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A septic B-spline collocationmethod is implemented to find the numerical solution of themodified regularized long wave (MRLW)
equation. Three test problems including the single soliton and interaction of two and three solitons are studied to validate the
proposed method by calculating the error norms 𝐿

2
and 𝐿

∞
and the invariants 𝐼

1
, 𝐼
2
, and 𝐼

3
. Also, we have studied the Maxwellian

initial condition pulse.The numerical results obtained by themethod show that the presentmethod is accurate and efficient. Results
are compared with some earlier results given in the literature. A linear stability analysis of the method is also investigated.

1. Introduction

The generalized regularized long wave equation is given by

𝑈
𝑡
+ 𝑈
𝑥
+ 𝛿𝑈
𝑝
𝑈
𝑥
− 𝜇𝑈
𝑥𝑥𝑡

= 0, (1)

where 𝑝 is a positive integer and 𝛿 and 𝜇 are positive con-
stants. This equation is one of the most important nonlinear
wave equation used a model for small amplitude long waves
on the surface of water in a channel [1, 2]. A few authors
solved the equation numerically: among others, Zhang [3]
used a finite difference method for a Cauchy problem and
Kaya [4] applied the Adomian decomposition method and
a quasilinearization method based on finite differences was
used by Ramos [5]. Roshan [6] implemented the Petrov-
Galerkin method using a linear hat function as the trial
function and a quintic B-spline function as the test function.
A mesh-free technique for the numerical solution of the
equation has been presented by Mokhtari and Mohammadi
[7]. For 𝑝 = 1,

𝑈
𝑡
+ 𝑈
𝑥
+ 𝛿𝑈𝑈

𝑥
− 𝜇𝑈
𝑥𝑥𝑡

= 0. (2)

Equation (2) is known as regularized long wave equation,
originally introduced to describe the behavior of the undular
bore by Peregrine [1] and later widely studied by Benjamin
et al. [8]. The RLW equation has been solved numerically by
finite elementmethods [9–22], finite differencemethods [23–
26], Fourier pseudospectral [27], andmesh-freemethod [28].
For 𝑝 = 2,

𝑈
𝑡
+ 𝑈
𝑥
+ 6𝑈
2
𝑈
𝑥
− 𝜇𝑈
𝑥𝑥𝑡

= 0. (3)

Another particular case of (2) is called modified regularized
longwave (MRLW) equation. LikeRLWequation, theMRLW
equation has been solved numerically by various methods.
Among many others, a collocation solution to the equation
using quintic B-spline finite element method is developed by
Gardner et al. [29]. Khalifa et al. [30, 31] obtained the numer-
ical solutions of the equation using finite difference method
and cubic B-spline collocation finite element method. Solu-
tions based on collocation method with quadratic B-spline
finite elements and the central finite difference method for
time are investigated by Raslan [32].The equation was solved
with a collocation finite element method using quadratic,
cubic, quartic, and quintic B-splines to obtain the numerical
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solutions of the single solitary wave by Raslan and Hassan
[33]. Haq et al. [34] have designed a numerical scheme based
on quartic B-spline collocation method for the numerical
solution of the equation. Ali [35] has formulated a clas-
sical radial basis functions (RBFs) collocation method for
solving the equation. Karakoc et al. [36] have obtained a
type of the quintic B-spline collocation procedure in which
nonlinear term in the equation is linearized by using the
form introduced by the Rubin and Graves [37] to solve the
equation. A Petrov-Galerkin method using cubic B-spline
function as trial function and a quadratic B-spline function
as the test function is set up to solve the equation by Karakoc
and Geyikli [38]. A homotopy analysis method has been
employed to obtain approximate numerical solution of the
modified regularized longwave (MRLW) equationwith some
specified initial conditions by Khan et al. [39].

In the present paper, a numerical scheme based on the
septic B-spline collocationmethod has been set up for solving
theMRLW equation with a variant of both initial and bound-
ary conditions. This paper is set out as follows. In Section 2,
septic B-spline collocation scheme is presented. Also stability
analysis is considered. In Section 3, test problems including
single, two, and three solitary waves and Maxwellian initial
condition are discussed. Finally in Section 4, a summary is
given at the end of the paper.

2. Septic B-Spline Finite Element Solution

Consider the MRLW Equation (3) given with the following
boundary conditions,

𝑈 (𝑎, 𝑡) = 0, 𝑈 (𝑏, 𝑡) = 0,

𝑈
𝑥
(𝑎, 𝑡) = 𝑈

𝑥
(𝑏, 𝑡) = 0,

𝑈
𝑥𝑥

(𝑎, 𝑡) = 𝑈
𝑥𝑥

(𝑏, 𝑡) = 0,

𝑈
𝑥𝑥𝑥

(𝑎, 𝑡) = 𝑈
𝑥𝑥𝑥

(𝑏, 𝑡) = 0, 𝑡 > 0,

(4)

and the initial condition

𝑈 (𝑥, 0) = 𝑓 (𝑥) 𝑎 ≤ 𝑥 ≤ 𝑏. (5)

In order to be able to apply the numerical method, the
solution region of the problem is restricted over an interval
𝑎 ≤ 𝑥 ≤ 𝑏. Space interval [𝑎, 𝑏] is partitioned into uniformly
sized finite elements of length ℎ by the nodes 𝑥

𝑚
such that

𝑎 = 𝑥
0
< 𝑥
1
< ⋅ ⋅ ⋅ < 𝑥

𝑁−1
< 𝑥
𝑁

= 𝑏 and ℎ = 𝑥
𝑚+1

− 𝑥
𝑚
, 𝑚 =

−3, −2, . . . , 𝑁 + 2,𝑁 + 3. The set of septic B-spline func-
tions {𝜙

−3
(𝑥), 𝜙
−2
(𝑥), 𝜙
−1
(𝑥), . . . , 𝜙

𝑁+1
(𝑥), 𝜙
𝑁+2

(𝑥), 𝜙
𝑁+3

(𝑥)}

forms a basis over the problem domain [𝑎, 𝑏]. A global
approximation 𝑈

𝑁
(𝑥, 𝑡) is expressed in terms of septic B-

splines as

𝑈
𝑁
(𝑥, 𝑡) =

𝑁+3

∑

𝑖=−3

𝜙
𝑖
(𝑥) 𝛿
𝑖
(𝑡) , (6)

where 𝛿
𝑖
(𝑡)s are time dependent parameters to be determined

from the initial, boundary, and collocation conditions.

Septic B-splines 𝜙
𝑚
(𝑥), (𝑚 = −3(1)𝑁+3), at the knots 𝑥

𝑚

are defined over the interval [𝑎, 𝑏] by [40]

𝜙
𝑚
(𝑥) =

1

ℎ7

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

(𝑥 − 𝑥
𝑚−4

)
7

[𝑥
𝑚−4

, 𝑥
𝑚−3

]

(𝑥 − 𝑥
𝑚−4

)
7

− 8(𝑥 − 𝑥
𝑚−3

)
7

[𝑥
𝑚−3

, 𝑥
𝑚−2

]

(𝑥 − 𝑥
𝑚−4

)
7

− 8(𝑥 − 𝑥
𝑚−3

)
7

+28(𝑥 − 𝑥
𝑚−2

)
7

[𝑥
𝑚−2

, 𝑥
𝑚−1

]

(𝑥 − 𝑥
𝑚−4

)
7

− 8(𝑥 − 𝑥
𝑚−3

)
7

+28(𝑥 − 𝑥
𝑚−2

)
7

− 56(𝑥 − 𝑥
𝑚−1

)
7

[𝑥
𝑚−1

, 𝑥
𝑚
]

(𝑥
𝑚+4

− 𝑥)
7

− 8(𝑥
𝑚+3

− 𝑥)
7

+28(𝑥
𝑚+2

− 𝑥)
7

− 56(𝑥
𝑚+1

− 𝑥)
7

[𝑥
𝑚
, 𝑥
𝑚+1

]

(𝑥
𝑚+4

− 𝑥)
7

− 8(𝑥
𝑚+3

− 𝑥)
7

+28(𝑥
𝑚+2

− 𝑥)
7

[𝑥
𝑚+1

, 𝑥
𝑚+2

]

(𝑥
𝑚+4

− 𝑥)
7

− 8(𝑥
𝑚+3

− 𝑥)
7

[𝑥
𝑚+2

, 𝑥
𝑚+3

]

(𝑥
𝑚+4

− 𝑥)
7

[𝑥
𝑚+3

, 𝑥
𝑚+4

]

0 otherwise.

(7)

Using expansion (6) and trial function (7), the nodal
values (𝑈

𝑁
)
𝑚
and their first, second, and third derivatives

(𝑈
𝑁
)
𝑥
, (𝑈
𝑁
)
𝑥𝑥
, (𝑈
𝑁
)
𝑥𝑥𝑥

can be calculated at the nodal points
𝑥
𝑚
in terms of nodal parameters 𝛿

𝑚
by the following set of

equations:

(𝑈
𝑁
)
𝑚

= 𝛿
𝑚−3

+ 120𝛿
𝑚−2

+ 1191𝛿
𝑚−1

+ 2416𝛿
𝑚

+ 1191𝛿
𝑚+1

+ 120𝛿
𝑚+2

+ 𝛿
𝑚+3

,

(𝑈
𝑁𝑥

)
𝑚

=
7

ℎ
(−𝛿
𝑚−3

− 56𝛿
𝑚−2

− 245𝛿
𝑚−1

+ 245𝛿
𝑚+1

+ 56𝛿
𝑚+2

+ 𝛿
𝑚+3

) ,

(𝑈
𝑁𝑥𝑥

)
𝑚

=
42

ℎ2
(𝛿
𝑚−3

+ 24𝛿
𝑚−2

+ 15𝛿
𝑚−1

− 80𝛿
𝑚

+ 15𝛿
𝑚+1

+ 24𝛿
𝑚+2

+ 𝛿
𝑚+3

) ,

(𝑈
𝑁𝑥𝑥𝑥

)
𝑚

=
210

ℎ3
(−𝛿
𝑚−3

− 8𝛿
𝑚−2

+ 19𝛿
𝑚−1

− 19𝛿
𝑚+1

+ 8𝛿
𝑚+2

+ 𝛿
𝑚+3

) .

(8)

The splines 𝜙
𝑚
(𝑥) and their six principle derivatives vanish

outside the interval [𝑥
𝑚−4

, 𝑥
𝑚+4

].
To apply the proposed method, Crank-Nicolson approx-

imation for the space derivatives 𝑈
𝑥
and 𝑈

𝑥𝑥
and usual first
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Table 1: Invariants and error norms for single solitary wave with 𝑐 = 1, ℎ = 0.2, 𝑘 = 0.025, 0 ≤ 𝑥 ≤ 100.

𝑡 𝐼
1

𝐼
2

𝐼
3

𝐿
2
× 10
3

𝐿
∞

× 10
3

0 4.4428661 3.2998227 1.4142046 0.00000000 0.00000000
1 4.4428661 3.2998085 1.4142188 0.28537793 0.16594258
2 4.4428661 3.2997808 1.4142465 0.56248008 0.31854916
3 4.4428661 3.2997573 1.4142700 0.82836630 0.45535369
4 4.4428661 3.2997415 1.4142858 1.08566992 0.58528925
5 4.44286601 3.2997313 1.4142960 1.33772774 0.71261445
6 4.4428661 3.2997248 1.4143025 1.58675627 0.83879372
7 4.4428661 3.2997207 1.4143067 1.83403948 0.96441682
8 4.4428661 3.2997180 1.4143093 2.08032250 1.08975930
9 4.4428661 3.2997162 1.4143111 2.32602024 1.21494581
10 4.4428661 3.2997151 1.4143122 2.57148152 1.34021078

Table 2: Errors and invariants for single solitary wave with 𝑐 = 1, ℎ = 0.2, 𝑘 = 0.025, 0 ≤ 𝑥 ≤ 100, at 𝑡 = 10.

Method 𝐼
1

𝐼
2

𝐼
3

𝐿
2
× 10
3

𝐿
∞

× 10
3

Analytical 4.4428829 3.2998316 1.4142135 0 0
Present 4.4428661 3.2997151 1.4143122 2.57148 1.334021
[6] 4.44288 3.29981 1.41416 3.00533 1.68749
Cubic B-splines coll-CN [29] 4.442 3.299 1.413 16.39 9.24
Cubic B-splines coll-PA-CN+ [29] 4.440 3.296 1.411 20.3 11.2
Cubic B-splines coll [30] 4.44288 3.29983 1.41420 9.30196 5.43718
MQ [35] 4.4428829 3.29978 1.414163 3.914 2.019
IMQ [35] 4.4428611 3.29978 1.414163 3.914 2.019
IQ [35] 4.4428794 3.29978 1.414163 3.914 2.019
GA [35] 4.4428829 3.29978 1.414163 3.914 2.019
TPS [35] 4.4428821 3.29972 1.414104 4.428 2.306
Quintic B-splines coll [36] 4.4428661 3.2997108 1.4143165 2.58891 1.35164

Table 3: Invariants and error norms for single solitary wave with 𝑐 = 0.3, ℎ = 0.1, 𝑘 = 0.01, 0 ≤ 𝑥 ≤ 100.

𝑡 𝐼
1

𝐼
2

𝐼
3

𝐿
2
× 10
4

𝐿
∞

× 10
4

0 3.5819531 1.3450721 0.1537217 0.0000000 0.0000000
2 3.5819531 1.3450719 0.1537219 0.0373696 0.0211791
4 3.5819531 1.3450715 0.1537223 0.0711480 0.0387624
6 3.5819531 1.3450711 0.1537227 0.1001141 0.0515117
8 3.5819531 1.3450708 0.1537231 0.1249329 0.0614203
10 3.5819531 1.3450705 0.1537234 0.1466243 0.0700260
12 3.5819531 1.3450702 0.1537236 0.1659668 0.0775889
14 3.5819531 1.3450700 0.1537238 0.1833628 0.0844911
16 3.5819531 1.3450698 0.1537240 0.2015361 0.0909663
18 3.5819531 1.3450697 0.1537241 0.2560750 0.0993420
20 3.5819531 1.3450696 0.1537243 0.3585031 0.1702101
20 [6] 3.58197 1.34508 0.153723 0.645295 0.301923
20 [30] 3.58197 1.34508 0.153723 6.06885 2.96650
20 [34] 3.581967 1.345076 0.153723 0.508927 0.222284
20 [35] MQ 3.5819665 1.3450764 0.153723 0.51498 0.22551
20 [35] IMQ 3.5819664 1.3450764 0.153723 0.51498 0.22551
20 [35] IQ 3.5819654 1.3450764 0.153723 0.51498 0.22551
20 [35] GA 3.5819665 1.3450764 0.153723 0.51498 0.22551
20 [35] TPS 3.5819663 1.3450759 0.153723 0.51498 0.26605
20 [36] 3.5820204 1.3450974 0.1537250 0.8112594 0.3569076
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Table 4: Invariants and error norms for single solitary wave with 𝑐 = 0.6, ℎ = 0.1, 𝑘 = 0.1, −40 ≤ 𝑥 ≤ 60.

𝑡 𝐼
1

𝐼
2

𝐼
3

𝐿
2
× 10
4

𝐿
∞

× 10
4 CPU Time

4 8.070902 4.100549 14.361115 2.716636 1.323585 0.437 s
8 8.070925 4.100534 14.361111 5.240855 2.458097 0.908 s
12 8.070943 4.100519 14.361103 7.543043 3.372256 1.435 s
16 8.070949 4.100503 14.361089 9.662561 4.154427 1.774 s
20 8.070921 4.100489 14.361074 11.660256 4.862191 2.319 s

Table 5: Invariants and error norms for single solitary wave with 𝑐 = 0.18, ℎ = 0.1, 𝑘 = 0.1, −80 ≤ 𝑥 ≤ 120.

𝑡 𝐼
1

𝐼
2

𝐼
3

𝐿
2
× 10
5

𝐿
∞

× 10
5 CPU Time

4 7.809873 2.129887 7.031111 3.077451 1.138290 0.801 s
8 7.809875 2.129887 7.031112 6.124574 2.313797 1.571 s
12 7.809877 2.129887 7.031112 9.106266 3.455915 2.470 s
16 7.809879 2.129887 7.031113 11.967534 4.530312 3.124 s
20 7.809880 2.129887 7.031115 14.731556 5.538799 3.789 s

order forward difference formula for the time derivative of
the 𝑈 in (3) have been used, which lead to

𝑈
𝑛+1

− 𝑈
𝑛

Δ𝑡
+

𝑈
𝑛+1

𝑥
+ 𝑈
𝑛

𝑥

2
+ 6

(𝑈
2
𝑈
𝑥
)
𝑛+1

+ (𝑈
2
𝑈
𝑥
)
𝑛

2

−𝜇
𝑈
𝑛+1

𝑥𝑥
− 𝑈
𝑛

𝑥𝑥

Δ𝑡
= 0.

(9)

In order to linearize the nonlinear term (𝑈2𝑈
𝑥
)
𝑛+1, we can

write the term as follows,

𝑈
2
𝑈
𝑥
= 𝑈𝑈𝑈

𝑥
, (10)

and apply the linearization form introduced by Rubin and
Graves [37]

(𝑈𝑈
𝑥
)
𝑛+1

= 𝑈
𝑛+1

𝑈
𝑛

𝑥
+ 𝑈
𝑛
𝑈
𝑛+1

𝑥
− 𝑈
𝑛
𝑈
𝑛

𝑥
(11)

to (9), and we get

𝑈
𝑛+1

+
Δ𝑡

2
𝑈
𝑛+1

𝑥
+ 3Δ𝑡𝑈

𝑛+1

× (𝑈
𝑛+1

𝑈
𝑛

𝑥
+ 𝑈
𝑛
𝑈
𝑛+1

𝑥
− 𝑈
𝑛
𝑈
𝑛

𝑥
) − 𝜇𝑈

𝑛+1

𝑥𝑥

= 𝑈
𝑛
−

Δ𝑡

2
𝑈
𝑛

𝑥
− 3Δ𝑡𝑈

𝑛
(𝑈𝑈
𝑥
)
𝑛

− 𝜇𝑈
𝑛

𝑥𝑥
.

(12)

Substituting the approximate solution𝑈
𝑁
and putting the

nodal values of𝑈 and its derivatives given by (8) into (12) one
obtains the following iterative system for𝑚 = 0, 1, . . . , 𝑁 :

𝛿
𝑛+1

𝑚−3
(1 + 𝛼

1
− 𝛼
2
− 𝛼
3
) + 𝛿
𝑛+1

𝑚−2
(120 + 120𝛼

1
− 56𝛼

2
− 24𝛼

3
)

+ 𝛿
𝑛+1

𝑚−1
(1191 + 1191𝛼

1
− 245𝛼

2
− 15𝛼

3
)

+ 𝛿
𝑛+1

𝑚
(2416 + 2416𝛼

1
+ 80𝛼

3
)

+ 𝛿
𝑛+1

𝑚+1
(1191 + 1191𝛼

1
+ 245𝛼

2
− 15𝛼

3
)

+ 𝛿
𝑛+1

𝑚+2
(120 + 120𝛼

1
+ 56𝛼

2
− 24𝛼

3
)

+ 𝛿
𝑛+1

𝑚+3
(1 + 𝛼

1
+ 𝛼
2
− 𝛼
3
)

= 𝛿
𝑛

𝑚−3
(1 − 𝛼

1
+ 𝛼
2
− 𝛼
3
)

+ 𝛿
𝑛

𝑚−2
(120 − 120𝛼

1
+ 56𝛼

2
− 24𝛼

3
)

+ 𝛿
𝑛

𝑚−1
(1191 − 1191𝛼

1
+ 245𝛼

2
− 15𝛼

3
)

+ 𝛿
𝑛

𝑚
(2416 − 2416𝛼

1
+ 80𝛼

3
)

+ 𝛿
𝑛

𝑚+1
(1191 − 1191𝛼

1
− 245𝛼

2
− 15𝛼

3
)

+ 𝛿
𝑛

𝑚+2
(120 − 120𝛼

1
− 56𝛼

2
− 24𝛼

3
)

+ 𝛿
𝑛

𝑚+3
(1 − 𝛼

1
− 𝛼
2
− 𝛼
3
) ,

(13)

where

𝛼
1
= 3Δ𝑡, 𝛼

2
=

7Δ𝑡

2ℎ
, 𝛼

3
=

42𝜇

ℎ2
. (14)

The newly obtained iterative system (13) consists of 𝑁 + 1

linear equation in 𝑁 + 7 unknowns (𝛿
−3
, 𝛿
−2
, 𝛿
−1
, 𝛿
0
, . . . ,

𝛿
𝑁
, 𝛿
𝑁+1

, 𝛿
𝑁+2

, 𝛿
𝑁+3

)
𝑇. To obtain a unique solution of this

system, six additional constraints are required. Applying
the boundary conditions (4) and using the values of (8),
these constraints are used and this enables us to eliminate
the unknowns 𝛿

−3
, 𝛿
−2
, 𝛿
−1
, 𝛿
0
, . . . , 𝛿

𝑁
, 𝛿
𝑁+1

, 𝛿
𝑁+2

, 𝛿
𝑁+3

from
system (13). So system (13) is reduced to a septa-diagonal
system of (𝑁+1) linear equations in (𝑁+1) unknowns given
by 𝐴𝛿

𝑛+1
= 𝐵𝛿
𝑛, where 𝛿𝑛 = (𝛿

0
, 𝛿
1
, 𝛿
2
, . . . , 𝛿

𝑁−2
, 𝛿
𝑁−1

, 𝛿
𝑁
)
𝑇.

The coefficient matrixes are given by
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Table 6: Comparison of the invariants for the interaction of two solitary waves with results from [30] with ℎ = 0.2, 𝑘 = 0.025 in the region
0 ≤ 𝑥 ≤ 250.

Present method [30]
𝑡 𝐼

1
𝐼
2

𝐼
3

CPU Time 𝐼
1

𝐼
2

𝐼
3

0 11.4676 14.6292 22.8803 — 11.4677 14.6291 22.8806
2 11.4678 14.6282 22.8812 0.209 s 11.4677 14.6292 22.8807
4 11.4679 14.6282 22.8812 0.413 s 11.4677 14.6292 22.8807
6 11.4681 14.6181 22.8914 1.101 s 11.4677 14.6295 22.8806
8 11.4675 14.1393 23.3702 1.219 s 11.4677 14.6451 22.8454
10 11.4674 14.0502 23.4592 1.421 s 11.4677 14.5963 22.8913
12 11.4685 14.6817 22.8278 2.027 s 11.4677 14.6287 22.8814
14 11.4687 14.6649 22.8446 2.228 s 11.4677 14.6295 22.8807
16 11.4688 14.6459 22.8635 2.432 s 11.4677 14.6294 22.8808
18 11.4690 14.6370 22.8725 3.004 s 11.4677 14.6293 22.8809
20 11.4691 14.6331 22.8763 3.239 s 11.4677 14.6292 22.8809
20 [6] 11.4677 14.6299 22.8806
20 [34] 11.4677 14.5830 22.6965
20 [35] MQ 11.4676 14.5830 22.6965
20 [35] IMQ 11.4676 14.5830 22.6965
20 [35] IQ 11.4676 14.5830 22.6965
20 [35] GA 11.4676 14.5830 22.6965
20 [35] TPS 11.4677 14.5824 22.6942
20 [36] 11.4691 14.6331 22.8764

Table 7: Comparison of invariants for the interaction of three solitary waves with results from [30] with ℎ = 0.2, 𝑘 = 0.025 in the region
0 ≤ 𝑥 ≤ 250.

Present method [30]
𝑡 𝐼

1
𝐼
2

𝐼
3

CPU Time 𝐼
1

𝐼
2

𝐼
3

0 14.9800 15.8374 23.0081 — 13.6891 15.4549 22.8816
5 14.9804 15.7991 23.0465 0.536 s 13.6891 15.3109 22.6939
10 14.9783 14.3275 24.5180 1.442 s 13.6891 15.6514 22.8388
15 14.9809 15.5048 23.3408 2.349 s 13.6891 15.6548 22.9347
20 14.9814 15.7504 23.0952 3.251 s 13.6891 15.6557 22.9330
25 14.9819 15.8496 22.9960 4.162 s 13.6892 15.6559 22.9336
30 14.9823 15.8626 22.9829 5.063 s 13.6894 15.6559 22.9348
35 14.9828 15.8622 22.9833 5.573 s 13.6913 15.6564 22.9343
40 14.9832 15.8605 22.9851 6.481 s 13.7015 15.6566 22.9335
45 14.9461 15.8613 22.9843 7.388 s 13.7043 15.6563 22.9303
45 [34] 13.7043 15.6563 22.9303
45 [35] MQ 14.9681 15.7343 22.5966
45 [35] IMQ 14.9680 15.7343 22.5966
45 [35] IQ 14.9681 15.7343 22.5966
45 [35] GA 14.9681 15.7343 22.5966
45 [35] TPS 14.9682 15.7337 22.5944
45 [36] 14.7145 15.4927 23.3529
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𝐴 =

[
[
[
[
[
[
[
[
[
[
[
[

[

𝑎
11

𝑎
12

𝑎
13

𝑎
14

𝑎
21

𝑎
22

𝑎
23

𝑎
24

𝑎
25

𝑎
31

𝑎
32

𝑎
33

𝑎
34

𝑎
35

𝑎
36

d
𝑎
𝑚,𝑚−3

𝑎
𝑚,𝑚−2

𝑎
𝑚,𝑚−1

𝑎
𝑚,𝑚

𝑎
𝑚,𝑚+1

𝑎
𝑚,𝑚+2

𝑎
𝑚,𝑚+3

d
𝑎
𝑛−1,𝑛−4

𝑎
𝑛−1,𝑛−3

𝑎
𝑛−1,𝑛−2

𝑎
𝑛−1,𝑛−1

𝑎
𝑛−1,𝑛

𝑎
𝑛−1,𝑛+1

𝑎
𝑛,𝑛−3

𝑎
𝑛,𝑛−2

𝑎
𝑛,𝑛−1

𝑎
𝑛,𝑛

𝑎
𝑛,𝑛+1

𝑎
𝑛+1,𝑛−2

𝑎
𝑛+1,𝑛−1

𝑎
𝑛+1,𝑛

𝑎
𝑛+1,𝑛+1

]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝐵 =

[
[
[
[
[
[
[
[
[
[
[
[

[

𝑏
11

𝑏
12

𝑏
13

𝑏
14

𝑏
21

𝑏
22

𝑏
23

𝑏
24

𝑏
25

𝑏
31

𝑏
32

𝑏
33

𝑏
34

𝑏
35

𝑏
36

d
𝑏
𝑚,𝑚−3

𝑏
𝑚,𝑚−2

𝑏
𝑚,𝑚−1

𝑏
𝑚,𝑚

𝑏
𝑚,𝑚+1

𝑏
𝑚,𝑚+2

𝑏
𝑚,𝑚+3

d
𝑏
𝑛−1,𝑛−4

𝑏
𝑛−1,𝑛−3

𝑏
𝑛−1,𝑛−2

𝑏
𝑛−1,𝑛−1

𝑏
𝑛−1,𝑛

𝑏
𝑛−1,𝑛+1

𝑏
𝑛,𝑛−3

𝑏
𝑛,𝑛−2

𝑏
𝑛,𝑛−1

𝑏
𝑛,𝑛

𝑏
𝑛,𝑛+1

𝑏
𝑛+1,𝑛−2

𝑏
𝑛+1,𝑛−1

𝑏
𝑛+1,𝑛

𝑏
𝑛+1,𝑛+1

]
]
]
]
]
]
]
]
]
]
]
]

]

,

(15)

where

𝑎
11

= −
41472

297
𝛼
3
, 𝑏

11
= −

41472

297
𝛼
3
,

𝑎
12

= −
73224

297
𝛼
3
, 𝑏

12
= −

73224

297
𝛼
3
,

𝑎
13

= −
20736

297
𝛼
3
, 𝑏

13
= −

20736

297
𝛼
3
,

𝑎
14

= −
648

297
𝛼
3
, 𝑏

14
= −

648

297
𝛼
3
,

𝑎
21

=
215411

297
+

215411

297
𝛼
1
−

11761

297
𝛼
2
+

17893

297
𝛼
3
,

𝑏
21

=
215411

297
−

215411

297
𝛼
1
+

11761

297
𝛼
2
+

17893

297
𝛼
3
,

𝑎
22

=
616822.5

297
+

616822.5

297
𝛼
1
+

43513.5

297
𝛼
2
+

38665.5

297
𝛼
3
,

𝑏
22

=
616822.5

297
−

616822.5

297
𝛼
1
−

43513.5

297
𝛼
2
+

38665.5

297
𝛼
3
,

𝑎
23

=
340284

297
+

340284

297
𝛼
1
+

78528

297
𝛼
2
−

2532

297
𝛼
3
,

𝑏
23

=
340284

297
−

340284

297
𝛼
1
−

78528

297
𝛼
2
−

2532

297
𝛼
3
,

𝑎
24

=
35525.5

297
+

35525.5

297
𝛼
1
+

16682.5

297
𝛼
2
−

7109.5

297
𝛼
3
,

𝑏
24

=
35525.5

297
+

35525.5

297
𝛼
1
+

16682.5

297
𝛼
2
−

7109.5

297
𝛼
3
,

𝑎
25

= 1 + 𝛼
1
+ 𝛼
2
− 𝛼
3
, 𝑏

25
= 1 − 𝛼

1
− 𝛼
2
− 𝛼
3
,

𝑎
31

=
34432

297
+

34432

297
𝛼
1
−

15424

297
𝛼
2
−

5920

297
𝛼
3
,

𝑏
31

=
34432

297
−

34432

297
𝛼
1
+

15424

297
𝛼
2
−

5920

297
𝛼
3
,

𝑎
32

=
352833

297
+

352833

297
𝛼
1
−

71871

297
𝛼
2
−

3561

297
𝛼
3
,

𝑏
32

=
352833

297
−

352833

297
𝛼
1
+

71871

297
𝛼
2
−

3561

297
𝛼
3
,

𝑎
33

=
717432

297
+

717432

297
𝛼
1
+

120

297
𝛼
2
+

23880

297
𝛼
3
,

𝑏
33

=
717432

297
−

717432

297
𝛼
1
−

120

297
𝛼
2
+

23880

297
𝛼
3
,

𝑎
34

=
353726

297
+

353726

297
𝛼
1
+

72766

297
𝛼
2
−

4454

297
𝛼
3
,

𝑏
34

=
353726

297
−

353726

297
𝛼
1
−

72766

297
𝛼
2
−

4454

297
𝛼
3
,

𝑎
35

= 120 + 120𝛼
1
+ 56𝛼

2
− 24𝛼

3
,

𝑏
35

= 120 − 120𝛼
1
− 56𝛼

2
− 24𝛼

3
,

𝑎
36

= 1 + 𝛼
1
+ 𝛼
2
− 𝛼
3
,

𝑏
36

= 1 + 𝛼
1
+ 𝛼
2
− 𝛼
3
,

𝑎
𝑚,𝑚−3

= 1 + 𝛼
1
− 𝛼
2
− 𝛼
3
,

𝑏
𝑚,𝑚−3

= 1 − 𝛼
1
+ 𝛼
2
− 𝛼
3
,
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𝑎
𝑚,𝑚−2

= 120 + 120𝛼
1
− 56𝛼

2
− 24𝛼

3
,

𝑏
𝑚,𝑚−2

= 120 − 120𝛼
1
+ 56𝛼

2
− 24𝛼

3
,

𝑎
𝑚,𝑚−1

= 1191 + 1191𝛼
1
− 245𝛼

2
− 15𝛼

3
,

𝑏
𝑚,𝑚−1

= 1191 − 1191𝛼
1
+ 245𝛼

2
− 15𝛼

3
,

𝑎
𝑚,𝑚

= 2416 + 2416𝛼
1
+ 80𝛼

3
,

𝑏
𝑚,𝑚

= 2416 − 2416𝛼
1
+ 80𝛼

3
,

𝑎
𝑚,𝑚+1

= 1191 + 1191𝛼
1
+ 245𝛼

2
− 15𝛼

3
,

𝑏
𝑚,𝑚+1

= 1191 − 1191𝛼
1
− 245𝛼

2
− 15𝛼

3
,

𝑎
𝑚,𝑚+2

= 120 + 120𝛼
1
+ 56𝛼

2
− 24𝛼

3
,

𝑏
𝑚,𝑚+2

= 120 − 120𝛼
1
− 56𝛼

2
− 24𝛼

3
,

𝑎
𝑚,𝑚+3

= 1 + 𝛼
1
+ 𝛼
2
− 𝛼
3
,

𝑏
𝑚,𝑚+3

= 1 − 𝛼
1
− 𝛼
2
− 𝛼
3
,

𝑚 = 4 (1) 𝑛 − 2,

𝑎
𝑛−1,𝑛−4

= 1 + 𝛼
1
− 𝛼
2
− 𝛼
3
,

𝑏
𝑛−1,𝑛−4

= 1 − 𝛼
1
+ 𝛼
2
− 𝛼
3
,

𝑎
𝑛−1,𝑛−3

= 120 + 120𝛼
1
− 56𝛼

2
− 24𝛼

3
,

𝑏
𝑛−1,𝑛−3

= 120 − 120𝛼
1
+ 56𝛼

2
− 24𝛼

3
,

𝑎
𝑛−1,𝑛−2

=
353726

297
+

353726

297
𝛼
1
−

72766

297
𝛼
2
−

4454

297
𝛼
3
,

𝑏
𝑛−1,𝑛−2

=
353726

297
−

353726

297
𝛼
1
+

72766

297
𝛼
2
−

4454

297
𝛼
3
,

𝑎
𝑛−1,𝑛−1

=
717432

297
+

717432

297
𝛼
1
−

120

297
𝛼
2
+

23880

297
𝛼
3
,

𝑏
𝑛−1,𝑛−1

=
717432

297
−

717432

297
𝛼
1
+

120

297
𝛼
2
+

23880

297
𝛼
3
,

𝑎
𝑛−1,𝑛

=
352833

297
+

352833

297
𝛼
1
+

71871

297
𝛼
2
−

3561

297
𝛼
3
,

𝑏
𝑛−1,𝑛

=
352833

297
−

352833

297
𝛼
1
−

71871

297
𝛼
2
−

3561

297
𝛼
3
,

𝑎
𝑛−1,𝑛+1

=
34432

297
+

34432

297
𝛼
1
+

15424

297
𝛼
2
−

5920

297
𝛼
3
,

𝑏
𝑛−1,𝑛+1

=
34432

297
−

34432

297
𝛼
1
−

15424

297
𝛼
2
−

5920

297
𝛼
3
,

𝑎
𝑛,𝑛−3

= 1 + 𝛼
1
− 𝛼
2
− 𝛼
3
, 𝑏

𝑛,𝑛−3
= 1 − 𝛼

1
+ 𝛼
2
− 𝛼
3
,

𝑎
𝑛,𝑛−2

=
35525.5

297
+

35525.5

297
𝛼
1
−

16682.5

297
𝛼
2
−

7109.5

297
𝛼
3
,

𝑏
𝑛,𝑛−2

=
35525.5

297
−

35525.5

297
𝛼
1
+

16682.5

297
𝛼
2
−

7109.5

297
𝛼
3
,

𝑎
𝑛,𝑛−1

=
340284

297
+

340284

297
𝛼
1
−

78528

297
𝛼
2
−

2532

297
𝛼
3
,

𝑏
𝑛,𝑛−1

=
340284

297
−

340284

297
𝛼
1
+

78528

297
𝛼
2
−

2532

297
𝛼
3
,

𝑎
𝑛,𝑛

=
616822.5

297
+

616822.5

297
𝛼
1
−

43513.5

297
𝛼
2
+

38665.5

297
𝛼
3
,

𝑏
𝑛,𝑛

=
616822.5

297
−

616822.5

297
𝛼
1
+

43513.5

297
𝛼
2
+

38665.5

297
𝛼
3
,

𝑎
𝑛,𝑛+1

=
215411

297
+

215411

297
𝛼
1
+

11761

297
𝛼
2
+

17893

297
𝛼
3
,

𝑏
𝑛,𝑛+1

=
215411

297
−

215411

297
𝛼
1
−

11761

297
𝛼
2
+

17893

297
𝛼
3
,

𝑎
𝑛+1,𝑛−2

= −
648

297
𝛼
3
, 𝑏

𝑛+1,𝑛−2
= −

648

297
𝛼
3
,

𝑎
𝑛+1,𝑛−1

= −
20736

297
𝛼
3
, 𝑏

𝑛+1,𝑛−1
= −

20736

297
𝛼
3
,

𝑎
𝑛+1,𝑛

= −
73224

297
𝛼
3
, 𝑏

𝑛+1,𝑛
= −

73224

297
𝛼
3
,

𝑎
𝑛+1,𝑛+1

= −
41472

297
𝛼
3
, 𝑏

𝑛+1,𝑛+1
= −

41472

297
𝛼
3
.

(16)

Before starting the solution process, initial parameters 𝛿0
must be determined by using the initial condition and the
following derivatives at the boundaries:

𝑈
𝑁
(𝑥, 0) = 𝑈 (𝑥

𝑚
, 0) 𝑚 = 0, 1, 2, . . . , 𝑁,

(𝑈
𝑁
)
𝑥
(𝑎, 0) = 0, (𝑈

𝑁
)
𝑥
(𝑏, 0) = 0,

(𝑈
𝑁
)
𝑥𝑥

(𝑎, 0) = 0, (𝑈
𝑁
)
𝑥𝑥

(𝑏, 0) = 0,

(𝑈
𝑁
)
𝑥𝑥𝑥

(𝑎, 0) = 0, (𝑈
𝑁
)
𝑥𝑥𝑥

(𝑏, 0) = 0.

(17)

So we have the followingmatrix form for the initial vector 𝛿0:

𝑀𝛿
0
= 𝑘, (18)
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where

𝑀 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1536 2712 768 24

82731

81

210568.5

81

104796

81

10063.5

81
1

9600

81

96597

81

195768

81

96474

81
120 1

d
1 120 1191 2416 1191 120 1

1 120
96474

81

195768

81

96597

81

9600

81

1
10063.5

81

104796

81

210568.5

81

82731

81

24 768 2712 1536

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (19)

𝛿
0

= (𝛿
0
, 𝛿
1
, 𝛿
2
, . . . , 𝛿

𝑁−2
, 𝛿
𝑁−1

, 𝛿
𝑁
)
𝑇
, and 𝑘 = (𝑈(𝑥

0
, 0),

𝑈(𝑥
1
, 0), . . . , 𝑈(𝑥

𝑁−1
, 0), 𝑈(𝑥

𝑁
, 0))
𝑇.

2.1. A Linear Stability Analysis. We have investigated stability
analysis by applying the von-Neumann approach inwhich the
growth factor of typical Fourier mode is given by

𝛿
𝑛

𝑗
= 𝜉
𝑛
𝑒
𝑖𝑗𝑘ℎ

, (𝑖 = √−1) , (20)

where 𝑘 is a mode number and ℎ is the element size. To apply
this method, we have linearized the nonlinear term 𝑈

2
𝑈
𝑥
by

considering𝑈2 as a constant such as𝑍
𝑖
in (9). If we substitute

(20) into the iterative system (13) we obtain the following
equation:

𝜉
𝑛+1

= 𝑔𝜉
𝑛
, (21)

where 𝑔 is the growth factor. We have identified the colloca-
tion points with the nodes and used (8) to evaluate 𝑈

𝑚
and

its space derivatives in (3). This leads to a set of ordinary
differential equations in the following form:

̇𝛿
𝑚−3

+ 120 ̇𝛿
𝑚−2

+ 1191 ̇𝛿
𝑚−1

+ 2416 ̇𝛿
𝑚
+ 1191 ̇𝛿

𝑚+1

+ 120 ̇𝛿
𝑚+2

+ ̇𝛿
𝑚+3

+
7

ℎ
(1 + 6𝑍

𝑚
)

× (−𝛿
𝑚−3

− 56𝛿
𝑚−2

− 245𝛿
𝑚−1

+ 245𝛿
𝑚+1

+ 56𝛿
𝑚+2

+ 𝛿
𝑚+3

)

−
42𝜇

ℎ2
( ̇𝛿
𝑚−3

+ 24 ̇𝛿
𝑚−2

+ 15 ̇𝛿
𝑚−1

− 80 ̇𝛿
𝑚

+ 15 ̇𝛿
𝑚+1

+ 24 ̇𝛿
𝑚+2

+ ̇𝛿
𝑚+3

) = 0,

(22)

where𝑍
𝑚

= (𝛿
𝑚−3

+120𝛿
𝑚−2

+1191𝛿
𝑚−1

+2416𝛿
𝑚
+1191𝛿

𝑚+1

+120𝛿
𝑚+2

+ 𝛿
𝑚+3

)
2. Here ⋅ denotes derivative with respect

to time. If the parameters 𝛿
𝑖
’s and their time derivatives in

(22) are discretized by the Crank-Nicolson formula and usual
forward finite difference approximation, respectively,

𝛿
𝑖
=

𝛿
𝑛
+ 𝛿
𝑛+1

2
, ̇𝛿

𝑖
=

𝛿
𝑛+1

− 𝛿
𝑛

Δ𝑡
, (23)

we obtain a recurrence relationship between two time levels
𝑛 and 𝑛 + 1 relating two unknown parameters 𝛿

𝑛+1

𝑖
, 𝛿𝑛
𝑖
for

𝑖 = 𝑚 − 3,𝑚 − 2, . . . , 𝑚 + 2,𝑚 + 3,

𝛾
1
𝛿
𝑛+1

𝑚−3
+ 𝛾
2
𝛿
𝑛+1

𝑚−2
+ 𝛾
3
𝛿
𝑛+1

𝑚−1
+ 𝛾
4
𝛿
𝑛+1

𝑚
+ 𝛾
5
𝛿
𝑛+1

𝑚+1

+ 𝛾
6
𝛿
𝑛+1

𝑚+2
+ 𝛾
7
𝛿
𝑛+1

𝑚+3

= 𝛾
7
𝛿
𝑛

𝑚−3
+ 𝛾
6
𝛿
𝑛

𝑚−2
+ 𝛾
5
𝛿
𝑛

𝑚−1

+ 𝛾
4
𝛿
𝑛

𝑚
+ 𝛾
3
𝛿
𝑛

𝑚+1
+ 𝛾
2
𝛿
𝑛

𝑚+2
+ 𝛾
1
𝛿
𝑛

𝑚+3
,

(24)

where

𝛾
1
= 1 − 𝐸 − 𝑀, 𝛾

2
= 120 − 56𝐸 − 24𝑀,

𝛾
3
= 1191 − 245𝐸 − 15𝑀, 𝛾

4
= 2416 + 80𝑀,

𝛾
5
= 1191 + 245𝐸 − 15𝑀, 𝛾

6
= 120 + 56𝐸 − 24𝑀,

𝛾
7
= 1 + 𝐸 − 𝑀, 𝑚 = 0, 1, . . . , 𝑁,

𝐸 =
7Δ𝑡

2ℎ
(1 + 6𝑍

𝑚
) , 𝑀 =

42𝜇

ℎ2
.

(25)

Substituting the Fourier mode (20) into (24) leads to the
growth factor of the form

𝜉 =
𝑎 − 𝑖𝑏

𝑎 + 𝑖𝑏
, (26)

where

𝑎 = 1208 + 40𝑀 + (1191 − 15𝑀) cos [ℎ𝑘]

+ (120 − 24𝑀) cos [2ℎ𝑘] + (1 − 𝑀) cos [3ℎ𝑘] ,

𝑏 = 245𝐸 sin [ℎ𝑘] + 56𝐸 sin [2ℎ𝑘] + 𝐸 sin [3ℎ𝑘] ,

(27)
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Figure 1: Single solitary wave with 𝑐 = 1, ℎ = 0.2, Δ𝑡 = 0.025, 0 ≤

𝑥 ≤ 100 at times 𝑡 = 0, 2, 4, 6, 8, and 10.
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Figure 2: Single solitary wave with 𝑐 = 0.3, ℎ = 0.1, Δ𝑡 = 0.01, 0 ≤

𝑥 ≤ 100 at times 𝑡 = 0, 5, 10, 15, and 20.

|𝜉|
2
= 1; therefore the linearized scheme is unconditionally

stable.

3. Numerical Examples and Results

In this section, we have obtained numerical solution of the
MRLW equation for motion of single solitary wave, interac-
tion of two and three solitary waves, and development of the
Maxwellian initial condition into solitary waves. Accuracy of
the method is measured by using the following error norms:

𝐿
2
=

𝑈

exact
− 𝑈
𝑁

2
≃ √ℎ

𝑁

∑

𝐽=1


𝑈

exact
𝑗

− (𝑈
𝑁
)
𝑗



2

,

𝐿
∞

=

𝑈

exact
− 𝑈
𝑁

∞
≃ max
𝑗


𝑈

exact
𝑗

− (𝑈
𝑁
)
𝑗


.

(28)

The discrete conservation properties of the MRLW equation
corresponding to mass, momentum, and energy are deter-
mined by finding the following three invariants [41]:

𝐼
1
= ∫

𝑏

𝑎

𝑈𝑑𝑥 ≃ ℎ

𝑁

∑

𝐽=1

𝑈
𝑛

𝑗
,

𝐼
2
= ∫

𝑏

𝑎

[𝑈
2
+ 𝜇(𝑈

𝑥
)
2

] 𝑑𝑥 ≃ ℎ

𝑁

∑

𝐽=1

[(𝑈
𝑛

𝑗
)
2

+ 𝜇(𝑈
𝑥
)
𝑛

𝑗
] ,

𝐼
3
= ∫

𝑏

𝑎

(𝑈
4
− 𝜇𝑈
2

𝑥
) 𝑑𝑥 ≃ ℎ

𝑁

∑

𝐽=1

[(𝑈
𝑛

𝑗
)
4

− 𝜇(𝑈
𝑥
)
𝑛

𝑗
] .

(29)

3.1. The Motion of Single Solitary Wave. As a first problem,
MRLW equation (3) is considered with the boundary condi-
tions 𝑈 → 0 as 𝑥 → ±∞ and the initial condition

𝑈 (𝑥, 0) = √𝑐secℎ [𝑝 (𝑥 − 𝑥
0
)] . (30)

Single solitary wave solution of the MRLW equation has an
analytical solution of the form

𝑈 (𝑥, 𝑡) = √𝑐secℎ [𝑝 (𝑥 − (𝑐 + 1) 𝑡 − 𝑥
0
)] , (31)

where 𝑝 = √𝑐/𝜇(𝑐 + 1) and 𝑥
0
and 𝑐 are arbitrary constants.

This solution corresponds to motion of single solitary wave
with amplitude √𝑐, initially centered at 𝑥

0
and with wave

velocity 1 + 𝜇𝑐. For this problem the analytical values of the
invariants are [29]

𝐼
1
=

𝜋√𝑐

𝑝
, 𝐼

2
=

2𝑐

𝑝
+

2𝜇𝑝𝑐

3
, 𝐼

3
=

4𝑐
2

3𝑝
−

2𝜇𝑝𝑐

3
.

(32)

For the computational work, two sets of parameters have
been chosen and discussed. First of all, we have taken the
parameters 𝑐 = 1, 𝜇 = 1, ℎ = 0.2, 𝑥

0
= 40, 𝑘 = 0.025

over the interval [0, 100] to compare our results with [6,
29, 30, 35, 36]. Thus, the solitary wave has an amplitude
1.0 and the computations are done up to time 𝑡 = 10 to
obtain the invariants and error norms 𝐿

2
and 𝐿

∞
. Values

of the three invariants and error norms are reported in
Table 1. It is clearly seen from the table that the error norms
are satisfactorily small enough and the computed values of
invariants are in good agreement with their analytical values
𝐼
1

= 4.4428829, 𝐼
2

= 3.2998316, and 𝐼
3

= 1.4142135. The
percentage of the relative error of the conserved quantities
𝐼
1
, 𝐼
2
, and 𝐼

3
is calculated with respect to the conserved

quantities at 𝑡 = 0. Percentage of relative changes of 𝐼
1
, 𝐼
2
,

and 𝐼
3
is found to be 0.001 × 10

−3%, 3.261 × 10
−3%, and

7.609 × 10
−3%, respectively. Thus, the quantities 𝐼

1
, 𝐼
2
, and

𝐼
3
remain constant during the computer run. For this case

in Table 2, we compare the values of the invariants and error
norms obtained by using the presentmethod and some earlier
methods [6, 29, 30, 35, 36]. From the table, we observed that
the error norms obtained by the present method are less than
those of other methods [6, 29, 30, 35, 36]. Figure 1 shows the
motion of solitary wave with 𝑐 = 1, ℎ = 0.2, 𝑘 = 0.025
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Figure 3: Error with (a) 𝑐 = 1, ℎ = 0.2, Δ𝑡 = 0.025, 𝑡 = 10, 0 ≤ 𝑥 ≤ 100 and (b) 𝑐 = 0.3, ℎ = 0.1, Δ𝑡 = 0.01, 𝑡 = 20, 0 ≤ 𝑥 ≤ 100.

Table 8: Invariants of MRLW equation using the Maxwellian initial condition.

𝑡 𝜇 𝐼
1

𝐼
2

𝐼
3

𝜇 𝐼
1

𝐼
2

𝐼
3

0 1.7724809 1.3786628 0.7609109 1.7724809 1.2721327 0.8674410
3 1.7725930 1.4731551 0.6664186 1.7753954 1.4487372 0.6908365
6 0.1 1.7725929 1.4727329 0.6668408 0.015 1.7770146 1.4518203 0.6877534
9 1.7725935 1.4725552 0.6670185 1.7786793 1.4534252 0.6861485
12 1.7725942 1.4724619 0.6671118 1.7804784 1.4552349 0.6843388
15 1.77259499 1.4724042 0.6671695 1.7824228 1.4573443 0.6822294
0 1.7724809 1.2658662 0.8737075 1.7724809 1.3034651 0.8361087
3 1.7796208 1.4490883 0.6904854 1.7730165 1.4543782 0.6851955
6 0.01 1.7863091 1.4571676 0.6824061 0.04 1.7730562 1.4540759 0.6854978
9 1.7952456 1.4658449 0.6737288 1.7730962 1.4538204 0.6857534
12 1.8089221 1.4802019 0.6593718 1.7731365 1.4537359 0.6858378
15 1.8364987 1.5120445 0.6275292 1.7731770 1.4537234 0.6858503

at different time levels. It is observed that the solitary wave
moves to the right with constant velocity and amplitude. At
𝑡 = 0, the amplitude is 1.0 which is located at 𝑥 = 40, while it
is 0.999950 at 𝑡 = 10 located at𝑥 = 60.The absolute difference
in amplitudes at times 𝑡 = 0 and 𝑡 = 10 is found to be 5×10

−5,
so there is a little change between the amplitudes.

Secondly, we have taken the parameters 𝜇 = 1, 𝑐 =

0.3, ℎ = 0.1, 𝑘 = 0.01 and 𝑥
0

= 40 with range [0, 100] to
enable comparison with [6, 30, 32, 34–36]. So the solitary
wave has amplitude 0.547723. Simulations are run up to time
𝑡 = 20. Error norms 𝐿

2
and 𝐿

∞
and conserved quantities

are tabulated in Table 3, together with the results obtained in
[6, 30, 32, 34–36].These results show high degree of accuracy
and efficiency of the method. The invariants 𝐼

1
, 𝐼
2
, and 𝐼

3

have changed by less than 0.001 × 10
−3%, 0.189 × 10

−3%, and
1.656 × 10

−3% percent, respectively. Moreover, the variation
of the invariants 𝐼

2
and 𝐼
3
from the initial variants is less than

2.5 × 10
−6 and 2.6 × 10

−6, respectively, whereas the changes
in the invariant 𝐼

1
approach to zero throughout the interval.

The perspective views of traveling solitary wave at different
time levels are shown in Figure 2. The distributions of the
errors at time 𝑡 = 10 and 𝑡 = 20 are shown graphically for

solitary waves amplitudes 1 and 0.3 in Figure 3. It is seen that
the maximum errors are close to the tip of the solitary waves
and between −6 × 10

−3 and 6 × 10
−3, −2 × 10

−4, and 2 × 10
−4,

respectively.TheCPU times for an Intel(R) Core i5, 2.53GHz,
are also given in Tables 4 and 5.

3.2. Interaction of Two Solitary Waves. As a second problem,
interaction of two well separated solitary waves having
different amplitudes and traveling in the same direction is
considered by using the initial condition

𝑈 (𝑥, 0) =

2

∑

𝑗=1

𝐴
𝑗
secℎ (𝑝

𝑗
[𝑥 − 𝑥

𝑗
]) , (33)

where 𝐴
𝑗
= √𝑐
𝑗
, 𝑝
𝑗
= √𝑐
𝑗
/𝜇(𝑐
𝑗
+ 1), 𝑗 = 1, 2, and 𝑐

𝑗
and 𝑥

𝑗

are arbitrary constants.The analytical values of the invariants
can be found as [29]

𝐼
1
=

2

∑

𝑗=1

𝜋√𝑐
𝑗

𝑝
𝑗

= 11.467698,



Abstract and Applied Analysis 11

2.0

1.5

1.0

0.5

0.0

0 50 100 150 200 250

x

0 50 100 150 200 250

x

U
(
x
,
t
)

2.0

1.5

1.0

0.5

0.0

U
(
x
,
t
)

t = 0 t = 4

t = 8 t = 10

t = 14 t = 20

0 50 100 150 200 250

x

0 50 100 150 200 250

x

0 50 100 150 200 250

x

0 50 100 150 200 250

x

2.0

1.5

1.0

0.5

0.0

U
(
x
,
t
)

2.0

1.5

1.0

0.5

0.0

U
(
x
,
t
)

2.0

1.5

1.0

0.5

0.0

U
(
x
,
t
)

2.0

1.5

1.0

0.5

0.0

U
(
x
,
t
)

Figure 4: Interaction of two solitary waves with 𝑡 = 0, 4, 8, 10, 14, and 20.

𝐼
2
=

2

∑

𝑗=1

(

2𝑐
𝑗

𝑝
𝑗

+

2𝜇𝑝
𝑗
𝑐
𝑗

3
) = 14.629243,

𝐼
3
=

2

∑

𝑗=1

(

4𝑐
2

𝑗

3𝑝
𝑗

−

2𝜇𝑝
𝑗
𝑐
𝑗

3
) = 22.880466.

(34)

We have studied the interaction of two positive solitary
waves having the parameters 𝜇 = 1, ℎ = 0.2, 𝑘 = 0.025, 𝑐

1
=

4, 𝑐
2
= 1, 𝑥

1
= 25, 𝑥

2
= 55 through the interval 0 ≤ 𝑥 ≤ 250

to coincide with those used by [6, 30, 34–36].The simulations
are maintained up to 𝑡 = 20. Constant values 𝐼

1
, 𝐼
2
, and 𝐼

3

at various time steps together with equivalent results for the
previous methods are shown in Table 6. It is seen that the
numerical values of the invariants remain almost constant
during the computer run. The interaction of two solitary
waves is shown in Figure 4. It can be seen from the figure
that, at 𝑡 = 0, the wave with larger amplitude is to the left of
the second wave with smaller amplitude. Since the taller wave
moves faster than the shorter one, it catches up and collides
with the shorter one at 𝑡 = 8 and then moves away from the
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Figure 5: Interaction of three solitary waves with 𝑡 = 0, 5, 8, 15, 20, and 40.

shorter one as time increases. At 𝑡 = 20, the amplitude of
larger waves is 2.001102 at the point 𝑥 = 127.4, whereas the
amplitude of the smaller one is 0.996403 at the point𝑥 = 92. It
is found that the absolute difference in amplitude is 3.59×10−3
for the smaller wave and 1.10 × 10

−3 for the larger wave for
this case.

3.3. Interaction of Three Solitary Waves. As a third problem,
interaction of three solitary waves having different ampli-
tudes and travelling in the same direction is studied. We
consider (3) with initial conditions given by

𝑈 (𝑥, 0) =

3

∑

𝑗=1

𝐴
𝑗
secℎ (𝑝

𝑗
[𝑥 − 𝑥

𝑗
]) , (35)

where 𝐴
𝑗
= √𝑐
𝑗
, 𝑝
𝑗
= √𝑐
𝑗
/𝜇(𝑐
𝑗
+ 1), 𝑗 = 1, 2, 3, 𝑐

𝑗
and 𝑥

𝑗
are

arbitrary constants. For this problem the analytical values of
the invariants are found from (32) as

𝐼
1
=

3

∑

𝑗=1

𝜋√𝑐
𝑗

𝑝
𝑗

= 14.9801,

𝐼
2
=

3

∑

𝑗=1

(

2𝑐
𝑗

𝑝
𝑗

+

2𝜇𝑝
𝑗
𝑐
𝑗

3
) = 15.8218,

𝐼
3
=

3

∑

𝑗=1

(

4𝑐
2

𝑗

3𝑝
𝑗

−

2𝜇𝑝
𝑗
𝑐
𝑗

3
) = 22.9923.

(36)
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Figure 6: Maxwellian initial condition at 𝑡 = 14.5 with (a) 𝜇 = 0.1, (b) 𝜇 = 0.015, (c) 𝜇 = 0.01, and (d) 𝜇 = 0.04.

In order to be able to compare with the previous works,
computations are performed for the parameters 𝜇 = 1, ℎ =

0.2, 𝑘 = 0.025, 𝑐
1

= 4, 𝑐
2

= 1, 𝑐
3

= 0.25, 𝑥
1

= 15, 𝑥
2

=

45, 𝑥
3
= 60 over the interval 0 ≤ 𝑥 ≤ 250. The simulation is

run from 𝑡 = 0 to 𝑡 = 45. Table 7 shows a comparison of the
values of the invariants obtained by the present method with
those obtained in [30, 34–36]. It is evident from the table that
the obtained values of the invariants remain almost constant
during the computer run which are all in good agreement
with their analytical values given by (36). Figure 5 depicts
the interaction of three solitary waves at different times. It
is observed from Figure 5 that interaction started about time
𝑡 = 10, overlapping processes occurred between time 𝑡 = 15

and 𝑡 = 40, and waves started to resume their original shapes
after the time 𝑡 = 40.

3.4. The Maxwellian Initial Condition. As our last problem,
the development of the Maxwellian initial condition,

𝑈 (𝑥, 0) = exp (−(𝑥 − 40)
2
) , (37)

into a train of solitary waves is considered. For the
Maxwellian initial condition, behavior of the solution
depends on the values of 𝜇. So we take 𝜇 = 0.1, 𝜇 =

0.04, 𝜇 = 0.015, and 𝜇 = 0.01. The numerical values of
the invariants quantities during the simulations are given in
Table 8. For𝜇 = 0.1, only a single soliton occurred as depicted
in Figure 6(a). When 𝜇 = 0.015 and 𝜇 = 0.01, two and three
stable solitons occurred, respectively, as depicted in Figures
6(b) and 6(c). For 𝜇 = 0.04, Maxwellian initial condition has
decayed into four solitary waves as depicted in Figure 6(d).
As is seen, when 𝜇 is reduced, more solitary waves occurred.
All figures are drawn up at time 𝑡 = 14.5.The peaks of the well
developedwave lie on a straight line so that their velocities are
linearly dependent on their amplitudes and also we observe
a small oscillating tail appearing behind the last wave in all
Maxwellian figures.

4. Conclusion

In this paper, a numerical treatment of the MRLW equation
has been introduced using septic B-spline collocation finite
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elementmethod.Thenonlinear term in the equation has been
linearized by using a form given in the paper [37]. To examine
the performance of the scheme, four test problems have been
studied. The performance and accuracy of the method have
been tested by calculating the error norms 𝐿

2
and 𝐿

∞
and

the invariant quantities 𝐼
1
, 𝐼
2
, and 𝐼

3
. Linear stability analysis

proved that the present scheme is unconditionally stable.The
experimental results of the algorithm are much satisfactory
in comparison with the previous results. Our method can
successfully be used to model the motion and interaction of
the solitary waves. Thus, we can assert that our scheme is
efficient and reliable for obtaining the numerical solutions of
the other physically important nonlinear partial differential
equations.
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