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POSITIVE SOLUTIONS FOR AN m-POINT
BOUNDARY-VALUE PROBLEM

LE XUAN TRUONG, LE THI PHUONG NGOC, NGUYEN THANH LONG

Abstract. In this paper, we obtain sufficient conditions for the existence

of a positive solution, and infinitely many positive solutions, of the m-point
boundary-value problem

x′′(t) = f(t, x(t)), 0 < t < 1,

x′(0) = 0, x(1) =

m−2X
i=1

αix(ηi) .

Our main tools are the Guo-Krasnoselskii’s fixed point theorem and the mono-

tone iterative technique. We also show that the set of positive solutions is
compact.

1. Introduction

The existence and multiplicity of positive solutions for boundary-value problems
have been extensively studied by many authors using various techniques, such fixed
point theorem in cones, the nonlinear alternative of Leray-Schauder, the Leggett-
William’s fixed point theorem, monotone iterative techniques. We refer the reader
to the references in this article and the references therein for the results of multi-
point boundary-value problems.

Han [5] studied the existence of positive solutions for the three-point boundary-
value problem at resonance

x′′(t) = f(t, x(t)), 0 < t < 1, (1.1)

x′(0) = 0, x(η) = x(1), (1.2)

where η ∈ (0, 1). The main tool is the fixed point theorem in cones. By the
same method, Long and Ngoc [6] have studied the equation (1.1) together with the
boundary conditions

x′(0) = 0, x(1) = αx(η), (1.3)

where α and η in (0, 1). The authors proved the existence of positive solutions and
established the compactness of the set of positive solutions.
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Based on the above works, we investigate the m-point boundary-value problem
consisting of the equation (1.1) together with the boundary conditions

x′(0) = 0, x(1) =
m−2∑
i=1

αix(ηi), (1.4)

where m ≥ 3, 0 < η1 < η2 < · · · < ηm−2 < 1 and αi ≥ 0, for all i = 1, 2, . . . m −
2 such that

∑m−2
i=1 αi < 1. We shall establish the existence and multiplicity of

positive solutions by applying well-know Guo-Krasnoselskii’s fixed point theorem
and applying the monotone iterative technique.

Let β ∈ (0, π
2 ). Obviously, problem (1.1), (1.4) is equivalent to the problem

x′′(t) + β2x(t) = g(t, x(t)), (1.5)

x′(0) = 0, x(1) =
m−2∑
i=1

αix(ηi), (1.6)

where
g(t, x) = f(t, x) + β2x. (1.7)

In this paper, we sue the following assumptions:
(H1)

∑m−2
i=1 αi cos βηi − cos β > 0;

(H2) f : [0, 1]× [0,+∞) → R is a continuous function such that

f(t, x) ≥ −β2x,∀t ∈ [0, 1], x ∈ [0,+∞); (1.8)

(H2’) The function f(t, x) is nondecreasing in x and satisfy (H2)
We put:

Km =
1∑m−2

i=1 αi cos βηi − cos β
;

M =
sinβ

β
(1 + Km);

M0 =
Km cos β

β

(
1−

m−2∑
i=1

αi

)
sinβ(1− ηm−2).

The main results for the existence and multiplicity of positive solutions are the fol-
lowing theorems, in which the operator T and constant c, 0 < c < 1 will be defined
in next section. Applying well-know Guo-Krasnoselskii’s fixed point theorem, we
obtain the following result.

Theorem 1.1. Let (H1)–(H2) hold. If there exist two constants R1, R2 such that
R1 < cR2 and one the following two conditions is satisfied:

f(t, x) + β2x ≤ R1

M
, ∀(t, x) ∈ [0, 1]× [cR1, R1],

f(t, x) + β2x ≥ R2

M0ηm−2
, ∀(t, x) ∈ [0, 1]× [cR2, R2],

(1.9)

or
f(t, x) + β2x ≥ R1

M0ηm−2
, ∀(t, x) ∈ [0, 1]× [cR1, R1],

f(t, x) + β2x ≤ R2

M
, ∀(t, x) ∈ [0, 1]× [cR2, R2].

(1.10)

Then the boundary-value problem (1.5)-(1.7) has a positive solution.
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Using the monotone iterative technique, we have the following result.

Theorem 1.2. Let (H1), (H2’) hold. Suppose there exist two positive numbers
R1 < R2 such that

sup
t∈[0,1]

g(t, R2) ≤
R2

M
, inf

t∈[0,1]
g(t, cR1) ≥

R1

M0ηm−2
. (1.11)

Then problem (1.5)-(1.7) has positive solutions x∗1, x∗2, x∗1 and x∗2 may coincide with

R1 ≤ ‖x∗1‖ ≤ R2 and lim
n→+∞

Tnx0 = x∗1, where x0(t) = R2, t ∈ [0, 1],

and

R1 ≤ ‖x∗2‖ ≤ R2 and lim
n→+∞

Tnx̂0 = x∗2, where x̂0(t) = R1, t ∈ [0, 1].

Clearly, in the above theorem, we not only obtain the existence as in Theorem
1.1, but also we establish a sequence which converges to a solution of problem
(1.5)-(1.7).

This paper consists of five sections. In Section 2, we present the lemmas that will
be used to prove the existence results. The proofs and two corollaries of Theorems
1.1, 1.2 will be given in Section 3. In Section 4, we give sufficient conditions for
existence of infinitely many positive solutions, furthermore, an example is also given
here. Finally, in section 5, we show that the set of positive solutions is compact.

2. Preliminaries

Consider the Banach spaces C[0, 1] and C2[0, 1] equipped with the norms

‖x‖ = max{|x(t)| : 0 ≤ t ≤ 1},
‖x‖2 = max{‖x‖, ‖x′‖, ‖x′′‖},

respectively. We define a linear operator L : D(L) ⊂ C2[0, 1]] → C[0, 1] by setting

Lx := x′′ + β2x, (2.1)

in which D(L) = {x ∈ C2[0, 1] : x′(0) = 0, x(1) =
∑m−2

i=1 αix(ηi)}. We shall
proceed with some properties of the inverse operator of L.

Lemma 2.1. Let β ∈ (0, π
2 ). Then for each h ∈ C[0, 1], there a unique function

x = A(h) ∈ D(L) such that Lx = h in (0, 1). The function A(h) is defined by

Ah(t) =
∫ 1

0

G(t, s)h(s)ds, (2.2)



4 L. X. TRUONG, L. T. P. NGOC, N. T. LONG EJDE-2008/111

where

G(t, s) =

{
1
β sinβ(t− s), 0 ≤ s ≤ t ≤ 1,

0, 0 ≤ t ≤ s ≤ 1

+
Km

β
cos βt



sinβ(1− s)−
∑m−2

i=1 αi sinβ(ηi − s), 0 ≤ s ≤ η1,

sinβ(1− s)−
∑m−2

i=2 αi sinβ(ηi − s), η1 ≤ s ≤ η2,

sinβ(1− s)−
∑m−2

i=3 αi sinβ(ηi − s), η2 ≤ s ≤ η3,

. . .

sinβ(1− s)−
∑m−2

i=k αi sinβ(ηi − s), ηk−1 ≤ s ≤ ηk,

. . .

sinβ(1− s), ηm−2 ≤ s ≤ 1.

(2.3)

Lemma 2.2. Let β ∈ (0, π
2 ). We have

(i) The operator A : C[0, 1] → C[0, 1] is completely continuous linear operator.
(ii) For any positive function h ∈ C[0, 1], the function Ah is also positive.

The proof of Lemmas 2.1, 2.2 are straightforward and we will omit them. Now,
we shall establish some estimations for the Green function G(t, s).

Lemma 2.3. Let β ∈ (0, π
2 ) and (H1) hold. Then

(i) 0 ≤ G(t, s) ≤ M for all (t, s) ∈ [0, 1]× [0, 1].
(ii) G(t, s) ≥ M0, for all (t, s) ∈ [0, 1]× [0, ηm−2].
(iii) There exist a constant c ∈ (0, 1) and a continuous function Φ : [0, 1] →

[0,+∞) such that

cΦ(s) ≤ G(t, s) ≤ Φ(s), for all t, s ∈ [0, 1].

Proof. Part (i). From the Green function G(t, s), we deduce that

0 ≤ G(t, s) ≤ sinβ

β
(1 + Km) ≡ M, ∀(t, s) ∈ [0, 1]× [0, 1]. (2.4)

Part (ii). Put η0 = 0, ηm−1 = 1. For all t ∈ [0, 1] and s ∈ [ηk−1, ηk], we have

G(t, s) ≥ Km cos βt

β

[
sinβ(1− s)−

m−2∑
i=k

αi sinβ(ηi − s)
]

≥ Km cos βt

β

[
sinβ(1− s)−

m−2∑
i=k

αi sinβ(1− s)
]

≥ Km cos βt

β

(
1−

m−2∑
i=k

αi

)
sinβ(1− s)

≥ Km cos β

β

(
1−

m−2∑
i=1

αi

)
sinβ(1− ηm−2) ≡ M0.

(2.5)

Since the above inequality holds for k = 1, 2, . . . ,m − 2, the proof part (ii) is
complete.
Part (iii). Let

H(t, s) = µ(1− s)−G(t, s).
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We shall show that when µ > 0 sufficiently large,

H(t, s) ≥ 0, ∀(t, s) ∈ [0, 1]× [0, 1], (2.6)

and that when µ > 0 sufficiently small,

H(t, s) ≤ 0, ∀(t, s) ∈ [0, 1]× [0, 1]. (2.7)

To prove (2.6), we use that from (2.3), for all t, s ∈ [0, 1],

G(t, s) ≤ 1
β

sinβ(1− s) +
Km

β
sinβ(1− s) ≤ (Km + 1) (1− s); (2.8)

therefore

H(t, s) ≥ µ(1− s)− (Km + 1) (1− s) = (µ−Km − 1) (1− s). (2.9)

So, if we choose µ ≡ µ1 ≥ Km + 1 then H(t, s) ≥ 0, for all t, s ∈ [0, 1].
To prove of (2.7), we consider two cases:
Case 1: s ∈ [0, ηm−2]. From (2.5) we can deduce that, for all t ∈ [0, 1],

H(t, s) = µ(1− s)−G(t, s) ≤ µ(1− s)−M0 ≤ µ−M0. (2.10)

So, for µ ≤ M0, we have H(t, s) ≤ 0, for all t ∈ [0, 1], s ∈ [0, ηm−2].
Case 2: s ∈ [ηm−2, 1]. The function z 7→ sin z

z is decreasing on (0, π], so we
obtain

sinβ(1− s)
β(1− s)

≥ sinβ(1− ηm−2)
β(1− ηm−2)

.

Therefore,
H(t, s) = µ(1− s)−G(t, s)

≤ µ(1− s)− Km cos β

β
sinβ(1− s)

≤ µ(1− s)−Km cos β
sinβ(1− s)

β(1− s)
(1− s)

≤
[
µ−Km cos β

sinβ(1− ηm−2)
β(1− ηm−2)

]
(1− s).

(2.11)

If we choose µ ≤ Km cos β sin β(1−ηm−2)
β(1−ηm−2)

≡ M1, then H(t, s) ≤ 0, for all t ∈ [0, 1],
s ∈ [ηm−2, 1].

Hence, for µ ≡ µ2 ≤ min{M0,M1} = M0, we have H(t, s) ≤ 0, for all t, s ∈ [0, 1].
Finally, by letting Φ(s) = µ1(1 − s) and c = µ2

µ1
, the part (iii) of this lemma is

proved. �

Let K be the cone in C[0, 1], consisting of all nonnegative functions and

P = {x ∈ K : x(t) ≥ c‖x‖, ∀t ∈ [0, 1]}.
It is clear that P is also a cone in C[0, 1]. For each x ∈ P , denote F (x)(t) =

g(t, x(t)), t ∈ [0, 1]. From the assumption (H2) we deduce that the operator F :
P → K is continuous. Therefore, the operator T ≡ A ◦ F : P → K is a completely
continuous. On the other hand, for x ∈ P , by Lemma 2.3 we have

Tx(t) =
∫ 1

0

G(t, s)F (x)(s)ds ≥ c

∫ 1

0

Φ(s)F (x)(s)ds, (2.12)

‖Tx‖ = max
0≤t≤1

∫ 1

0

G(t, s)F (x)(s)ds ≤
∫

Φ(s)F (x)(s)ds, (2.13)
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which implies
Tx(t) ≥ c‖Tx‖. (2.14)

Hence, we have the following result.

Lemma 2.4. The operator T ≡ A◦F : P → P is a completely continuous operator.

It is easy to verify the nonzero fixed points of the operator T are the positive
solutions of the problem (1.5)-(1.7).

3. Proofs and corollaries of main Theorems

At first, by using the same method as in [5] and the monotone iterative tech-
nique, combining with Lemmas 2.1–2.4, we prove Theorems 1.1 and 1.2. For the
convenience of the reader, let us state the following Guo-Krasnoselskii’s fixed point
theorem [3].

Theorem 3.1 (Guo-Krasnoselskii). Let X be a Banach space, and let P ⊂ X be
a cone. Assume Ω1, Ω2 are two open bounded subsets of X with 0 ∈ Ω1, Ω1 ⊂ Ω2

and let T : P ∩ (Ω2\Ω1) → P be a completely continuous operator such that
(i) ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2, or
(ii) ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω2\Ω1).

Proof of Theorem 1.1. Let

Ω1 = {x ∈ C[0, 1]| : ‖x‖ < R1}, Ω2 = {x ∈ C[0, 1]| : ‖x‖ < R2} .

Then Ω1,Ω2 are open bounded subsets of C[0, 1] with 0 ∈ Ω1,Ω1 ⊂ Ω2.
Case (1.9). For x ∈ P with ‖x‖ = R1, we have

g(s, x(s)) = f(s, x(s)) + β2x(s) ≤ R1

M
=
‖x‖
M

.

So

‖Tx‖ = max
t∈[0,1]

∫ 1

0

G(t, s)g(s, x(s))ds ≤ ‖x‖
M

axt∈[0,1]

∫ 1

0

G(t, s)ds ≤ ‖x‖ .

This implies
‖Tx‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂Ω1. (3.1)

On the other hand, for x ∈ P with ‖x‖ = R2, we have

Tx(t) =
∫ 1

0

G(t, s)
(
f(s, x(s)) + β2x(s)

)
ds

≥ R2

M0ηm−2

∫ ηm−2

0

G(t, s)ds ≥ R2 = ‖x‖,

accordingly
‖Tx‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂Ω2. (3.2)

By (3.1)-(3.2) and the first part of Theorem 3.1, it follows that T has a fixed point
x0 in P ∩ (Ω2\Ω1), such x0 is a positive solution of (1.5)-(1.7).

Case (1.10). In this case, using the same method, by the second part of Theorem
3.1, we obtain the same result as above.

The proof is complete. �
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Proof of Theorem 1.2. We define

P[R1,R2] = {x ∈ P : R1 ≤ ‖x‖ ≤ R2}.
Let x ∈ P[R1,R2], then cR1 ≤ c‖x‖ ≤ x(t) ≤ ‖x‖ ≤ R2, for all t ∈ [0, 1]. So, we have

Tx(t) =
∫ 1

0

G(t, s)g(s, x(s))ds ≤ R2

M

∫ 1

0

G(t, s)ds ≤ R2,

Tx(t) =
∫ 1

0

G(t, s)g(s, x(s))ds ≥
∫ 1

0

G(t, s)g(s, cR1)ds ≥ R1,

which implies TP[R1,R2] ⊂ P[R1,R2].
Now, let x0(t) = R2, t ∈ [0, 1] then x0 ∈ P[R1,R2]. We put

xn+1 = Txn = Tn+1x0, n = 1, 2, . . . (3.3)

Since TP[R1,R2] ⊂ P[R1,R2] we have xn ∈ P[R1,R2], for all n ∈ Z+. By the Lemma
2.4, we can deduce that there exists a subsequence {xnk

} of {xn} such that

lim
k→+∞

xnk
= x∗1 ∈ P[R1,R2]. (3.4)

On the other hand, from the assumption (H2’), it is clear that T : P[R1,R2] →
P[R1,R2] is nondecreasing. Therefore, since

0 ≤ x1(t) ≤ ‖x1‖ ≤ R2 = x0(t), t ∈ [0, 1],

we have Tx1 ≤ Tx0, i.e., x2 ≤ x1. By induction, then

xn+1 ≤ xn, for all n = 1, 2, . . . . (3.5)

Combining (3.4) and (3.5), we obtain

lim
n→+∞

xn = x∗1. (3.6)

Letting n → +∞ in (3.3) yields Tx∗1 = x∗1.
Let x̂0(t) = R1,t ∈ [0, 1] and x̂n+1 = T x̂n, n = 1, 2, . . . . We have x̂0 ∈ P[R1,R2]

which implies that x̂n ∈ P[R1,R2], for all n ∈ Z+. Moreover, from the assumptions
of Theorem 1.2 and from the definition of the operator T ,

x̂1(t) = T x̂0(t) ≥
∫ 1

0

G(t, s)g(s, cR1)ds ≥ R1 = x̂0(t), t ∈ [0, 1].

Therefore, by using the arguments as above, we deduce that x̂n → x∗2 ∈ P[R1,R2]

and Tx∗2 = x∗2. The proof is complete. �

Next, in order to present the first corollary, we will use the following notation:

f0 = lim sup
x→0+

max
t∈[0,1]

f(t, x)
x

, f∞ = lim sup
x→+∞

max
t∈[0,1]

f(t, x)
x

,

f0 = lim inf
x→0+

min
t∈[0,1]

f(t, x)
x

, f∞ = lim inf
x→+∞

min
t∈[0,1]

f(t, x)
x

.

Corollary 3.2. Let (H1)–(H2) hold. Then the boundary-value problem (1.5)-(1.7)
has at least one positive solution in the case

(i) f0 ≤ −β2 + 1
M and f∞ ≥ 1

M0ηm−2
, (in particular f0 = −β2, f∞ = ∞); or

(ii) f0 ≥ 1
M0ηm−2

and f∞ ≤ −β2 + 1
M , (in particular f0 = ∞, f∞ = −β2).

Proof. It is easy to verify that conditions of Theorem 1.1 can be obtained from
conditions (i) or (ii) of this corollary. We omit the proof. �
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We close this section with the following result.

Corollary 3.3. Let (H1), (H2’) hold. Further assume

lim inf
x→+∞

sup
t∈[0,1]

f(t, x)
x

≤ −β2 +
1
M

,
(
in particular lim inf

x→+∞
sup

t∈[0,1]

f(t, x)
x

= −β2
)

(3.7)
and

lim sup
x→0+

inf
t∈[0,1]

f(t, x)
x

≥ 1
M0ηm−2

,
(
in particular lim sup

x→0+
inf

t∈[0,1]

f(t, x)
x

= +∞
)
.

(3.8)
Then there exist two constants 0 < R1 < R2 such that the problem (1.5)-(1.7) has
positive solutions x∗1, x∗2 (x∗1 and x∗2 may coincide) with

R1 ≤ ‖x∗1‖ ≤ R2 and lim
n→+∞

Tnx0 = x∗1, where x0(t) = R2, t ∈ [0, 1], (3.9)

R1 ≤ ‖x∗2‖ ≤ R2 and lim
n→+∞

Tnx̂0 = x∗2, where x̂0(t) = R1, t ∈ [0, 1]. (3.10)

Clearly, from the assumptions of this corollary, the conditions of Theorem 1.2
hold. So we omit the proof.

4. Existence of infinitely many positive solutions

In this section we give sufficient conditions for existence of infinitely many posi-
tive solutions. For this purpose, we assume that there exists a sequence {Rn}∞n=1 ⊂
R such that 0 < Rn < cRn+1 and for all n ∈ N,

(H3) f(t, x) + β2x ≤ R2n+1
M , for all (t, x) ∈ [0, 1]× [cR2n−1, R2n−1],

(H4) f(t, x) + β2x ≥ R2n

M0ηm−2
, for all (t, x) ∈ [0, 1]× [cR2n, R2n].

Theorem 4.1. Assume (H1)–(H4) hold. Then the boundary-value problem (1.5)-
(1.7) has infinitely many positive solutions {xn}n∈N satisfying R2n−1 ≤ ‖xn‖ ≤
R2n, for n ∈ N.

Proof. Let Ωn = {x ∈ C[0, 1] : ‖x‖ < Rn}. Then 0 ∈ Ωn and Ωn ⊂ Ωn+1, for
n ∈ N. In the following, we show that for all n ∈ N,

‖Tx‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂Ω2n−1, (4.1)

‖Tx‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂Ω2n. (4.2)

First, for x ∈ P ∩ ∂Ω2n−1, s ∈ [0, 1], we have

cR2n−1 = c‖x‖ ≤ x(s) ≤ ‖x‖ = R2n−1. (4.3)

So, by the assumption (H3),

g(s, x(s)) ≤ R2n−1

M
. (4.4)

Consequently,

‖Tx‖ = max
t∈[0,1]

∫ 1

0

G(t, s)g(s, x(s))ds ≤ R2n−1 = ‖x‖, t ∈ [0, 1], (4.5)

which implies (4.1).
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Next, for x ∈ P ∩ ∂Ω2n and s ∈ [0, 1], we have cR2n ≤ x(s) ≤ R2n. Then, from
(H4) it follows that for t ∈ [0, 1],

Tx(t) =
∫ 1

0

G(t, s)g(s, x(s))ds ≥
∫ ηm−2

0

G(t, s)g(s, x(s))ds ≥ R2n = ‖x‖ . (4.6)

So, we obtain (4.2). The inequalities (4.1) and (4.2) prove that T satisfies con-
dition (i) of Therorem 1.1 in P ∩ (Ω2n\Ω2n−1). Therefore T has a fixed point
xn ∈ P ∩ (Ω2n\Ω2n−1). This implies that R2n−1 ≤ ‖xn‖ ≤ R2n. This completes
the proof. �

Example. Let α, β ∈ R+ and ρ : R+ → R such that αx ≤ ρ(x) ≤ βx, for all
x ∈ R+. We consider the function f : [0, 1]× R+ → R, defined by

f(t, x) =


f1(t, x) if R2n−2 ≤ x ≤ cR2n−1,

f2(t, x) if cR2n−1 ≤ x ≤ R2n−1,

f3(t, x) if R2n−1 ≤ x ≤ cR2n,

f4(t, x) if cR2n ≤ x ≤ R2n,

for all n ∈ N, where R0 = 0, {Rn}+∞
n=1 ⊂ R such that 0 < Rn < cRn+1 and

f1(t, x) =
cR2n−1 − x

cR2n−1 −R2n−2
f4(t, x) +

R2n−2 − x

R2n−2 − cR2n−1
f2(t, x),

f2(t, x) = tρ
( x

βM

)
− β2x,

f3(t, x) =
cR2n − x

cR2n −R2n−1
f2(t, x) +

R2n−1 − x

R2n−1 − cR2n
f4(t, x),

f4(t, x) = (t + 1)ρ
( x

αM0ηm−2

)
− β2 ln(1 + x).

It is clear that f is a function continuous on [0, 1]× [0,+∞). Since the inequality
x − ln(1 + x) ≥ 0, ∀x ≥ 0, so f(t, x) + β2x ≥ 0, ∀t ∈ [0, 1], x ∈ [0,+∞).
Moreover, by the properties of the function ρ, we can deduce that the assumptions
(H3) and (H4) of Theorem 4.1 hold.

5. Compactness of the set of positive solutions

Theorem 5.1. Let (H1)–(H2) hold. In addition, suppose that there exists a con-
stant α ∈ (0, 1) such that

f0 ≥
1

Mηm−2
and f∞ ≤ −β2 +

α

M

(
in particular f0 = ∞, f∞ = −β2

)
.

(5.1)
Then the set of positive solutions of the problem (1.5)–(1.7) is nonempty and com-
pact.

Proof. Put Σ = {x ∈ P : x = Tx}. By Theorem 1.1, we have Σ 6= ∅. We shall
show that Σ is compact. From assumption (5.1), there exists R > 0 such that

f(t, x) ≤
(
−β2 +

α

M

)
x, ∀t ∈ [0, 1], x ≥ R. (5.2)

Therefore,

g (t, x(t)) = f (t, x(t)) + β2x(t) ≤ α

M
x(t) + γ, ∀t ∈ [0, 1], (5.3)



10 L. X. TRUONG, L. T. P. NGOC, N. T. LONG EJDE-2008/111

where γ = max{g(t, x) : (t, x) ∈ [0, 1]× [0, R]}. For x ∈ Σ and t ∈ [0, 1], we have

x(t) =
∫ 1

0

G(t, s)g (s, x(s)) ds ≤ M

∫ 1

0

( α

M
x(s) + γ

)
ds ≤ α‖x‖+ Mγ, (5.4)

so
‖x‖ ≤ Mγ

1− α
, ∀x ∈ Σ. (5.5)

From the compactness of the operator T : P → P , it follows from (5.5) that T (Σ),
and then Σ ⊂ T (Σ) are relatively compact.

To prove Σ is closed, let {xn} ⊂ Σ be a sequence and limn→+∞ ‖xn − x̂‖ = 0.
For t ∈ [0, 1], we have∣∣x̂(t)−

∫ 1

0

G(t, s)g (s, x̂(s)) ds
∣∣

≤ |x̂(t)− xn(t)|+
∣∣xn(t)−

∫ 1

0

G(t, s)g (s, xn(s)) ds
∣∣

+
∣∣ ∫ 1

0

G(t, s)g (s, xn(s)) ds−
∫ 1

0

G(t, s)g (s, x̂(s)) ds
∣∣

≤ |x̂(t)− xn(t)|+ M

∫ 1

0

|g (s, xn(s))− g (s, x̂(s))| ds.

Let n → +∞, by the continuity of g, we deduce that
∣∣x̂(t)−

∫ 1

0
G(t, s)g (s, x̂(s)) ds

∣∣ =
0. So

x̂(t) =
∫ 1

0

G(t, s)g (s, x̂(s)) ds, t ∈ [0, 1], (5.6)

which implies that x̂ ∈ Σ. Therefore, Σ is closed. The proof of Theorem 4.1 is
complete. �

Open problem. With the assumptions of Theorem 5.1, is the set of positive so-
lutions discrete or continuum?

Acknowledgements. The authors wish to express their sincere thanks to the
anonymous referee for his/her helpful comments and remarks.
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