

S
u

ltan
 K

ü
b

ra C
a
n

TRAFFIC LIGHT MANAGEMENT USING

REINFORCEMENT LEARNING

METHODS

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND

COMPUTER ENGINEERING

AND THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE

OF ABDULLAH GUL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

Sultan Kübra Can

July 2022

A
 M

a
ster’s T

h
esis

A
G

U
 2

0
2

2

TRAFFIC LIGHT MANAGEMENT USING

REINFORCEMENT LEARNING

METHODS

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND COMPUTER

ENGINEERING

AND THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE OF

ABDULLAH GUL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

Sultan Kübra Can

July 2022

SCIENTIFIC ETHICS COMPLIANCE

I hereby declare that all information in this document has been obtained in accordance

with academic rules and ethical conduct. I also declare that, as required by these rules and

conduct, I have fully cited and referenced all materials and results that are not original to

this work.

Name-Surname: Sultan Kübra Can

Signature :

REGULATORY COMPLIANCE

M.Sc. thesis titled Traffic Light Management Using Reinforcement Learning Methods

has been prepared in accordance with the Thesis Writing Guidelines of the Abdullah Gül

University, Graduate School of Engineering & Science.

Prepared By Co-Advisor Advisor

Sultan Kübra Can Asst. Prof. Dr. Mustafa

Coşkun

Prof. Dr. Vehbi Çağrı

Güngör

Head of the Electrical and Computer Engineering Program

Assoc. Prof. Dr. Kutay İçöz

ACCEPTANCE AND APPROVAL

M.Sc. thesis titled Traffic Light Management Using Reinforcement Learning Methods

and prepared by Sultan Kübra Can has been accepted by the jury in the Electrical and

Computer Engineering Graduate Program at Abdullah Gül University, Graduate School

of Engineering & Science.

06/06/2022

 (Thesis Defense Exam Date)

JURY:

Advisor : Prof. Dr. Vehbi Çağrı Güngör

Member : Dr. Burcu Güngör

Member : Dr. Fehim Köylü

APPROVAL:

The acceptance of this M.Sc. thesis has been approved by the decision of the Abdullah

Gül University, Graduate School of Engineering & Science, Executive Board dated …..

/….. / ……….. and numbered .…………..……. .

……….. /……….. / ………..

(Date)

Graduate School Dean

Prof. Dr. İrfan ALAN

i

ABSTRACT

TRAFFIC LIGHT MANAGEMENT USING

REINFORCEMENT LEARNING METHODS

Sultan Kübra Can
M.Sc. in Electrical and Computer Engineering

Advisor: Prof. Dr. Vehbi Çağrı Güngör
Co-advisor: Dr. Mustafa Coşkun

July 2022

Traffic lights have been around since 19th century, and aims to ease the chaos happening

in intersections. It’s recorded that, people spend hours in traffic leading degradations in

human health and environment. Even though its main purpose is to reduce traffic

congestion and decrease the number of accidents, most of the approaches cannot adapt

very well to fast changing dynamics and growing demands of the intersections with

modern world developments. Fixed-time approaches use predefined settings, and to

maximize its success time slots are identified. Although there are successful attempts,

they don’t answer today’s demands of traffic. To overcome this problem, adaptive

controllers are developed, and detectors and sensors are added to systems to enable

adoption and dynamism. Recently, reinforcement learning has shown its capability to

learn the dynamics of complex environments such as urban traffic. Although it was

studied in single junction systems, one of the problems was the lack of consistency with

how the real world system works. Most of the systems assume the environment is fully

observable or actions would be freely executed using simulators. This study aims to

merge usefulness of reinforcement learning methods with real world constraints. The

experiments conducted have shown that, with queue data obtained from sensors located

at the beginning and at the end of the roads and limited action spaces it works very well

and A2C is able to learn the dynamics of the environment while converging and stabilizes

itself in a respectively short duration.

Keywords: Deep Reinforcement Learning, Urban Traffic Control

ii

ÖZET

PEKİŞTİRMELİ ÖĞRENME YÖNTEMİ TABANLI TRAFİK

IŞIK YÖNETİM SİSTEMLERİ

Sultan Kübra Can

 Elektrik ve Bilgisayar Mühendisliği Anabilim Dalı Yüksek Lisans
Tez Yöneticisi: Prof. Dr. Vehbi Çağrı Güngör

Eş-danışman: Dr. Mustafa Coşkun

Temmuz 2022

Trafik ışıkları, 19. yüzyıldan bu yana aktif olarak kavşaklardaki karmaşıklığı ve

düzensizliği azaltmak amacı ile faaliyet gösteriyorlar. Kaynaklara göre, insanlar trafikte

saatler geçiriyor, ki bu da hem insan sağlığı hem de çevre bakımından bozulmalara sebep

oluyor. Trafik ışıklarının görevi trafik sıkışıklığını ve kaza sayısını azaltmak olsa da, şu

an çalışan çoğu sistem modern zamanın gelişmeleri ile artan isteklere ve hızlı değişen

kavşak dinamiklerine uyum sağlayamıyor. Bunlardan biri olan sabit zamanlı sistemler,

önceden tanımlanmış ayarları kullanıyorlar ve performansını daha da artırmak için zaman

dilimleri tanımlanıyor. Başarılı girişimler ve düzeltmeler görülse de, bugünün

ihtiyaçlarına cevap veremiyorlar. Daha sonra, sistemlere sensörler ve detektörler

eklenerek daha akıllı, dinamik ve adaptif sistemler geliştirildi. Son çalışmalar ise,

pekiştirmeli öğrenmenin ve özellikle pekiştirmeli derin öğrenmenin kavşaklar gibi

karmaşık ortamların dinamiklerini öğrenebildiğini gösterdi. Tekli kavşaklarda buna

yönelik çalışmalar olmasına rağmen, gerçek dünya ile tam olarak tutarlı olmadığı,

simülatörler vasıtasıyla tüm ortamın görünür ve karar verilen aksiyonların sınırsız

olabileceğinin varsayıldığı fark edildi. Bu çalışma, pekiştirmeli öğrenme yöntemlerinin

başarısı ve sağladığı fayda ile gerçek dünyanın sınırlarını birleştirmeyi hedeflemektedir.

Bu çalışmada yapılmış olan deneyler gösteriyor ki, her bir yolun başına ve sonuna

yerleştirilmiş olan sensörler vasıtası ile elde edilen kuyruk değerleri ve kısıtlı aksiyonlar

kullanılarak geliştirilen pekiştirmeli öğrenme yöntemleri iyi bir performans sergiliyor ve

özellikle A2C yöntemi çevrenin dinamiklerini öğrenerek nispeten kısa sürede yakınsıyor

ve stabil hale geliyor.

Anahtar kelimeler: Pekiştirmeli Öğrenme, Şehiriçi Trafik Yönetimi

iii

Acknowledgements

First and foremost, all praises and thanks to Allah for His blessings.

I would like to express my sincere gratitude to my primary supervisor, Prof. Dr. Vehbi

Çağrı Güngör, who guided and supported me throughout my time as a bachelor’s and a

master’s student. I would also like to thank my academic co-advisor Dr. Mustafa Coşkun

for giving me opportunity to do research in this field and providing guidance throughout.

The completion of this study could not have been possible without the expertise of them.

I am extremely grateful to my beloved parents and family for their love, prayers and

encouragements. I am very much thankful to my husband for his continuing support.

I also want to thank Adam Thahir, a fellow master’s student and colleague that I’ve

worked closely for providing me support and in-depth guidance and my friends Hatice

Kübra Öcal and Habibe Sultan Özhan.

iv

TABLE OF CONTENTS

1. INTRODUCTION .. 1

1.1 OFFLINE APPROACHES ... 2
1.2 ADAPTIVE CONTROLLERS .. 2
1.3 REINFORCEMENT LEARNING BASED APPROACHES ... 2

2. REINFORCEMENT LEARNING ... 4

2.1 ADVANTAGE ACTOR-CRITIC (A2C) .. 6
2.2 TRUST REGION POLICY OPTIMIZATION (TRPO) ... 7
2.3 PROXIMAL POLICY OPTIMIZATION (PPO) .. 7

3. METHODOLOGY ... 9

3.1 TRAFFIC SIMULATION .. 9
3.2 STATE REPRESENTATION...11
3.3 ACTION SPACE DEFINITION ...12
3.4 REWARD FUNCTION DESIGN..13
3.5 VEHICLE GENERATION METHOD..14

4. RESULTS ..16

4.1 EXPERIMENT DESIGN ..16
4.2 RESULTS ..20

5. CONCLUSIONS AND FUTURE PROSPECTS ...23

5.1 CONCLUSIONS ..23
5.2 SOCIETAL IMPACT AND CONTRIBUTION TO GLOBAL SUSTAINABILITY23
5.3 FUTURE PROSPECTS ..24

v

LIST OF FIGURES

Figure 1. Reinforcement Learning Diagram .. 5
Figure 2. Actor Critic Model Representation ... 7
Figure 3. Intersection and phase representation ..10
Figure 4. State Space Representation of an Intersection ..11
Figure 5. The simulation process ...14

Figure 6. Daily Vehicle Trend at Intersection A ...15
Figure 7. Daily Vehicle Trend at Intersection A ...15
Figure 8. Real World View of Intersection A ...16
Figure 9. Network Drawing and Phase Configurations of Intersection A17

Figure 10. Real World View of Intersection B..18
Figure 11. Network Drawing and Phase Configurations of Intersection B19
Figure 12. Total reward with smoothing gained by step for each algorithm20
Figure 13. Total reward with smoothing gained by step for each algorithm21

Figure 14. Total reward without smoothing ..21
Figure 15. Queue Length per Episode ..22

Figure 16. Calculated discounted reward by step for each algorithm22

vi

LIST OF ABBREVIATIONS

AI Artificial Intelligence

SuMO Simulation of Urban MObility

TraCI Traffic Control Interface

RL

DRL

Reinforcement Learning

Deep Reinforcement Learning

A2C Advantage Actor-Critic

TRPO Trust Region Policy Optimization

PPO Proximal Policy Optimization

SMC Secure Multiparty Computation

vii

To my beloved parents,

Ali Kılıç and Şadiye Kılıç

1

Chapter 1

Introduction

Traffic lights have been used in many cities since 19th century with gas-lit traffic lights in

London, which was soon followed by a single electric light in Ohio in 1914 and a network

of traffic lights with a manual switch in Utah in 1917 [1]. The purpose of traffic lights is

to control traffic to prevent traffic jams and congestion in the intersections and to decrease

the number of accidents caused by uncontrolled intersections.

Traffic congestion and jams are practical problems in today’s world causing delays,

increased costs because of fuel and increased amount of harmful gas emission. As stated

in Texas A&M’s 2021 Urban Mobility Report, the amount of fuel consumption caused by

traffic congestion is about 1.7 billion gallons with an annual delay of 4.3 billion hours

which led to a cost of 100 billion dollars [2].

In a study by Kahneman [31] shows that commuting in traffic is one of the least enjoyable

activities we do. As stated in [2], an average American spends 42 hours annually in the

traffic and [32] states that traffic is the main concern of the people, exceeding personal

safety or finances. Aside from the delay and cost it causes, traffic congestion leads to

health problems, especially respiratory problems [33] related to long-term exposure to

harmful gas emissions.

As the development of cities continue, we see more vehicles on the road. In a report from

Turkish Statistical Institute, it’s stated that the number of vehicles registered in March

2022 increased by 47.2% compared with the previous month [34]. Therefore, the traffic

problem seems to remain and would be more problematic if not solved. With the

development of modern cities, the traffic lights are automated and being optimized to

increase the vehicle flow of the intersection using variety of methods such as fixed-time

approaches, adaptive approaches or more intelligent deep learning approaches as a

solution.

2

1.1 Offline Approaches

Offline or fixed-time traffic light control methods use predefined traffic light settings (the

sequence of green, yellow and red phase durations) that are deduced and optimized based

on offline historical traffic data analyzation. To maximize its success and optimize the

predefined timings, time slots has to be identified. The actuated methods contain a set of

defined rules where any of them could be triggered by violations or extreme situations to

adapt the traffic environment more. However, even though these kind of methods work

well in constant environments, they cannot adapt to the dynamism of the traffic

environment and demands.

1.2 Adaptive Controllers

Adaptive controllers have been utilizing the use of sensors and data collection to adapt the

changes in the traffic. An example to these methods is Sydney Coordinated Adaptive

Traffic System (SCATS) [3] where real time data is used to control the traffic lights.

However, it is deemed to be extremely costly and requires dramatic amount of

modifications to existing road systems. Another notable early traffic system to be used in

UK is Split Cycle and Offset Optimization Technique (SCOOT) [4] where traffic lights

are controlled only by small adjustments to avoid dramatic changes and focus more on

long-term flow of the intersection using real time data by detectors. One of the more recent

approaches is Intelligent Traffic Light Controlling algorithm (ITLC) [5]. It uses vehicular

ad-hoc networks (VANETs) [6] as the backbone, which requires all the vehicles in network

to be equipped with a form of GPS to identify its properties, and aims to decrease the

vehicle wait times.

1.3 Reinforcement Learning Based Approaches

Machine learning, especially reinforcement learning, methods are used to make the agents

or algorithm learn what the dynamics are and act based on those insights. As an example

to reinforcement learning, Wiering has proposed different variations of reinforcement

learning methods to be applied to traffic environment and created the Green Light District

(GLD) simulator with the purpose of demonstration [7] which was used in other works [8]

for further development. Recently, reinforcement learning gained much attention as Deep

3

Q-Networks (DQN) has shown robust performance on Atari games [9]. One of the similar

approaches called Deep Deterministic Policy Gradient (DDPG) [10] has shown success on

large continuous action and state spaces.

The methods to be applied at real world traffic environments have to have a robust

performance under a wide variety of conditions and has to react fast when a dramatic

change happens. As deep reinforcement learning has shown its success, in our approach,

we are applying several on-policy reinforcement learning algorithms with real world

constraints to achieve robust performance with an ability to adapt safely to real world

intersections as the main contribution of this work.

4

Chapter 2

Reinforcement Learning

Reinforcement learning is a subfield of machine learning that learns the solution by trial

and error [11]. The main elements in these methods are the agent and the environment.

We define the environment as the world that the agent sees and interacts with. The agent,

is not given what actions (𝑎 ∈ 𝒜) to take under specific situations, but rather, it must

discover the best action to take by interacting with the given partially observable

environment states (𝑠 ∈ 𝒮) and apply the action to the environment. By defining a reward

(𝑟 ∈ ℛ) function as a signal from the environment, the actions of the agent are evaluated

that will make the agent to take better actions by learning the optimum policy (𝜋(𝑎|𝑠)) to

maximize its cumulative reward, or return. Agent learns which actions and states produce

higher rewards through exploration and performs actions accordingly through

exploitation.

Each state that the agent observes is associated with a value (𝑉(𝑠)), or state-action pair,

calculated by a value function to predict the expected rewards under the taken policy,

which is used to evaluate how good a given state is. Here, the main goal of the

reinforcement learning is to learn policy and value function.

5

Figure 1. Reinforcement Learning Diagram

The interaction between the environment and the agent is a sequence of states

(observations from the environment), actions and rewards in time (𝑡 = 1,2, … , 𝑇). During

this process of learning, the agent accumulates knowledge of environment, learns an

optimal policy by taking the best actions until the process is terminated. The sequence of

states and actions is described by a trajectory (𝜏) and could be represented as below:

𝜏 = (𝑠0, 𝑎0, 𝑠1, 𝑎1, …)

where the very first state 𝑠0 is randomly sampled and state transitions at 𝑡 + 1 depend on

only the most recent action 𝑎𝑡. Actions come from the agent according to its determined

policy.

Reward function is a critical element for an agent to learn the environment, it depends on

the current state, the latest action taken, and the next state obtained by executing the latest

action:

𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1)

Even though there are variety of approaches to solve RL problems, policy optimization

methods are used in this work due to proven effectiveness of policy optimization methods

on continuous control problems. These methods require actions to be drawn from a

probability distribution that is generated by a policy 𝑎𝑡 ∼ 𝜋𝜃(𝑎𝑡|𝑠𝑡) where 𝜃 represents

6

the parameters. They optimize parameters 𝜃 either by gradient ascent on the objective

given in (1), like A2C, or maximizing local approximations of the objective, like how

PPO behaves. This optimization is nearly always performed on-policy, meaning that each

update uses data collected while executing the current version of the policy.

Policy gradient methods are a subclass of policy optimization and they aim to learn the

policy using a parameterized function respect to 𝜃, 𝜋𝜃(𝑎|𝑠). The optimum value of 𝜃

could be found by gradient ascent to produce the highest expected reward by maximizing

the score function given in (1) where 𝑑𝜋(𝑠) is state distribution, 𝑄𝜋(𝑠, 𝑎) is state-action

value and 𝜋𝜃(𝑎|𝑠)𝑄𝜋(𝑠, 𝑎) is action distribution.

 𝐽(𝜃) = ∑ 𝑑𝜋(𝑠)𝑉𝜋(𝑠)

𝑠∈𝒮

= ∑ 𝑑𝜋𝜃(𝑠)

𝑠∈𝒮

∑ 𝜋𝜃(𝑎|𝑠)𝑄𝜋𝜃(𝑠, 𝑎)

𝑎∈𝒜

 (2.1)

2.1 Advantage Actor-Critic (A2C)

There are two main components in policy gradient based methods: policy model and value

function. In vanilla policy gradient methods, the value function is not optimized although

it would be very useful as the value function could assist the policy update. However,

Actor-Critic methods takes optimization of value function into consideration and consists

of two models:

- Critic model updates and optimizes value function parameters 𝒘.

- Actor model is used to update the policy parameters 𝜽, using critic model evaluations.

A2C [12] is a policy gradient algorithm designed to be used specifically on parallel

training. Multiple critic models learn the value function by multiple actor models as

they’re being trained in parallel and both global parameters 𝜽 and 𝒘 are updated

asynchronously using local gradients of the parameters.

7

Figure 2. Actor Critic Model Representation

2.2 Trust Region Policy Optimization (TRPO)

To increase training stability, changing policy too much by parameter updates at one step

should be avoided. TRPO [13] takes this idea into account by enforcing a constraint called

KL divergence (trust region constraint) to limit policy updates at each iteration. It still

aims to maximize the objective function while labeling behavior policy as 𝜋𝜃𝑜𝑙𝑑
(𝑎 ∣ 𝑠)

(2.2), however, by applying trust region constraint, it enforces the distance between new

and old policies to be small enough, within a parameter 𝛿 and the improvement would be

monotonic:

𝐽(𝜃) = 𝔼

𝑠∼𝑝
𝜋𝜃𝑜𝑙𝑑 ,𝑎∼𝜋𝜃𝑜𝑙𝑑

(
𝜋𝜃(𝑎 ∣ 𝑠)

𝜋𝜃𝑜𝑙𝑑
(𝑎 ∣ 𝑠)

𝐴
^

𝜃𝑜𝑙𝑑
(𝑠, 𝑎))

 𝔼
𝑠∼𝑝

𝜋𝜃𝑜𝑙𝑑 [𝐷𝐾𝐿(𝜋𝜃𝑜𝑙𝑑
(. ∣ 𝑠) ∣∣ 𝜋𝜃(. ∣ 𝑠))] ≤ 𝛿 (2.2)

2.3 Proximal Policy Optimization (PPO)

PPO adopts the same idea of TRPO by implementing a similar constraint. PPO [14]

simplifies the idea by using a clipped surrogate objective by forcing ratio between new

and old policies denoted as 𝑟(𝜃), to stay within a relatively small interval at [1 − 𝜖, 1 +

8

𝜖] given 𝜖 is a hyperparameter. PPO has been tested and it produced good results with

much greater simplicity.

𝑟(𝜃) =

𝜋𝜃(𝑎|𝑠)

𝜋𝜃old
(𝑎|𝑠)

 (2.3)

Additionally, to encourage enough exploration, the objective function is augmented with

an error term on the value function (𝑐1(𝑉𝜃(𝑠) − 𝑉target)
2) and an entropy term

(𝑐2𝐻(𝑠, 𝜋𝜃(.))) where objective function becomes:

 𝐽CLIP'(𝜃) = 𝔼[𝐽CLIP(𝜃) − 𝑐1(𝑉𝜃(𝑠) − 𝑉target)
2 + 𝑐2𝐻(𝑠, 𝜋𝜃(.))]

(2.4)

where 𝑐1 and 𝑐2 are hyperparameter constraints and 𝐻(𝑠, 𝜋𝜃(.)) is entropy function.

9

Chapter 3

Methodology

The methodology we have followed could be categorized into five categories:

1. Traffic Simulation

2. State Space Representation

3. Action Space Definition

4. Reward Function Design

5. Vehicle Generation Method

3.1 Traffic Simulation

We use simulator packages to create the network, simulate and interact with the

environment to able to produce valuable results. Traffic simulations in microscale are

designed and executed using a microscopic traffic simulation package, SUMO

(Simulation of Urban MObility) [15], which allows each vehicle to be designed and

tracked individually through the network. In our network, each road is represented with

edges and the lanes in each road are displayed individually. Each phase is connected to

lanes, and connections represents the ways that vehicles can pass. Routes are the defined

to depict which routes a vehicle can take according to the lane change algorithm. The

connections and phase configurations are shown in section 4.1.

At intersections, phases are switched on and off, where switching on means turning all

the lights included in related phase to green and switching off means turning all the lights

to first yellow and then red. Each phase has a green time assigned to it and after green

times are executed for all the phases, it’s called a cycle [16]. The codes for the behavior

of intersection and phases can be found at appendix section. Intersection and phase

representation is shown in figure 3 and total cycle time is calculated as below where 𝑡𝑝

is the phase duration and 𝑡𝑡 is transition time:

10

𝑡𝑐𝑦𝑐𝑙𝑒 = 𝑡𝑝𝑖 + 𝑡𝑡𝑖 + 𝑡𝑝𝑖+1 + 𝑡𝑡𝑖+1 + ⋯

Figure 3. Intersection and phase representation

OpenAI Gym [17] is a toolkit to enable development of reinforcement learning

algorithms. The traffic environment is designed and implemented using Gym toolkit,

which has defined properties and functions to modify according to each specification. The

step function is called each step of the simulation with the selected action, and is used to

return four values:

- Observation is the representation of the environment state.

- Reward is the amount of reward given by the previous action of the agent.

- Done is a true/false value indicating whether or not the episode ended. If the

episode ended or quitted, the environment is reset by reset function.

- Info is a dictionary to be used for debugging.

The agent then chooses an action based on the observation and reward returned by step

function as defined in chapter 2.

11

3.2 State Representation

As we are using a traffic simulator for evaluation purposes, the traffic states at each step

in the environments are fully observable to us. However, in order to adapt our system to

the real world, how we obtain the state must be available in a typical real world traffic

setup. We have seen that, the most noticeable datasets are obtained by traffic detectors

[18] and one of the most common detectors to obtain real time information of the traffic

are induction loops that are placed under the pavement [19]. Therefore, we assume that

there are loop sensors at the beginning and the end of each incoming lane and constrain

the state space with the vehicle count and queue length inside the lane.

There are two principles adapted to choose a state:

a) the agent has the information it needs to make a good decision and

b) there is no unneeded information as unneeded information can lead to extra

training time and slower learning by increasing the computation cost due to larger

state spaces.

Therefore, the current state of the simulation environment is represented as a 𝑛x𝑚 matrix

where 𝑛 is the edge count of the specific intersection and 𝑚 is the maximum lane count,

similar to the concept used in [20]. While counting the vehicles, the whole capacity of

lanes is taken into account and the vehicles waiting inside the intersections are ignored.

Figure 4. State Space Representation of an Intersection

12

3.3 Action Space Definition

Some approaches use single real value and use that value to set the duration of the next

phase [21] and some of the other approaches use action to decide which phase to make a

transition into [22]. However, these kinds of approaches could lead to chaotic situations

as the agent doesn’t fully utilize the intersection dynamics as each phase should be set

depending on all the phases in the intersection and doesn’t take cycle demands into

account. In order to avoid this, we set the phase (green time) durations off all phases at

the beginning of each cycle. This way, if a network has 𝑘 phases, the action vector would

have 𝑘 components where each element of the action vector being a positive integer

number for each phase duration.

The transition (yellow) time 𝑇𝑡 of a traffic light is the time where the traffic lights turn to

yellow when going from green to red or red to green to enable vehicles to slow down

before a red light. As SUMO implements a car-following and mostly collision-free model,

it’s difficult for the agent to optimize transition times. Therefore, transition times are not

learnt and set with a default value of ten seconds.

The agents in reinforcement learning typically use either a discrete (or multi discrete) or

continuous (or Box) action space [11]. Using continuous values, actions are expressed as

real values in the given range, but discrete action space allows the agent to take a distinct

action to perform from a finite action set [23]. Using discrete action set allows one to

simplify the model both conceptually and computationally as the action is limited to a

given number instead of being infinite like continuous action space utilizes. Therefore,

we have defined a discrete action space as given:

𝐴𝑑 = {𝑎1, 𝑎2, … , 𝑎𝑘}

where 𝑎 is the phase duration for each phase in the range of [0,𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛], 𝑎𝑚𝑖𝑛 is the

minimum phase time and 𝑎𝑚𝑎𝑥 is the maximum phase time. 𝑎𝑚𝑖𝑛 is set with a default

value of ten seconds. Default values are chosen according to the typical transition time

and typical minimum phase time executed in the city of Kayseri. This definition allows

us to utilize real world problems better as in the real world, as we have green time limits

that each phase can execute.

13

3.4 Reward Function Design

To define the solution in the best way, the traffic has to be analyzed in a good way. To

achieve this, two measurements are analyzed in this approach:

 Queue detection: Queue is defined as “A line of vehicles, bicycles, or persons

waiting to be served by the system in which the flow rate from the front of the

queue determines the average speed within the queue.” [24] To reduce and

eliminate queueing, no lane should exceed a number of vehicles on it calculated

based on the following formula:

𝑞_𝑚𝑎𝑥𝑖 = {

 𝑙𝑎𝑛𝑒_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖 ∗ 0.6, 𝑙𝑎𝑛𝑒_𝑙𝑒𝑛𝑔𝑡ℎ𝑖 > 100
𝑙𝑎𝑛𝑒_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑐 ∗ 0.8, 𝑙𝑎𝑛𝑒_𝑙𝑒𝑛𝑔𝑡ℎ𝑖 ≤ 100

(3.1)

If 𝑞𝑖 exceeds 𝑞_𝑚𝑎𝑥𝑖, then the episode is ended with a punishment by a value 𝑅𝑞

where 𝑞𝑖 is the current queue length at lane 𝑖.

 Congestion measurement: Traffic congestion is defined as a condition that occurs

when the use of the intersection increases and causes slower speeds for vehicles

and longer trip times which leads to queues eventually [25]. Congestion is

detected by first checking if there is enough queue in each lane which is denoted

as 𝑙𝑎𝑛𝑒_𝑏𝑎𝑠𝑒𝑖 and whether or not the vehicles are passing through the

intersection easily by checking if there are less vehicles passed through the

intersection in the cycle than the average count of vehicles passed at previous 𝑘

cycles with the following formula:

𝑙𝑎𝑛𝑒_𝑏𝑎𝑠𝑒𝑖 = 𝑙𝑎𝑛𝑒_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖 ∗ 0.3

(3.2)

𝑝𝑎𝑠𝑠𝑒𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑡𝑜𝑡𝑎𝑙𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑡𝑜𝑡𝑎𝑙𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠

(3.3)

𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 = {

𝑡𝑟𝑢𝑒, 𝑞𝑖 > 𝑙𝑎𝑛𝑒_𝑏𝑎𝑠𝑒𝑖

𝑎𝑛𝑑 𝑝𝑎𝑠𝑠𝑒𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 < 𝑝𝑎𝑠𝑠𝑒𝑑𝑎𝑣𝑔

 𝑓𝑎𝑙𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3.4)

If a congestion is detected, then the episode is ended with a punishment by a

value 𝑅𝑐 .

14

3.5 Vehicle Generation Method

Interaction with the simulation is enabled by TraCI (Traffic Control Interface) [26]. TraCI

gives access to the traffic simulation and allows to retrieve and use values of the network

and all the vehicles in the network. The vehicle generation process takes place at the

beginning of the simulation. Episodes are allowed to run until they finish regardless of

punishment or until 10,000 time steps have passed. After each episode is ended, the

present values are checked to determine whether or not a level, a vehicle trip setting

generated, is solved. After a level is solved, new vehicles are generated, meaning a new

level is created. Otherwise, the episode starts with the current level again. The simulation

process is shown in figure 5.

Figure 5. The simulation process

Vehicles are generated randomly according to the real life trends at chosen intersections

and each configuration is called a level. The intersection flow information are obtained

using monitoring techniques and then analyzed. Then each vehicle is generated with a

departure time, a departure position and a route using that flow information enhanced by

randomness.

Figures 5 and 6 shows the daily vehicle trends at Intersection A and Intersection B. Each

line in the plots shows the load of each edge throughout the time from morning to evening.

We can deduce that, the load of edge 𝐴 in Intersection A increases over time while the

15

loads in the other edges remain moderately same. On the other hand, two edges in

Intersection B show a notable increase while Edge 𝐺 and 𝐴 shows a moderate increase.

Figure 6. Daily Vehicle Trend at Intersection A

Figure 7. Daily Vehicle Trend at Intersection A

16

Chapter 4

Results

4.1 Experiment Design

In order to evaluate how well the algorithms work, we have used two different

intersections with similar features of road and phase number selected in the city of

Kayseri. The real images of the intersections are obtained from Yandex Maps [27], and

the network is drawn using NetEdit [28], which is a tool provided by SUMO package that

is used to create and modify traffic networks. All the phases in the intersections are

obtained by monitoring the intersections and the connections are drawn to indicate which

paths a vehicle can use and are shown as blue and brown lines in figures 8 and 10. The

real length of the roads are obtained using OpenStreetMap [29] API.

Figure 8. Real World View of Intersection A

17

Figure 9. Network Drawing and Phase Configurations of Intersection A

18

Figure 10. Real World View of Intersection B

19

Figure 11. Network Drawing and Phase Configurations of Intersection B

The algorithms explained in chapter 2 are implemented using Stable Baselines [30] from

OpenAI to both junctions and adaptive parameter noise is added for further exploration.

As we are using parameter noise, we used MLP for both the policy and the value function.

The SuMO simulation is stochastic by its nature as a microscopic traffic simulator.

Therefore, the results obtained at each level depend on the random seed set. In order to

20

avoid algorithm overfitting to a single level, we randomize the seed and change the

network at each level as number of roads, maximum number of lanes and phases are same

for both networks.

4.2 Results

To be able to evaluate the performances of the algorithms, we compare the total reward

gained and discounted rewards at one episode although our main reference measure will

be the total reward. Each simulation is run for 200000 time steps due to computation

costs. Runtime of the algorithms are compared in figure 12, and even though there is no

dramatic difference, PPO is the most performant algorithm while TRPO falls behind by

~10.5 hours each run.

Figure 12. Total reward with smoothing gained by step for each algorithm

In figure 13, we can find the performance comparison of the algorithms by comparing the

total reward gained by episode. Although TRPO and PPO reaches a similar level, A2C

outperforms them in a notably short period. A2C was able to eliminate queueing and

congestion successfully. Additionally, it can be said that A2C is much stable by figure 13

where reward plots are shown without smoothing. We can see that there are steep

decreases in the plots given in figure 14, which means the algorithm is punished for either

21

queueing or creating a traffic congestion. And even though TRPO couldn’t converge

within the specified time range, it shows a promising trend in reward accumulation.

Figure 13. Total reward with smoothing gained by step for each algorithm

Figure 14. Total reward without smoothing

As the purpose of this thesis is to decrease the queue length inside intersections and

decrease the waiting times, we are monitoring the queue lengths during training of the

agents. We can see how queue length decreases over time before it stabilizes using A2C

algorithm in figure 15. By figure 15, we deduce that the optimized queue length is highly

dependent on the 𝑞_𝑚𝑎𝑥𝑖 value mentioned in chapter 3.4. Therefore, we could say that

the 𝑞_𝑚𝑎𝑥𝑖 value itself needs to be optimized and 𝑅𝑐 value should depend on the 𝑞𝑖

instead of being a default, fixed value.

As TRPO and PPO algorithms were not able to converge and stabilize, the results are not

presented.

22

Figure 15. Queue Length per Episode

In figure 16, discounted reward plot can be found. We can see that while discounted

reward for TRPO gradually increases, PPO shows an increase until halfway and then

converges with no further increase. Even though A2C performed best in terms of total

reward, we see a decrease in discounted reward.

Figure 16. Calculated discounted reward by step for each algorithm

23

Chapter 5

Conclusions and Future Prospects

5.1 Conclusions

We studied the effectiveness of reinforcement learning to real world problems,

specifically traffic environments and have successfully applied three of the on-policy

reinforcement learning algorithms to the defined networks. We have obtained good

results for both networks using A2C, meaning that reinforcement learning is able to

converge very well while staying stable under changing dynamics. Even though the other

methods couldn’t show a notable improvement, we can see that reward accumulation by

TRPO shows a promising trend, which means there could be a room for improvement

with hyper parameter tuning and longer training periods.

5.2 Societal Impact and Contribution to Global

Sustainability

As described in chapter 1, traffic congestion has been a problem that affects society and

environment from multiple ways. Besides causing environmental damage, people suffer

from health problems, especially respiratory issues, fuel costs and loss of time. The

approach this thesis provides aims to address traffic issues by increasing the flow of the

vehicles by optimizing the phase and cycle times inside intersections and thus decreasing

the time vehicles wait and queue lengths at the intersections. This thesis provides a way

to achieve this purpose by observing the traffic patterns and training a reinforcement

learning agent with randomly generated samples with real world constraints.

Additionally, this thesis requires only the loop sensors at the entry and exit points of the

roads in the intersections to obtain queue length. Therefore, there is no need to make

24

dramatic changes to the roads which leads to both monetary and energy costs as

deployment of loop sensors are relatively low-cost and does require minor adjustments.

As described in chapter 4, we have seen improvements and valuable results from our

experiments. Our model is able to converge and stabilize in a relatively short time and we

can see the queue lengths are decreasing and thus contributes to economic growth and

sustainable cities and communities achieved by optimally working intersections.

5.3 Future Prospects

The proposed environment design and chosen algorithms work well in the provided

environments and provided vehicle generation trends. However, using this approach in

real time requires generalization of trends and networks, moreover synchronization

between intersections. To achieve this, further studies on curriculum learning [35], [36]

and multi-agent [37], [20] methods is needed.

25

BIBLIOGRAPHY

[1] R. Ross, "Invention of the Traffic Light," Live Science, 2016. [Online]. Available:

https://www.livescience.com/57231-who-invented-the-traffic-light.html.

[2] T. Lomax, D. Schrank and B. Eisele, "2021 Urban Mobility Report," 2021.
[Online]. Available: https://mobility.tamu.edu.

[3] New South Wales Government, "SCATS: Sydney Coordinated Adaptive Traffic

System," 2011. [Online]. Available: https://www.qtcts.com.au/media/512152-
RTA532_SCATS_A4_Product_Brochure_07.pdf..

[4] R. D. Bretherton, "Scoot Urban Traffic Control System—Philosophy and

Evaluation," IFAC Proceedings Volumes, vol. 2, no. 23, pp. 237-239, 1990.

[5] M. B. Younes and A. Boukerche, "An Intelligent Traffic Light scheduling
algorithm," in 39th Annual IEEE Conference on Local Computer Networks

Workshops, 2014.

[6] V. Hamakumar ve H. Nazini, «Optimized traffic signal control system at traffic
intersections using VANET,» %1 içinde Chennai Fourth International

Conference on Sustainable Energy and Intelligent, 2013.

[7] M. Wiering, J. Vreeken, J. v. Veenen and A. Koopman, "Simulation and
Optimization of Traffic in a City," in Intelligent Vehicles Symposium, 2004 IEEE,

2014.

[8] L. Prashanth and S. Bhatnagar, "Reinforcement Learning With Function
Approximation for Traffic Signal Control," in IEEE Transactions on Intelligent

Transportation Systems, 2011.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra ve M.
Riedmiller, «Playing Atari with Deep Reinforcement Learning,» CoRR, 2013.

[10] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver and D.

Wierstra, "Continuous control with deep reinforcement learning," in ICLR , 2016.

[11] R. S. Sutton and A. G. Barto, "1.1 Reinforcement Learning," in Reinforcement
Learning: An Introduction, The MIT Press, 2017.

[12] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Harley, T. P. Lillicrap, D. Silver

and K. Kavukcuoglu, "Asynchronous Methods for Deep Reinforcement
Learning," Proceedings of Machine Learning Research, no. 48, pp. 1928-1937,

2016.

[13] J. Schulman, S. Levine, P. Abbeel, M. Jordan and P. Moritz , "Trust Region Policy
Optimization," Proceedings of Machine Learning Research, no. 37, pp. 1889-

1897, 2015.

[14] J. Schulman, F. Wolski, P. Dhariwal and A. Radford, "Proximal Policy
Optimization Algorithms," OpenAI Researches, 2017.

[15] Eclipse Foundation, "Simulation of Urban MObility," Eclipse Foundation,
[Online]. Available: https://www.eclipse.org/sumo/.

[16] F. H. A. (FHWA), "Traffic Signal Design," in Signal Timing Manual - Second

Edition, Federal Highway Administration (FHWA), 2008.

26

[17] OpenAI, "Gym," OpenAI, [Online]. Available: https://gym.openai.com/.

[18] Papers With Code, "PeMSD7 - Traffic Dataset," Papers With Code, 2012.

[Online]. Available: https://paperswithcode.com/dataset/pemsd7.

[19] A. Spears, "Sensors At Traffic Lights," Eltec Corp., 2019. [Online]. Available:
https://elteccorp.com/news/other/are-there-sensors-at-traffic-lights/.

[20] J. A. Calvo and I. Dusparic, "Heterogeneous Multi-Agent Deep Reinforcement

Learning for Traffic Lights Control," in AICS 2018, 2018.

[21] H. Joo and Y. Lim, "Traffic Signal Time Optimization Based on Deep Q-
Network," Applied Sciences, 2021.

[22] M. Coşkun, A. Baggag and S. Chawla, "Deep Reinforcement Learning for Traffic

Light Optimization," in IEEE International Conference on Data Mining
Workshops (ICDMW), 2018.

[23] W. Masson, P. Ranchod and G. Konidaris, "Reinforcement Learning with

Parameterized Actions," in AAAI Conference on Artificial Intelligence, 2016.

[24] Federal Highway Administration (FHWA), "Definition, Interpretation, and
Calculation of Traffic Analysis Tools Measures of Effectiveness," in Traffic

Analysis Tools, U.S. Department of Transportation, 2021.

[25] Ministry of Transport, New Zealand, "The Congestion Question, Could road
pricing improve Auckland's traffic?," Auckland Council, 2019.

[26] German Aerospace Center (DLR), "TraCI," German Aerospace Center (DLR),

[Online]. Available: https://sumo.dlr.de/docs/TraCI.html.

[27] Yandex, "Yandex Maps," Yandex, [Online]. Available:
https://yandex.com.tr/harita.

[28] German Aerospace Center, "NetEdit," German Aerospace Center, [Online].

Available: https://sumo.dlr.de/docs/Netedit/index.html.

[29] «OpenStreetMap,» [Çevrimiçi]. Available: https://www.openstreetmap.org/.

[30] OpenAI, "Stable Baselines," OpenAI, 2018. [Online]. Available: https://stable-
baselines.readthedocs.io/en/master/.

[31] D. Kahneman, A. B. Krueger ve D. A. Schkade, «A Survey Method for

Characterizing Daily Life Experience: The Day Reconstruction Method,» Science,
cilt 306, no. 5702, pp. 1776-1780, 2004.

[32] N. Lelyveld and S. Grad, "Traffic still tops crime, economy as top L.A. concern,

poll finds," Los Angeles Times, 2015. [Online]. Available:
https://www.latimes.com/local/lanow/la-me-ln-traffic-still-tops-crime-economy-

as-top-l-a-concern-poll-finds-20151007-story.html.

[33] J. J. Kim, S. Smorodinsky, M. Lipsett, B. C. Singer, A. T. Hodgson ve B. Ostro,
«Traffic-related Air Pollution near Busy Roads The East Bay Children's

Respiratory Health Study,» American Journal of Respiratory and Critical Care
Medicine, cilt 5, p. 170, 2004.

[34] Tutkish Statistical Institute, TUIK, "Road Motor Vehicles, March 2022," Tutkish

Statistical Institute, TUIK, March 2022. [Online]. Available:
https://data.tuik.gov.tr/Bulten/Index?p=Road-Motor-Vehicles-March-2022-45706.

[35] L. Weng, "Curriculum for Reinforcement Learning," 2020. [Online]. Available:
https://lilianweng.github.io/posts/2020-01-29-curriculum-rl/.

27

[36] OpenAI, "Quantifying Generalization in Reinforcement Learning," OpenAI, 2018.

[Online]. Available: https://openai.com/blog/quantifying-generalization-in-
reinforcement-learning/.

[37] N. Casas, "Deep Deterministic Policy Gradient for Urban Traffic Light Control,"

2017.

28

APPENDIX

Appendix A: Intersection and Phase Behaviors

class Phase:

 def __init__(self, traci, intersection_id, intersection_config, phase_id,

phase_lanes):

 self.traci = traci

 self.intersection_id = intersection_id

 self.intersection_config = intersection_config

 self.phase_id = phase_id

 self.phase_lanes = phase_lanes

 def set_tl_green(self):

 cnf_len = int(len(self.intersection_config) / 2)

 for i in range (cnf_len):

 tl_id = self.intersection_id + '_' + self.intersection_config[i *

2]

 tl_state_id = self.intersection_config[i * 2 + 1] - 1

 self.traci.trafficlight.setPhase(tl_id, tl_state_id * 3)

 def set_tl_yellow(self):

 cnf_len = int(len(self.intersection_config) / 2)

 for i in range (cnf_len):

 tl_id = self.intersection_id + '_' + self.intersection_config[i *

2]

 tl_state_id = self.intersection_config[i * 2 + 1] - 1

 self.traci.trafficlight.setPhase(tl_id, tl_state_id * 3 + 1)

 def set_tl_red(self):

 cnf_len = int(len(self.intersection_config) / 2)

 for i in range (cnf_len):

 tl_id = self.intersection_id + '_' + self.intersection_config[i *

2]

 tl_state_id = self.intersection_config[i * 2 + 1] - 1

 self.traci.trafficlight.setPhase(tl_id, tl_state_id * 3 + 2)

 def get_phase_occupancy(self):

 occupancy = 0

 lane_occupancies = []

29

 for lane in self.phase_lanes:

 lane_occupancy = len(self.traci.lane.getLastStepVehicleIDs(lane))

 occupancy += lane_occupancy

 lane_occupancies.append(lane_occupancy)

 return occupancy, lane_occupancies

class Intersection:

 def __init__(self, name, id, traci, phases, phase_times, cycle_time):

 self.name = name

 self.id = id

 self.yellow_time = 1

 self.red_time = 1

 self.cycle_time = cycle_time

 self.current_cycle = 1

 self.traci = traci

 self.phases = self.init_phases(phases)

 self.phase_len = len(phases)

 self.order = [i for i in range (self.phase_len)]

 self.current_order = 0

 self.phase_time = phase_times

 self.phase_time_cumulative = [sum(self.phase_time[:i + 1]) for i

in range(self.phase_len)]

 self.current_time = 0

 self.current_yellow_time = 0

 self.current_red_time = 0

 self.current_green_time = 0

 self.current_phase = 0

 self.current_phase_type = 0 #0 for green, 1 for yellow, 2 for red

 self.occupancy = None

 self.prev_occupancy = None

 def init_phases(self, phases):

30

 phases_arr = []

 for i, phase in enumerate(phases):

 phases_arr.append(Phase(self.traci, self.name, phase['config'],

i, phase['lanes']))

 return phases_arr

 def reset(self):

 self.current_cycle = 1

 self.current_time = 0

 self.current_yellow_time = 0

 self.current_red_time = 0

 self.current_green_time = 0

 self.current_phase = 0

 self.current_phase_type = 0 #0 for green, 1 for yellow, 2 for red

 self.current_order = 0

 def set_phase_time(self, new_phase_time):

 # increase all the phase duration by minimum phase duration

 pt = [npt + 10 for npt in new_phase_time]

 self.phase_time = pt

 def take_step(self):

 self.current_time += 1

 if (self.current_phase_type == 1): # if yellow time is over go on

with red

 if (self.current_yellow_time == self.yellow_time):

 self.current_phase_type = 2

 self.current_yellow_time = 0

 self.current_red_time = 1

 self.phases[self.current_phase].set_tl_red()

 else :

 self.current_yellow_time += 1

 elif (self.current_phase_type == 2): # if red is over go on with

green

 if (self.current_red_time == self.red_time):

 self.current_phase_type = 0

31

 self.current_order = (self.current_order + 1) %

(self.phase_len)

 self.current_phase = self.order[self.current_order]

 if (self.current_phase == 0):

 self.current_cycle += 1

 self.current_red_time = 0

 self.current_green_time = 1

 self.phases[self.current_phase].set_tl_green()

 else :

 self.current_red_time += 1

 elif (self.current_phase_type == 0): # if green time is over go on

with yellow

 if (self.current_green_time ==

self.phase_time[self.current_phase]):

 self.current_phase_type = 1

 self.current_green_time = 0

 self.current_yellow_time = 1

 self.phases[self.current_phase].set_tl_yellow()

 else :

 self.current_green_time += 1

 def get_occupancies(self):

 self.prev_occupancy = self.occupancy

 occupancies = [0 for i in range (len(self.phases))]

 lane_occupancies = [[] for i in range (len(self.phases))]

 for i in range (len(self.phases)):

 occupancies[i], lane_occupancies[i] =

self.phases[i].get_phase_occupancy()

 self.occupancy = occupancies

 return occupancies, lane_occupancies

32

Appendix B: Interaction With the Model and Gym Environment

obs = environment.reset()

while True:

 action, _states = model.predict(observation)

 observation, rewards, is_done, info = environment.step(action)

 if (is_done):

 break

 environment.render()

33

CURRICULUM VITAE

EXPERIENCE

2017 Summer Intern, Kayseri Ulaşım A.Ş., Kayseri, TURKEY

2018 Summer Intern, Boğaziçi University, Istanbul, TURKEY

2018 – 2022 Computer Engineer, Kayseri Ulaşım A.Ş., Kayseri, TURKEY

2022 – Present Computer Engineer, Apptec360, Basel, SWITZERLAND (Remote)

EDUCATION

2014 – 2019 B.Sc., Computer Engineering, Abdullah Gul University, Kayseri,

TURKEY

2019 – Present M.Sc., Electrical and Computer Engineering, Abdullah Gul

University, Kayseri, TURKEY

