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ABSTRACT 

AN AUTONOMOUS HETEROGENEOUS MULTI-ROBOT 

SYSTEM DESIGN FOR EARLY FIRE DETECTION 

 

Ömer Faruk SERİN 

MSc. in Electrical and Computer Engineering 

Advisor: Asst. Prof. Samet GÜLER 

December 2022 

 

 

The usage of autonomous multi-robot systems for human life-endangering applications 

is emerging. Early wildfire detection and firefighting are two example applications. In 

this study, a heterogenous multi-robot system is proposed for both fire detection and 

response. The system employs an unmanned aerial vehicle for beyond-visual line-of-sight 

observations and an unmanned ground robot for fire extinguisher carrying. The proposed 

method uses ultrawideband (UWB) communication and ranging modules for the relative 

localization of robots during their movements. A specially trained YOLOv7 object 

detection model is used for robustly detecting forest fires and smoke while a modified 

version of the Vector Field Histogram Plus (VFH+) algorithm on the ground robot is used 

for obstacle avoidance while navigating. The structural design of the system requires no 

odometry or mapping of the environment hence improving the applicability of the system 

while decreasing system complexity. Additionally, the proposed UWB localization 

system is shown to be robust in long-lasting operations unlike many odometry-based 

approaches which accumulate errors with time. Moreover, localization of the UAV is 

realized with only three independent UWB-based range measurements and the altitude 

information of the UAV. The system is tested both in a realistic simulation environment 

and in real experimental setups with multiple runs. Results showed that the proposed 

system is improvable for better detection and practical to implement even in a dense forest 

environment without the need for GPS sensors, odometer data, or magnetometer. 

 

Keywords: Multi-robot systems, Ultrawide-band localization, forest fire detection, 

YOLOv7 
 

 



 

ÖZET 

ERKEN ORMAN YANGINI TESPİTİ İÇİN OTONOM 

HETEROJEN ÇOKLU ROBOT SİSTEMİ TASARIMI 

 

Ömer Faruk SERİN 

 Elektrik ve Bilgisayar Mühendisliği Anabilim Dalı Yüksek Lisans 

Tez Yöneticisi: Dr. Öğr. Üyesi Samet GÜLER 

Aralık 2022 

 

İnsan sağlığını ya da güvenliğini tehlikeye atan durumlarda otonom mobil robotların 

kullanımı giderek artmaktadır. Erken orman yangını tespiti ve mücadelesi buna örnek 

verilebilecek eylemlerdendir. Bu çalışmada, bu iki uygulamada kullanılmak üzere 

heterojen, çoklu robot sistemi geliştirilmiştir. Sistem görüş alanı dışındaki nesnelerin 

tespiti için bir insansız hava aracını ve yangın söndürücü malzemelerin olay yerine 

taşınması için bir yer aracını kullanır. Önerilen yöntem robotların hareketleri esnasında 

görece lokalizasyonları için ultra geniş bant (UGB) iletişim ve mesafe ölçme modülü 

kullanır. Bu amaçla, insansız hava aracı yeni nesil bilgisayarlı görme ve nesne tespiti 

algoritması olan YOLOv7’yi kullanırken insansız kara aracı engellere çarpmamak ve 

yolunu bulmak için modifiye edilmiş Vektör Alan Histogramı (VFH+) algoritmasını 

kullanır. Sistemin yapısal tasarımı, odometri sistemlerine ve haritalama işlemlerine 

ihtiyaç duymayarak sistem karmaşıklığını azaltarak uygulanabilirliğini artırmaktadır. 

Bunun yanında, zamanla hatayı biriktiren odometri-tabanlı yaklaşımların aksine, önerilen 

UGB tabanlı yöntemin uzun süreli operasyonlarda gürbüz olduğu gösterilmiştir. Ayrıca, 

yalnızca üç UGB tabanlı mesafe ölçümü ve hava aracı irtifa bilgilerini kullanarak 

lokalizasyon işlemleri hesaplanmıştır. Tasarlanan sistem hem gerçekçi simülasyonlar 

üzerinde hem de gerçek deney sistemi üzerinde test edilmiştir. Sonuçlar, sistemin GPS, 

odometri veya manyetometre kullanmadan, nesne tespit algoritmalarını ve engel tespit 

sensörlerini günlük uygulamalar için daha da geliştirilerek gerçek hayatta 

uygulanabileceğini göstermiştir. 

 

Anahtar kelimeler: Çoklu robotik sistemler, Ultra geniş bant konumlama, orman yangını 

tespiti, YOLOv7 
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Chapter 1 

Introduction 

Autonomous mobile robots have been in our life for a long time [1]. Their operational 

day-night independence and their successes in realizing repetitive tasks make them the 

best fit for many industrial [2], agricultural [3] or other application areas [4]. Especially, 

safety-related applications of mobile robots (e.g., tasks that can be harmful to a human to 

do) are emerging application areas of mobile robots. Autonomously or not, mobile robots 

are being used in many hazardous areas, for instance, mining areas [5], and search and 

rescue operations [6], [7]. A similar human safety endangering instance is forest fires. As 

the average temperature of the earth is increasing due to global warming, climates are 

being experienced at their limits [8]. In recent years, both the north and south hemispheres 

witnessed abnormal amounts of forest fire [9]–[11]. During fire extinguishing, many 

people passed away, huge lands of forest area got damaged and a total of 1.76 billion tons 

of CO2 was released into the atmosphere during these fires [12]. 

When a forest fire starts it needs to be noticed by a forest guard or person and the first 

person who realizes the fire should inform a competent body by emergency calls. This 

process can take a lot of time if fire detection is not automatized by sensors. Even in a 

scenario with an immediate call for firefighters, it can take time for firefighters to arrive 

in the disaster area. Additionally, the large shape of fire trucks can prevent fighters from 

arriving, especially in dense forest environments. In the worst-case scenario, late 

emergency calls, and late realization of obstructed areas to pass can result in enlarged and 

hard-to-stop forest fires. In this situation, aerial fire extinguishing vehicles should take 

off if necessary. 

As is the case for any natural disaster, a fast reaction to events is vital. Observing and 

being on the watch for detecting the start of forest fires requires huge amounts of human 

labor. Even with this forest guard-watching approach, early fire detection with the naked 

eye might not be possible due to differences in weather conditions and changes in 
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visibility range. Hence, observation buildings need to be equipped with advanced sensors 

for early detection. To solve this early detection problem, there are several Internet of 

Things (IoT) based approaches in the literature [13]–[16]. However, even in the case of 

early fire detection, the first fire-fighting vehicles might not arrive in place or they can 

arrive late due to the reasons mentioned before. A proper approach should consider both 

detection and response to a forest fire. 

This simple in nature yet important mission can be done with the help of autonomous 

vehicles effectively, 7 days, 24 hours. These robots can be placed in different points of a 

forest and by actively scanning their dedicated area they can both detect and early fight 

the fire until a fire-fighting team arrives in the area if necessary. 

The autonomous vehicle to detect and respond to fire can be an aerial or ground vehicle. 

By keeping in mind being able to carry a high amount of water or chemicals within the 

body of the vehicle is advantageous since the probability of extinguishing increases as the 

payload increases, a ground vehicle is proper for this task. For an aerial vehicle, cathexis 

will fight both movements towards the target and opposition to gravity. However, a 

ground vehicle has the advantage of using gravity on behalf of itself. 

On the other hand, ground vehicles lack a long-range field of view despite being able to 

carry high payloads. A dense forest in rugged terrain will limit the sight of the vehicle by 

meters. Hence a sensor should be used for beyond-visual line-of-sight detection of a forest 

fire. Such sensors can be thermal cameras, and smoke sensors, however, both sensor types 

perform poorly if the wind direction is opposite to the vehicle location or a large obstacle 

exists between the vehicle and the fire location. 

An alternative approach to equipping the ground vehicle with advanced sensors would be 

an easier task if the ground robot would be able to see from the sky with an approach like 

bird-eye-view. Unfortunately, there is no simple sensor for this purpose. In this case, an 

aerial vehicle equipped with simple vision sensors can help the ground vehicle for 

detection and locate the fire.  

Hence a team of an unmanned aerial vehicle (UAV) and an unmanned ground vehicle 

(UGV) is designed in this study.  The total system can be briefly summarized in three 

steps. 
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1. Detecting fire: Early detection is important before fires get larger. The detection 

system should be precise and suitable. 

2. Locating fire: After the detection of the fire, the relative localization task should 

be accomplished precisely. Otherwise, it can create hard-to-recover problems. 

3. Moving and arriving at the fire location autonomously. 

Both aerial and ground vehicles move toward the fire location. In this study, it is assumed 

that neither aerial nor ground vehicles know the environment and they do not utilize GPS 

or similar global localization systems. 

 

Figure 1.1 Visualization of the overall system working. (a) The UAV periodically 

takes off and scans the environment. (b) In case of detection, locates fire and informs 

ground. (c) UAV moves towards the fire location while the UGV locates UAV and 

follows it. 

Such steps (visualized in Figure 1.1) for a team of mobile vehicles require advanced 

obstacle avoidance, localization and advanced odometry tracking as they move inside the 

forest. Since it might be difficult to provide strong wireless communication between a 

station and robot team under different field and weather conditions, a centralized solution 

to this problem would not be practical. Instead, both vehicles can move autonomously 

and accomplish their workload independently; hence, the total mission can be finished in 

a distributed and decentralized manner. All the aforementioned subsystems (odometry, 

localization, detection, etc.) are further examined in the next section. 
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1.1 Literature Review 
The review of existing algorithms and methods is examined and compared in this section 

of the study. The literature review is divided into 3 parts as following: 

i. Forest fire detection 

ii. Multi-robot operations 

iii. Path planning and obstacle avoidance algorithms. 

1.1.1 Forest Fire detection 

There are different approaches in the literature for forest fire detection. These methods 

can be classified into two categories: 

a. Wireless/stationary sensor networks for forest-fire detection. 

b. Mobile/moving sensor networks for forest-fire detection. 

Different sensor types and network topologies exist in the literature to detect forest fires 

by employing wireless sensor networks. In [17], [18] authors used gas, particle and 

temperature sensors for detecting smoke coming out of a fire. In this system, sensors are 

placed at multiple points in a forest to create a sensor cloud. Sensor placements should be 

dense enough to observe and locate the coming smoke due to external effects like wind. 

Other similar methods are present in [19], [20] where instead of gas and temperature 

sensors, small cameras are placed in a forest, periodically imaging their field of view to 

detect forest fire and inform the ground station. However, all wireless communication-

based systems have the drawback of being connected to a ground station. Even if sensors 

in the field detect the fire, they might not be able to inform the ground station due to 

corrupted, noisy messages or wireless communication service outages.  

Another vision-based approach exists in [21] to make communication more robust for 

outages or corruption. In this method, a wireless sensor network forwards messages 

coming from other sensors which detected the forest fire to the control station. This multi-

hopping structure ensures that the maximum communication distance is short and limited 

to the closest sensor. Additionally, multi-hopping ensures even some of the close  

proximity network members are disconnected, the ones connected and hearing the 

messages forward to further network members. Figure 1.2 can be helpful to visualize such 

a system.  
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In [22] radio-acoustic sounding system is used for observing the change in the speed of 

sound using the physical relation between air temperature and the speed of sound. This 

system is promising for the early detection of forest fires and it has a long range of 

detection. However, strong winds can add noise to sound speed detection and the system 

can require a significant amount of fire to observe heat-related sound speed changes on 

the radar screen.  

Authors in [23] fuse many wireless sensing systems with different properties such as 

optical smoke detectors, microwave, and gas sensors for early detection of forest fires. 

They additionally suggest using a UAV to check if sensor alarms are correct or not. In 

this case, an employed UAV with a thermal camera and gas sensors flies to the location 

of alarming sensors. If there is a forest fire, the UAV is further used as an observer to help 

firefighters. Furthermore, a blimp is employed with many sensors to check and detect the 

re-ignition of fires. The overall system covers many aspects of forest fire detection and 

fighting. However, their solution for false alarms increases system complexity by 

additionally introducing aerial vehicles to the system. As our study suggests, the overall 

mission of [23] can be done with only a UAV, without needing additional wireless sensors 

in the forest. 

During the literature review, it is observed that most of the studies utilize a group of 

mobile robots as wireless mobile sensor networks. In [24] authors utilize a team of UAVs 

and UGVs for fire detection and monitoring. This study utilizes a similar multi-robot 

framework to the work of this thesis for forest monitoring and fire detection. In their 

Figure 1.2 Visualization of multi-hopping communication between multiple wireless 

sensors placed in a forest area. 
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study, the proposed mobile-robot team of UAVs and UGVs move in formation during 

different periods of the mission. Specifically, UGVs carry UAVs to a region to scan and 

detect fire if any. When UGVs arrive at the location, UAVs take off and scan the 

environment while preserving their formation. Additionally, if they detect a fire, one of 

the UGVs takes sensory data from UAVs and computes new trajectories of UAVs for fire 

observation. However, most of the study covers only the control model of UAVs and the 

ground robots during their trajectory following missions, and no real-world or realistic 

simulation experiments are presented in the study. Although it is not mentioned what 

kinds of sensory equipment are used for the localization and ranging of robots in [24], in 

this thesis UAV localization and leader following are simplified thanks to the utilization 

of ultra-wideband (UWB) sensors. 

1.1.2 Multi-Robot Operations 

Multi-robot operations have been attracting many researchers for years. Distributing the 

total workload to many robots, or having different robot types to complete a task by 

benefiting from each robot’s strong sides is more efficient than having a single big robot. 

Here, we focus on the systems that only utilize UAV-UGV interactions in the literature 

review, noting that many unique algorithms and systems for this purpose exist in the 

literature. 

In [25] authors designed a hawk-eye structure for ground robots to operate in a target-

reaching problem. In their system, the aerial vehicle takes off to an altitude and observes 

the environment. The target region is marked with a light source whose color is known. 

Additionally, the ground robots have three light sources on them for the UAV to detect 

and compute their orientation with respect to the target region. By continuously observing 

the target region and ground robots’ orientations, the UAV gives orientation commands 

to ground robots to help them find the target region. As the authors claimed in their study, 

the system is designed as a workbench for further research; however, such light-based 

marker mechanisms can be a good alternative to QR-code-based markers since QR-based 

systems cannot be detected in dark without additional lighting. 

The study in [26] uses two drones to guide and inform a ground robot. The drones create 

a formation and fly above the ground robot while taking images of the environment. The 

collected images and formation information is then used to extract three-dimensional 
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information about obstacles. Briefly, the ground robot uses these drones as a stereo 

camera to obtain beyond visual line of sight (BVLOS) obstacle information. Even though 

the experimental results show the system performance is sufficient in a lab environment, 

it might be hard to implement in an environment where formation-disrupting winds and 

dense obstacles exist. However, the idea of using stereo cameras for BVLOS operations 

of ground robots can be promising in order to optimize the path planning and decision-

making operations of the ground robot. 

In [27], authors presented a novel visual-inertial-range-odometry (VIRO) system for 

UAV-UGV or heterogeneous robot systems. Briefly, the system utilizes both visual-

inertial odometry and UWB ranging for accurate localization of different robot types for 

the task of 3D scanning of structures like buildings, trees, etc. As is the case in our study, 

fusing visual and inertial data and range measurements boosts the accuracy of 

localization. This is due to, firstly, UWB ranging produces low bias and noise if they are 

well calibrated. Secondly, any integration operation or any other operation that results in 

a cumulative increase in error is not needed with UWB ranging. The ranging directly 

gives the actual distance plus some noise error between two nodes. By using the VIRO 

method, authors increased the performance of 3D scanning tasks with autonomous robots. 

In the study presented in [28], a UAV scans the environment and extracts environmental 

information to create a map for the ground robots. The UGV uses the created map to 

optimally compute a path to the target location using an enhanced version of the A* path 

planning algorithm [29] which is a heuristic-based graph search algorithm. During the 

operation, the UAV updates its position by checking the progress of the UGV under the 

current scene provided by the UAV camera. The proposed system needs GPS for robots 

to localize themselves. In a similar study [30], a UAV collects images of the ground as it 

passes over and sends images to the ground robot. The ground robot then processes these 

images to detect obstacles and then creates a map. The resulting map is then used for path 

planning with the proposed hybrid path planning algorithm. However, one of the main 

contributions of the study is the effect of applying image denoising on the performance 

of map creation. The authors improved the performance of the system by additionally 

processing and correcting images before sending them to the ground robot. 

A reinforcement-learning approach is presented in [31] for UAV-UGV path planning. In 

this system, similar to [26], [28], [30] the UGV takes images of the environment and 
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computes occluded and non-occluded areas to create a binary map. The UGV uses this 

map to plan its path to the target location. However, instead of keeping all the information 

to form a global map of the environment the study considers each observed separated 

location as a game map and trains the ground robot to act on the given map. This way the 

robot learns which way to take in a given environment. In a non-changing map, this 

approach can save memory and additional computations. However, in a dynamic 

environment, the system’s success cannot be guaranteed.  

1.1.3 Path Planning and Obstacle Avoidance 

Whether a robotic manipulator or a wheeled or legged ground robot, it is almost 

mandatory to have a path-planning algorithm for successful operation. If the goal is 

moving from point A to point B in the mission space, path-planning algorithms are used 

for the optimization of the path-taking task. This way, the target can be reached in less 

time or the robot can take the shortest possible path. There are many different approaches 

to path planning operations. However, in general, path-planning algorithms can be 

divided into two main groups. These are global path planning and local path planning. 

Global path planning algorithms use the information available about, as the name 

suggests, a global map of the environment. Briefly, algorithms use three core information, 

the initial position of the robot, the target position, and the map of the environment. 

How these three core pieces of information are handled depends on the algorithm. In the 

literature, global path planning algorithms are divided into three main categories. These 

are occupancy grid-based algorithms, evolutionary algorithms, and deterministic 

algorithms. Occupancy grid maps are widely used in computer games [32]. However, in 

robotics, during simultaneous localization and mapping (SLAM) operation, the map of 

the environment is sometimes created as voxels in 3D or occupancy grids in 2D in an 8-

connected cell configuration as shown in Figure 1.3. This way grid-based path planning 

algorithms are directly used on the obtained map.  

A well-known A* algorithm [29] is a heuristic search algorithm that searches a series of 

connected edges from start to goal location. The algorithm efficiently searches and 

eliminates costly branches with the help of a heuristic function. In robotics, Euclidean 

distance or L2 distance is commonly used as a heuristic for the path-planning operation. 

With the help of this function, at each grid, the algorithm compares the neighboring grid 
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cells and adds the best one to the list. In the end, a series of the best (shortest) list of grids 

is obtained. The robot then follows the order given in the list. To be able to complete this 

path planning task, A* search algorithm requires full knowledge of the map. However, in 

the end, the algorithm provides the optimal result which means the shortest possible path. 

Additionally, the algorithm is complete which means if there is a path, the algorithm finds 

it at worst after checking every node. 

Different versions of the A* are provided in [33]–[35]. In these algorithms, instead of a 

global comparison of the edges, the edges local to the position of the robot and its path 

are only compared with their neighbors. The resulting algorithm runs much faster than 

the A* algorithm and it can be used in an unknown map. In general, the algorithm is 

adjusted so that it assumes no obstacle on its path since the robot does not know the map, 

as the robot moves and discovers obstacles, the algorithm is re-run and updates the path 

accordingly. This re-run process is executed over the last computed position. This 

incremental searching decreases the execution time further. 

The problem with grid-based path planning algorithms is that the resulting path is only 

optimal in a grid map not in a continuous environment. Additionally, a robot following 

the generated path by a grid search algorithm performs inefficient maneuvers. Increasing 

the map resolution and creating smaller grids can improve the result. However, the 

increase in the number of grids exponentially affects the runtime performance of the 

Figure 1.3 Grid connections. (a) 8-connected grids in 2D. (b) 26-connected voxels in 

3D. 
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algorithms. Such a problem is partially solved in [36]. The Field D* algorithm is a 

modification of the D* Lite algorithm [34]. This algorithm computes the path similar to 

D* Lite, however, it applies interpolation operations on the generated path during 

planning. The paths resulting from these interpolations are much shorter in general. 

Furthermore, interpolation operation smooths the planned path, making robot maneuvers 

more efficient. The number of grids entered in the interpolation operation depends on the 

algorithm and environmental information.  

In some cases, Field D* cannot produce longer paths with interpolation even though there 

exist shorter actual paths. This is due to the non-optimal amount of interpolation sizes. 

Such a case is visualized in Figure 1.4. Interpolation operations and path planning can be 

used in both 2D and 3D path planning [37]. This makes Field D* applicable for UAV 

operations as well. However, in this study, the UAV path planning is not included by 

assuming that the UAV has a high enough altitude not to confront an obstacle. 

Additionally, it is assumed that the drone takes the fire location on its front by rotating 

and only follows a straight path to the target location. 

 

 

 

 

 

 

 

 

Figure 1.4 An example of Field D* being unable to produce a shorter path due to 

the disability of handling a large obstacle in interpolation operation and it generates 

the path shown with blue arrows. (Blue arrows) grid-based shortest path. (Dashed 

orange arrows) Actual shortest path. 
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Chapter 2 

System Definition 

In this study, early forest fire detection and response system is proposed by employing an 

autonomous multi-robot team. Specifically, the system consists of two robots, one is an 

autonomous drone and another one is an autonomous ground vehicle. The study covers 

the early detection of fire, localization, and arrival of robots to the fire location. However, 

the study does not contain any fire modeling or fire-fighting concepts. The reason behind 

using multiple robots is to benefit each robot type's strong properties. The drone can fly 

above trees or any other vegetation, and by using its onboard camera, it can observe far 

more distance than a camera on the ground vehicle. Additionally, since smoke rises in the 

air, detection of smoke becomes easier from a drone's perspective. The ground robot can 

carry payloads and its dynamics and control are less complexes with respect to the drone. 

Combining these two robots in a team can help detect forest fires and carry fire 

extinguishers to the fire location efficiently. 

The simplified version of the normal operation of the system is schematized in Figure 2.1. 

The drone periodically takes off to a predefined altitude, scans its environment, and lands 

again. In the case of a fire or smoke detection, the drone informs the ground vehicle and 

starts moving toward the fire location at a constant speed. With the assumption of the 

drone's altitude is high enough so that there will not be an obstacle issue, the drone will 

be following a straight path to the target location. Self-localization algorithm between 

drone and ground vehicle constantly measures the ranges between onboard UWB radio 

frequency sensors. Trilateration of measured distances reveals the two-dimensional 

location of the drone in the body frame of the ground robot. By keeping their distances 

lower than a threshold, both robots move toward the fire location.  

On the other hand, the ground robot uses an obstacle avoidance algorithm to avoid any 

crashes. During escaping from obstacles, the bearing angle between the ground robot and 
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the drone changes and updating the drone location periodically, prevents any failure of 

the drone-following operation during these baring-angle changes.  

An important point of fire detection and response is false detection. If the drone detects 

false-positive fire or smoke, the cost of taking action and moving toward the detection is 

high. On the other hand, if the drone detects a fire that is true-positive and during the 

response, the detection algorithm might not be able to detect fire for a period. In this case, 

the cost of canceling the operation is much higher. To deal with these two cases, the drone 

collects many images from different angles to be sure if fire or smoke actually exists at 

the beginning of the mission. In the following subsections, the main parts shown in Figure 

2.1 are explained in detail. 

2.1 Periodic Observation and Fire Detection 

At the start of every take-off period, the drone is elevated to a predefined altitude. The 

altitude estimation is obtained using sensor fusion between UWB ranging and onboard 

Figure 2.1 Flowchart of the overall system steps. 
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static-pressure sensor. A LIDAR sensor is not used in this study for altitude estimation 

since LIDAR measurements vary during drone flight due to the trees, rocks, or other 

objects in a forest environment. The static air pressure information can be converted to 

the altitude thanks to the effect of gravity on air molecules. As the altitude increases, the 

number of air molecules decreases in volume, and hence, air pressure decreases. The (2.1) 

relates air pressure to altitude with respect to sea level where h is the altitude in meters, 

hb is sea level height which is 0 meter in this case, Tb is the temperature at sea level, Lb 

is the temperature lapse rate, P is the measured pressure in atmospheric pressure, Pb is the 

pressure at sea level, g0 is the gravity, M is air molar mass in kg, R is the universal gas 

constant. 

ℎ = ℎ𝑏 +
𝑇𝑏

𝐿𝑏
[(

𝑃

𝑃𝑏
)

−𝑅⋅𝐿𝑏
𝑔0⋅𝑀

− 1] 
(2.1) 

Fire spreading speed depends on many factors like wind speed, air temperature, humidity, 

burning material, etc. These factors are not constant and in a practical application, the 

observation period should be adjusted dynamically by considering these factors. The 

period should not be too long, in case of a fire starting right after the last landing would 

not be detected until the next take-off. A too-short observation period can decrease the 

battery level of the drones quickly hence battery level might not be enough after detecting 

and moving toward the target. In a scenario where the battery level is well managed and 

the drone observation period is low enough to detect a fire early, the system uses deep 

learning algorithms for the recognition of fire or smoke. However, for this system to work, 

recognition of fire/smoke is not enough since the UAV needs to locate the fire/smoke to 

reach that place. For this reason, the problem is defined as object detection where 

recognized objects in an image are additionally marked with their location in the image 

frame. 

Complex object detection problems can be solved with machine-learning approaches. 

Specifically, for the task of object detection, artificial neural networks can be 

implemented. Even though artificial neural networks perform well in this kind of 

problem, a different version of ANNs called convolutional neural networks (CNN) 

performs quite well in computer-vision tasks. 
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One of the famous CNN-based approaches for real-time object detection is the well-

known YOLO (You Only Look Once) algorithm family. Currently, the YOLO family has 

7 major versions for real-time object detection. In this study, YOLO version 7 [38] is used 

for fire and smoke detection tasks which remains one of the highest-performing real-time 

object detection algorithms at the time of this study. Additionally, the YOLOv7 model is 

sufficiently fast in terms of computation time and low in the number of parameters so that 

it can be loaded to power and payload critical systems such as UAVs. 

 
Figure 2.2 Example images with detections using trained YOLOv7 object detection 

algorithm. 

The YOLOv7 model tries to detect objects in three different scales, so that small, medium, 

or large versions of the same objects can be recognized and located in the image frame. 

At the end of detection, the model gives a list of object classes and their coordinates with 
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the size of enclosing boxes. An example of performed object detection with YOLOv7 is 

presented in Figure 2.2. 

The drone uses information about detected objects and the enclosing boxes to center the 

image x-axis of the boxes in the image frame. The camera-to-object axis and drone body 

center-to-object axis are the same in this study. Hence centering an object in the image 

frame results in fronting the object in the body frame. The drone accomplishes this 

centering operation by adjusting its yaw angle with a constant angle step.  

When the drone detects forest fire, it collects multiple images while hovering. If the 

detections are predominant in all frames, the drone makes small changes in its perspective 

and checks if the fire or smoke is still detectable. The predominance of fire or smoke 

during this procedure eliminates false detection of fire. After detection, false detection 

filtering and centering of fire or smoke, the drone informs the ground vehicle over UWB 

communication and ranging link and then starts flying toward the fire location. 

2.2 UAV-UGV UWB Communication and Ranging 

In the proposed framework, the drone and the ground vehicle communicate continuously 

and inform each other about their findings and about what will be their next action. 

Additionally, the two robots measure their distances thanks to the unique features of 

UWB communication. The ground vehicle is equipped with three UWB sensors and the 

drone is equipped with one UWB sensor since low energy consumption and payload 

amounts are critical for the drone.  

With this setup, at every communication period, a total of three communication instances 

are carried out. This way three distance measurements are obtained by the ground vehicle. 

For each range measurement, the ground robot sends a start message with a time portion 

to the drone. When the drone receives this message, it adds predefined message reception, 

CPU computation, and antenna transmission delays to the time portion of the message 

and transmits this new message to the ground robot. The ground robot then computes the 

differences in time and computes the range using the time-of-flight (ToF) technique. The 

overall time of flight (ToF) ranging using UWB is shown in Figure 2.3. 
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Figure 2.3 Double-sided two-way ranging scheme for UWB communication. 

Since the onboard UWB sensors are placed at different points and their locations are 

known in the body frame of the ground vehicle, the robot can locate the drone in its own 

body frame using the following series of linear least-square operations (2.2) and (2.3). 

𝑨 =  [
𝑥2 − 𝑥1 𝑦2 − 𝑦1

𝑥3 − 𝑥1 𝑦3 − 𝑦1
] , 𝒃 = [

1

2
(𝑟1

2 − 𝑟2
2 + 𝑑21

2 )

1

2
(𝑟1

2 − 𝑟3
2 + 𝑑31

2
], 

 

(2.2)  

[
𝑥𝑈𝐴𝑉

𝑦𝑈𝐴𝑉
] = (𝑨𝑻𝑨)−1𝑨𝑻𝒃 + [

𝑥1

𝑦1
], 

(2.3) 

where (x1, y1), (x2, y2), (x3, y3) are locations of UWB modules on UGV, r1, r2, r3 are the 

measured distances from UAV to UGV, d21, d31 are the distances between UWB modules 

on UGV. 

The result of the trilateration is the X and Y coordinates of the drone in the body frame 

of the ground robot. The position in Z is obtained using the altitude information of the 

drone. This way computational requirements are decreased for relative localization. 

Actually, Z information is not crucial since X and Y information is used for target 

direction assignment for the ground robot. The inaccuracies caused by not measuring and 

hence not including UAV height in localization computations do not have a significant 

effect on localization since location information is only used for target direction 



17 

 

assignment. Additionally, the direction estimation is frequently updated and filtered by 

the ground vehicle to eliminate inaccuracies and measurement noises. 

This step of relative localization and formation control between the drone and the ground 

robot is the main contribution of this study. In a scenario, where a ground robot is not 

equipped with UWB sensors and localization is performed using only the initial relative 

states of the two robots and their odometry systems are not easily implementable in a real-

world environment.  

In such a scenario, first, both robots would be sharing their odometry results frequently 

to filter and constantly locating themselves will increase communication amount. 

Additionally, the ground robot must use advanced sensory equipment and heavy 

computations to track its location precisely. In this situation, system complexity, total 

sensors used, and system cost will increase drastically. However, in this study, the ground 

robot can get feedback from UWB range measurements, and the drone gets its feedback 

from object detections. This way error rates are only limited by single measurement errors 

and sensor noises at that specific time and this error rate can be decreased by filtering and 

signal processing. On the other hand, in an odometry scenario, the total error will be 

increasing cumulatively due to integral or summation operations during Kalman filtering, 

etc. 

2.3 Moving Towards a Target, Local Planner 

When the drone detects a forest fire, it starts moving toward the fire location. Since it is 

assumed that the drone's altitude is sufficiently high, we exclude the probability of 

collision with obstacles on its way to the target. However, the ground vehicle cannot have 

such an assumption since a forest environment is full of obstacles for a ground vehicle. 

In this case, it is mandatory to have an obstacle avoidance algorithm. For this reason, the 

ground robot utilizes an obstacle avoidance and local planning algorithm titled Vector 

Field Histogram Plus (VFH+) [39]. This algorithm is chosen due to its direct interaction 

with LIDAR measurement results. The robot uses LIDAR for detecting and locating 

obstacles around its body. The measurements coming from the LIDAR sensor, and target 

direction (i.e., drone relative position) are fed into the VFH+ algorithm and as a result, 

the algorithm gives a new direction of movement by considering robot dynamics. 

Therefore, the robot tries to keep its distance from obstacles over a predefined threshold 
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and follows the target direction while avoiding obstacles. Steps of the VFH+ algorithm 

are presented in the following Figure 2.4. 

At first, the LIDAR measurements are truncated according to the maximum obstacle 

range parameter. This parameter is chosen not to include the obstacles which reside 

outside a disk with a certain threshold. Secondly, the measurement results are scanned for 

the detection of obstacles and their edges. 

Since the measurement indices of LIDAR scan measurements can be converted to body-

frame bearing angles, this information is used to locate obstacles in the body frame. The 

result of the transformation operation is a polar histogram with a predefined angle 

resolution. If the target direction is obstacle-free, the robot tries to move there; however, 

if the target direction is occluded, the ground vehicle picks a new direction according to 

the polar histogram. Even if the ground robot rotates in a different direction due to an 

obstacle, periodic range measurements coming from on-body UWB sensors and the 

relative localization algorithm update the target direction. At each time segment, the UGV 

local path planner updates the target direction according to the result of the localization 

algorithm. 

With this structure, localization error stays bounded to the UWB measurement errors. In 

an odometry-based system, the ground robot would have to keep track of its feedback 

sensors like wheel encoders, inertial measurements, etc. As UWB measurements have 

noises on them, these odometry sensors have too. However, every time the odometry 

system measures and integrates sensor measurements to figure out how the vehicle 

moved, the algorithm additionally integrates sensor noises and biases. In the long run, the 

Figure 2.4 General operational processes of VFH+ algorithm. 
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deviation from the actual position to the odometry output will be much larger than the 

UWB measurement case. This is due to the fact that the UWB measurements are updated 

at every period and previous measurements are discarded directly or only used for 

filtering high-frequency noises. This way maximum error is limited to the maximum error 

of range measurement where the maximum error of the odometry case increases as the 

operation time goes to infinity.  
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Chapter 3 

Method 

In a forest environment ℰ, a vertical take-off and landing (VTOL) capable UAV A and a 

four-wheeled non-holonomic unmanned ground robot G are employed. The UAV has 

holonomic kinematic constraints such that it can move in any direction in a three-

dimensional (3D) space if there is no obstacle in ℰ. Additionally, the orientation of A can 

change in any of the three Cartesian axes. Assuming that the motions in the three axes are 

independent from each other (i.e., these axes are decoupled), the position and orientation 

of A at a time 𝑡 + 𝑇𝑠 with given linear and angular velocity vectors 𝐯𝐭
𝐀 and 𝛚𝐭

𝐀 can be 

represented as follows:  

𝐩𝑡+𝑇𝑠

A = 𝐩𝑡
A + 𝐯𝑡

A𝑇𝑠 + 𝛈𝑡
𝑝𝐴

, 
(3.1)  

𝝋𝑡+𝑇𝑠

𝐴 = 𝝋𝑡
𝐴 + 𝝎𝑡

𝐴𝑇𝑠 + 𝜂𝑡
𝜑𝐴

. 
(3.2) 

Here, 𝐩t
A = [𝑥𝑡

𝐴 𝑦𝑡
𝐴 𝑧𝑡

𝐴]𝑇 (x, y, z are the positions with respect to a global frame ℱ𝐺) and 

𝛗t
A = [αt

A βt
A γt

A] (α, β, γ are roll, pitch, yaw angles of A). 𝛈𝑡
𝑝 𝑎𝑛𝑑 𝛈𝑡

𝜑
are positional and 

orientational Gaussian noises which can be defined as 𝛈𝐀 ∼ N(0, Σp), 𝛈𝛗 ∼ N(0, Σφ) 

where Σi = σi
2𝐈3. It should be noted that, during flight, the roll and pitch axes and the 

altitude of robot A are controlled by its low-level controller. Thus, it is desired to control 

the yaw (γt
A) for orientation and xt

A yt
A for position control. Also, we assume that zt

A = h 

is constant during flight. Therefore, 𝐯t
A and 𝛚t

A vectors have some indexes with zero 

value. 

Ground robot G has the following forward kinematics equations due to nonholonomic 

constraints: 
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𝐩𝑡+𝑇𝑠

G = 𝐩𝑡
G + [cos(𝜃𝑡

𝐺) sin(𝜃𝑡
𝐺)    0]T 𝐯𝑡

𝐆𝑇𝑠 + 𝛈𝑡
𝑝𝐺

 
(3.3) 

𝜃𝑡+𝑇𝑆

𝐺 = 𝜃𝑡
𝐺 + ω𝑡

G𝑇𝑠 + 𝜂𝑡
𝜃, (3.4) 

where 𝛈t
pG

∼ N(0, ΣG) and ΣG = σG
2 𝐈3. In other words, its altitude zt

G is constant, and the 

ground robot can change its orientation about zt
G by controlling θt

G. In addition, robot G 

has rigidly mounted three UWB sensors as shown in Figure 3.1 at the following locations: 

𝐩𝑡
𝐮𝐢 = 𝐩𝑡

G + 𝐑(𝜃𝑡
𝐺)ri, (3.5) 

where r1 = [0 m]T, r2 = [0 −m]T, r3 = [m 0]T and 𝐑(𝜃) is the 2x2 rotation 

matrix. The robot A has a single UWB sensor rigidly mounted to its airframe’s center-of-

gravity.  

 

 

Figure 3.1 UWB locations on the ground robot. The forward-looking camera of the 

UGV is only used for debugging purposes. 

The three distances between UWB sensors on G to UWB sensor on A can be defined as: 

𝑑𝑡
𝑖 = ||𝐩𝑡

ui − 𝐩𝑡
A|| + 𝛿𝑡

𝑖, 𝑖 ∈ {1,2,3}, (3.6) 

where,  δt
i ∼ N(0, σδ

2), and 𝐩𝑡
u𝐢  is the position vector of UWB sensors on G. With these 

given kinematics and models, the robots A and G have two main objectives: 

Objective 1: Fire detection using onboard resources and target (fire-location) reaching. 

Objective 2: UAV localization and following while avoiding obstacles. 
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In the following sections, we study these objectives independently. 

3.1 Objective 1: Fire Detection and Target Reaching 

For the first objective, robot A uses specially trained YOLOv7 CNN model. For an image 

frame x, the model f(X) can be defined as: 

𝑓(𝑿) =  𝑦 = {
[  ] (𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡), 𝑛 = 0
[𝒄, 𝒙𝟏, 𝒚𝟏, 𝒙𝟐, 𝒚𝟐], 𝑛 > 0

 
(3.7) 

where n is the number of detections, c is a vector of classes (fire, smoke or 0, 1) 𝐱𝟏, 𝐲𝟏 

are the vector of x- and y-coordinates of the top-left corner of bounding boxes in the 

image frame, 𝐱𝟐, 𝐲𝟐 are the bottom-right corner coordinates of bounding boxes in the 

image frame. Assume a 3 by 640 by 640 RGB image frame Xi taken at time 𝑡 and that 

f(Xi) detects a single object fire or smoke. Given 𝐱 = [x1, y1, x2, y2] coordinates of the 

bounding box, robot A uses the following equation to center the image detection in the 

image frame: 

𝑔(𝒙) = {

−𝑞, 𝑥1 +
𝑥2−𝑥1

2
 <

640(𝑝𝑖𝑥𝑒𝑙)

2
−  𝜀

𝑞, 𝑥1 +
𝑥2−𝑥1

2
>

640(𝑝𝑖𝑥𝑒𝑙)

2
−  𝜀

0,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                      

, 

 

(3.8) 

Where the design constant q is the yaw angle increment amount, and ε is an allowed error 

rate in pixels. Robot A uses the result of g(x) for orientation correction. By controlling 

its yaw angle by q or -q amount, robot A faces the detected fire or smoke. When the 

detection is centered in the image frame, robot A follows a straight path to the detected 

place. However, for this algorithm to work, robot A must use a forward-looking camera. 

To better explain the centering and path following operation, consider the following 

scenario: For ε = 10 pixels, a forward-looking camera with a horizontal field-of-view 

(FOV) angle of 60 degrees sees a smoke cloud at a distance of 100 meters with a diameter 

of 5 meters (assuming that the smoke cloud is disk-shaped) in the center of the image 

frame. If the camera has a 640 by 640 pixels resolution, the horizontal length of the cloud 

in image pixels would be (discarding any nonlinearities, 3D projection errors, etc.): 
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2 ∗ (
2.5𝑚 ∗ 320𝑝𝑥

tan (
𝜋
6) ∗ 100𝑚

) ≅ 28 𝑝𝑖𝑥𝑒𝑙𝑠  

 

(3.9) 

This shows that for the 5-meter horizontal length of smoke at 100 meters away, the 𝜀 error 

rate will be less than the object size of 5 meters. If the distance from the camera to the 

smoke decreases to 80 meters, smoke would take around 34 pixels and around 55 pixels 

at 50 meters away. Even if the accuracy of the centering operation is low at far distances, 

as the drone gets closer to the detected object, the result of object centering will be more 

accurate and robot A will reach the fire location by repeating centering and straight-path-

following operations. 

During robot A’s motion toward the target region, the distance between A and G can 

increase to a level where UWB ranging and communication is not possible anymore. To 

avoid such a situation, robot A limits its maximum distance to robot G to the predefined 

level of lAG. If the distance between them exceeds lAG, A hovers and only tries centering 

the detections in the image frame. 

3.2 Objective 2: UAV Localization and Following 

The second objective is the main task of robot G. Here, after robot A informs robot G 

about fire detection, robot G waits for A to move away for a predefined distance limit 𝑙𝐺𝐴. 

Separating robots A and G by a certain distance is required for improving the performance 

of UWB-based localization. In our system, A has an elevation over the ground plane 

during flight. To locate A in a 3D space, G must have at least 4 UWB sensors (4 

independent ranges). However, A can track its altitude with respect to the ground plane 

using onboard resources such as a barometer and/or a downward-facing laser sensor, and 

can share this information with G. With the altitude information, G can locate A with 3 

range measurements since the system can be reduced into 2D space by extracting 

information related to third dimension. Indeed, for the system to work, no altitude 

information is required since the least square operation has only 2 dimensions, and the 

distance error caused by not considering drone altitude cancels out during the calculation 

of vector b in (3.10). At any time t, by employing the measured distances between UWB 

sensors dt
i , i ∈ {1,2,3}, we reach the following set of equations: 
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𝐀 = [
𝒓𝟐 − 𝒓𝟏

𝒓𝟑 − 𝒓𝟏
] , 𝐛 = [

1

2
(𝑑1

2 − 𝑑2
2 + 𝑚2)

1

2
(𝑑1

2 − 𝑑3
2 + 𝑚2

]. 
(3.10) 

We apply the following least-squares algorithm at each time instant 𝑡 to generate robot A 

position: 

𝑿𝒕 = [ 
𝑥�̅�

�̅�𝑡
  ] = (𝐀𝐓𝐀)−1𝐀𝐓𝐛 + [ 

𝑥1

𝑦1
]. 

(3.11) 

Here, x̅t, yt̅ are the result of trilateration, and the bearing angle from G to A is τt =

 tan−1(y̅t/xt̅). Deviations in τ due to measurement noises and biases become maximum 

if projection of A falls over G (close to or inside of the triangle which the three UWB 

modules create). Additionally, high sensor noises can result with imaginary results due to 

square root operations. For these reasons, a large enough minimum distance lGA is 

required for stable bearing direction calculations. To improve the precision, a weighted 

least-squares approximation can be used as follows: 

𝐗𝐭 = [ 
𝑥�̅�

�̅�𝑡
  ] = (𝐀𝐓𝛀𝐀)−1𝐀𝐓𝛀𝐛 + [ 

𝑥1

𝑦1
] , 𝛀 =

[
 
 
 
 
1

𝜎𝛿
2 0

0
1

𝜎𝛿
2]
 
 
 
 

. 

 

(3.12) 

Another method for filtering can be using weighted moving average filters for the 

measurements. 𝐤 = [Xt, … , Xt−nTs
], where n + 1 is the filter length and 𝑾 = [𝑤0 …𝑤𝑛], 

wi is being the filter coefficient. The filtered result would be: 

�̅�𝑡 = ∑𝑘𝑖 ∗

𝑛

𝑖=0

𝑊𝑖 (3.13) 

The weights of the least-squares method and the filter size and coefficients depend on the 

system and measurement noise levels. 

For the UAV following task of G, the robot uses bearing angle information 𝜏𝑡 and range 

measurements to keep at least lGA amount of distance. Here, a modification of VFH+ is 

used for obstacle avoidance. For a LIDAR scan st
i, i ∈ {1,2, …n} of size n at time t, robot 

safety radius rsafety ≥ rrobot, and obstacle handling radius rthreshold, VFH+ algorithm 

creates a polar histogram of the environment and guides the robot according to the polar 

histogram and target direction (τt in this case). To simplify computations, detected 
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obstacle edges are enlarged by rsafety amount so that robot G is handled as a point object 

in the X-Y plane. Enlargement operation is done with (3.14). 

𝑖̅ = ⌈
sin−1

𝑟𝑠𝑎𝑓𝑒𝑡𝑦

𝑠𝑡
𝑖

𝜇
⌉ ,   𝑠𝑡

𝑖̅∶𝑖 = 𝑠𝑡
𝑖 

(3.14) 

where µ is the angle increment of each LIDAR beam, 𝑖 ̅represents the enlargement amount 

as indices and from i to i,̅ all indices are assigned with the original obstacle distance. As 

a second step, 𝒔𝑡
𝑖  is binarized: 

𝑠𝑡
𝑖 = {

1, 𝑠𝑡
𝑖 <  𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (Obstacle)

0, 𝑠𝑡
𝑖 ≥ 𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (No obstacle)

  𝑖 ∈ {1,2, … 𝑛}. (3.15) 

  

 

Figure 3.2 Example polar histogram. (a) Histogram with different range 

magnitudes. (b) Binarized and enlarged polar histogram. 

An example of a binary histogram for a LIDAR with 270-degree FOV is presented in 

Figure 3.2. Additionally, indices (angles) that are out of G’s dynamic range (G cannot 

turn that sharp) are marked as occluded even though the portions are obstacle free. With 

rleft,  rright being the left and right minimum turning radiuses respectively, an obstacle 

detected with 𝑠𝑡
𝑖 beam blocks the left or right turning path if and only if: 

1. 𝑑𝑙
2 < 𝑟𝑟𝑜𝑏𝑜𝑡 + 𝑟𝑠𝑎𝑓𝑒𝑡𝑦 𝑤ℎ𝑒𝑟𝑒 𝑑𝑙

2 = (𝑠𝑡
𝑖)

2
+ 𝑟𝑙𝑒𝑓𝑡

2 − 2𝑠𝑡
𝑖𝑟𝑙𝑒𝑓𝑡 cos (

𝜋

2
−

𝑖

𝜇
) 
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2. 𝑑𝑟
2 < 𝑟𝑟𝑜𝑏𝑜𝑡 + 𝑟𝑠𝑎𝑓𝑒𝑡𝑦 𝑤ℎ𝑒𝑟𝑒 𝑑𝑟

2 = (𝑠𝑡
𝑖)

2
+ 𝑟𝑟𝑖𝑔ℎ𝑡

2 − 2𝑠𝑡
𝑖𝑟𝑟𝑖𝑔ℎ𝑡 cos (

𝜋

2
−

𝑖

𝜇
) 

Calling the final processed scan result as �̅�𝑡, robot G takes a path obeying following rules: 

1. If ⌊
𝜏𝑡

𝜇
⌋  ∈ {1,2, … 𝑛} 𝑎𝑛𝑑 �̅�𝑡

⌊𝜏𝑡⌋ = 0 take ⌊
𝜏𝑡

𝜇
⌋ as target direction. 

2. If ⌊
𝜏𝑡

𝜇
⌋  ∈ {1,2, … 𝑛} 𝑎𝑛𝑑 �̅�𝑡

⌊𝜏𝑡⌋ = 1 take closest 𝑖 to ⌊
𝜏𝑡

𝜇
⌋ which �̅�𝑡

𝑖 = 0 as target 

direction. 

3. If ⌊
𝜏𝑡

𝜇
⌋  ∉ {1,2, … 𝑛} take closest 𝑖 to ⌊

𝜏𝑡

𝜇
⌋ which �̅�𝑡

𝑖 = 0 as target direction. 

In practice, LIDAR measurements, the assumed approximations, and other nonlinearities 

can cause collisions if rsafety is taken very close or equal to rrobot. Hence, a safety 

distance should be selected by considering these factors. Additionally, a robot with non-

holonomic constraints cannot take the selected direction instantly instead it takes a curved 

path until the orientation and target direction are met. The selection of rsafety, rthreshold 

and VFH+ update rate plays an important role in avoiding crashes during rotations too. 

Another important aspect of VFH+ implementation is the robot shape. If robot’s shape is 

not circular or its width-to-length ratio is significantly bigger or smaller than one, the 

VFH+ algorithm should be implemented differently. 

3.3 UWB Communication and Distance Calculation 

A simple double-sided two-way ranging scheme of two UWB sensors is visualized in 

Figure 2.3 in Chapter 2. A UWB node (or module) ui at position 𝐩t
ui , i ∈ {1, … , n} where 

n = 4  is the total number of nodes, Node 1 or u1 sends an initial message at time tinitial 

with an abstract time value (generally the time passed from sensor start) as a payload in 

the sent message.  If the message is successfully received by the sensor u2 in its own 

timeframe at t2, the signal is processed in a predefined (experimentally computed) time 

and the new message is prepared in a duration of tcpu. Before submission of the message 

to the antenna, the received abstract time value is summed with the processing time of 

tcpu, antenna reception delay of trx, and antenna transmission delay of ttx and transmits 

the response message at time 𝑡3. These values are experimentally calculated and can be 

found in the particular UWB sensor’s datasheet. Finally, the sensor u2 responds with the 

newly generated message. The received message is noted by u1 as tfinal. By processing 
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passed time information and using the constant speed of light in air, u1 calculates the 

distance to the u2 as follows: 

𝑑𝑡
1↔2 = 

(𝑡𝑓𝑖𝑛𝑎𝑙 − 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙) − (𝑡3 − 𝑡2)

2
∗ 𝑐𝑎𝑖𝑟 (3.16) 

Here, it should be noted that t2 and t3 are in the time frame of u2 while tfinal and tinitial 

are in the time frame of u1. The two nodes do not need to be synchronized or do not need 

time-frame conversion since only the differences between time values are required for the 

distance computation and the first three time-stamps (tinitial, t2, t3) are always transmitted 

in the messages while tfinal tracked by the distance calculating node. Moreover, the 

additions of antenna transmission delay and message processing durations are required 

for the correct measurement of the distance between two nodes. Otherwise, the delay 

introduced during processing and transmission adds biases to the range measurements 

and the exact knowledge of the time passing during these processes improves the quality 

and correctness of the measured distances.  

After the above ranging procedure, the computed distance is only known by u1. However, 

to inform u2 about its distance to u1 there are two possible methods: 

i. 𝑢2 loads its own 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 as a 4th label and 𝑢1 responds to message of 𝑢2 by 

adding its own 𝑡2 and 𝑡3 time stamps and finally 𝑢2 recomputes the distance. 

ii. 𝑢1 shares the computed distance information as a simple 3rd massage. 

From a practical perspective, method (ii) is simpler and straightforward. However, if any 

of the sensors are moving so fast that frequent updates to distance measurements are 

required, method (i) can be utilized since it measures the distance 2 times in 3 messaging 

sequences while method (ii) only measures 1 time and shares this information between 

nodes. 

In our system, there are 4 UWB modules in total. To make the communication in order 

and simple, all ranging sequences are started by robot A since it has only one sensor and 

no initiation sharing between nodes is required in this way. Robot A sends an initial 

message from the node u4 with messaging and ranging payloads to u1 and u1 respond 

with time stamps and messaging payloads. Finally, the u4 transmits computed distance 

information to u1 as in method 2. This sequence of messaging repeated between u4 ↔

u1, u4 ↔ u2, u4 ↔ u3 in order. The such messaging scheme is visualized in Figure 3.3. 
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The nodes that are not receiving messages to their unique IDs wait for their turn to come. 

By continuously repeating these processes and following the sequence, the two robots 

know their updated positions during the operation.  

3.4 Position Error Bounds for Unbiased Measurement Noise 

In a practical application, for the successful operation of the system, localization errors 

caused by noises from UWB range measurements should be limited and well-filtered to 

prevent undesired sudden changes in target angles at any time. These frequent changes in 

bearing angle can introduce unwanted oscillations on the ground robot, and the robot 

might fail in obstacle avoidance. Since lAG, lGA and 𝐩t
ui , i ∈ {1,2,3}  are three important 

parameters for stable operation of the localization system, threshold distances and 

placement of UWB modules on the ground robot can be optimized. 

Assuming well-calibrated UWB modules with no biases in LOS operations, one can 

model the lower bound standard deviation for position estimation as in [40]. Since the 

measurement noises rather than the measurement biases oscillate the robot and cause the 

sudden changes in bearing angle, high noise and zero bias are assumed for lower-bound 

computations here. As in (3.6),  with a constant standard deviation of σδ in range 

Figure 3.3 UWB communication and ranging sequence between nodes. All ranging 

sequences are initiated by the UAV node. 
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measurements at a distance, [40] computes the position error bound (PEB) by using the 

Fisher information matrix and Cramer-Rao lower bound (CRLB). Moreover, overall PEB 

formulation can be simplified to (3.17) for our system ((18) in [40]) when there is no bias 

in measurements and the standard deviation is constant. 

PEB(𝜎, 𝜃𝑢𝑖
)

=  √
3𝜎2

(∑ cos2(𝜃𝑢𝑖
)3

𝑖=1 )(∑ sin2(𝜃𝑢𝑖
)3

𝑖=1 ) − (∑ cos(𝜃𝑢𝑖
) sin(𝜃𝑢𝑖

)3
𝑖=1 )

2 

 

(3.17) 

where 𝜎 is the standard deviation and 𝜃𝑢𝑖
 is the bearing angle from each UWB module 

on G to A. Here, since the only varying parameters are the bearing angles of UWB 

modules, as the distance increases, differences in bearing angles decreases (assuming the 

bearing angle to the center of G does not change) and the denominator inside of the 

square-root operation decreases hence PEB value increases. In Figure 3.4 an example 

PEB model is presented for a robot at [x, y] = [0, 0] and UWB sensors placed as in (3.5) 

with m = 0.5 meter for r1,2,3, with σ = 0.15 meters. No filters are used for noise 

suppression during the computations of this figure. 

For better visualization, Figure 3.5 shows the localization of A for 4900 samples in a 

setup where G is placed at the origin and A is placed at [x, y, z] = [10, 10, 7] and σ =

0.15. Additionally, for Figure 3.5, a Gaussian weighted moving average filter with length 

12 is used to further smooth generated noisy data. 
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Figure 3.4 Position error bounds at different locations around the ground robot. σ 

= 0.15. 

 

Figure 3.5 Scatter plot of position estimation for UAV from generated 4900 different 

noisy range measurements with σ = 0.15. 
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Finally, from Figure 3.5, the amount of noise might be seen high however, it should be 

noted that most of the points are close to the actual position of the UAV and since these 

samples are collected in order, for a 10Hz updating system, 4900 samples would take 490 

seconds or 8 minutes. Hence, with a good noise filtering, the localization system can work 

successfully. Additionally, increasing distances between UWB modules on G (while 

preserving the same triangle shape) increases the performance of the system since 

differences in bearing angles of UWB modules to robot A increases this way. The effect 

of increasing distances between UWB nodes can be seen in Figure 3.6. 

 

Figure 3.6 Position error bounds for different onboard UWB distances on robot G. 

(Left: m=1, right m=2) 

However, it should not be forgotten that while increasing distances between UWB 

modules, symmetry of the robot G should be preserved otherwise modification of VFH+ 

algorithm is required for obstacle avoidance. 

To calculate the bounds for the bearing angle error, we analyze the PEB in the 

neighborhood of the desired drone location. Consider Figure 3.6 where the anchors are 

located at the positions 𝐫𝟏 = [0.5 0]T, 𝐫𝟐 = [−0.5 0]T, 𝐫𝟑 = [0 0.5]T, and the 

standard deviation of the UWB distance measurement noises are chosen 𝜎 = 0.1 m. The 

three black circles centered at 𝐜𝟏 = [0 2]T, 𝐜𝟐 = [0 5]T, 𝐜𝟑 = [0 8]T m, with radius 

being the PEB for these center locations denote the maximum position errors a least-

squares algorithm can result in if robot A is located at 𝐜𝐢. Since the bearing angle between 

robots G and A are calculated from the estimated location of robot A, the maximum 

bearing angle errors can be represented by the two black lines drawn on the right and left 

sides of the circles. We found that this error 𝑒bear,max = 0.141 rad is the same for all 

three locations 𝐜𝐢. Notably, although the PEB increases as the planar distance between 
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robots G and A increases, the bearing angle error remains bounded, which demonstrates 

the efficiency of the proposed approach. That is, robot G can utilize the three UWB 

distances to calculate the bearing angle towards robot A with a bounded error to be 

implemented in its navigation module. 

 

Figure 3.7 Standard deviations in bearing angles at different distances. Three 

diamonds are UWB locations while circles have the radius of calculated PEB at 

that location (circle centers). 
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Chapter 4 

Results 

The study presented in Chapters 2 and 3 is verified with realistic simulations and 

laboratory experiments. To evaluate the system, a simulation environment is created with 

trees, a grass plane, forest fire images, normal forest images in the environment, a wheeled 

ground robot, and a VTOL quadrotor drone. Furthermore, before running the simulation, 

other submodules of the overall system like the object detection model, obstacle 

avoidance system, and communication and ranging system are tested. 

As discussed in the previous chapters, the drone used in the simulations should take off, 

scan the environment by slowly rotating in the yaw direction and detect the presence of a 

forest fire. This is also the first objective of the system as mentioned in the method 

Chapter 3. Thus, the object detection algorithm plays a critical role in the system. The 

trained model must be robust against noises and image distortions. Additionally, model 

performance should be high enough to not miss any forest fire instances. Moreover, the 

trained model should continue to detect fire until both robots arrive at the fire location, in 

other words, the detection system should perform sufficiently from the beginning to the 

end of the operation. On the other hand, in a practical application, the UAV should have 

an obstacle avoidance system for take-off and landing. Here, it is assumed that there are 

no nearby obstacles in the take-off and landing location, and the UAV takes off to an 

altitude which is higher than any other obstacles around. We remind that this assumption 

can be easily relaxed in the real-world implementation by choosing a suitable location for 

the drone base. 

To test the second objective mentioned in the previous section, many trees (as obstacles) 

are put in the environment. The VFH+ algorithm is used for obstacle avoidance observed 

during simulations to detect any instance of crashes. Additionally, the VFH+ needs a 

target direction to produce an obstacle-free direction accordingly. This makes UAV 

localization another important factor for the model performance. During simulations, 
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Gaussian noise with zero mean and 15cm standard deviation is added to distance 

measurements to see if localization and target following system acts robustly even with 

noisy measurements.  

The following sections explain object detection model training, simulation environment, 

and system simulations in detail. 

4.1 Model Training 

The original YOLOv7 model comes with pre-trained weights. The algorithm is originally 

trained on the COCO dataset [41] which mainly includes 80 different classes related to 

traffic signs, some objects which can be seen in city traffic, some animals (like horses, 

cats, sheep, etc.) some types of furniture, foods and daily used objects. Unfortunately, 

pre-trained YOLOv7 models cannot recognize fire or smoke. For this reason, both 

convolutional layers and decision layers of the YOLOv7 are trained with the fire and 

smoke images.  

Usually, the transfer learning [42] approach is used in the case of new object recognition 

with a pre-trained network. In transfer learning, especially for convolutional neural 

networks, if the object(s) to be recognized has similar features to the original train objects, 

Figure 4.1 F1 score to confidence graph obtained from 200 epoch training of the 

YOLOv7-tiny model. 
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most of the pre-trained weights of the convolutional layers are kept constant during 

training. However, weights of the decision and/or deep neural network layers are trained 

(or fine-tuned) for the new objects to be detected. As a result, the new system makes use 

of pre-trained feature recognition of the convolutional layer to recognize the new object 

and the deep layers and/or the decision layer configured to make final judgments for the 

newly introduced objects. 

However, in the case of fire and smoke detection, since the features of these objects vastly 

differ from the original train objects in terms of human perception, both convolutional 

and deep layers have been re-trained. Figure 4.1 shows the F1 score [43] of the trained 

object detection model. Basically, the F1 score indicates the model performance in terms 

of recall and precision. It is calculated with the following formula given in (4.1).  

𝐹1 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=

2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

(4.1) 

where TP is the true-positive prediction ratio, FP is the false-positive prediction ratio and 

FN is the false-negative prediction ratio of the model. 

For fire and smoke detection, the YOLOv7-tiny model structure is used. The dataset used 

for model training is created by collecting many publicly available forest fire images on 

the internet. Labeling of the images is handled by using online tools (i.e., makesense.ai). 

The model was trained with the parameters listed in Table 4.1 using a 2 NVIDIA Tesla 

T4 GPU in parallel. Train results and some of the test images can be found in Figure 4.2 

and Figure 4.3 respectively. The performance of the model was lower than the expected; 

however, most of the inaccuracies were caused by incorrect sizing of boxes or insufficient 

detection of all occurrences of objects in the images. 

Table 4.1 Hyperparameters that are used for the model training. 
Batch Size Epoch Learning Rate Flip-LR (0-1) Mosaic (0-1) Image Size 

16+16 200 0.01 0.5 1.0 640x640 

Both fire and smoke have unstructured, undefinable shapes. The performance of the 

model for detecting single occurrences was observed as sufficient, however, multiple 

occurrences or defining the bounds of a big fire or smoke is a hard task even for complex 

CNN models. Considering these factors, model performance in the simulation was 

adequate for detecting and bound-boxing fires or smokes for the task of target detection 
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and reaching. Additionally, multiple sampling of scenes from different perspectives 

helped reduce false detections and moving toward falsely detected places. 

 

 

 

 
Figure 4.3 Comparison between true labeling and model predictions. (a) True labels, 

(b) model predictions. 

4.2 Simulation Results 

The performance of the proposed method is validated with computer simulations. A 

simulation environment is created with a realistic simulation program called GAZEBO. 

Version 9 of the program is used during experiments. The two robots are placed in the 

created simulation environment where there are multiple trees and a forest fire image for 

the drone to detect. Figure 4.4 shows the top view of the simulation world. As a model 

Figure 4.2 Results obtained during training process. Best results obtained at epoch 

90s. 
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ground vehicle, the Husky robot is used. The original model is modified and 3 UWB 

imitating boxes are placed on the robot with m = 0.5 meters for 𝐫𝟏, 𝐫𝟐, 𝐫𝟑. 

 

Figure 4.4 Simulation environment view from the top. Trees and robots in the 

middle, images with fire or no-fire around. 

The drone model used is the iris drone of the PX4-Autopilot system [44]. Pixhawk 

software-in-the-loop (SITL) system is used along with the Mavlink communication line. 

Both vehicles are controlled and commanded over ROS-Melodic middleware running on 

UBUNTU version 18.2 LTS. During the simulation, UWB ranges are computed 

according to ground truth obtained from the rostopic “/gazebo/model_states”. Zero-mean 

random Gaussian noise with a standard deviation of 15 cm is added to the range 

measurements between the drone center and ground vehicle UWB simulating boxes at 

every measurement. The results are published with the rostopic “/uwb” at 10Hz and both 

vehicles received the results online by subscribing to this topic.  

Relative localization, local planner, and control/command algorithms are implemented 

on Python version 2.17 since the ROS-Melodic is supporting this version of the Python 

programming language. However, YOLOv7 is implemented for Python version 3.6 or 

more. To make both control and detection systems compatible with each other, “rospkg” 

is installed for Python version 3.7, and some functions of OpenCV-ROS are re-

implemented for Python version 3.7. This way programs on both python versions make 

use of generated topics and they can publish to the required topics. 
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Figure 4.5 UAV taking off to a predefined altitude and scanning environment. Left 

(a) take off, right (b) scanning. Red circle: UAV front-looking camera footage; blue 

circle: UAV; yellow circle: UGV. 

In Figure 4.5 the drone took off to 7.5 meters altitude to scan and detect its environment. 

A forest fire image is placed in an unknown location. As the drone rotates about its z-

axis, its camera sees the image and the trained YOLOv7 model detects both smoke and 

fire. In Figure 4.6, rotation of the drone during the scan, smoke detection, and target 

reaching of UAV, and UAV following operation of UGV can be seen. During the 

movement of both vehicles, if the distance between UAV and UGV increases to a limit, 

UAV waits for the UGV to come closer. Such behavior is required in a practical 

application since practical radio frequency sensors have limited range and in general 

ranging quality of UWB modules decreases with increasing distance. During the 

Figure 4.6 Different steps during simulations. (a) UAV scanning environment, it is 

seeing a no-fire image. (b) UAV moving towards detected smoke. (c) UAV rotating 

to scan the environment. (d) UAV getting close to the smoke region while UGV 

following UAV. 
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simulations, images used were selected from the ones that are not used in the training 

dataset. 

In Figure 4.7, the plot of the x-y axis movements of both ground and air robots can be 

seen. As it can be seen from Figure 4.7a and Figure 4.7b, the ground robot only moves 

when the distance between the drone and the UGV is bigger than a threshold. This ensures 

higher accuracy localization and bearing computation of the drone. On the other hand, the 

drone waits for UGV to get closer if the distance between them exceeds a threshold 

(Figure 4.7c). To show that, in simulation 2, the UGV started lately after the UAV took 

off and started to approach the target location. It is clear from Figure 4.7c that UAV waits 

for the ground robot to close the gap between them. This is necessary for a real-life 

application since communication signals and the link can be corrupted by environmental 

sources and keeping the distance low enough ensures high-quality communication 

between nodes.  From the paths-plot created from UGV and UAV movements, it can be 

clearly seen that the proposed system can detect fire and approach the fire location without 

colliding with trees or other obstacles. 



40 

 

 

Figure 4.7 Path created during two different simulation experiments. Blue lines 

UGV, orange lines UAV, small blue circles obstacles (trees). (A) simulation 1, (B) 

simulation 2, (C) distance change during simulation 2. 
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4.3 Experiments 

To demonstrate and test the performance of the designed system, two different 

experiments are conducted. For the first experiment, in a motion capture room, the 

performance of the UAV following system of the UGV is tested. As a ground robot, 

ROSbot 2 is used. The robot has a Rockchip RK3288 (Quad-core ARM Cortex-A17 32-

bit) processor running at 1.8GHz clock frequency, ARM Mali-T764 MP2 type GPU and 

2GB of random-access memory. Additionally, the robot has accelerometer and gyro 

sensors for inertial measurements. On top of the robot, 3 UWB sensors are placed by 

using 35 cm long plastic rods and connected to the robot’s USB port for powering the 

modules and communication. However, no LIDAR system was installed on the robot 

since the only purpose of this experimental setup is to check if UAV following system 

works in a laboratory experiment. Additionally, UBUNTU version 18.2 LTS along with 

ROS-Melodic is used for ground robot control and commanding. The commanded 

angular and linear velocities over ROS-Melodic middleware are turned into actuations by 

using the drivers provided by the robot producer company (HUSARION). Incoming 

UWB measurements are collected from the USB port connected to one of the UWB 

modules. As a UAV system, DJI Mavic Pro is used. A power source and a UWB sensor 

are placed on top of the drone. UWB modules used on both UGV and UAV is the 

Decawave DWM1001 UWB module. The designed UWB communication system 

communicates at 20Hz. In this experiment, the drone is controlled using its remote 

controller.  

In Figure 4.8 images of the running system can be seen. It is clear from the snapshots that 

the ground robot reacts to changing UAV position and by following the bearing angle 

direction to the UAV, it follows the aerial robot. Additionally, since the UWB on the 

UAV is placed on top of the drone, a non-line-of-sight situation exists during the 

experiment. This shows that the designed system can generate correct bearing angles 

under NLOS conditions where communication is still possible. Position information 

collected from the conducted two repeats of the first type experiment is plotted using 

MATLAB in Figure 4.9. On the plot, some of the position data that are collected at the 

same time are marked for ease of tracking the followed paths.  
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Figure 4.8 Experiment snapshots (A-F in order). 
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Figure 4.9 The path created by UGV (blue) and UAV (orange) during two different 

experiments. Times for UAV and UGV are marked with circles and named Tx-UAV 

for UAV and Tx-UGV for the ground robot for better tracking the positions of the 

two robots. 

For the second experiment, in a corridor environment, UAV following performance and 

obstacle avoidance system performance is tested together. Different from the previous 

experiment, as UGV, Rover Zero 3 robot with 4-wheel configuration is used. This robot 

uses an Intel NUCi3 computer to control its actuators. Same operating system and same 

ROS version are used for the computer. However, since actuators, actuator sizes and the 

robot itself is different from the robot in experiment 1, drivers provided by the producer 

company is used for actuator control. 
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To place 3 UWB modules, 3 plastic rods with lengths of 55cm each were used, and sensor 

placement was similar to the previous experiment and simulations except that this time 

plastic rods are attached to a platform approximately 50cm above the robot top plate. 

Additionally, a 2D LIDAR sensor is placed on top of the platform installed on the robot 

to detect obstacles and run the VFH+ algorithm. The LIDAR sensor has 360-degree vision 

and 1 degree angle increment hence produces an array of 360 range measurements. 

Update rate of the sensor is 5Hz. The overall robot is present in Figure 4.10. Since this 

experiment is conducted in a corridor environment and no motion capture system is used, 

overall performance is evaluated visually in terms of moving towards the UAV and 

avoiding obstacles during the operation.  

For the first part of the second experiment, in a narrow corridor, the UAV is manually 

controlled and follows a straight path. Here, a person walked in front of the UGV to 

represent an obstacle. Additionally, the drone kept at hovering position for multiple times 

to check if the ground robot can protect the predefined minimum distance between the 

drone and itself. Snapshots of the experiment can be found in Figure 4.11. All the 

inspections for following, obstacle avoidance, and distance protection were successful. 

The second part is conducted in a wider corridor where 3 different boxes are placed on 

the path of the UGV, and a drone again manually controlled following a straight path in 

the middle of the corridor. Both experiments are concluded without any collision and the 

UGV followed the drone successfully. Snapshots of the second part can be found in 

Figure 4.12. 
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Figure 4.10 Ground robot setup in experiment 2. 
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Figure 4.11 Part 1 of experiment 2. (A) UGV following UAV. (B-C) obstacle 

avoidance. (D) UGV following UAV. 

 

Figure 4.12 Part 2 of experiment 2. (A, B, C, D) UGV maneuvering to avoid from 

different obstacles while following UAV. 

 

 

 



47 

 

Chapter 5 

Conclusions and Future Prospects  

5.1 Conclusions 

In this study, a heterogenous robot team with a UAV and UGV is designed. The UAV is 

responsible for forest fire detection and ground robot guidance while the ground vehicle 

is responsible for following the UAV without any collision with obstacles in a forest 

environment. Two robots use ultra-wideband communication and ranging sensors to 

locate themselves for a successful follow-up operation. Simulation results showed that 

the designed system is robust against ranging errors and can outperform only-odometry-

based systems since the UWB-based ranging system has a bounded error level. However, 

further research must be conducted to prove this proposition. The localization and 

following system performed with small errors in the simulations, and the trained computer 

vision model performed quite well. 

5.2 Societal Impact and Contribution to Global 

Sustainability 

The effects of global warming are at a level where it can be felt obviously. As the 

consequences increase day by day, we have no time to lose or spend without considering 

the results. Unfortunately, forest fires are only one of the consequences and it has a 

boosting effect on the crises. As the seasons lived on their edges, the summers have 

become extremely hot. For this reason, the number of forest fires increased rapidly. 

Hence, an early forest fire detection and response system became mandatory. The 

presented in this study can be a good start for fighting against forest fires and protecting 

our diminishing forests. 

According to recent studies [9]–[11], a huge amount of CO2 has been released into the 

atmosphere in the last three years due to forest fires globally. In fact, the problem here is 

not only the carbon release. Carbon capture property of the burned forest lands disappears 
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so that the consequences double. As the number of fires increases, a precaution must be 

taken to stop forest fires before they become a bigger problem for all creatures. Changing 

climates harm food supply and agricultural processes. As time passes, we experience this 

fact more and more. However, forests are one of the most critical environments to protect 

biodiversity and as a weapon against global warming. The number of studies on 

protection or forest-supporting research should increase to protect and fortify our forests. 

It is hard to measure the direct impact of this study on global sustainability since the study 

is at the basic experimental level yet. However, by using the robust architecture presented 

in this study, novel robotic systems can be created to be practically used in forests. This 

way the number of forest fires will decrease rapidly. By protecting our forests, we will be 

protecting our farmlands, clean water resources, forest-related industries, and most 

importantly the ecosystem it has. 

As we do not have any extra time for taking precautions against global warming, we also 

do not have any plants or trees to lose. As engineers, we are great at automating machines 

and finding new solutions. I believe, enough attraction to this topic will produce a good 

solution for sure. 

5.3 Future Prospects 

This thesis study examines a heterogeneous multi-robot system for early forest fire 

detection. Proposed methods and the overall system are shown to be applicable to 

implementation in real by presenting successful simulations and basic experimental 

results. However, even the most realistic simulations cannot model noises or any other 

uncertainties in a practical application. For this reason, real implementation of the system 

and field experiments require a full test of the system’s performance and its robustness 

under uncertainties. 

Besides further experimental setups, new aspects can be added to the system. An example 

can be using a second UAV or an additional downward-looking camera on UAV to 

observe the environment and extract obstacle information on behalf of the UGV. This 

way the ground robot can compute optimal and shorter paths toward the target place. 

In the study, UAV obstacle avoidance is not included in the system by assuming UAV 

altitude is high enough so that the UAV does not confront any obstacle. However, this 
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assumption might not be practical for a real-world application. The assumption can hold 

if the UAV altitude is higher than any tree, grid, or any other structures in the field of 

activity. However, this may require an advanced camera and lens systems to record 

images of far objects. Especially if the main goal is to detect fire or smoke when they are 

not so big. Additionally, for this assumption to hold, the UAV takes-off and landing area 

should be cleared of obstacles. To improve this aspect of the study, the UAV to be used 

should be equipped with suitable obstacle detection sensors or it can even use computer 

vision algorithms to detect and avoid obstacles. This way, the UAV can adjust its height 

during the mission to optimize image capturing of fire location. However, the addition of 

multiple sensors and implementing obstacle avoidance for a 6-degrees-of-freedom 

vehicle introduces high complexity to the system. 
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