These 

tumor subtypes are related with important clinical outcomes mentioned in Section 2.1.1. 

These relations show that knowing cancer subtype of patient provides a more suitable 

treatment for the patient. In this respect, this thesis contributes to society by reducing the 

side effects of drugs on the patient and increasing the effectiveness of the treatment. 
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Moreover, identifying the different genetic subtypes of patients demonstrates the 

potential applicability of this thesis to advance personalized medicine. Personalized 

medicine advancements provide a more integrated therapeutic approach that is specific to 

the genome of the individual. By providing more accurate diagnosis and early 

intervention, as well as tailored therapy, personalized medicine has the potential to reduce 

suffering and the cost of cancer treatment.  

The main contribution of this thesis is that presenting a label propagation-based 

unsupervised method which outperforms the state-of-the-art methods for cancer subtype 

identification. As described in Section 4.3, our proposed method includes a label 

propagation approach based on assuming manifold smoothness of known labels and 

penalizing the sparseness of unknown labels. We can avoid the ill-conditioning problem 

that might be introduced by the Random Walk with Restart approach utilized in previous 

studies to stratify cancer into subtypes by using the methodology we suggest.  

In summary, awareness of tumor heterogeneity has increased in recent years as 

cancer research has learned a lot about the genetic diversity of cancer types. Knowledge 

of cancer subtypes is crucial for understanding and interpreting tumor heterogeneity. The 

methodology proposed in this thesis can be applied on many cancer types to stratify them 

into informative subtypes. In this way, the treatment that will benefit the patient the most 

can be chosen. 

7.3 Future Prospects 

In the future work, our study can be expanded in several ways. First, our proposed 

method could be applied to other cancer types where somatic mutation information is 

available. With the discovery of meaningful subtypes of different cancer types, we can 

contribute to cancer research. Second, for high performance, network embedding 

approach can be implemented to our proposed method. This approach can help with the 

cancer subtype identification problem by its ability to convert the network into a low-

dimensional space while preserving the network's structural information. 
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