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a b s t r a c t

This paper is concerned with the existence of positive solutions to a second order
boundary value problem. By imposing growth conditions on f and using a gener-
alization of the Leggett–Williams fixed point theorem, we prove the existence of at
least three symmetric positive solutions.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the past 20 years, there has been attention focused on the existence of positive solutions to boundary
value problems for ordinary differential equations; see [1–15]. It is well known that the Krasnosel’skii [16] fixed
point theorems and the Leggett–Williams [17] multiple fixed-point theorem play an extremely important role.

In this paper, we discuss the existence of at least three positive solutions to the following boundary value
problem:

u′′(t) + f(u(t)) = 0, t ∈ [0, 1], (1.1)
u′(0) = 0, u(1) = 0, (1.2)

where f : R → [0,∞) is continuous. A solution u ∈ C(2)[0, 1] of (1.1), (1.2) is both nonnegative and
concave on [0,1]. We impose growth conditions on f which allows us to apply the generalization of the
Leggett–Williams fixed point theorem in finding three symmetric positive solutions of (1.1), (1.2).
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2. Preliminaries

In this section, we give some background material concerning cone theory in a Banach space, and we then
state the generalization of the Leggett–Williams fixed-point theorem.

Definition 2.1. Let E be a real Banach space. A nonempty, closed, convex set P ⊂ E is a cone if it satisfies
the following two conditions:

(i) if x ∈ P and λ ≥ 0, then λx ∈ P ;
(ii) if x ∈ P and − x ∈ P , then x = 0.

Every cone P ⊂ E induces an ordering in E given by x ≤ y if and only if y − x ∈ P.

Definition 2.2. A map α is said to be a nonnegative continuous concave functional on a cone P in a real
Banach space E if α : P → [0,∞) is continuous, and

α(tx+ (1− t)y) ≥ tα(x) + (1− t)α(y),

for all x, y ∈ P and 0 ≤ t ≤ 1. Similarly, we say the map β is a nonnegative continuous convex functional
on a cone P in a real Banach space E if β : P → [0,∞) is continuous and

β(tx+ (1− t)y) ≤ tβ(x) + (1− t)β(y),

for all x, y ∈ P and 0 ≤ t ≤ 1.

Let γ, β, θ be nonnegative continuous convex functionals on P, and α,ψ be nonnegative continuous concave
functionals on P . Then for nonnegative real numbers h, a, b, d and c, we define the following convex sets:

P (γ, c) = {u ∈ P : γ(u) < c, },
P (γ, α, a, c) = {u ∈ P : a ≤ α(u), γ(u) ≤ c},
Q(γ, β, d, c) = {u ∈ P : β(u) ≤ d, γ(u) ≤ c},
P (γ, θ, α, a, b, c) = {u ∈ P : a ≤ α(u), θ(u) ≤ b, γ(u) ≤ c},
Q(γ, β, ψ, h, d, c) = {u ∈ P : h ≤ ψ(u), β(u) ≤ d, γ(u) ≤ c}.

We consider the two-point boundary value problem

−u′′ = h(t), t ∈ [0, 1], (2.1)
u′(0) = 0, u(1) = 0. (2.2)

Lemma 2.1. Let h ∈ L1[0, 1]. Then the two-point boundary value problem (2.1) and (2.2) has a unique solution

u(t) =
 1

0
G(t, s)h(s)ds

where Green’s function G(t, s) is

G(t, s) =


1− t, 0 ≤ s ≤ t ≤ 1,
1− s, 0 ≤ t ≤ s ≤ 1.

The following is a generalization of the Leggett–Williams fixed-point theorem which will play an important
role in the proof of our main results.
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Theorem 2.1 ([18]). Let P be a cone in a real Banach space E. Suppose there exist positive numbers c

and M , nonnegative continuous concave functionals α and ψ on P , and nonnegative continuous convex
functionals γ, β and θ on P with

α(u) ≤ β(u), ∥u∥ ≤Mγ(u),

for all u ∈ P (γ, c). Suppose that F : P (γ, c) → P (γ, c) is a completely continuous operator and that there
exist nonnegative numbers h, d, a, b, with 0 < d < a such that:

(B1) {u ∈ P (γ, θ, α, a, b, c) : α(u) > a} ≠ ∅ and α(Fu) > a for u ∈ P (γ, θ, α, a, b, c);
(B2) {u ∈ Q(γ, β, ψ, h, d, c) : β(u) < d} ≠ ∅ and β(Fu) < d for u ∈ Q(γ, β, ψ, h, d, c);
(B3) α(Fu) > a, for u ∈ P (γ, α, a, c) with θ(Fu) > b;
(B4) β(Fu) < d, for u ∈ Q(γ, β, d, c) with ψ(Fu) < h.

Then F has at least three fixed points u1, u2, u3 ∈ P (γ, c) such that

β(u1) < d, a < α(u2) and d < β(u3), with α(u3) < a.

3. Main result

In this section, we impose the growth conditions on f which allow us to apply the generalization of the
Leggett–Williams fixed-point theorem in establishing the existence of at least three positive solutions of
(1.1) and (1.2). We will make use of various properties of Green’s function G(t, s) which include 1

0
G(t, s)ds = 1− t2

2 , for 0 ≤ t ≤ 1, 1/r

0
G
1

2 , s

ds = 1

2r ,
 1

1−(1/r)
G
1

2 , s

ds = 1

2r2 , for 2 < r, 1/2

1/r
G
1

2 , s

ds = r − 2

4r ,

 1−(1/r)

1/2
G
1

2 , s

ds = r2 − 4

8r2 , for 2 < r, t2
t1

G(t1, s)ds+
 1−t1

1−t2
G(t1, s)ds = t2 − t1, for 0 < t1 < t2 ≤

1
2 ,

min
r∈[0,1]

G(t1, r)
G(t2, r)

= 1, for 0 < t1 < t2 ≤
1
2 , max

r∈[0,1]

G(1/2, r)
G(t, r) = 1, for 0 < t ≤ 1

2 .

Let E = C[0, 1] be endowed with the maximum norm, ∥u∥ = maxt∈[0,1] |u(t)|. Then for 0 < t3 ≤ 1/2, we
define the cone P ⊂ E by

P = {u ∈ E : u is concave, symmetric, nonnegative valued on [0, 1], min
t∈[t3,1−t3]

u(t) ≥ 2t3∥u∥}.

We define the nonnegative, continuous concave functionals α,ψ and nonnegative continuous convex
functionals β, θ, γ on the cone P by

α(u) = min
t∈[t1,t2]∪[1−t2,1−t1]

u(t) = u(t1),

β(u) = max
t∈[1/r,(r−1/r)]

u(t) = u
1

2


,

γ(u) = max
t∈[0,t3]∪[1−t3,1]

u(t) = u(t3),

θ(u) = max
t∈[t1,t2]∪[1−t2,1−t1]

u(t) = u(t2),

ψ(u) = min
t∈[1/r,(r−1/r)]

u(t) = u
1
r


,
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where t1, t2, and r are nonnegative numbers such that

0 < t1 < t2 ≤
1
2 and 1

r
≤ t2.

We see that, for all u ∈ P,

α(u) = u(t1) ≤ u
1

2


= β(u), (3.1)

∥u∥ = u
1

2


≤ 1

2t3
u(t3) = 1

2t3
γ(u), (3.2)

and also that u ∈ P is a solution of (1.1), (1.2) if and only if

u(t) =
 1

0
G(t, s)f(u(s))ds, for t ∈ [0, 1].

We now present our result of the paper.

Theorem 3.1. Suppose that there exist nonnegative numbers a, b, and c such that 0 < a < b ≤ ct1
t2
, and

suppose that f satisfies the following growth conditions:

(C1) f(w) < (4r2/(r2 − 4))(a− (2c/(r(1− t23)))), for (2a/r) ≤ w ≤ a;
(C2) f(w) ≥ b/(t2 − t1), for b ≤ w ≤ (t2b)/t1;
(C3) f(w) ≤ (2c)/(1− t23), for 0 ≤ w ≤ c/(2t3).

Then the boundary value problem (1.1) and (1.2) has three symmetric positive solutions u1, u2 and u3
satisfying

max
t∈[0,t3]∪[1−t3,1]

ui(t) ≤ c, for i = 1, 2, 3,

min
t∈[t1,t2]∪[1−t2,1−t1]

u1(t) > b, max
t∈[1/r,(r−1)/r]

u2(t) < a,

min
t∈[t1,t2]∪[1−t2,1−t1]

u3(t) < b, with max
t∈[1/r,(r−1)/r]

u3(t) > a.

Proof. Let us define the completely continuous operator F by

(Fu)(t) =
 1

0
G(t, s)f(u(s))ds.

We will seek fixed points of F in the cone. We note that, if u ∈ P, then from properties of G(t, s), Fu(t) ≥
0, and (Fu)′′(t) = −f(u(t)) ≤ 0, 0 ≤ t ≤ 1, Fu(t3) ≥ 2t3Fu(1/2), and Fu(t) = Fu(1 − t), 0 ≤ t ≤ 1/2.
This implies that Fu ∈ P, and so F : P → P.

Now, for all u ∈ P, from (3.1), we get α(u) ≤ β(u) and from (3.2), ∥u∥ ≤ 1
2t3 γ(u).

If u ∈ P (γ, c), then ∥u∥ ≤ 1/(2t3)γ(u) ≤ c/(2t3) and from (C3) we get,

γ(Fu) = max
t∈[0,t3]∪[1−t3,1]

 1

0
G(t, s)f(u(s))ds

=
 1

0
G(t3, s)f(u(s))ds

≤
 2c

1− t23

 1

0
G(t3, s)ds = c.
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Thus, F : P (γ, c)→ P (γ, c). It is immediate that
u ∈ P


γ, θ, α, b,

bt2
t1
, c


: α(u) > b

̸= ∅ and


u ∈ Q


γ, β, ψ,

2a
r
, a, c


: β(u) < a

̸= ∅.

We will show the remaining conditions of Theorem 2.1.

(1) If u ∈ Q(γ, β, a, c) with ψ(Fu) < (2a)/r then β(Fu) < a.

β(Fu) = max
t∈[1/r,(r−1)/r]

 1

0
G(t, s)f(u(s))ds

=
 1

0
G
1

2 , s

f(u(s))ds

=
 1

0

G(1/2, s)
G(1/r, s)G

1
r
, s

f(u(s))ds

≤
 1

0
G
1
r
, s

f(u(s))ds = ψ(Fu) < a.

(2) If u ∈ Q(γ, β, ψ, (2a)/r, a, c), then β(Fu) < a.

β(Fu) = max
t∈[1/r,(r−1)/r]

 1

0
G(t, s)f(u(s))ds

=
 1

0
G
1

2 , s

f(u(s))ds

= 2
 1/r

0
G
1

2 , s

f(u(s))ds+ 2

 1/2

1/r
G
1

2 , s

f(u(s))ds

<
2c

r(1− t23) +
 4r2

r2 − 4


a− 2c

r(1− t23)

r2 − 4
4r2


= a.

(3) If u ∈ Q(γ, α, b, c) with θ(Fu) > (bt2)/t1, then α(Fu) > b.

α(Fu) = min
t∈[t1,t2]∪[1−t2,1−t1]

 1

0
G(t, s)f(u(s))ds

=
 1

0
G(t1, s)f(u(s))ds

=
 1

0

G(t1, s)
G(t2, s)

G(t2, s)f(u(s))ds

≥
 1

0
G(t2, s)f(u(s))ds = θ(Fu) > b.

(4) If u ∈ Q(γ, θ, α, b, (bt2)/t1, c), then α(Fu) > b.

α(Fu) = min
t∈[t1,t2]∪[1−t2,1−t1]

 1

0
G(t, s)f(u(s))ds

=
 1

0
G(t1, s)f(u(s))ds

>

 t2
t1

G(t1, s)f(u(s))ds+
 1−t1

1−t2
G(t1, s)f(u(s))ds



112 A. Dogan / Applied Mathematics Letters 49 (2015) 107–112

≥
 b

t2 − t1

 t2
t1

G(t1, s)ds+
 b

t2 − t1

 1−t1

1−t2
G(t1, s)ds

=
 b

t2 − t1

−2t1 + t21 + 2t2 − t22
2


+
 b

t2 − t1

−t21 + t22
2


= b.

Since all the conditions of the generalized Leggett–Williams fixed point theorem are satisfied, (1.1), (1.2)
has three positive solutions u1, u2, u3 ∈ P (γ, c) such that

α(u1) > b, β(u2) < a, α(u3) < b, with β(u3) > a. �

Remark 3.1. When f is autonomous, we select to carry out the analysis. But, if f = f(t, u(t)) and moreover,
for each fixed u, f(t, u(t)) is symmetric about t = 1

2 , then a similar theorem would be correct with respect
to same cone P.
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