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ABSTRACT 

DESIGNING RELIABLE MICROARCHITECTURES ACCORDING 

TO APPLICATION REQUIREMENTS 

 

Albert Kahira  

MSc. in Electrical and Computer Engineering 

Supervisor:  Dr. Gulay Yalcin   

 

July 2017 

 

 

One of the most important factors to consider when designing a new computer architecture besides 

cost, energy consumption and performance is reliability. Reliability looks into how often the 

computer produces the correct results and when it’s expected to fail (Mean time to failure).  

Reliability heavily affects all the other factors such as cost, area and performance and therefore a 

careful tradeoff has to be made between reliability and the other factors.  

One factor that has come into play recently is application requirement. The need for more 

computing power by applications has been increasing. Because of this, designers have designed 

much more powerful and sophisticated architectures putting millions of transistors into a single 

chip and more recently increasing the number of chips. However, this has increased the likelihood 

of failures occurring. A study of these failures and the reliability of this microarchitectures is 

therefore required.  

In this study, we investigate the reliability of current micro architectures for different applications 

and further propose reliable microarchitectures for those applications or mechanisms to adjust 

reliability parameters based on the application. We mostly focus on fault tolerance as a reliability 

parameter. 

 

Keywords: Reliability, fault tolerance, hardware transactional memory. 
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ÖZET 

UYGULAMA İHTİYAÇLARI DOĞRULTUSUNDA GÜVENİLİR 

İŞLEMCİLER TASARLANMASI 

Albert Kahira 

 Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı Yüksek Lisans 

Tez Yöneticisi:  Dr. Gulay Yalcin 

Temmuz -2017 

 

Bir bilgisayar mimarisi tasarlanırken; maliyet, enerji tüketimi ve başarımın yanı sıra düşünülmesi 

gereken en önemli etkenlerden birisi de güvenilirliktir. Güvenilirlik, bir bilgisayarın ne kadar süre 

doğru sonuç ürettiğininin ve ne sıklıkla çöktüğünün ya da yanlış sonuç ürettiğinin ölçümüdür 

(MTTF: İki çöküş arasında geçen süre). Güvenilirlik, diğer tüm faktörleri yani bilgisayarın 

kapladığı alanı, maliyetini ve başarımını önemli ölçüde etkilediği için, bilgisayar tasarımı sırasında 

güvenilirlik ve diğer faktörler arasında doğru bir denge kurmak gerekmektedir.     

Güvenilirlik konusunda son zamanlarda kullanılmaya başlanan etmenlerden bir tanesi de   

uygulama gereksinimleridir. Her geçen gün uygulamaların ihtiyaç duyduğu bilgisayar hesap 

yapma gücü artmaktadır. Bu sebeple de tasarımcılar her seferinde daha güçlü ve karmaşık 

bilgisayarlar tasarlayıp; önce tek bir çipe milyonlarca transistör yerleştirmiş ardından da bir çipte 

yer alana çekirdek sayısını artırmaya başlamışlardır. Ancak bu durum, bilgisayar sistemlerinde 

hata oluşması ihtimalini artırmıştır. Bu sebeple de oluşan bu hataların ve mikroişlmecilerin 

güvenilirliğinin incelendiği çalışmalara ihtiyaç duyulmaktadır.  

Bu çalışmada, günümüz mikroişlemcilerinin farklı uygulamar açısından güvenilirlik ihtiyaçları 

incelenmiş, bunun devamında bu uygulamalar için güvenilir mikroişlemci tasarımları ve uygulama 

ihtiyaçları doğrultusunda güvenilirlik parametrelerini ayarlayacak mekanizmalar önerilmiş. 

Çalışma kapsamında güvenilirlik ölçütü olarak hata müsamaha değeri kullanılmıştır. 

 

Anahtar kelimeler: Güvenilirlik, hata müsamaha oranı, donanımsal geçişli bellek. 
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Chapter 1

Introduction
The history of computers is a rather interesting one. Early computers were intended

for military and scientific community and required high level of expertise to use. They

occupied huge spaces and cost thousands of dollars. Over the last decades, computers

have continued to shrink in size, finding their way to our offices, homes and most recently

even to our pockets. This improvement can be attributed to significant breakthroughs

made in hardware such as silicon technology and up until recently Moore’s law.

But its not only computer hardware that has seen such a drastic change. Software,

especially application software has gone from a few lines of code running on a simple

hardware to today’s millions of code optimized to run in multiple cores in a coordinated

way, drastically cutting down execution time. High level programming languages have

enabled pretty much everyone to create their own programs to computerize their tasks.

Recently we have seen the emergence of machine learning applications that will revolu-

tionize the way we use and interact with computers [20].

An application is a program or group of programs that is designed for the end user.

Applications enable the user to perform a group of coordinated functions, tasks, or ac-

tivities. They range from word processors to complicated computer vision applications.

However, they run the the same basic principles and design of Von Neumann architecture

(Shown in 1.1) . As such, where basic hardware design has remained relatively same over

the years, applications and application design has changed. This is evident by looking at

the code that took man to the moon for the first time in 1969 which was recently published

on Github.

The number of lines, a general measure of application size, has continued to in-

crease. Facebook for instance has over 60 million lines of code and a modern self driven

car can have upto 100 million lines of code. The number of lines of code in a Boeing

exceed all other parts including bolts [1] . Figure 1.2 shows this trend and compares the

size of different applications. Sophisticated applications that run on multiple processors

utilizing major breakthroughs in hardware such as multithreading and parallelism. This

1



Figure 1.1: Von Neuman Architecture

of course has led to the emergence of better applications, capable of performing tasks and

great speeds and extremely high precision. It has also led to an increase in the number of

tasks performed by computers.

This development in software can be accredited to more superior and advanced

hardware. The Apollo Guidance Computer (AGC) that took man to the moon had ap-

proximately 64KB of memory and operated at 0.043MHz. Today a simple phone has

over 2GB of memory and clocks at speeds hundreds of folds than AGC. Figure 1.3 shows

trend in hardware in the last several years. These developments have made computers part

of our daily lives. We have integrated computers so much into our lives that its hard or

even impossible at times to live without them. Mobile phones, washing machines, cars,

microwaves, airplanes and medical equipment, all rely on some kind of computers.

Superior hardware has come at a cost. Hardware designers and computer architects

have to make careful trade-offs between different design constraints such as cost, energy

consumption and area. For instance, high clock speeds would mean more heat dissipated

and the shrinking size of a single core would require lower voltage which may in turn

lead to low performance. Another factor that computer architects have to consider is

reliability. Reliability looks into how often a computer produces the correct results and

when its expected to fail (Mean time to failure). Reliability heavily affects all the other

factors such as cost, area and performance and therefore a careful trade off has to be made

between reliability and the other factors [44] .

An unreliable system can be catastrophic as shown by numerous case studies. For

2



Figure 1.2: Software Size

Figure 1.3: Hardware Trends
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example, on July 20th 2008, a single corrupt bit completely collapsed Amazons S3 cloud

computing Service for almost 8 hours [5]. Such a failure could have been very fatal if

it involves very sensitive data. Nevertheless, it damaged the company reputation. On

June 4, 1996 an unmanned Ariane 5 rocket launched by the European Space Agency

exploded just forty seconds after its lift-off from Kourou, French Guiana[6]. Billions of

dollars and tons of scientific information were lost because a computer system was not

reliable. There are many more examples where computers have proved not so reliable.

Recently a fatal crash occurred with Tesla model S where autopilot was activated [37].

This accident has raised numerous questions about the reliability of machine learning and

artificial intelligence applications. Coming at a time when there is a significant increase

in AI applications, a reliability study of these applications could prevent future disasters.

There are several error correction mechanisms implemented in the literature [27].

These error correction mechanisms increase reliability but come at a cost. They mean an

increase in cost, power consumption at a hardware level [4] and more code at a software

level. It is because, in order to detect and correct errors, some degree of redundancy must

be introduced in the architecture [8] which significantly increases the cost. Furthermore,

most of these methods are applied homogenously in a one fits it all manner as shown by

Yixin et all [29] .

Applications however don’t respond the same to hardware faults [29] . Wheres

a faults may cause one application to crash or give faulty results, it may go unnoticed

in another application. For instance, when a computer error occurs in a general-purpose

computer such as laptops used in our daily lives, the effect is not big and may even go

unnoticed. However, a fault in a computer monitoring the heart of a patient could be

catastrophic. This means a homogeneous approach to reliability such as ECC and redun-

dancy is not wise economically and there is a need for application specific architectures.

It is,therefore, important to understand applications robustness in order to design reliable

application specific architectures. This will in turn reduce cost.

If the entire application can be understood and somehow broken down into parts

based on the sensitivity of each part, then tremendous gains can be made in terms of per-

formance, energy requirements and cost. For example, parts of an application that are not

so prone to errors can be executed at higher speeds than others increasing performance

while delicate parts can be executed at lower speeds saving energy and increasing relia-

4



bility. This will bring an end to the idea of setting a general reliability measurement an

introduce a form of dynamic reliability management as suggested in [29] .

1.1 Problem Statement and Contributions of this Thesis

As explained earlier, there is need for application based reliability designs. However, in

order to come up with such designs, a proper analysis of applications is required. This

thesis is an initial attempt to solve the problem of application based reliability. It shows

and proves the need for such designs by analyzing several well known applications. It

further goes ahead to propose a design that utilizes existing hardware to improve relia-

bility of applications. This thesis studies reliability requirements of different applications

and to further proposes reliable microarchitectures for those applications or mechanisms

to adjust reliability parameters based on the applications.

The aims of this thesis can therefore be summarized as follows:

• Determining the reliability requirement of applications

• Showing the need for heterogeneous microarchitecture designs which can allocate

components according to the reliability requirements of the application or the data

used by the application

• Reducing the overhead of reliability so that reducing the energy consumption as

well as increasing the lifetime of computers.

In the end, this thesis aims to achieve the following:

• A method classifying applications or application sections according to their relia-

bility requirements

• A prototype of a heterogeneous microarchitecture in terms of reliability require-

ments

1.2 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 gives a background of reliability.

It looks into things such as fault tolerance, hardware faults and existing reliability meth-

ods. Chapter 3 gives resilience characterization of artificial neural networks, application

5



we select to evaluate our hypothesis. Chapter 4 proposes using Hardware Transactional

Memory as a means to increase reliability of some applications. Finally chapter 5 gives a

conclusion.
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Chapter 2

Background
In this chapter, we give a detailed background of faults in computer systems and different

reliability schemes proposed to tolerate these faults. We start by giving a general overview

of reliability and its importance. Then we cover different faults in computer systems and

categorization. Finally we cover the existing reliability schemes.

2.1 Reliability

Reliability is the measure of how often the computer produces the expected results. In

other words, its how much reliable a computer system is. This is very important because,

as we shall show later, computer systems experience all sorts of defects and don’t guar-

antee to always give the correct results. Reliability is therefore a key design constraints

among others such as cost, area and power.

However, as stated earlier, reliability comes with a cost and careful trade off has to

be made between reliability and other design constraints. The cost of reliability besides

actual economic cost includes the following.

• Energy overhead

• Hardware redundancy

• Performance compromise

• Design overhead

2.2 Faults in Computer Systems

In computer systems, a fault is said to occur when there is a defect in one or several

components of the system. Faults can occur in both software and hardware, however,

this thesis focuses on faults in hardware components. Faults in hardware are hardware

defects that can manifest themselves as errors. However, not all faults cause errors since

7



Figure 2.1: Effect of faults

some faults are corrected by existing fault tolerance mechanisms while others are not of

enough magnitude to manifest themselves as visible errors and therefore go unnoticed.

Several causes of faults such as particle strike, manufacturing defects, and age have been

identified as causes faults.

Recently hardware faults have been on the rise and this trend is expected to con-

tinue due to shrinking size of micro processors, increasing number of transistors and low

voltage designs [7]. As stated earlier, when a fault is not corrected, it may lead to an error

or it might just go unnoticed.

When a particle strike or any other factor causes a bit flip, the bit will be either

read by the next instruction or not. If its not read, this a benign fault and causes no error.

However, if the bit is read, the outcome will be determined by whether the bit is protected

by error correction and detection scheme or not. If the bit is protected, then this is also

a benign fault and causes no error since the error correction mechanism can handle the

fault. If there is no correction mechanism and the bit matters, that means its important

for the next instruction then silent data corruption occurs. If the bit doesn’t matter then

its just another benign fault. If the bit has only error detection mechanism and no form of

correction, then it can lead to a unrecoverable error. Figure 2.1 summarizes everything

explained above.

8



Faults in hardware components, our key are of interest in this thesis, can be catego-

rized as follows:

• Transient

• Intermittent

• Permanent

We look at each of the fault categories.

2.2.1 Transient Faults

Transient faults, commonly known as soft errors, are faults changes in bit values(bit flips)

that occur due to particle strike or radiations. This faults are temporary and the corrupted

bit can be corrected when it is overwritten by another instruction data. Even though

transient faults are temporary, they could have drastic effects on an application. As such

several measures have been implemented to detect and recover from transient faults.

2.2.2 Intermittent Faults

Intermittent faults on the other hand are faults that can be loosely defined as several bits

getting stuck at a certain point for a while, i.e couple of cycles or even milliseconds.

They occur due to unstable hardware and can be activated by temperature or voltage

changes. Traditionally, intermittent faults have been considered as the beginning of per-

manent faults. Intermittent faults and their effects have been studied comprehensively

previously [30]

2.2.3 Permanent Faults

Finally, permanent faults are irreversible changes that occur in semiconductor either dur-

ing manufacturing or later on in their life due to aging [43]. Figure 2.2 shows a bathtub

curve that is generally used to represent permanent faults and their occurrence during the

life time of a chip. At the beginning, there is a high chance of permanent faults in a chip

due to manufacturing and packaging defects. However, once the chip is operational, in

continues operating with minimal permanent faults until it ages out. After a certain age,

a chip then begins to experience more permanent faults due to age.

9



Figure 2.2: Bathtub curve representing permanent faults

2.2.4 Effects of Hardware Faults on Applications

When one or more of the above mentioned hardware faults occurs in a system, several

things are bound to happen. This could have varying effects on an application as listed

below.

• Application produces incorrect results

• Application slows down

• Application crashes

• Error is masked and nothing happens(benign faults)

Depending on the application, incorrect results could be catastrophic such as the case

of mission critical applications. An application taking longer than usual to complete

could hold up significant resources which is extremely costly especially in cases of high

performance computing (HPC) systems.

Gracia-Morn et al. have studied the effects of intermittent faults on Reduced In-

truction Set Computing (RISC) [13]. They underline the fact that intermittent faults are

gaining importance with the continued reduction in transistor size. They also compare the
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effects of both transient and permanent faults and intermittent faults. Finally they stress

the importance of having several techniques to detect and correct intermittent faults.

Wei et al also look into the the effects of both intermittent and transient hardware

faults on programs [41]. They attempt to answer the question whether there exists con-

siderable differences in how intermittent faults affect applications as compared transient

faults. Such a study would therefore address the need or lack thereof of a novel techniques

to address intermittent faults different from those currently implemented to address tran-

sient faults. They concluded that the impact of intermittent faults on a program is different

from that of transient faults and therefore techniques that increase resilience to transient

faults are not exactly effective for intermittent faults.

Since hardware faults affect also the memory, the effects of memory faults on ap-

plications has also been studied. Luo et al characterize the errors in memory in attempt to

reduce the cost of a data center [29]. They show that the traditional one fit all approach

is not viable as faults in memory have varying effects on different applications. They

therefore propose and develop a methodology to classify fault tolerance of applications

to memory errors. They show that using heterogeneous reliability techniques can greatly

reduce the cost of data centers.

2.3 Reliability Schemes

2.3.1 Error Detection Schemes

Error detection is the process of identifying or becoming aware that an error has occurred.

Even though the occurrence of an error can be easily identified by a program crash or an

obvious false result, its not always the case especially with transient faults or silent errors.

Several schemes have therefore been proposed in the past to detect both intermittent and

transient faults, the most famous one being error correction codes (ECC). Most of these

schemes fall into three categories :

• Redundant execution

• Encoded Processing

• Monitoring Error Symptoms
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Redundant execution is the most common error detection scheme. In its simplest

form, redundant execution involves executing an operation two or more times and then

comparing the results. Lack of uniformity in the output generated by the operation means

an error has occurred. This technique is common in mission critical applications. Encoded

processing involves using Error Correction Codes (ECC) to detect and correct soft errors.

Finally the system can also be monitored for errors. This can be manifested through false

prediction in high confidence branches or increased activity in the operating system

2.3.2 Error Correction Schemes

Error correction or error recovery is an attempt to restore normalcy after an error has

occurred. Error correction schemes can be divided into two major categories

• Forward Error Recovery (FER)

• Backward Error Recovery (BER)

FER is based on replicating the execution in order to use the correct results if the actual ex-

ecution fails. BER (also called checkpoint/rollback mechanism) stores an error-free state

of the system (checkpoint) and reverts the system state upon error detection (rollback).

12



Chapter 3

Resilience Characterization of Artificial

Neural Networks

3.1 Introduction

Artificial Intelligence (AI) is now playing a big part in our day to day life and this is likely

to increase tremendously in the near future. Artificial Neural Networks (ANN), which are

utilized in many contemporary AI applications, are computational models inspired by

neurons to solve many computationally complex problems such as character recognition,

image compression, speech recognition and recently computer vision. ANN is attractive

for those sort of problems due to its continuously learning behavior from given data.

An ANN consists of interconnected neurons that process information. While a basic

ANN may consist of an input layer,hidden layer and an output layer, recently, deep neural

networks(DNN) with many hidden layers have been proposed and implemented. ANNs

have also been directly implemented on hardware, a concept knowns as neurocomputers

[33], however, such implementations are beyond the scope of this work.

Due to their nature, ANNs are computationally very intensive applications. When

very large data sets are involved, training ANNs could take days. Because of this, ANN

are now deployed in high-performance computing (HPC) systems where they utilize high

computational power and massive parallelism offered by HPC systems. It is widely agreed

that future implementations of ANN and AI applications will continue to be deployed in

HPC systems and large data-centers.

However, resilience is the one of the major challenges in HPC systems, since the

rate of the hardware failures such as transient and permanent faults is significantly high

in HPC systems. A transient fault is a bit flip occurring mainly in processor structures

(i.e. register files, caches etc.) due to radiation events, thermal conditions or power sup-

ply noise. Permanent faults, on the other hand, are irreversible physical changes in the

semiconductor devices.Unfortunately, transient and permanent faults will continue to be
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a major concern in HPC systems [5], due to processor technology node shrinking thus

making transistors more susceptible to faults and due to the fact that the number of cores

in HPC systems is expected to rise up to several millions.

Hardware faults may lead to different consequences in the result of the running ap-

plication. While it is possible that a single bit flip on a critical register can cause an entire

application to crash, it is also possible that an undetected bit flip causes the application

to produce a considerably different result than the correct output; this is called silent data

corruption (SDC). For instance, in the case of an ANN application trained to recognize

certain patterns such as characters or images, a single bit flip could lead to predicting the

character or image falsely (e.g. recognizing an handwritten A character as B). It can also

lead to the ANN taking longer than usual to complete or being stuck at a certain point.

This holds the much needed resources which is very costly in the case of HPC.

In order to tolerate hardware faults, a HPC system requires several robust resilience

mechanisms for detecting errors and preventing them. However, providing resilience to

any system causes significant overheads in performance, energy consumption and hard-

ware cost. Hence, it is impractical to keep the entire HPC system completely fault-free

due to those overheads. Therefore, it is essential to evaluate the most vulnerable system

components in order to trade off between resilience and its overheads. For instance, un-

derstanding the extent to which faults affect the application and knowing the locations

where faults cause the highest impact is important for reducing the reliability cost since

such information will be useful when designing error detection and prevention mecha-

nisms.

In this chapter, our goal is to look into effects of hardware faults on ANN. We an-

alyze the overall robustness of both classical ANN and DNN. We are motivated by the

fact that ANN applications, an important subset of AI applications, will be exposed to

many of the reliability issues experienced in HPC systems and a deep understanding of

these faults is required. Thus, we perform a complete fault injection analysis on two stan-

dard ANN benchmarks, first a simple ANN that represents the basic principles in ANN

and then a more sophisticated deep neural network that represents current and emerging

trends in ANNs.Fault injection is a widely used experiment-based resilience evaluation

approach in which faults are introduced to the system by changing the value of randomly

selected bits [12].We injected faults to (1)different phases of the ANN applications (i.e
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training and testing phases), (2) different architectural registers and (3) different layers of

the ANN.

We have several take-away points from our ANN resilience analysis. Our results

show that in a neural network with three layers (i.e., input, hidden and output layer)

hardware faults occurring in the weight matrix between hidden layer and output layer

affect the outcome more than faults between input and hidden layer. Our results also

show that a fault on distinct X86 registers (X86 being the most often deployed processor in

the HPC data-centers) have very different vulnerability profiles for the ANN application:

faults on some registers (e.g. the RSP) almost always manifest themselves as a crash,

while faults on other registers (e.g. the RDX and RBP) causes SDC. We also find that

some faults in architectural registers cause the program to take longer than usual and even

in some cases not to complete at all. Finally, we find that the likelihood of a fault in the

input causing a misclassification - in this case an SDC - depends highly on which digit is

being recognized. The contributions of this chapter are summarized as follows.

• We show the effects of faults on different architectural registers

• We show the vulnerability of different layers of ANN

• We show how errors affect a DNN

• We discuss possible design choices for the reliability of ANNs.

The rest of this chapter is organized as follows. Section 3.2 gives a background of

several fault tolerance studies of ANN and reliability on HPC systems. Section 3.3 ex-

plains in detail our fault injection environment and the experiments conducted. Section ??

presents and discusses the results obtained. Finally section 3.6 concludes this paper.

3.2 Background and Related Work

In this section we provide background information and related work on fault tolerance of

ANNs and faults in HPC systems.

3.2.1 HPC Systems Reliability

HPC systems consist of tens of thousands of nodes with hundreds of thousands cores

working together on solving a specific scientific model. These systems offer the engi-
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neering and scientific community the much needed computing power. The number of

processors continues to rise and the feature size of those computing devices continues to

shrink. For instance, it is expected that the number of cores reach several million cores

running up to a billion threads [5] in the coming years. Although the expected lifetime

of each one of those processing units is measured in tens of years, the mean time be-

tween failure (MTBF) of a system with tens of thousands of such devices is measured

in hours.Moreover, power constrains is forcing system architects to design systems that

work near the power thresholds, which increases the likelihood of errors [2].

3.2.2 Fault Tolerance in Artificial Neural Networks

In the ANN domain, fault tolerance is the ability of a system to continue to perform to

specification in the presence of faults, such as broken connections, connections with er-

roneous weight or neuron with inaccurate outputs [23] . ANNs are generally considered

fault tolerant due to their parallel structures [33]. As such, they will perform as ex-

pected in the presence of errors as their parallel nature offer some sort of redundancy.

This argument has been the basis and justification for the usage of ANN in mission crit-

ical applications or applications where no repair mechanism is available such as space

explorations [40]. However, as it has been pointed out [34], neural networks cannot be

considered completely fault tolerant. An artificial neural network with no built in fault

tolerance could be disastrously affected by faults [6]. Most of the work done on fault

tolerance of ANN has focused on faults that occur within the neural network at the ap-

plication level. Also, there has been studies about faults in hardware implementations

of ANN applications. Other works [33] identify the following as faults that can occur

independently of hardware.

1. Fault in connection/weight or multiplier

2. Fault in an input

3. Fault in activation function

The above mentioned faults have been the focus of other studies [22]. Even though

extensive work has been done on the fault tolerance of ANN, with many researchers con-

cluding that ANN are inherently fault tolerant, not much has been done on the impact of
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hardware faults on ANNs especially on HPC systems. In this paper we analyse hardware

errors that manifest themselves as bit flips in architectural registers. These errors stem

from faults occurring in the processor pipeline and are more difficult to detect and correct

compared to memory errors which can be detected and corrected through ECC hardware.

3.2.3 Fault Injection Characterization on other Applications

Previous work on characterization of vulnerability of applications has been vital in de-

signing fault tolerance techniques. Weining et al. studied the behavior of Linux kernel

under errors and concluded that a large number of errors result in a total crash of the

operating system and require file system reformatting [14].

Fault injection campaigns have been conducted to study the resilience of various

class of applications ranging from supercomputing [3] , desktop [42] [35] , multi-

threaded [24] to GPGPU [17]. Only few of the above papers studied the impact of faults

on hardware structures such as registers [35] [42] . In particular, Yalcin et al. pre-

sented a fault injection tool in the microarchitecture level simulator [42]. They evaluated

the vulnerability of SPEC2006 applications in the presence of faults in different micro-

architectural hardware structures. Rashid et al. characterised the impact of intermittent

faults on SPEC2006 benchmark by injecting faults in micro-architectural simulators [35]

. The study mostly focuses on errors that lead to the program crashing and the intention

is to diagnose those errors.

The motivation of such studies has been to detect , diagnose and offer recovery

mechanisms. In this study, we extend this analysis to the application domain of ANN and

we study the impact of faults on registers as well.

3.3 Fault Tolerance Assessment

This section explains the fault simulation environment, fault injection process and the

assessment of these faults.

3.3.1 Benchmark Applications and Simulation Environment

Two well known benchmark applications are used in this study. MNIST, which represents

classical ANN applications and ImageNet which represents emerging trends in ANN such
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Figure 3.1: A simple artificial neural network

as deep neural networks (DNN) and convolutional neural networks (CNN)

Classical ANN - MNIST

A classical ANN consists of an input layer, a hidden layer and an output layer. Figure 3.1

shows the architecture of classic ANN. MNIST is a neural network application trained

to recognize handwritten digits. The application is implemented in C++. MNIST uses a

database of handwritten digits [26] from 0 to 9. The neural network has three layers (i.e

input, hidden and output layers). Two weight matrices are generated as a result of training

process. The first weight matrix is between the input layer and the hidden layer while

the second weight matrix is between the hidden layer and the output layer. This weight

matrices are then used in the testing(operation) phase. We train the neural network with

60,000 samples. We then test the ANN with 10,000 samples. With everything running

without errors, we are able to attain a 94.40 percent accuracy in predicting the 10,000

images.
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Figure 3.2: A deep neural network (DNN)

Deep NN - ImageNet

A Deep neural networks is essentially an artificial neural network with multiple hidden

layers. Figure 3.2 shows the architecture of a deep neural network. In cases of extreme

complexity, deep neural networks provide better results and are able to learn complex pat-

terns as shown in the case of ImageNet. ImageNet is a data-set of hundreds of thousands

of high resolution images belonging of multiple categories [36]

3.3.2 Fault Injection

This subsection shows the different methods used to inject faults. Experiments are con-

ducted in a Dell Poweredge R720 machine with the following specifications: Intel(R)

Xeon(R) CPU E5-2650 0 @ 2.00GHz ,16 cores, 128 GB of DRAM memory, Linux 4.4.0-

57 and GCC version 5.4.0.

Architectural Register Faults

When a transient fault occurs in a registers or memory unit , it changes the information

stored in that register. These are called single event upsets (SEU).Multiple bit upsets

(MBU), where several bits are affected can also occur. In order to asses such faults, we

flip the bits of architectural registers as the application is running. We assess both SEU

and MBU cases. We inject no more than 5 faults for each time an application runs and
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Figure 3.3: Fault Injection Process Using PIN

randomly distribute the faults across the entire time line of the application. The bit to

be flipped is also randomly selected. We repeat each fault injection experiment 50 times

per register for each sample which means in total 800,000 fault injection experiments are

conducted.

We inject faults into architectural registers using PIN [28], a binary instrumentation

tool provided by Intel.First, fault injection code is added before every instruction. This

code is called analysis code. Since we don’t inject a fault for every instruction, we ran-

domly select an instruction to inject the fault. If an instruction is selected, this triggers

fault injection and a fault is injected in one of the 16 general purpose registers. Table 3.1.

shows the 16 general purpose registers and their functions. The fault injected is a bit flip in

one of the bit of a general purpose registers. After injecting the fault, the next instruction

is executed and the run continues.We assess both single event upsets (SEU) and Multiple

bit upsets (MBU). Figure 3.3 summurises the entire fault injection process.

We inject no more than 5 faults for each time an application runs and randomly

distribute the faults across the entire time line of the application. The bit to be flipped is

also randomly selected. We repeat each fault injection experiment 50 times per register

for each sample which means in total 800,000 fault injection experiments are conducted.

20



Table 3.1: General Purpose Registers and their Functions

Register Function

RAX (Accumulator) Used in arithmetic operations

RBX (Base) Used as a pointer to data

RCX (Counter) Used in state/rotate instructions and loops

RDX (Data) Used in arithmetic operations and I/O operations

RBP (Stack Base pointer) Used to point to the base of the stack.

RSP (Stack Pinter) Pointer to the top of the stack.

RSI (Source) Used as a pointer to a source in stream operations.

RDI (Destination) Used as a pointer to a destination in stream operations

R8-R15 Used in 64 bit mode

Faults in Neural Network Layers and phases

An ANN has many components such as neurons, connectors, activation function and

weights. A fault can affect any of these components. During training phase, a training

model is generated which is then used in the testing (operation). This training model is a

result of learning, the main feature of ANN, and involves continuously adjusting different

parameters as the ANN is fed with new data. We simulate the occurrence of faults during

the training of a neural network by directly changing some number of bits in the weight

matrices. For the case of DNN, we inject permanent errors to Imagenet DNN. First, we

select 10000 well-predicted images from the 50000 validation set. In each layer, we inject

between 1 to 8 permanent errors. Once the layer was injected with the errors, the neural

network predicts the output, and it is informed. We inject the errors in the bits 31 (sign

bit), 30 (most significant bit of the exponent) and 29 ( a second most significant bit of the

exponent).

3.4 Evaluation

We divide our evaluation in three parts. First, the impact of injecting errors in different

parts of a neural network, more precisely in different layers for both AN and DNN.Then

faults in different processor registers Finally, errors in different inputs, which might be

representative of corruption occurring in hard drives or in the transfer from storage to
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Figure 3.4: Injecting in the weight matrix between the input layer and the hidden layer.

computing nodes.

3.4.1 Vulnerability of Different Neural Network Layers and phases

In this experiment we construct a neural network with three layers, the input layer com-

posed of 784 neurons, the hidden layer composed of 128 neurons and finally the output

layer composed of 10 neurons. Then, we inject errors in the weight matrices between the

different layers. For each layer, we inject errors in different bit positions, starting from

bit position 48 up to bit position 63 which represents the sign in the IEEE floating point

representation. Then, for each bit position, we increment the number of errors by 100

from 0 up to a 1,000 errors.

Figure 3.4 shows the accuracy of the NNA when errors are injected into the the

first weight matrix, i.e between the input layer and the hidden layer. The results show

a significant accuracy drop as we inject errors in the strongest bit of the exponent (i.e.,

bit 62), and the accuracy decreases linearly with the number of errors, going all the way

down to about 30% of accuracy. While this drop in accuracy is significant, it is interesting

to notice that all the other bit position are pretty much insensitive to corruption, keeping

for all of them, accuracy over 90%. This goes in pair with previous research showing that

ANNs are very robust applications.

Figure 3.5 shows result when we inject errors in the second weight matrix (i.e.,
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Figure 3.5: Injecting in the weight matrix between the hidden layer and the output layer.

from hidden to output), as opposed to the first one. The faults in this level have a much

higher effect. As we can see, for a fixed bit position, the accuracy drops as we increase the

number of corruption. But interestingly, the accuracy drops even faster when we change

the bit position, for the same number of errors. In fact, for bit position 62 the accuracy

drops dramatically to under 10%, showing that such corruption could make the ANN

completely useless. We notice that for errors in lower bit positions (i.e., mantissa) the

accuracy remains over 90%.

Finally Figure 3.6 shows how the errors affect the training phase. With no errors

during the training phase, we attain an accuracy of over 94%. However as the number of

errors continue to increase between 0 and 1000, a signifant drop in accuracy is observed.

It is also interesting to observe that even a poorly trained model, ie a corrupted model,

still has some degree of accuracy.

3.4.2 Vulnerability of Processor Registers

In this experiment, we inject faults in the processor registers during the execution of the

ANN application. Note that these are considered faults (as opposed to errors) because

not all of them propagate to affect the application. This is because the value on a register

can be written after a corruption occurs, making it a bening fault. This masking effect is

what we try to measure in this experiment. In addition, if the fault propagates to affect the
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Figure 3.6: Faults during training

application, depending on how the application is affected, the fault could cause a crash,

or a SDC. Thus, we divide the possible run outcomes in those three categories.

Figure 3.7 shows the results of injecting faults to different registers during the test-

ing phase. There are three main observations that can be made from this figure. The

number of crashes is high in RSP and RBP registers. These two registers, also called

special purpose registers are the most critical registers because they are highly involved

in function calls. RBP points to the base current stack while RSP points to the top of

the stack. Our results show that the ANN failed nearly every time any of those registers

were affected. Second, SDC is high on RDX register. This register is a data register thus

depending on the data it is holding in a specific instruction, a fault on it can cause SDC

or not. This is evident from the high number of false predictions seen when faults are

injected into RDX. We note that when a fault occurring in any of these registers leads to

SDC, such corruption could affect the weight values of the matrices, which in turn could

have catastrophic effects (i.e, dramatically low accuracy) depending on where the SDC

occurs. Finally , contrary to some previous work, these results indicate that ANN are

quite vulnerable since we see that every fault occuring in registers may lead to SDC or

crash.

24



Figure 3.7: Effect of faults on general purpose registers.

3.4.3 Characterization of Errors for Different Input Datasets

Now, we want to measure the impact of corruptions occurring on different types of input

datasets. More precisely, we want to measure whether some images can be more prone to

prediction errors. We classify each of the samples according to the digits they represent

(i.e digit 1 as label 1 , digit 2 as label 2 ). We then inject register faults targeting different

labels. Figure 3.8 shows the effect of faults when predicting different labels. From these

results, we notice that some images are more affected than others. For instance, the label

0 is almost not affected by SDC. One explanation for this could be the nature of the image

itself and its distance to other characters. It is highly likely that a neural network will

predict it correctly since it does not resemble any other image. Independently on how it is

written, the label 0 is easily identifiable. However, label 4 is more affected by SDC. This

seems to be because it is quite easy to confuse the number 4 with another number such as

9 when it is handwritten.

In the ANN that we are testing to predict a digit (e.g., the handwritten digit is pre-

dicted to be 9 ), an error score is generated. If the error score value is below a certain value,

then the label is predicted correctly. However, if the error value is above that threshold,

the prediction is incorrect. Figure 3.9 shows how the error score changes as faults are

injected to different registers. Injecting faults on processors registers has a significant ef-

fect on the error score for all registers. Furthermore, the error value changes with respect
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Figure 3.8: Effect of faults on different images

to the register. Some registers such as RDX, RBP and R15 cause this value to increase

significantly.

3.4.4 Vulnerability of ImageNet DNN

Permanent faults are injected to bits 29, 30 and 31. We observe that the bit that sig-

nificantly affects the results is bit 30.Figure 3.10 shows the results of bit 30 Important

differences can be observed in prediction accuracy with a drop in accuracy as the number

of faults increases to 8. We also observe that the convolutional layers are more affected

than the fully connected.

3.5 Discussion and Suggestions

Our results show that some registers play an important role in ANNs while others have

almost no impact on their accuracy. We also show that different parts of ANN applica-

tion are affected differently by errors. As such, ANNs applications are good candidates

for application-specific reliability designs. One such design is applying error correction

differently to different registers. Important and vulnerable registers such as RSP and

RSP require ECC while registers such as R8, R9, and R12 that are rarely used might not

necessarily require ECC. For instance, one can implement two groups of registers with

different levels of protection. Such difference can be made known to compiler and appli-
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Figure 3.9: Average error in prediction.

Figure 3.10: Average error in prediction.
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cation designers to make proper use of those registers depending on the vulnerability of

the data.

Our results also show that at an application level, the training phase is the most im-

portant phase. This is because the results of training phase are fed to the testing phase.

Data corruption during the training phase means that the NN will be poorly trained which

will, in turn, affect the testing phase. Therefore, extra protection and/or verification mech-

anisms must be enforced to the training phase especially for the data between the hidden

layer and output layer.

Finally our results show that different labels are affected differently by faults. We

suggest that for specific labels which are more vulnerable to faults (i.e label 4 ) execution

can be done twice and results can be compared for more reliable output.

3.6 Summary

Its clear that ANN will continue to gain popularity as a computational model especially

in artificial intelligence. ANN applications will be executed in HPC systems and as we

approach exascale systems, the reliability of such application pauses serious questions

due to the high number of faults expected in exascale systems. In this paper we have

shown that the widely held belief that ANN are fault tolerant is not exactly true. We have

shown that different parts of a NN behave differently in the presense of faults. We have

also shown the effects of silent data corruption on an ANN and the effects of hardware

faults. Finally we have pointed out some possible designs to cut down reliability costs of

ANN applications. This could significantly cut down the reliabilty cost.
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Chapter 4

Hardware Transactional Memory for Tol-

erating Transient Hardware Errors

4.1 Introduction

Occurrence of faults is inevitable with the current trend in processors. Attaining a 100%

reliable system would come at great costs, both in terms of price due to extreme redun-

dancy, and power. Designers have to compromise and make reliability variations based on

different applications. For instance, for safety critical applications, reliability has to be a

top priority but for other applications such as desktop computers, existing fault tolerance

mechanisms have proven enough. There is still need, however, for improved reliability

and cheaper costs and researchers have proposed numerous tools and methods to improve

reliability. One such method is leveraging transactional memory for reliability.

Transactional memory (TM) [18] is an attempt by researchers and engineers to sim-

plify parallel programming by executing transactions atomically and in isolation. Trans-

actinal memory attempts to solve the challenge of data synchronization. Traditionallly,

parallel programmers have to address this problem using lock/unlock methods where a

thread acquires a lock to the data its currently working on and only releases it when done.

This means that other threads cannot access that data which leads to long waits and per-

formance depredations. A worst case scenario can occur when a thread experiences a

deadlock [9], where one thread locks some data indefinitely. TM solves this problem by

executing each thread as a transaction, checking at the end of the transaction for mis-

matches and then committing or aborting the transaction. Even though it is not a total

replacement of lock/unlock methods, TM promises to make parallel programming easier

by taking away the burden of data synchronization.

TM can be implemented either in software as Software Transactional Memory

(STM) or hardware as Hardware Transactional Memory (HTM). A combination of both

has also been proposed [8]. Wheres STM is flexible and easy to implement, it is slow.
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HTM on the other hand offers better performance but it is hard to implement due to the

fact that its hardware based.

For reliability engineers however, TM offers an opportunity to detect and recover

from transient hardware faults without the need for extra hardware.This is due to the fact

that transactional memory executes an operation as a single atomic operation, independent

of other operations. If we can duplicate the critical parts of an application, then we can de-

tect differences in write sets of each thread, or lack thereof, at the end of each transaction.

A difference in the write sets could mean a possible fault in one of the threads.

The idea of utilizing HTM for reliability first proposed by Yalcin et al. as FaulTM [45].

The idea argues that if we can duplicate the critical parts of an application, then execute

them as transactions concurrently and in isolation, we can detect differences in write sets

of each thread at the end of each transaction. A difference in the write sets could signal a

possible fault in one of the threads. Although FaulTM presents low performance overhead

compared to other HW-based reliability schemes, it still requires hardware extensions on

top of an HTM implementation. Moreover, during the proposal of FaulTM, there was

lack of HTM support by hardware was a major challenge to the scheme and therefore the

authors proposed hardware changes to the then existing processors to support HTM. Even

then, their HTM based scheme showed relatively low performance overhead and a wide

error coverage.

Recently, significant gains have been made in hardware design and now several

hardware vendors such as Intel [19], IBM [25] and AMD [] provide off the shelf hardware

that implements HTM for concurrency control. As multi-core systems become main-

stream, concurrency control will continue to be an important factor. TM will therefore

continue to play an important role and more hardware vendors are going to produce pro-

cessors with HTM support. HTM, though build primarily for concurrency control, offers

benefits and features that could be leveraged to build a fast and easy to implement relia-

bility scheme.

Roll-back only transactions(ROT), available in some HTM implementations, is an-

other feature of HTM that could be leveraged. ROTs allow for speculative execution of

instructions at minimal cost [25] and is built on the hardware. Unlike other transactions

ROT tracks only memory writes of a transaction and does not undergo implicit conflict de-

tection.This is particularly important because of two reasons. First, in most applications,
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writes are fewer than reads and there is a limited buffer size for transactions. Tracking

only writes allows us to have longer transactions. Second, since ROT writes are not visi-

ble to other instructions till commit, we can conceal the duplicate thread as a ROT, hiding

all its memory writes till commit. This way, we protect our transaction from implicit

conflict detection and implement our own conflict detection scheme to detect any data

inconsistencies between the main transaction and ROT.

HTM is particularly attractive for reliability because of following reasons as shown

by [45]

• TM has a well defined conflict detection mechanism.

• TM has the ability to abort a transaction in case of a conflict

• TM executes transactions atomically and in isolation hence isolating failures

• Error detection only during commit hence reducing performance overhead.

However, HTM comes with some challenges such as limited cache, interrupts that may

cause aborts, lack of a guarantee that transactions will start or finish and forbidden in-

structions within a transaction.

In this chapter, our main goal is to show how HTM and ROT can be used to build

robust and fault resilient applications with minimal performance overhead and without

requiring any hardware change. To this end, we propose and application development

methodology that leverages existing and easily available off the shelf hardware that sup-

ports HTM. As a proof of concept, we use IBM POWER8 processor that has both HTM

and ROT to build and test our design. We also introduce novel techniques to overcome

the challenges posed by HTM.

The remainder of this chapter is organized as follows; section 2 provides the pre-

vious work, section 3 covers the different HTM implementations that exist and finally

section 4 provides our design for increasing reliability using HTM.

4.2 Previous Work

A reliable system should include 1) a mechanism to discover that an error has occurred,

called error detection mechanism, and 2) a mechanism of restoring the system’s integrity

after the occurrence of the error, called error recovery mechanism.
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Checkpoint/Recovery is the most well-known error recovery technique which stores

an error-free state of the system (checkpointing) and reverts the system state upon error

detection (recovery). TM provides mechanisms to abort transactions in case of a conflict,

thus they discard or undo all the tentative memory updates and restart the execution from

the beginning of the transaction. Thus, a transaction’s start can be viewed as a locally

checkpointed stable state which can be used for error recovery. Due to this benefit, TM

systems are proposed to be used for reliability.

Using transactions to recover from application crashes have been first proposed in

SymptomTM [46] by Yalcin et al. and disclosed in a patent filed by IBM [4]. In those

schemes, unless any symptom of error (e.g. fatal trap) is raised in the reliability-purposed

transaction, the write-sets of the transaction is committed to the shared memory. Other-

wise, the transaction aborts and restarts the execution from the beginning of it. Obviously

this scheme has limited error coverage since it cannot detect silent data corruptions. Due

to this limitation, FaulTM [45] proposed using redundant transactions in order to increase

error coverage and provide high reliability for mission critical systems. Later on, it is also

presented how to extend FaulTM mechanism for parallel applications including transac-

tional memory applications by Yalcin et. al [47]. FaulTM leverages a HTM that features

lazy conflict detection and lazy data versioning which provides the benefit of reducing the

comparison overhead of error detection (ie. comparing two transaction to check whether

they produce the same result or not). However, FaulTM stalls the execution at the commit

stage of the transactions. Thus, Sanchez et. al proposed LBRA [38] which utilizes HTM

with eager data versioning and presents an alternative design option with higher compar-

ison but lower synchronization overhead. Ferreira et al [11] and Gurumurthi et al. [15]

proposes the usage of TM for the reliability of GPU architectures.

In all these mentioned studies, several hardware changes are required. Therefore,

their cost of implementation is high and they cannot be used unless extensions are in-

cluded in the hardware. In order to reduce the hardware cost, Haas et. al presented how to

use the existing transactional memory hardware in Intel TSX for reliability purpose [16].

However, since rollback-only transactions are not supported by Intel, it presents high per-

formance overhead. Another reliability scheme using existing TM hardware is proposed

by Shalev et al. [39]. In that study, only critical kernel code is surrounded by reliability-

purposed transactions and the failures in the kernel is recovered by transactional aborts.
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To our knowledge, this is the first study implementing reliability on a real Transac-

tional Memory hardware by using rollback-only transactions and it is the first study using

IBM Power8 machine as HTM implementation.

4.3 Hardware Transactional Memory Implementations

In this section we discus existing hardware memory transactions from major vendors and

how they are implemented. We further discus key features in each of the implementations.

4.3.1 IBM POWER8

Even though TM has been around for quite sometime, POWER8 is the first implemen-

tation of transactional memory that is directly supported by the power ISA (Instruction

set architecture) [25] . Power ISA is an instruction set architecture designed to expose

and exploit parallelism in a wide range of applications, from embedded computing to

high-end scientific computing to traditional transaction processing [21] . Power ISA has

extensions that enable a programmer to access transactional memory. According to Le

et al, ” The transactional memory extensions of the Power ISA architecture consist of a

set of instructions for implementing a strongly isolated, best effort hardware transactional

memory and appropriate hardware state information to control the execution of transac-

tions. ” [25]. TM instructions such as begin, suspend, resume, commit or abort enable

the programmer to deal with transactions. Table 4.1 provides a list of such functions.

long TM simple begin (void)

long TM begin (void* const TM buff)

long TM end (void)

void TM abort (void)

void TM named abort (unsigned char const code)

void TM resume (void)

void TM suspend (void)

Table 4.1: PowerPC HTM High Level Inline Functions

Besides HTM support, IBM Power8 and PowerISA offers unique features that we lever-

age for our design.
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Rollback-only Transactions

One key and unique feature of IBM Power8 is Rollback-only Transactions (ROT). ROT

allows the creation of transactions whose purpose is support single-thread speculation of

instructions and allow those instructions to be rolled back under software control [25] .

A roll back transaction tracks only memory writes and does not undergo implicit conflict

detection, making it ideal for our reliability design.

Suspend and Resume Instructions

PowerISA provides us with instructions to suspend and resume transactions. This is par-

ticularly important because it gives us full control over the transactions. During a trans-

action execution we can suspend a transaction and execute some instructions that would

otherwise be forbidden within a transactions. Rather than abort the entire transaction, sus-

pending a transactions allows the transaction to resume and continue after the execution

of the forbidden instruction.

Figure 4.1 shows the architecture of POWEER8 processor. Key features include 12

cores with 8 way simultaneous multithreading (SMT) and upto 230GB/s memory band-

width. The Power8 Processor also features a 16 Execution Pipeline followed with 64K

data cache per-core and 32K instruction cache.

4.3.2 Intel TSX

IBM is not the only vendor to implement HTM in its processor, Intel Haswell TSX [19]

is another commercial processor that implements HTM. Intel implements Reduced Trans-

actional Memory (RTM) which provides an interface to start, end and abort transactions.

Atomic regions are defined by surrounding them with xbegin() and xend() functions. All

writes are kept internally within a transaction until the transaction commits. Similar to

POWER8, a conflict occurs if two threads attempt to write on the same data, in which

case the transaction is aborted.

It is important to note that both Intel TSX and POWER8 are best effort HTM im-

plementations and non guarantees that a transaction will successfully start and complete.

When a transaction fails, it restarts, however there is no guarantee that it will be success-

ful the next time, as such HTM does not guarantee forward progress and a mechanism for
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Figure 4.1: POWER8 Processor

35



this is therefore required. One such mechanism could be a manual implementation by the

programmer where the application resorts to lock/unlock method after a specific number

of transaction failures.

4.4 Proposal

We propose a new HTM based reliability scheme. Our proposal is motivated by the fact

that HTM is now commercially available in processors and this trend is likely to continue.

As such, for applications that need enhanced reliability, a few modifications in the appli-

cation could drastically increase its error detection and correction ability. Furthermore, it

would do so at little or no cost in terms of hardware and it would take very little effort

to a programmer familiar with parallel programming to turn an unreliable application to

a reliable one. With modifications, HTM could further be improved to provide reliability

for safety critical applications as part of embeded systems such as the one proposed in

[31] .

In this section we provide a method to design applications that are robust and fault

resilient. We argue that a serial or parallel application can be made resilient to faults

that occur in commodity hardware. To do this, we leverage HTM that is now available

in commercial hardware. We also leverage Rollback only transactions, a unique feature

of IBM Power8. In this section we provide details of the design methodology. First

by discussing different implementations of HTM that are commercially available then

discussing how to build robust applications using such implementations.

4.4.1 Preliminary Work

The preliminary work involved getting familiar with parallel programming and parallel

computing. We use STAMP [32], a benchmark that cosists of different parralle applica-

tions implemented with TM . The results are shown in Figure 4.2 show the speed up of

different STAMP applications using software transactional memory (STM). For this we

used tinySTM [10], a lightweight word-based STM implementation.
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Figure 4.2: Performance of STAMP applications implemented with TinySTM
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4.4.2 Design Methodology

The underlying idea in our design methodology is to execute critical parts of an applica-

tion as transactions in parallel then compare the write sets of the two transactions before

commit. In so doing, we achieve two main objectives 1. We can detect irregularities and

any difference in write sets in case a fault occurs and 2. Using HTM mechanisms such

as check-pointing and roll back, we can achieve error correction by aborting the transac-

tion and rolling back the transactions to a previous state. Hence our design is a complete

reliability scheme offering both error detection and error correction.

1. Identifying critical sections

2. Creating threads

3. Executing both threads at the same time as transactions

4. Comparing the results of the threads (transactions)

The details of each section are discussed below.

Identifying critical sections

As stated earlier in the motivation, not all applications require the same level of reliability

measures. Furthermore, in the same application some parts are more vulnerable than oth-

ers. This means that when a fault occurs, its likely to affect some parts of the application

more than others. For instance, during multiplication, a fault in a critical register (such as

the one holding the multiplicand or multiplier ) could lead to a faulty result. In the Arti-

ficial Neural Networks experiments performed in chapter 3, we identified that the second

layer calculations for example were more critical than the first layer. A programmer could

therefore identify this critical parts and mark them

Creating threads

Once critical sections are identified, the next step is to parallelize them. To achieve this,

we create two threads and call them reliableThread and originalThread .Thread based

parallel programming paradigms such as pthreads and c++ threads involve passing a func-

tion and its parameters to a thread. We pass the function and its parameters containing the
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critical sections to each of this threads. The code listing 4.1 below shows a main function

showing how the parameters are passed to the functions.

#include <htmintrin.h>

#include <iostream>

#include <thread>

using namespace std;

int aborts;

int main()

{

int counter = 0;

int &ref = counter;

std::thread t1(increment, std::ref(counter));

std::thread t2(reliableIncrement, std::ref(ref));

t1.join();

t2.join();

cout << "After all transactions have ended" << endl;

cout << counter << endl;

cout << aborts << endl;

return 0;

}

Listing 4.1: Creating threads example

Executing the threads as transactions

The next step is place the critical sections into transactions. This is done by including

the begin transaction and end transactions instructions provided by the ISA. We include

a HTM pre-processor that enables the use of built in functions to manage transactions.

GCC provides two interfaces to access HTM in POWER8 processors.

• PowerPC HTM Low Level Built-in Functions

• PowerPC HTM High Level Inline Functions

In this work, we use PowerPC HTM High Level Inline Functions by including the pre-

processor ”-mhtm or -mcpu=CPU ” where CPU is ”power8” in our case and include the
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header htmxlintrin.h . A simple example of counter increment is shown listing 4.2

#include <htmintrin.h>

while (1)

{

if (__builtin_tbegin(0))

{

for (int i = 0; i < 1024 * 1024; i++)

{

counter++;

}

__builtin_tend(0);

break;

}

}

Listing 4.2: Counter Example

Comparing the results of the transactions

When the two transactions complete, the final step is to compare the results of the two

transactions before committing. This is where we utilize HMT’s unique feature of con-

flict detection. In the absence of errors, these two transactions should have the exact same

write sets since they execute the same instructions. Since HTM is primarily built for con-

currency, a conflict is detected here as the instructions accessed the same data. HTM will

therefore abort both transactions. This is a major challenge of our design and a clever

maneuver is required to overcome it. One such method would be as shown in our previ-

ous example, passing data to the functions by reference and value respectively. As such

the two transactions will appear to be working on two different data sets, hence avoiding

aborts. Another method would be to use Rollback-only transactions(ROT). These transac-

tions track only write sets and don’t undergo conflict detection. The reliable thread could

be implemented as a ROT.

Before exiting the transaction state, we compare the write sets of the two threads. If

the write sets are the same, then it means that no fault occurred. We abort the reliability

thread and commit the main thread. If the write sets are different, then a bit corruption

or any other error might have occurred during one the threads execution, we abort both
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transactions and restart. A consistent conflict in the two write sets could mean a permanent

fault occurred while a simple bit corruption could be resolved by restarting.

Comparing the results is not a straight forward as it involves two threads communi-

cating. By principal of atomicity, this is not acceptable and would cause the transaction

to abort. To overcome this, we utilize Power8’s unique suspend and resume transaction

features. We suspend the transaction, make the comparison and then resume.

poletnjeri@gmail.com

4.4.3 Challenges of the Design

This designs raises several challenges that must be addressed. These are mainly due

to the fact that HTM is built for concurrency and not reliability. However, with a few

modifications, this challenges can be overcome.

Conflict Detection

As stated earlier, HTM is built for conflict detection. As such when there is a conflict, it

tends to abort both transactions. Because both threads are executing the same set instruc-

tions, HTM will detect a conflict and in most cases abort the transactions. To overcome,

we utilize the special Roll-back Only Transactions (ROT). These track only the write sets

and do not cause aborts.

HTM is best effort

Power8 implementation of HTM is a best effort implementation and does not guarantee

that transactions will start or transactions will successfully commit. For this, we retry the

transactions a defined number of times (maximum retries). However if after maximum

retries the transaction still fails, we have to ensure continuity of the program by running

an unreliable version(without transaction protection). From our experiments however, the

possibility of this is very low.

Interrupts

User interrupts such as writing on the screen or keyboard input cannot be rolled back.

As such, such instructios are not allowed within a transaction and they are enclosed in a

transaction, they cause the transaction abort. System interrupts also behave in a similar
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manner but Power ISA provides a mechanism that can handle system interupts [25]. To

handle user interrupts, a programmer has to avoid using them within a transaction. But an

ideal program has several interrupts within its execution and therefore avoiding interrupts

is practically impossible.

An alternative therefore is to use suspend and resume instructions. Whenever we

want to use an instruction such as print, we suspend the transaction, execute the interrupt

then resume the transaction. This way the transaction wont abort because whenever the

compiler encounters a suspend command, it stops atomicity,

4.5 Proof of Concept

In this section we present a proof of concept and evaluate our design methodology. The

main purpose of creating a proof of concept is to see if indeed our design methodology

works and if it can be used to implement robust and reliable application from unreliable

ones. For a proof of concept, we change a well known sorting algorithm application, bub-

ble sort, into a reliable one using the design methodology presented earlier. The sorting

function takes an array of numbers and returns an array of the same numbers sorted in

ascending order. We identify the critical sections of this application as the sorting func-

tion and redesign the application with this in mind. The application is written in C++ and

compiled with G++. We executed the application on an IBM Power8 machine with the

following specifications.

• 10 cores running at 3.425GHz

• 80 hardware threads

• 128B cache lines

• 80MB 8-way shared L3 cache

• 64KB per-core 8-way L1 caches

During numerous tests, we were successfully able to detect any conflicts that we intro-

duced into the transactions. Further we were successfully able to compare the results of

two threads. The code implementation for the proof of concept is provided in Appendix

A.
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4.6 Summary

In this chapter, we have provided a design methodology to design robust and resilient

applications using off the shelf hardware transactional memory implementations. We

have shown that this scheme is not only efficient but its also easier to implement with

minimum design overhead. We have further implemented a proof of concept using the

proposed design methodology. Our proof of concept shows that its possible to leverage

hardware transactional memory and build robust and fault tolerant applications.
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Chapter 5

Conclusion
The spectrum of applications is going to keep growing as more and more applications

are created with each single day. This applications will continue to have different levels

of reliability requirements. Furthermore, with the ever advancing programming and soft-

ware engineering methodologies, the number of lines of code in an application continues

to rise. If the current trend of one fits it all reliability continues, its going to be extremely

costly , both to the programmer and economically, to provide homogeneous reliability

with applications that have such huge code bases. As the number of both transient and

permanent faults is expected to rise, there is need for a cheaper and convenient method to

provide reliability. Apart from showing that there is need for application specific reliabil-

ity measures, this thesis has two major contributions.

First , in chapter 3 we did a detailed resilience characterization of Artificial Neural

Networks applications. Our results show that this application behave differently in the

presence of different errors. Our results also showed that different parts of the application

are not affected the same way by errors. Furthermore, some register faults almost have

no effect on an ANN application while other register faults completely break down the

ANN.

Finally in chapter 4, we presented a novel idea of increasing reliability by using

hardware transacational memory that already exists in some commercial hardware. Even

though HTM is primarily designed for concurrency, we have shown that with a few mod-

ifications, we could utilize it to create reliable applications.

5.1 Future Work

As a future work, we intend to run further resilience characterization for different appli-

cations in the AI and ML domain. We believe that this application will be more prone to

transient errors as they are mostly executed in high performance computing centers and

large data centers where this faults are likely to occur.
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We also intend to further develop our HTM solution so that we move most of the

design to the compiler. As such, any programmer will have an easy time creating reliable

applications since it will involve just calling a few commands and a programmer doesn’t

have to understand the underlying mechanism of HTM. As such they can focus on making

reliable applications.
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Appendix A

Example

#include <htmintrin.h>

#include <iostream>

#include <thread>

extern __inline long

__attribute__((__gnu_inline__, __always_inline__, __artificial__))

__TM_begin_rot(void *const TM_buff)

{

*_TEXASRL_PTR(TM_buff) = 0;

if (__builtin_expect(__builtin_tbegin(1), 1))

{

return _HTM_TBEGIN_STARTED;

}

#ifdef __powerpc64__

*_TEXASR_PTR(TM_buff) = __builtin_get_texasr();

#else

*_TEXASRU_PTR(TM_buff) = __builtin_get_texasru();

*_TEXASRL_PTR(TM_buff) = __builtin_get_texasr();

#endif

*_TFIAR_PTR(TM_buff) = __builtin_get_tfiar();

return 0;

}

using namespace std;

int aborts;

void reliableIncrement(int &reliableCounter)

{
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while (1)

{

aborts++;

if (__builtin_tbegin(0))

{

for (int i = 0; i < 10000000; i++)

{

reliableCounter++;

}

__builtin_tend(0);

break;

}

}

}

void increment(int &counter)

{

while (1)

{

aborts++;

if (__builtin_tbegin(0))

{

for (int i = 0; i < 10000000; i++)

{

counter++;

}

__builtin_tend(0);

break;

}

}

}
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int main()

{

int counter = 0;

int &ref = counter;

std::thread t1(increment, std::ref(counter));

std::thread t2(reliableIncrement, std::ref(ref));

t1.join();

t2.join();

cout << "After all transactions have ended" << endl;

cout << counter << endl;

cout << aborts << endl;

return 0;

}
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Appendix B

Bubble Sort Example

#include <htmintrin.h>

#include <htmxlintrin.h>

#include <iostream>

#include <cstdlib>

#include <ctime>

#include <thread>

using namespace std;

TM_buff_type TM_buff;

extern __inline long

__attribute__ ((__gnu_inline__, __always_inline__, __artificial__))

__TM_begin_rot (void* const TM_buff)

{

*_TEXASRL_PTR (TM_buff) = 0;

if (__builtin_expect (__builtin_tbegin (1), 1)){

return _HTM_TBEGIN_STARTED;

}

#ifdef __powerpc64__

*_TEXASR_PTR (TM_buff) = __builtin_get_texasr ();

#else

*_TEXASRU_PTR (TM_buff) = __builtin_get_texasru ();

*_TEXASRL_PTR (TM_buff) = __builtin_get_texasr ();

#endif

*_TFIAR_PTR (TM_buff) = __builtin_get_tfiar ();

return 0;

}
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void reliableBubbleSort(int a[], int n)

{

while (1){

cout << "Trying to ROT " << endl;

if (__TM_begin_rot (TM_buff) == _HTM_TBEGIN_STARTED){

for (int i = 1; i < n; ++i)

{

for (int j = 0; j < (n - i); ++j)

{

if (a[j] > a[j + 1]){

int temp = a[j];

a[j] = a[j + 1];

a[j + 1] = temp;

}

}

}

}

__TM_end ();

break;

}

}

void bubbleSort(int a[], int n)

{

while (1){

cout << "Trying to start Transaction " << endl;
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if (__TM_begin (TM_buff) == _HTM_TBEGIN_STARTED){

for (int i = 1; i < n; ++i)

{

for (int j = 0; j < (n - i); ++j)

{

if (a[j] > a[j + 1]){

int temp = a[j];

a[j] = a[j + 1];

a[j + 1] = temp;

}

}

}

}

__TM_end ();

cout << "Ended Transaction" << endl;

break;

}

}

int main()

{

const int size = 10;

int array[size];

srand(time(NULL));

for (int i = 0; i < size; ++i)
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{

array[i] = rand() % 1000;

}

std::thread t1(bubbleSort, std::ref(array), std::ref(size) );

std::thread t2(reliableBubbleSort, std::ref(array), std::ref(size) );

t1.join();

t2.join();

return 0;

}
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