
Data Mining and Knowledge Discovery (2021) 35:1342–1368
https://doi.org/10.1007/s10618-021-00754-8

Fast computation of Katz index for efficient processing of
link prediction queries

Mustafa Coşkun1,2 · Abdelkader Baggag3 ·Mehmet Koyutürk4

Received: 10 May 2019 / Accepted: 8 April 2021 / Published online: 16 April 2021
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
Network proximity computations are among the most common operations in vari-
ous data mining applications, including link prediction and collaborative filtering. A
common measure of network proximity is Katz index, which has been shown to be
among the best-performing path-based link prediction algorithms.With the emergence
of very large network databases, such proximity computations become an important
part of query processing in these databases. Consequently, significant effort has been
devoted to developing algorithms for efficient computation of Katz index between a
given pair of nodes or between a query node and every other node in the network.
Here, we present LRC- Katz, an algorithm based on indexing and low rank correc-
tion to accelerate Katz index based network proximity queries. Using a variety of very
large real-world networks, we show that LRC- Katzoutperforms the fastest existing
method, Conjugate Gradient, for a wide range of parameter values. Taking advantage
of the acceleration in the computation of Katz index, we propose a new link prediction
algorithm that exploits locality of networks that are encountered in practical applica-
tions. Our experiments show that the resulting link prediction algorithm drastically
outperforms state-of-the-art link predictionmethods based on the vanilla and truncated
Katz.

Responsible editor: Aristides Gionis.

B Mustafa Coşkun
mustafa.coskun@agu.edu.tr

Abdelkader Baggag
abaggag@hbku.edu.qa

Mehmet Koyutürk
mehmet.koyuturk@case.edu

1 Department of Computer Engineering, Abdullah Gül University, Kayseri, Turkey

2 Hakkari University, Hakkari, Turkey

3 Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar

4 Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-021-00754-8&domain=pdf
http://orcid.org/0000-0003-4805-1416

Fast computation of Katz index 1343

Keywords Fast Katz method · Link prediction · Network proximity

1 Introduction

Proximity computation in networks is a well-adapted operation in many data analytic
applications. In link prediction or recommender systems, network proximity measures
the node similarity in social networks (Liben-Nowell and Kleinberg 2007; Sarkar
and Moore 2007). In information retrieval, anomalous links are ranked based on the
nodes’ proximity to other nodes (Rattigan and Jensen 2005). In unsupervised learning,
network proximity is used to quantify cluster quality (Saerens et al. 2004).

The general setting for network proximity queries is as follows: given a query
node, we aim to compute a score for all other nodes in the network, based on their
proximity to the query node. These measures of network distance include shortest path
(minimum number of edges between two nodes), random walk with restarts, effective
resistance, commute distance, and Katz-index. All measures except shortest path aim
to quantify the multiplicity of relatively short paths connecting the two nodes. Katz-
index accomplishes this directly, where the proximity between two nodes is defined
as a weighted sum of the number of paths connecting the two nodes. The weighting is
applied to assign more importance to shorter paths (Bonchi et al. 2012; Katz 1953).
Katz-based proximity measures have been used in a number of applications, including
link prediction (Liben-Nowell and Kleinberg 2007), clustering (Saerens et al. 2004),
and ranking (Rattigan and Jensen 2005).

Motivated by problems such as link prediction and collaborative filtering, signifi-
cant efforts have been devoted to reducing the computational costs associated with the
computation of Katz-based proximity. These efforts typically speed-up computations
by taking one of the following approaches: (i) exploiting numerical properties of itera-
tive methods, along with structural characteristics of the underlying networks to speed
up query processing; (ii) avoiding iterative computations during query processing by
inverting the underlying system of equations using Cholesky factorization and storing
the resulting factorization as an index. For instance, in the context of top-k Katz-based
proximity queries, the state-of-the-art methods (Bonchi et al. 2012) use breadth-first
ordering of the nodes in the network to bound element-wise increments of proxim-
ity scores by exploiting a relationship between the Lanczos process and a quadrature
rule in the iterative computation (Bonchi et al. 2012). This bounding process elimi-
nates nodes whose proximity values cannot exceed those of the nodes that are already
among the top-k most proximate to the query node by only entering some part of the
underlying network. Likewise, using Cholesky factorization of the underlying linear
system, top-k proximity computations can be performed efficiently (Saad 2003). These
approaches have been demonstrated to yield significant improvement in computation
time, however, their application to larger networks is limited. Specifically, for very
large networks, iterative methods (Bonchi et al. 2012; Saad 2003) require a large num-
ber of iterations to converge. More concretely, Fast-Katz (Bonchi et al. 2012) offers
a tight convergence upper bound, however, Conjugate Gradient (CG) performs better
than Fast-Katz (Bonchi et al. 2012) for Katz-based proximity. On the other hand, direct

123

1344 M. Coşkun et al.

inversion techniques (Saad 2003) are not scalable to large matrices, since the inverse
of a sparse matrix is usually dense.

In this paper, we propose a hybrid approach that partitions the network into disjoint
subnetworks and inverts the small matrices corresponding to these subnetworks. This
partitioning idea can be viewed as non-overlapping domain decomposition (Smith et al.
2004). By inverting the small block diagonal matrices that correspond to small sub-
networks, our hybrid procedure overcomes the memory constraint of direct inversion
techniques. The densermatrix, composed of the nodes connecting these subnetworks is
handled through a low rank corrected iterative CGmethod. By performing an iterative
low rank corrected procedure on this smallermatrix (as compared to the originalmatrix
that corresponds to the entire network), our method overcomes the computational cost
considerations of classical CG. Motivated by the skewed distribution of Katz-based
proximity scores (Bonchi et al. 2012), we also propose a new link prediction algorithm,
calledSparse- Katz that exploits themodularity of networks encountered in practical
applications.

We provide detailed theoretical justifications for our results and experimentally
show the superior performance of our method on a number of real-world networks.
Our experiments on these networks show that the resulting hybrid approach converges
much faster than classical CG, and significantly accelerates the computation of Katz-
based proximity queries for very large graphs. Specifically, we show that our method
yields over at least 3-fold improvement in the runtime of online query processing
over the best state-of-the-art method, CG, across all our experiments. Our experimen-
tal results on the link prediction problem show that our modularity based algorithm
significantly outperforms state-of-the-art link prediction Vanilla and Truncated Katz
methods.

In summary, the two main contributions of the proposed framework are the follow-
ing:

– We introduce a hybrid approach to indexing-based acceleration of Katz-based
network proximity queries, in which the network is divided into two components,
where the larger and sparser part of the resulting system is solved by indexing the
inverse of the corresponding matrix, and the smaller and denser part of the system
is solved during query processing using proposed low rank corrected CG method.

– We introduce a link prediction algorithm that renders Katz-based link prediction
more effective by exploiting the skewed distribution of Katz scores.

Taken together, these two contributions bring the field closer to real-time processing
of proximity queries as well as link prediction task on very large networks.

The rest of the paper is organized as follows: in the next section, we provide a
review of the literature on efficient processing of Katz-based network proximity and
link prediction. InSect. 3,wedefineKatz-based proximity and link prediction problem,
and describe ourmethod, alongwith its theoretical justifications. In Sect. 4, we provide
detailed experimental assessments of our method on very large networks for both Katz
based proximity and its link prediction task. In Sect. 5, we discuss avenues for future
research. We conclude our discussion in Sect. 6.

123

Fast computation of Katz index 1345

2 Related work

Node proximity queries have received significant research attention in recent years
in various areas of data mining, such as searching, ranking, clustering and analyzing
network structured object similarity (Coşkun et al. 2018). In particular, Katz-based
node proximity queries in large graphs have been well studied (Bonchi et al. 2012).
Efficient Computation of Katz-based ProximityOne of the commonly used approaches
for computing Katz-based proximity is the power method through the Neumann series
expansion of the underlying linear systems of equations (Saad 2003). An alternate
approach to power iterations is to use of offline computation, which directly inverts
the underlying linear system of equations, typically using Cholesky factorization or
eigen-decomposition (Acar et al. 2009; Sarkar and Moore 2007; Wang et al. 2007).
These methods tend compute network proximity rapidly, using a single matrix vec-
tor multiplication, however, they involve in some expensive preprocessing, and their
memory requirements constrain their use to smaller networks.

There have also been extensive efforts aimed at scaling top-k proximity queries to
large sparse networks for Katz-based proximity. These methods utilize the topology of
the network to perform a local search around the query node by exploiting a relation-
ship between the Lanczos process and a quadrature rule in the iterative computation
(Bonchi et al. 2012). However, these local search based methods for Katz proximity
computation are not as efficient as CG method (Bonchi et al. 2012).
Relation to Domain Decomposition In this paper, we focus on exact computation of
Katz proximity in very large networks using non-overlapping domain decomposition
(DD) (Smith et al. 2004) accelerated by low-rank correction. Domain Decomposition
techniques efficiently solve (non)-linear systems of equations derived from Partial
Differential Equations (PDE) using a divide-and-conquer approach (Saad 2003; Smith
et al. 2004; Van der Vorst and Chan 1997; Skogent 1992). However, the rich literature
on DD has not been fully exploited by research efforts in data mining and machine
learning,wheremany graph learning related problems, including link prediction, semi-
supervised learning (Zhou et al. 2004), and graph convolutional networks (Nie et al.
2016) require solution to large linear systems of equations that can efficiently be
solved via DD approaches. In the context of computing Katz-based proximity, our
approach uses DD for partitioning the underlying graph and further accelerates the
DD preconditioners by solving the dense part of the system via a low rank correction.
Hence, our method is fundamentally different from existing approaches in that it
simultaneously targets scalability and efficiency.
Application to Link Prediction. Link prediction can be defined as the problem of
predicting the links that are likely to emerge/disappear in the future, given the current
snapshot of the network. Various topological measures were extensively examined
for the link prediction problem (Liben-Nowell and Kleinberg 2007). These measures
can be classified into two categories: neighborhood-based measures (local) and path-
based measures (global). Clearly, methods that are based on local measures, such as
Common Neighbor and Adamic-Adar (Liben-Nowell and Kleinberg 2007) are more
efficient than those that are based on global measures, such as PageRank (Page et al.
1999) and Katz-index (Katz 1953). However, the global measures are more effective
than local measures for the link prediction problem since they account for the flow of

123

1346 M. Coşkun et al.

the information through the indirect paths (Bonchi et al. 2012; Coskun and Koyutürk
2015) whereas the local methods focus only on the local neighborhood of the nodes
in the network.

In the context of candidate disease gene prioritization, a common application of
link prediction in computational biology, global measures are also shown to be signif-
icantly more effective than local measures (Navlakha and Kingsford 2010). However,
these global measures were shown to favor high-degree genes over the genes that are
relatively less connected or less studied (Erten et al. 2011). To alleviate this problem,
Erten et. al., (Erten et al. 2011) proposed a topological similarity-based global method
that assesses the similarity of two nodes in a network using the correlation of their
random-walk based proximities to all other nodes in the network (Erten et al. 2011).
Observing that the computation of topological similarity can be adversely affected by
high-dimensionality in link prediction applications on social networks, we proposed
a simple dimensionality reduction technique (Coskun and Koyutürk 2015). Here, we
develop a link prediction algorithm,Sparse- Katz that uses the similarity between the
Katz-based proximity profiles of nodes to assess the topological similarity between the
nodes. In comparison to existing algorithms, the key contribution of Sparse- Katz is
that it computes the proximity vectors used in the assessment of topological similarity
at query time. This feature enables Sparse- Katz to personalize the dimensions of the
proximity vectors based on the query node, which is facilitated by the improvement
in the efficiency of computing Katz-based proximity scores provided by LRC- Katz.

3 Methods

In this section, we first define Katz-index and formulate node proximity queries based
on Katz index.We then describe our approach to indexing, which is based on a domain
decomposition technique, graph-partitioning indexing, i.e., to partition the resulting
linear system and to index the sparser part of the system. Subsequently, we discuss
how the iterative computation can be accelerated using low rank correction to refine
the solution, and solve the remaining part of the linear system. Finally, we discuss how
these two approaches can be used in combination, to efficiently process Katz-based
network proximity queries.

3.1 Katz index

LetG = (V, E) be an undirected and connected network,whereV denotes the set of |V|
nodes and E denotes the set of edges, with sizes indicated as |V| and |E |, respectively.
Katz index quantifies the proximity between a pair of nodes in this network as the
weighted sum of all paths connecting the two nodes, where the weights of the paths
decay exponentially with path length (Katz 1953; Bonchi et al. 2012). Namely, for a
pair of nodes i and j ∈ V , the Katz index is defined as:

Ki, j =
∞∑

l=1

αl pathsl(i, j), (1)

123

Fast computation of Katz index 1347

where pathsl(i, j) denotes the number of paths of length l connecting i and j in G.
The parameter α is a damping factor that is used to tune the relative importance of
longer paths, where 0 < α < 1, thus smaller α assigns more importance to shorter
paths (Bonchi et al. 2012).

By observing the relationship between the number of paths in G and the powers of
the adjacency matrix G of G, of size |V| × |V|, the computation of Katz index can be
formulated as an algebraic problem. To see this, letK denote the Katz matrix, i.e., the
matrix of Katz indices between all pairs of nodes in G.

Since (Gl)i, j is equal to the number of paths of length l between i and j ,K can be
written as:

K =
∞∑

l=1

αlGl = (I − αG)−1 − I, (2)

where I is the identity matrix. In the rest of our discussion, we assume that α <

1/‖G‖2 to ensure that (I − αG) is symmetric positive definite, and to guarantee the
convergence of the Neumann series to the inverse of (I − αG). Here we highlight

that, in this paper, we aim to solve the Katz proximity with the hardest α = 1

‖G‖2 + 1
which makes (I − αG) very close to indefinite matrix (Bonchi et al. 2012).

For a given query node q, the Katz index of every other node in G with respect to q
is given by the qth column of K, which we denote kq . Observe that the computation
of kq corresponds to solving the following linear system:

Mkq = αgq . (3)

Here, M = (I − αG) and gq is the qth column of the adjacency matrix G. Since M
does not depend on the query node q, it can be inverted offline, and the inverse can
be used as an index to compute kq = αM−1gq by performing a single matrix vector
multiplication during query processing. However, invertingM and storingM−1 is not
feasible for very large graphs, since the inverse of a general sparse matrix is dense.
Therefore, existing algorithms solve this linear system of equations using an iterative
solver such as the (preconditioned) Conjugate Gradient method (Saad 2003, p. 196),
which is applicable in this case sinceM is symmetric (Bonchi et al. 2012).While these
iterative methods greatly accelerate the computation of Katz index, they are not fast
enough to enable real-time query processing in very large graphs.

Recently, to enable efficient processing of random-walk based queries on billion-
scale networks, we have developed I- Chopper, a hybrid method that uses a
combination of indexing and accelerated iterative solvers (Coşkun et al. 2018). In
the following subsection, we show how a similar idea can be applied to the processing
of Katz index based queries by indexing the inverse of the matrix that corresponds
to sparser parts of the network and performing low-rank correction at query time to
obtain an exact solution for the rest of the network. We then describe how the result-
ing algorithm, LRC- Katz, can be used to efficiently perform Katz index based link
prediction.

123

1348 M. Coşkun et al.

3.2 Graph partitioning based indexing

As in I- Chopper, LRC- Katz exploits the sparsity of real-world networks to effi-
ciently compute and index the inverse of a large part ofM. The key insight behind this
approach is that, although the inverse of a general sparse matrix is dense, the inverse
of a block-diagonal matrix with a low bandwidth is sparse [p.87](Saad 2003).

Since most real-world networks are scale-free, most of the nodes in the network
have low degree. Consequently, observing that the non-zero structure of the matrixM
is identical to that of the adjacency matrix of the network, we can reorder the rows
of M such that M can be partitioned into a very large block-diagonal matrix with a
low bandwidth (corresponding to small connected subgraphs consisting of low-degree
nodes) and relatively dense butmuch smallermatrices (corresponding to hubs and their
connections to other nodes). The following lemma shows how such partitioning ofM
can be used to separate the solution of the linear system of Eq. 3 into two parts:

Lemma 1 Suppose a linear system Mkq = g̃q , can be partitioned as

[
M11 M12

MT
12 M22

] [
kq1
kq2

]
=

[
g̃q1
g̃q2

]
, (4)

such that M11 is invertible. Letting S = M22 − MT
12M

−1
11 M12 denote the Schur com-

plement, the linear system can be solved as:

kq2 = S−1
(
g̃q2 − MT

12M
−1
11 g̃q1

)
, (5)

kq1 = M−1
11

(
g̃q1 − M12kq2

)
. (6)

Proof The proof of this lemma is straightforward, and hence it is not included. ��
In our application, g̃q = αgq . This lemma applies to the computation of Katz

indices as long as α < 1/‖G‖2, sinceM is diagonally dominant and invertible in that
case. In the light of this lemma, the computation of Katz indices can be performed as
follows:

1. Indexing Construct M.
2. Indexing Partition G using multi-way minimum-vertex-separator partitioning.
3. Indexing Reorder M so that M11 contains the internal edges of all parts resulting

from the partitioning with nodes within each partition corresponding to successive
rows (hence columns),M12 = MT

12 contains the edges between nodes in partitions
and nodes in the separator, and M22 contains the edges between nodes in the
separator.

4. Indexing Compute and store M−1
11 ,M12, and S.

5. Query Processing For a query q, compute kq2 as given in Eq. (5), but without
inverting S, as described below.

6. Query Processing Compute kq1 by performing two matrix-vector multiplications
as given in Eq. (6).

123

Fast computation of Katz index 1349

This procedure is identical to the procedure implemented in I- Chopper, with one
important difference in the computation of kq2 during query processing (Step 5). In
I- Chopper, this computation is accelerated using Chebyshev polynomials over the
elliptic plane (Coşkun et al. 2018). In the computation of Katz-index, S is symmet-
ric (Saad 2003, p. 271), thus the elliptic plane degrades to the real axis and the solution
can be found by using Chebyshev polynomials on the real axes (Coskun et al. 2016).
However, this requires knowledge of the largest and smallest eigenvalues of S, and it is
costly to compute these eigenvalues. Since the matrix in question is not symmetric in
queries involving randomwalks, I- Chopper addresses this problemby pre-computing
these eigenvalues using Arnoldi’s method (Saad 2003, p. 160). In the computation of
Katz-index, however, S is symmetric, and therefore this computation can be avoided
by utilizing methods that do not require an eigen-bound. Specifically, we use the
Conjugate Gradient (CG) method to solve the linear system involving S, since CG
does not require the knowledge of the largest and smallest eigenvalues of S. Still, this
computation can be accelerated using eigenvectors of a low-rank approximation of
S−1.

Since the details of all other steps are described in (Coşkun et al. 2018), here we
briefly describe the key idea in each step.We then focus on the description of low-rank
approximation and describe this approach in detail.

Steps 2 and 3 – Partitioning of G and Reordering of M: The idea behind the
partitioning of the network is to reorder the rows and columns of M in such a way
that we can obtain a block diagonal M11 with a small bandwidth, i.e., the non-zero
entries in matrixM11 are condensed around its diagonal, ensuring thatM

−1
11 is sparse.

To accomplish this, we use multi-way minimum-vertex-cover partitioning to partition
the nodes of G into p partitions such that each node in partition Πi are connected only
to nodes in Πi or to a set Πs of nodes that are classified as the “vertex-separator”
(Karypis and Kumar 1998a, b). Given such a partitioning, we reorder the matrix M
such that the rows/columns that correspond to nodes in the partitions Π1,Π2, ...,Πp

are ordered next to each other, and rows/columns that correspond to the nodes in Πs

are at the bottom/right of thematrix. As a result, the reorderedmatrixM can be divided
into the following sub-matrices: (i)M11 contains the non-zeros that correspond to the
edges within the partitions, (ii) M12 and MT

12 contain the non-zeros that correspond
to the edges between nodes in a partition and nodes in Πs , (iii) M22 contains the
non-zeros that correspond to the edges between nodes Πs . Since minimum-vertex-
separator graph partioning is a NP-hard problem, we use a heuristic that is well-suited
to our application. Namely, the Part- GraphRecursive package implemented in
the MeTiS graph partitioning tool (Karypis and Kumar 1998a) allows the user to
put a threshold on the size of the vertex separator, as opposed to minimizing it, and
recursively bipartitions the network until this threshold is reached. Therefore, we can
directly control the size of S (number of rows/columns of S is equal to the number
of nodes in the vertex separator) and the recursive partitioning generates many small
partitions with roughly equal sizes, thereby keeping the bandwidth of M11 small.

Step 4 – Computation of M−1
11 and S. Once M11 is constructed, we invert M

−1
11 ,

which is also relatively sparse and can be stored as an index. Here, we remark that the
inversion of M11 is feasible even for graphs with hundred millions of nodes since it
is block diagonal with a small bandwidth and there exists many efficient algorithms

123

1350 M. Coşkun et al.

for inverting banded matrices (Coşkun et al. 2018). In our implementation, we use
the Incomplete Cholesky factorization along with approximate minimum algorithms
(Amestoy et al. 1996) before we invert the sparse block diagonal matrix M11. Once
M−1

11 is available, we compute S as defined in Lemma 1, and storeM−1
11 , S, and M12.

Step 5 – Computation of kq2 During Query Processing.
Recall that processing of a Katz index query involves the computation of kq for

a given query node q. As described in Lemma 1, we divide the computation of kq
into the computation of kq1 and the computation of kq2. Since the computation of
kq1 required knowledge of kq2, we first compute kq2 during query processing. This
computation requires solution of the system

Skq2 =
(
g2 − MT

12M
−1
11 g1

)
= f, (7)

where f can be computed efficiently (by performing a single matrix-vector multipli-
cation) during query processing, since we form and index MT

12 and M−1
11 in Steps

3 and 4. However, solving the linear system Skq2 = f , during query processing or
pre-computing and storing the inverse of S is not feasible since S is a relatively dense
matrix. For this reason, we compute a low-rank approximation for S offline and store
this approximation as an index that can be used to efficiently compute kq2 during
query processing. We now explain this process. To avoid cluttered notation, we drop
the subscripts (q) in the following sections.

3.2.1 Low rank correction

The idea behind Low Rank Correct Katz Algorithm (LRC- Katz) is as follows: To
solve Sk2 = f , we approximate the Schur complement S ∈ R

n2×n2 viaM22 plus some
low rank vectors so that we use sparser matrices instead of dense matrix S.

Let M22 = LLT be the Cholesky factorization of M22 and recall that the Schur
complement matrix can be rewritten as

S = LLT − MT
12M

−1
11 M12 (8)

= L
(
I − L−1MT

12M
−1
11 M12L−T

)
LT (9)

= L(I − R)LT (10)

Now define the eigen-decomposition of the symmetric matrix R as follows:

R = L−1MT
12M

−1
11 M12L−T = UΣUT , (11)

where the diagonal entries of Σ are the eigenvalues of R and U is the column matrix
that contains the corresponding eigenvectors, which are orthogonal to each other. Then
S can be rewritten as:

S = L(I − R)LT = L
(
I − UΣUT

)
LT = LU(I − Σ)(LU)T . (12)

123

Fast computation of Katz index 1351

Thus, the inverse of the Schur complement matrix S becomes:

S−1 =
(
LU(I − Σ)(LU)T

)−1

= L−TU(I − Σ)−1UTL−1

= L−T
[
I + U(I − Σ)−1UT − I

]
L−1

= M−1
22 + L−TU

[
(I − Σ)−1 − I

]
UTL−1.

(13)

Now consider approximating R using its most dominant � eigenvectors. That is,
define R̃ ≈ ŨΣ̃ŨT , where Ũ and Σ̃ ∈ R

n2×n2 , diag(Σ̃) = (σ1, σ2, .., σ�, 0, 0, ..., 0)
and Ũ consists of first � eigenvectors of U padded with zeros, i.e.,:

R ≈ ŨΣ̃ŨT

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

· · · · · ·

u1 ulul+1 un2

‘ 0

σ1 . . .

σl

0
. . .

0

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

uT1

uTl
uTl+1

uTn2

‘

0

Using this approximation to R, we define an approximation to S−1 as follows:

S̃−1 = M−1
22 + L−T Ũ

[
(I − Σ̃)

−1 − I
]
ŨTL−1 (14)

Note that we never compute S̃−1 in practice, we define it here solely for theoretical
justification.

The following theorem establishes the relationship between the eigenvalues ofSS̃−1

and the eigenvalues of R.

Theorem 1 Assume that the eigenvalues of R are ordered as σ1 ≥ σ2 ≥ ≥ σn2 ,
where n2 is size of S. For a given integer �, define S̃−1 as in Eq. (14). Then, the
eigenvalues of SS̃−1 are in the form of

λi =
{
1 if i ≤ �.

1 − σi otherwise

Proof From Eqs. (13) and (14), we can write S−1 − S̃−1 = L−T Ũ[(I − Σ)−1 −
(I − Σ̃)

−1]ŨTL−1. Then, we have,

LTS−1L − LT S̃−1L = Ũ
[
(I − Σ)−1 − (I − Σ̃)

−1
]
UT .

123

1352 M. Coşkun et al.

Multiplying both sides of the above equality with (LTS−1L)Ũ
−1 = L−1SL−T , we

have

I − L−1SS̃−1L = L−1SL−T Ũ
[
(I − Σ)−1 − (I − Σ̃)

−1
]
ŨT .

From the definition, we know that L−1SL−T = (I − R) = Ũ(I − Σ)ŨT . Then, by
using orthogonality of U, we have

I − L−1SS̃−1L =
Ũ(I − Σ)ŨT Ũ

[
(I − Σ)−1 − (I − Σ̃)

−1
]
ŨT

Ũ
[
I − (I − Σ)(I − Σ̃)

−1
]
ŨT .

Finally, we have,

SS̃−1 = (LŨ)
[
(I − Σ)(I − Σ̃)

−1
]
(LŨ)

−1
.

��
It follows from this theorem that if we compute the top � eigenvectors of R matrix,

we can use these eigenvectors andM22 to efficiently solve the system in Eq. (7). This
is because, in the iterative solution of (7), we multiply k2 vector by a matrix that
contains � × � identity matrix on top instead of S matrix at each iteration. From the
theorem, we can approximate the first � part of inverse of S via low rank and since
this � × � upper part of inverse of S is already computed in the preproccessing phase,
we automatically use precomputed part in the iterative computation of (7).Setting the
iterative process this way, we eliminate � × � computation from Eq. (7).

Algorithm 1 The Preprocessing Phase
1: procedure Preprocess(G, α, k)
2: ConstructM ← (I − αG)

3: Use minimum-vertex-seperator graph partitioning on M to partition it into M11,MT
12,M12,M22

(Karypis and Kumar 1998a, b)
4: Decompose M11 into L1 and L1

T using Cholesky factorization and invert L1 and L1
T

5: Decompose M22 into L and LT using Cholesky factorization
6: Create l(0) as normalized random vector
7: Compute

[
Ũ, Σ̃

]
= Lanczos(Rl(0), k, l(0)) (Demmel 1997) � As matrix-vector product

3.2.2 TheLRC- KatzLRC- KatzLRC- Katz Algorithm

In this section, we outline our algorithm for Katz-based network proximity computa-
tion. In “offline” preprocessing Algorithm, we first constructM and usePartGraphRe-
cursive in Metis to partition M in such a way that M11 is a sparse block diagonal

123

Fast computation of Katz index 1353

matrix, andM22 is dense but smaller (Karypis and Kumar 1998a, b). Next, we reorder
the entries of partitionedmatrixM based on an approximateminimum degree ordering
(AMD) (Amestoy et al. 1996). After reordering entries ofM, we invert the Cholesky
factorization of sparse block-diagonal matrixM11 and obtain L1

−1 and L1
−T . Then,

we construct Ũ and Σ̃ via Lanczos procedure (Demmel 1997) without forming R
matrix. Subsequently, we form matrices for S̃ and store the resulting values and matri-
ces into an index to use them in query processing phase of our algorithm, LRC- Katz.

Algorithm 2 The LRC- Katz Algorithm
1: procedure LRC- Katz
2: Partition vector eq into e1 and e2 for query, q

3: Construct b1, b2, and f = (g2 − MT
12M

−1
11 g1)

4: Create k2(0) as normalized random vector
5: Set i = 0, r (i) = f − Sk2(k), s = Sr (i), p = S̃\s(i), y(i) = S̃\r (i) � S and S̃ are used as

matrix-vector product
6: γ (i) = y(i)Ts(i)

7: if γ (k) ≤ ε then
8: k2 = k2

(i) and terminate
9: q(i) = Sp(i)

10: α(i) = γ (i)

‖q(i)‖2
11: k2

(i+1) = k2
(i) + α(i) p(i)

12: r (i+1) = r (i) − α(i)q(i)

13: s(i+1) = S(i+1)

14: y(i+1) = S̃\r (i+1)

15: γ (i+1) = y(i+1)Ts(i+1)

16: p(i+1) = S̃\s(i+1) + γ (i+1)

γ (i) p(i)

17: if i < imax then
18: i ← i + 1 and go to line 7

19: Compute k1 ← L1
−1(L1

−T (g1 − M12k2)) and merge k1 and k2 as Katz-vector

In the query phase of Katz-based proximity, for a given query node, q. We first
construct the identity vector eq and reorder the entries of eq using the same ordering

of M. Subsequently, we divide eq into two parts, eq =
[
eq1
eq2

]
, based on the partition

of M and set b1 = eq1 − (I − αG)eq1 and b2 = eq2 − (I − αG)eq2. Next, we use
the indexed matrices and S̃ to compute k2 in Eq. (7), the lower part of solution of the
linear system, with Conjugate Gradient method. Here, the S̃ serves as preconfitioner
of Conjugate Gradient to refine norms of eigenvectors of S. Finally, using k2 and the
indexed matrices, we compute k1, the upper part of solution of the linear system. We
thenmerge the entries in k1 and k2 and return the resultingmerged vectoras Katz-based
network proximity vector.

123

1354 M. Coşkun et al.

3.3 Efficient processing of link prediction queries via Katz proximity

Observing that our hybrid algorithm enables efficient computation of Katz-based
proximity at query time, we develop an algorithm that uses Katz-based proximity
to efficiently and effectively process link prediction queries. Instead of using Katz-
based proximity directly for link prediction, our algorithm, Sparse- Katz uses the
similarity of Katz-based proximity vectors to assess the likelihood that two nodes
will gain a edge. While doing so, Sparse- Katz takes the sparsity of the network into
account and reduces dimensionality directly while assessing the topological similarity
of the nodes.

The setting for Sparse- Katz is as follows: A query is formulated by specifying a
query node q and integer s, indicating that the user aims to identify the s nodes that are
most likely to gain an edge with node q. A query is also associated with two integer
parameters,C and T . The parameterC , whereC > s andC << n, is used to generate
a set of candidate nodes using Katz-based proximity to q. The parameter T << n,
on the other hand, specifies the dimensionality of the vectors used by Sparse- Katz
compute the topological similarity between the nodes.

Given a query, we first compute theKatz-based proximity vector for the query node,
kq ∈ R

n×1 using LRC- Katz. We then identify the top T nodes with highest scores
in kq , as the anchor nodes representing the neighborhood of q. Subsequently, using
LRC- Katz again, we compute Katz-based proximity vectors for these T nodes and
represent these as an n × T matrix KT. Observe that the i th row of KT represents
the proximity of the i th node to the neighborhood of q. Then, we identify the top C
nodes with highest scores in kq as the candidate nodes that are considered for the link
prediction query. We denote the set of these nodes as {C} ⊂ V . The idea behind using
Katz-based proximity directly to identify a list of candidate nodes is as follows: While
topological similarity is potentially a better indicator of the likelihood of gaining an
edge as compared to proximity, nodes that are too far from q are not likely to be
topologically similar to q.

Oncewehave a setC of candidate nodes that are closest toq according toKatz-based
proximity, we use Katz-based proximity profiles to assess the topological similarity
between these candidate nodes and q. For this purpose, for each node c ∈ C , we
compute βq(c) as the correlation between the cth row of KT and the qth row of KT.
The resulting vector β ∈ R

|C|×1 contains the topological similarity scores of the
candidate nodes with respect to the query node q. Finally, we identify the top s nodes
with highest scores in βq , and return these nodes as the query result. The pseudo-code
for Sparse- Katz is shown in Algorithm 3.

We note that in Sparse- Katz, we need to solve |T | + 1 linear systems of equa-
tions for each unique query node for the link prediction task. These linear systems of
equations can be solved using either Richardson iterations and CG or LRC- Katz. In
the next section, we empirically show that when we use LRC- Katz to solve these
|T | + 1 linear system of equations for all query nodes, it drastically improves the
computational efficiency of Sparse- Katzover CG or Richardson iteration.

123

Fast computation of Katz index 1355

Algorithm 3 Sparse- Katz
1: procedure Sparse- Katz
2: Given Query q, posi tive integer s,C and T , where C > s
3: Compute kq with LRC- Katz
4: Sort kq in descending and take Top − C nodes
5: Take Top − T nodes that are the closest to the query node, q, in kq vector
6: for t = 1 : T do
7: Compute kt with LRC- Katz
8: Store kts as matrix, KT

9: Take row-wise correlations of C nodes in KT with respect to the row corresponding to the query
node

10: Sort the correlation scores as a vector, βq ∈ R
C×1

11: Return to Top − s nodes in vector βq

Table 1 Network data sets used in the experiments

Network Number of nodes Number of edges Average node
degree

‖G‖2

DBLP_lcc 93,156 178,145 3.82 39.5753

Arxiv_lcc 86,376 517,563 11.98 99.3319

Email-Enron 36,692 183,831 10.02 111.2871

Gowalla 196,591 950,327 9.67 169.3612

Flickr 513,969 3,190,452 12.41 663.3587

Hollywood-2009 1,139,905 113,891,327 99.13 2247.5591

PPI _Data 12,976 99,814 7.6916 94.4121

DBLP_Data 10,704 49,750 4.65 19.6986

4 Experimental results

In this section, we first systematically evaluate the runtime performance the pro-
posed algorithm, LRC- Katz in processing Katz-based proximity queries. As stated
in the previous section, LRC- Katz is an “exact” algorithm in the sense that it is
guaranteed to correctly identify Katz scores of all nodes in the graph for a given query
node. For this reason, we focus on computational cost (measured in terms of number
of iterations and runtime) in our experiments for Katz-based proximity and compare
LRC- Katz against another exact algorithm instead of top-k based algorithms (Bonchi
et al. 2012). We do not report the pre-processing time since it takes less than a few
minutes even for the largest dataset. This pre-processing time is negligible, since all
datasets we consider contain more than 10K nodes, thus the total runtime of query
processing would take much longer if Katz-based proximity queries were processed
for all nodes in the network.

We then evaluate the link prediction performance of Sparse- Katz and compare it
against vanilla Katz, where computation is performed using CG and Truncated Katz,
which is based on Richardson iterations (Van der Vorst and Chan 1997). It is important
to note that LRC- Katz is the only algorithm that permits topological similarity based
link prediction (Sparse- Katz). This is because, Sparse- Katz requires repeated

123

1356 M. Coşkun et al.

DBLP Dataset

Number of Iter

10-10

10-8

10-6

10-4

10-2

100

R
es

id
u

al
 D

ec
ay

CG
LRC

(a)

Arxiv Dataset

0
Number of Iter

10-10

10-8

10-6

10-4

10-2

100

R
es

id
u

al
 D

ec
ay

CG
LRC

(b)

Email-Enron Dataset

Number of Iter

10-10

10-8

10-6

10-4

10-2

100

R
es

id
u

al
 D

ec
ay

CG
LRC

(c)

Gowalla Dataset

0 5 10 15 20
Number of Iter

10-10

10-8

10-6

10-4

10-2

100
R

es
id

u
al

 D
ec

ay
CG
LRC

(d)

Flickr Dataset

0

2 4 6 8 10 12 14 16

5 10 15 20 25
Number of Iter

10-10

10-8

10-6

10-4

10-2

100

R
es

id
u

al
 D

ec
ay

CG
LRC

(e)

Hollywood-2009 Dataset

2 4 6 8 10 12 14 16
Number of Iter

10-10

10-8

10-6

10-4

10-2

100

R
es

id
u

al
 D

ec
ay

CG
LRC

(f)

2 4 6 8 10 12 14 16 18 5 10 15 20 25

Fig. 1 The number of iterations required for LRC- Katz and CG in computing Katz proximity scores. In
these experiments, the reported numbers are the averages across 1000 randomly chosen query nodes

123

Fast computation of Katz index 1357

computation of Katz-based proximity while processing a link prediction query for a
single node. Such computation is not feasible using vanilla Katz or truncated Katz. For
this reason, while scoring the likelihood of an edge, the link prediction algorithms we
implement using vanilla Katz and truncated Katz directly use Katz-based proximity to
the query node. Consequently, although both vanilla Katz and LRC- Katz are exact
algorithms for computing Katz-based proximity, their accuracy in link prediction can
be different. Thus, in addition to efficiency, our comparative studies in the context of
link prediction also provide an assessment of the contribution of topological similarity
based link prediction in improving the accuracy of link prediction.

4.1 Datasets and experimental setup for Katz-based proximity

We use six publicly available real-world network datasets commonly used in bench-
marking proximity computation algorithms. For link prediction, we use two networks,
one representing the human protein interaction network and the other representing the
citation network obtained from DBLP. The descriptive statistics of these eight net-
works are shown in Table 1.

The first six real-world networks are used in assessing the runtime performance of
algorithms in processingKatz-based proximity queries.DBLP_lcc andArxiv_lcc
are citation networks basedonpublications databases, andFlickr is a social network,
all of which are provided by (Bonchi et al. 2012). Email-Enron is the e-mail
commmunication network at Enron and Gowalla is a local social communication
network, both of which are obtained from the SNAP collection (Leskovec et al. 2010).
The last dataset we use is the publicly available Hollywood-2009 (Boldi et al.
2011) Hollywood movie actor network, in which an edge represents acting together
in a movie.

For theCGalgorithm,we use theMatlab implementation downloaded from (Bonchi
et al. 2012). We also implement LRC- Katz and Sparse- Katz in Matlab. We assess
the performance of the algorithms for a fixed damping factor, i.e for each dataset we

use the αs that is recognized as the hardest α = 1

‖G‖2 + 1
for computing Katz-based

proximity (Bonchi et al. 2012). In practice, using such “supremum” α is recommended
to fully utilize the information provided by the network (Coşkun et al. 2018). In all
experiments, we randomly select 1000 query nodes and report the average of the per-
formance figures for these 1000 queries, in which eq is set to the identity vector for
node q. For the Richardson iterations in truncated Katz, we perform 15 iterations for
low degree nodes and 5 iterations for high degree nodes. All of the experiments are per-
formed on an Intel(R) Xeon(R) CPUE5-46200 2.20GHz server with 500GBmemory.

4.2 Runtime performance for Katz-based proximity

The rate of convergence of LRC- Katz in comparison to the Conjugate Gradient
algorithm for all six networks is shown in Fig. 1. In these experiments, k, the number
of dimensions of low rank eigenvectors, is set to 5. As it can be seen LRC- Katz
converges significantly faster than CG across all datasets.

123

1358 M. Coşkun et al.

DBLP Dataset

5 10 15 20 25
Dimension of Low Rank

10-2

10-1

100

R
u

n
n

in
g

 T
im

e
(S

ec
)

CG LRC

(a)

Arxiv Dataset

5 10 15 20 25
Dimension of Low Rank

10-2

10-1

100

R
u

n
n

in
g

 T
im

e
(S

ec
)

CG LRC

(b)

Email-Enron Dataset

5 10 15 20 25
Dimension of Low Rank

10-2

10-1

100

R
u

n
n

in
g

 T
im

e
(S

ec
)

CG LRC

(c)

Gowalla Dataset

5 10 15 20 25
Dimension of Low Rank

10-1

100

R
u

n
n

in
g

 T
im

e
(S

ec
)

CG LRC

(d)

Flickr Dataset

5 10 15 20 25
Dimension of Low Rank

10-1

100

101

R
u

n
n

in
g

 T
im

e
(S

ec
)

CG LRC

(e)

Hollywood-2009 Dataset

5 10 15 20 25
Dimension of Low Rank

100

101

102

R
u

n
n

in
g

 T
im

e
(S

ec
)

CG LRC

(f)

Fig. 2 Runtime of LRC- Katz and CG to process a Katz-based proximity query for a single node as a
function of k ranging from 5 to 25. In these experiments the reported numbers are the averages across 1000
randomly chosen query nodes

123

Fast computation of Katz index 1359

DBLP Less Than 4 Neighbors

10 20 30 40 50

Top-s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

Sparse-Katz
Vanilla Katz
Truncated Katz

(a)

DBLP Between 4 and 10 Neighbors

10 20 30 40 50

Top-s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

Sparse-Katz
Vanilla Katz
Truncated Katz

(b)

DBLP More Than 10 Neighbors

10 20 30 40 50

Top-s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
ec

al
l

Sparse-Katz
Vanilla Katz
Truncated Katz

(c)

Fig. 3 Performance evaluation of Sparse- Katz for DBLP_Data The performance of Sparse- Katzwith
fixed T = 200 for link prediction as compared to Vanilla and Truncated Katz measure based link prediction
on the DBLP_Data

We then assess the runtime performance of LRC- Katz as a function of k ranging
from 5 to 25. The results of this analysis for all datasets are shown in Fig. 2. As seen in
the figure, faster convergence ofLRC- Katz translates into savings in time, andLRC-
Katz achieves more than 3-fold speed-up over CG for all networks. The performance
of LRC- Katz improves as we increase the number of dimensions, however, due to
the memory requirements of computing eigenvectors, we do not go beyond the first
25 eigenvectors corresponding the top eigenvalues.

4.3 Datasets and experimental setup for link prediction

We test and compare Sparse- Katz, our topological similarity based link predic-
tion algorithm, on two comprehensive datasets: (1) a real-world collaboration network
extracted from DBLP Computer Science Bibliography,1 which consists of 15 con-

1 http://www.informatik.uni-trier.de/ley/db/.

123

http://www.informatik.uni-trier.de/ley/db/

1360 M. Coşkun et al.

PPI Less Than 4 Neighbors

10 20 30 40 50

Top-s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

Sparse-Katz
Vanilla Katz
Truncated Katz

(a)

PPI Between 4 and 10 Neighbors

10 20 30 40 50

Top-s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

Sparse-Katz
Vanilla Katz
Truncated Katz

(b)

PPI More Than 10 Neighbors

10 20 30 40 50

Top-s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

Sparse-Katz
Vanilla Katz
Truncated Katz

(c)

Fig. 4 Performance evaluation of Sparse- Katz for PPI_Data The performance of Sparse- Katz with
fixed T = 200 for link prediction as compared to Vanilla and Truncated Katz measure based link prediction
on the PPI_Data

Table 2 The division of the nodes in the datasets used for link prediction according to their degrees in the
training data

Network # of Edges 1 to 3 # of Edges 4 to 10 # of Edges > 10

DBLP_Data 10,389 2,877 336

PPI_Data 28,490 7,355 3,649

The number of positive links in the test data is shown for each group of nodes

ferences in Computer Science, (2) human protein-to-protein interaction (PPI) data
obtained from the IntAct database (Orchard et al. 2013).

In the DBLP dataset, for training data, we consider authors who have published
papers between 2006 and 2008. In this network, the authors are represented by nodes
and there is an undirected link if two authors published at least one paper together
from 2006 to 2008. As test data, we use new co-author links that emerge between
2009 and 2010. In the PPI dataset PPI _Data, nodes represent and edges represent

123

Fast computation of Katz index 1361

DBLP Less Than 4 Neighbors

10 20 30 40 50

Top-s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

T = 50
T = 100
T = 150
T = 200

(a)

DBLP Between 4 and 10 Neighbors

10 20 30 40 50

Top-s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

T = 50
T = 100
T = 150
T = 200

(b)

DBLP More Than 10 Neighbors

10 20 30 40 50

Top-s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

T = 50
T = 100
T = 150
T = 200

(c)

Fig. 5 The effect of the number of dimensions used to assesss topological similarity (T) on the link prediction
performance of Sparse- Katz on DBLP_Data. The recall (fraction of true positives in the predicted links
among all positives) provided by Sparse- Katz for four different values of T are shown as a function of
the number of predicted links (s)

interactions between. For training data, we use the interactions that are included in the
2014 version of the database. As test data, we use the interactions that are included
in the 2016 version of database (which were not included in the 2014 version). These
datasets are chosen as realistic cases of network evolution, where the DBLP networks
evolve naturally as authors publish new papers, whereas the PPI network evolves with
the advance of human knowledge on biological systems. These datasets’ descriptive
statics are provided in the last two rows of Table 1.

The objective of link prediction is to predict links that will emerge in the network in
the future. For this reason, a positive label in this setup refers to a new link that emerges
in the future version of a network, whereas a negative label refers to two nodes that
remain unconnected in the future version. Since the real-world networks are highly
sparse, the number of negative pairs is much larger than the number of positive pairs.
For this reason, to evaluate the accuracy of link prediction methods, we use recall as
the evaluation criterion and assess the recall of each method as a function of s (the

123

1362 M. Coşkun et al.

PPI Less Than 4 Neighbors

10 20 30 40 50

Top-s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

T = 50
T = 100
T = 150
T = 200

(a)

PPI Between 4 and 10 Neighbors

10 20 30 40 50

Top-s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

T = 50
T = 100
T = 150
T = 200

(b)

PPI More Than 10 Neighbors

10 20 30 40 50

Top-s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

T = 50
T = 100
T = 150
T = 200

(c)

Fig. 6 The effect of the number of dimensions used to assesss topological similarity (T) on the link prediction
performance of Sparse- Katz on PPI_Data. The recall (fraction of true positives in the predicted links
among all positives) provided by Sparse- Katz for four different values of T are shown as a function of
the number of predicted links (s)

number of potential new edges that are returned by the query). To investigate the effect
of node degree to prediction performance, we stratify the evaluation of recall according
to node degree. The distribution of the positive labels into three degree categories are
shown in Table 2.

For the DBLP data set, let W denote the set of authors who published at least
one paper in the testing interval [2009, 2010], but have not published together in the
training interval ([2006, 2008]). We construct our positive node pairs from this set as
follows:

– The positive test set P is composed of u, v ∈ W such that u and v published a
paper between 2009 and 2010.

– For DBLP network, P consists of 13602 nodes which gained at least one edge in
between 2009 and 2010, i.e, |P| = 13602.

– We divide P into three categories as summarized in Table 2.
– For all experiments for DBLP_Data dataset, we report the mean and the standard
deviation of the performance figures.

123

Fast computation of Katz index 1363

Similarly, we obtain a positive set P of 39494 edges for the PPI network.

4.4 Link prediction performance forSparse- KatzSparse- KatzSparse- Katz

We compare the link prediction performance of Sparse- Katz against that of vanilla
Katz and truncated Katz (Lu et al. 2010) with parameters T = 200 (i.e., 200 most
proximate nodes to thequerynode are used to assess topological similarity) andC = 2s
(i.e., twice as many nodes as the number of potential edges requested by the user are
considered as candidates). The results of this analysis for the DBLP data are shown in
Fig. 3. As seen in the figure, Sparse- Katz significantly outperforms both Vanilla and
Truncated Katz across all experiments. The comparison of link prediction accuracy
for the PPI_Data dataset is shown in the Fig. 4. We observe that Sparse- Katz
outperforms both of the competing methods on this dataset as well. These results show
that topological similarity based link prediction using Katz-based proximity, which is
enabled by LRC- Katz, improves the accuracy of link prediction over methods that
directly utilize (exact or approximate) Katz-based proximity to predict links.

Interestingly, truncatedKatz does not deliver reasonable recall for up to 15Richard-
son iterations for low degree nodes (which are the majority of test nodes). However,
we confirm the link prediction performance of truncated Katz as in (Lu et al. 2010) for
nodes with relatively higher degree. For the high degree nodes, truncated Katz slightly
outperforms vanilla Katz with only 5 Richardson iterations.

4.5 Effect of parameter T on link prediction

We further evaluate the effect of parameter T , which specifies the number of dimen-
sions used in assessing topological similarity. For this purpose, we randomly sample
100 query nodes from each of the degree groups shown in Table 2. We then plot
the recall provided by Sparse- Katz for different values of T (T = 50, T = 100,
T = 150, T = 200) and as a function of s (the number of predicted links). The results
of this analysis are shown in Figs. 5 and 6 . As seen in both figures, for lower degree
nodes, using a low number of dimensions to assess topological similarity is sufficient.
However, for medium and high degree nodes, addition of more dimensions largely
improves prediction performance, with the performance improvement saturating at
around T = 200 for both datasets.

4.6 Effect of the damping factor (˛)

The damping factor, α, is used to adjust the importance of the length of the paths
between two nodes in computing Katz-based proximity (with larger alpha corre-
sponding to more importance given to shorter paths). For the results reported in this

section so far, we use α = 1

‖G‖2 + 1
(Bonchi et al. 2012), since this value is sug-

gested as the hardest case for computing Katz-based proximity (from an efficiency
perspective). However, the value of α can also influence the accuracy of link predic-
tion. For this reason, we also systematically examine the effect of the damping factor

123

1364 M. Coşkun et al.

DBLP More Than 10 Neighbors, Top-s = 50

 /2 /3 /4 /5
Damping Factor

0

0.1

0.2

0.3

0.4

0.5

0.6
R

ec
al

l

Sparse-Katz

Vanilla Katz

Truncated Katz

(a)

PPI More Than 10 Neighbors, Top-s = 50

 /2 /3 /4 /5
Damping Factor

0

0.1

0.2

0.3

0.4

0.5

0.6

R
ec

al
l

Sparse-Katz

Vanilla Katz

Truncated Katz

(b)

Fig. 7 The effect of the damping factor (α) on the link prediction accuracy of Sparse- Katz. We randomly
select 100 high degree nodes as query nodes for each of the DBLP and PPI datasets, and plot the behavior
of recall as a function of α

on the accuracy of link prediction. The results of this analysis are shown in Fig. 7. For
these experiments, we restrict our analysis to a random sample of 100 high-degree

nodes. As it can be seen in the figure, α = 1

‖G‖2 + 1
yields better link prediction

accuracy as consistent with the literature (Bonchi et al. 2012). These results suggest
that link prediction with Katz-based proximity is more accurate when the search is

localized. However, it is important to note that α = 1

‖G‖2 + 1
is the largest possible

value of alpha that renders the resulting system numerically solvable and represents
the hardest case from the perspective of computational complexity. Therefore, this
result also demonstrates the importance of improving the runtime performance of the
computation of Katz-based proximity.

4.7 Computational advantage of usingLRC- KatzLRC- KatzLRC- Katz inSparse- KatzSparse- KatzSparse- Katz

Recall that in Sparse- Katz(Algorithm, we need to solve T + 1 linear systems of
equations for each query node. For this reason, the runtime improvement provided by
LRC- Katz is essential in enabling the application of this algorithm. To investigate
the effect of the algorithm used to compute Katz-based proximity on the runtime
performance of Sparse- Katz, we run the algorithm by changing line 3 and 7 with
each of vanilla and truncated Katz. In this experiment, we set T = 200 and truncated
Katz iteration numbers to 15 and 5 for low and high degree nodes, respectively. We
then report runtime for all query nodes the two datasets. These results are shown in
detail in Table 2 and visualized in Fig. 8 as a function of low rank dimension. As seen
in the figure, the advantage of usingLRC- Katz in Sparse- Katz is quite pronounced
for all types of nodes.

123

Fast computation of Katz index 1365

Total Link Prediction Run Time DBLP Dataset

Dimension of Low Rank

100

101

102

R
u

n
n

in
g

 T
im

e
(H

o
u

rs
)

Vanilla Katz
Truncated Katz
LRC(Ours)

(a)

Total Link Prediction Run Time PPI Dataset

5 10 15 20 25 5 10 15 20 25

Dimension of Low Rank

100

101

102

R
u

n
n

in
g

 T
im

e
(H

o
u

rs
)

Vanilla Katz
Truncated Katz
LRC(Ours)

(b)

Fig. 8 Runtime performance evaluation of Sparse- Katz for all positive labels in DBLP_Data and
PPI_DataThe total runtime performance ofSparse- Katzwhenwe useLRC- Katz , CG andRichardson
iterations in Sparse- Katz line 3 and 7

5 Discussion

The application of the proposed algorithms is not limited to link prediction. In this
section, we briefly discuss some of our anticipated usage of the developed algorithms
in this paper for various data mining/machine learning problems.

Semi-Supervised Learning(SSL) is commonly utilized in classification settings
when the labeled samples are limited (Chapelle et al. 2006) and there is an under-
lying graph that represents the potential similarity between all samples. This class of
approaches in machine learning have received significant research attention in recent
years. In essence, SSL involves the incorporation of a regularization factor that rep-
resents the consistency between the labels of the nodes of the graph, which can be
formulated using a linear system of equations (Zhou et al. 2004). For instance, Zhou
et.al., (Zhou et al. 2004) aim to expand the set of labeled nodes by solving follow
equation:

F∗ = β(I − αS)−1Y (15)

where S is symmetrically normalized Laplacian matrix of the graph and Y contains
very few known labeled nodes. To solve the linear system represented by the above
equation, earlier research focuses on computing approximate solutions (Liu et al.
2010). However, it is clear that (I − αS) is a symmetric positive definite matrix for
any α ∈ (0, 1) and thus can efficiently be processed by LRC- Katz. Furthermore,
Sparse- Katz can be used for label expansion in the SSL framework.

Graph Convolutional Networks (GCNs) are a variant of traditional Convolutional
Neural Networks(CNNs) on graphs (Klicpera et al. 2019). Although the first GCNuses
a two-step propagation in its feature propagation phase, later it has been shown that an
infinitely many feature propagation steps can be carried out by solving a linear system
of equations. Therefore, the feature propagation phase of a GCN can be separated
from neural networks for better node classification (Klicpera et al. 2019). The task of

123

1366 M. Coşkun et al.

feature propagation can therefore be formulated as a linear system of equations in the
softmax classifier (Klicpera et al. 2019):

ZPPN P = so f tmax(Πppr H) (16)

where Πppr = α(I − (1 − α)
ˆ̃A)

−1
and H is the feature matrix. Here, Ã is the self-

loop added symmetrically normalized Laplacian matrix and for this reason Πppr is
the inverse of a symmetric positive definite matrix. Thus, LRC- Katz can be used
efficiently solve Eq. 16.

Network Proximity Querying In addition to Katz measure, LRC- Katz can be used
for efficiently computing network proximity using other measures, including symmet-
rically normalized Personalized PageRank (Page et al. 1999) and ParWalk (Wu et al.
2012).

6 Conclusion

In this paper, we propose an alternate approach to accelerating Katz- based network
proximity queries. The proposed approach is based on low rank correction of under-
lying partitioned linear systems of equation derived from Katz matrix. We show that
our approach, LRC- Katz , significantly decreases convergence times in practice on
real-world problems. Using a number of large real-world networks, we show that
LRC- Katz drastically outperforms the fastest known method, Conjugate Gradient,
for a wide ranges of parameter values.

Wealso develop an effective link prediction algorithm,Sparse- Katz that improves
the accuracy of link prediction by assessing topological similarity between nodes as
opposed to directly using Katz-based proximity to predict links. Since this algorithm
requires repeated computation of Katz-based proximity for a single query, it poses
significant challenges in terms of computational complexity. Our results show that,
the runtime improvement provided by LRC- Katz in the computation of Katz-based
proximity over vanilla and truncated Katz renders application of this link prediction
algorithm feasible in a real-time query setting.

Future efforts in this direction would include incorporation of other proximity mea-
sures into our framework and their applications, such as semi-supervised learning and
graph convolutional networks. Furthermore, whileLRC- Katz is an “exact” algorithm
and our experiments focus on runtime performance for this reason, there also exist
approximate methods that compromise accuracy for improved runtime. Constructing
an approximate version of LRC- Katz can provide further insights into the trade-off
between runtime and accuracy in the context of network proximity problems.

References

Acar E, Dunlavy DM, Kolda TG (2009) Link prediction on evolving data using matrix and tensor fac-
torizations. In: Data Mining Workshops, 2009. ICDMW’09. IEEE International Conference on, pp
262–269, IEEE

123

Fast computation of Katz index 1367

Amestoy PR, Davis TA, Duff IS (1996) An approximate minimum degree ordering algorithm. SIAM J
Matrix Anal Appl 17(4):886–905

Boldi P, Rosa M, Santini M, Vigna S (2011) Layered label propagation: a multiresolution coordinate-free
ordering for compressing social networks. In: Proceedings of the 20th international conference on
World wide web, pp 587–596, ACM

Bonchi F, Esfandiar P, Gleich DF, Greif C, Lakshmanan LV (2012) Fast matrix computations for pairwise
and columnwise commute times and katz scores. Internet Math. 8(1–2):73–112

Chapelle O, Schölkopf B, Zien A (2006) Semi-supervised learning, vol. 2, MIT Press, Cambridge. Cortes
C, and Mohri M, et al. (2014) Domain adaptation and sample bias correction theory and algorithm for
regression. Theoretical Computer Science 519:103126

Coşkun M, Grama A, Koyutürk M (2018) Indexed fast network proximity querying. Proc VLDB Endow
11(8):840–852

Coskun M, Grama A, Koyuturk M (2016) Efficient processing of network proximity queries via chebyshev
acceleration. In: Proceedings of the 22nd ACM SIGKDD International conference on knowledge
discovery and data mining, pp 1515–1524, ACM

Coskun M, Koyutürk M (2015) Link prediction in large networks by comparing the global view of nodes
in the network. In: Data Mining Workshop (ICDMW), 2015 IEEE International Conference on, pp
485–492, IEEE

Demmel JW (1997) Applied numerical linear algebra, vol 56. SIAM, Philadelphia
Erten S, Bebek G, Ewing RM, Koyutürk M (2011) Dada: degree-aware algorithms for network-based

disease gene prioritization. BioData Min 4(1):19
Erten S, Bebek G, Koyutürk M (2011) Vavien: an algorithm for prioritizing candidate disease genes based

on topological similarity of proteins in interaction networks. J Comput Biol 18(11):1561–1574
Karypis G, Kumar V (1998a) A fast and high quality multilevel scheme for partitioning irregular graphs.

SIAM J Sci Comput 20(1):359–392
Karypis G, Kumar V (1998b) A parallel algorithm for multilevel graph partitioning and sparse matrix

ordering. J Parallel Distrib Comput 48(1):71–95
Katz L (1953) A new status index derived from sociometric analysis. Psychometrika 18(1):39–43
Klicpera J, Bojchevski A, Gunnemann S (2019) Combining neural networks with personalized pagerank for

classification on graphs. In: International conference on learning representations. https://openreview.
net/forum?id=H1gL-2A9Ym

Leskovec J, Huttenlocher D, Kleinberg J (2010) Signed networks in social media. In: Proceedings of the
SIGCHI conference on human factors in computing systems, pp 1361–1370, ACM

Liben-Nowell D, Kleinberg J (2007) The link-prediction problem for social networks. J Am Soc Inf Sci
Technol 58(7):1019–1031

Liu W, He J, Chang S-F (2010) ‘Large graph construction for scalable semi-supervised learning’
Lu Z, Savas B, TangW, Dhillon IS (2010) Supervised link prediction using multiple sources. In: 2010 IEEE

international conference on data mining, pp 923–928, IEEE
Navlakha S, Kingsford C (2010) The power of protein interaction networks for associating genes with

diseases. Bioinformatics 26(8):1057–1063
Nie F, Wang X, Jordan M, Huang H (2016) The constrained laplacian rank algorithm for graph-based

clustering. In: Proceedings of the AAAI conference on artificial intelligence, vol 30
Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F, Campbell NH, Chavali G,

Chen C, Del-Toro N et al. (2013) The mintact project–intact as a common curation platform for 11
molecular interaction databases. Nucleic Acids Res p gkt1115

Page L, Brin S, Motwani R, Winograd T (1999) The pagerank citation ranking: Bringing order to the web.,
Technical report, Stanford InfoLab

RattiganMJ, JensenD (2005) The case for anomalous link discovery. AcmSigkdd Explor Newsl 7(2):41–47
Saad Y (2003) Iterative methods for sparse linear systems, vol 82. SIAM, Philadelphia
Saerens M, Fouss F, Yen L, Dupont P (2004) The principal components analysis of a graph, and its rela-

tionships to spectral clustering. In: European conference on machine learning, pp 371–383, Springer
Sarkar P, Moore AW (2007) A tractable approach to finding closest truncated-commute-time neighbors in

large graphs. In: Proceedings of the twenty-third conference on uncertainty in artificial intelligence,
pp 335–343

Skogent M (1992) Domain decomposition algorithms of Schwarz type, designed for massively parallel
computers. In: Fifth international symposiumondomain decompositionmethods for partial differential
equations, vol. 55, p 362, SIAM

123

https://openreview.net/forum?id=H1gL-2A9Ym
https://openreview.net/forum?id=H1gL-2A9Ym

1368 M. Coşkun et al.

Smith B, Bjorstad P, GroppW (2004) Domain decomposition: parallel multilevel methods for elliptic partial
differential equations. Cambridge University Press, Cambridge

Van der Vorst HA, Chan TF (1997) Linear system solvers: sparse iterative methods. In: Parallel numerical
algorithms, pp 91–118, Springer

Wang C, Satuluri V, Parthasarathy S (2007) Local probabilistic models for link prediction, In: icdm, pp
322–331, IEEE

Wu X-M, Li Z, So AM, Wright J, Chang S-F (2012) Learning with partially absorbing random walks In:
Advances in Neural Information Processing Systems, pp 3077–3085

Zhou D, Bousquet O, Lal TN, Weston J, Schölkopf B (2004) Learning with local and global consistency.
In: Advances in Neural Information Processing Systems, pp 321–328

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Fast computation of Katz index for efficient processing of link prediction queries
	Abstract
	1 Introduction
	2 Related work
	3 Methods
	3.1 Katz index
	3.2 Graph partitioning based indexing
	3.2.1 Low rank correction
	3.2.2 The LRC-Katz-.4 Algorithm

	3.3 Efficient processing of link prediction queries via Katz proximity

	4 Experimental results
	4.1 Datasets and experimental setup for Katz-based proximity
	4.2 Runtime performance for Katz-based proximity
	4.3 Datasets and experimental setup for link prediction
	4.4 Link prediction performance for Sparse-Katz-.4
	4.5 Effect of parameter T on link prediction
	4.6 Effect of the damping factor (α)
	4.7 Computational advantage of using LRC-Katz-.4 in Sparse-Katz-.4

	5 Discussion
	6 Conclusion
	References

